pybind.cc 107.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17
#include "paddle/fluid/eager/grad_node_info.h"

18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

C
chengduoZH 已提交
23
#include <algorithm>
24
#include <cctype>
25
#include <cstdlib>
26
#include <iterator>
C
chengduoZH 已提交
27
#include <map>
S
sneaxiy 已提交
28
#include <memory>
C
chengduoZH 已提交
29
#include <mutex>  // NOLINT // for call_once
30
#include <sstream>
C
chengduoZH 已提交
31
#include <string>
32 33
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
34
#include <unordered_map>
35
#include <unordered_set>
C
chengduoZH 已提交
36 37
#include <utility>
#include <vector>
38

39
#include "paddle/fluid/framework/convert_utils.h"
40
#include "paddle/fluid/framework/custom_operator.h"
41
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
42
#include "paddle/fluid/framework/data_type_transform.h"
43
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/executor.h"
45
#include "paddle/fluid/framework/executor_cache.h"
46
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
48
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
50
#include "paddle/fluid/framework/io/fs.h"
51
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
52
#include "paddle/fluid/framework/ir/cost_model.h"
53
#include "paddle/fluid/framework/ir/generate_pass.h"
54
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
57
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
58 59
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
60
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/op_info.h"
62
#include "paddle/fluid/framework/op_registry.h"
63
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/framework/parallel_executor.h"
65
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/framework/prune.h"
67
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/framework/scope_pool.h"
70
#include "paddle/fluid/framework/selected_rows_utils.h"
71
#include "paddle/fluid/framework/tensor_util.h"
72
#include "paddle/fluid/framework/trainer.h"
73
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
74
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
76
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
77
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
78 79
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
80
#include "paddle/fluid/prim/utils/utils.h"
81 82 83
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
84
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
85
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
86
#include "paddle/fluid/operators/common_infer_shape_functions.h"
87
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
88
#include "paddle/fluid/operators/py_func_op.h"
89
#include "paddle/fluid/platform/cpu_helper.h"
90
#include "paddle/fluid/platform/device/device_wrapper.h"
91
#include "paddle/fluid/platform/device_context.h"
92
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/platform/enforce.h"
94
#include "paddle/fluid/platform/init.h"
95
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
96
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
99 100 101
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
109 110
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/data_set_py.h"
112 113
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
120
#include "paddle/fluid/pybind/graph.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/heter_wrapper_py.h"
122
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
123
#include "paddle/fluid/pybind/inference_api.h"
124
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
125
#include "paddle/fluid/pybind/ir.h"
126
#include "paddle/fluid/pybind/jit.h"
127
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
128
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
129
#include "paddle/fluid/pybind/pybind_variant_caster.h"
130 131
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
132
#include "paddle/phi/backends/device_manager.h"
133 134 135
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
136

137
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
138
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
139
#endif
140
#include "paddle/fluid/framework/data_type.h"
141 142
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
143 144
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
145
#include "paddle/fluid/pybind/reader_py.h"
146
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
147
#include "paddle/fluid/pybind/tensor_py.h"
148
#include "paddle/fluid/string/to_string.h"
149 150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
151
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
152
#endif
153
#ifndef PADDLE_WITH_HIP
154
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
155
#endif
156
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
157 158
#endif

159
#ifdef PADDLE_WITH_XPU
160
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
161
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
162 163
#endif

164
#ifdef PADDLE_WITH_CUSTOM_DEVICE
165
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
166
#include "paddle/fluid/platform/collective_helper.h"
167 168
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
169 170 171
#include "paddle/phi/capi/capi.h"
#endif

172
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
173

J
jianghaicheng 已提交
174
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
175 176
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
177
#endif
178

Y
Yanghello 已提交
179 180 181 182
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
183
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
184 185 186
#include "paddle/fluid/pybind/fleet_py.h"
#endif

187 188 189 190
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
191
#if defined(PADDLE_WITH_RPC)
192 193 194
#include "paddle/fluid/pybind/rpc.h"
#endif

195
#include "paddle/fluid/eager/api/utils/global_utils.h"
196
#include "paddle/fluid/eager/nan_inf_utils.h"
197
#include "paddle/fluid/imperative/layout_autotune.h"
198
#include "paddle/fluid/ir_adaptor/translator/translate.h"
199 200
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
201 202
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
203 204
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
205
#include "paddle/phi/core/flags.h"
206 207
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
208 209
#include "pybind11/stl.h"

210
PHI_DECLARE_bool(use_mkldnn);
211

Q
Qiao Longfei 已提交
212 213
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
214 215 216
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
217

218
DECLARE_FILE_SYMBOLS(init_phi);
219
DECLARE_FILE_SYMBOLS(kernel_dialect);
220
namespace paddle {
221
namespace pybind {
222

0
0x45f 已提交
223
PyTypeObject *g_framework_scope_pytype = nullptr;
224
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
225
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
226

227 228 229 230 231 232 233 234
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

235
bool IsCompiledWithCUDA() {
236 237 238 239 240 241 242
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

243 244 245 246 247 248 249 250
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

268 269
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
270 271 272 273 274 275
  return false;
#else
  return true;
#endif
}

276 277 278 279 280 281 282 283
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
298 299 300 301 302 303 304 305
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

306 307 308 309 310 311 312 313
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

314 315 316 317 318 319 320 321
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

322 323 324 325 326 327 328 329 330
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

331 332 333 334 335 336 337 338
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

339 340 341 342
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
343
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
344 345 346 347 348 349
    return true;
  else
    return false;
#endif
}

350 351 352 353
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
354
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
355 356 357 358 359 360
    return true;
  else
    return false;
#endif
}

361 362 363 364
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
365 366
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
367 368 369 370 371 372 373
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
374 375
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
376 377 378
#endif
}

379
bool IsCompiledWithBrpc() {
380
#ifndef PADDLE_WITH_DISTRIBUTE
381
  return false;
382
#else
383
  return true;
384
#endif
385 386
}

Y
update  
Yancey1989 已提交
387
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
388
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
389 390 391 392 393 394
  return true;
#else
  return false;
#endif
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
530 531
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
532 533
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
547 548
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
549 550
    }
    vec_res.emplace_back(
551
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
552 553 554 555 556 557 558 559 560 561 562 563
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
564 565
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
566 567 568 569 570 571 572 573 574 575 576 577
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
578 579 580
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
581 582 583 584
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
585 586
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
587 588 589 590
  }
  return vec_res;
}

O
OccupyMars2025 已提交
591
static void inline CreateVariableIfNotExist(
592 593
    const py::handle &py_handle,
    const framework::Scope &scope,
594 595 596 597 598 599
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
600 601
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
602 603 604 605 606 607 608 609 610 611 612 613 614
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
615 616 617
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
618 619 620 621 622
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
623 624 625 626 627
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
628 629
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
630
        PADDLE_ENFORCE_NOT_NULL(
631 632 633
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
634 635 636
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
637
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
638
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
639 640
        tensor_temp->mutable_data(
            exe->GetPlace(),
641
            framework::TransToPhiDataType(var_desc.GetDataType()));
642 643 644
      }
    }
  } else {
645 646
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
647 648 649 650 651
  }

  return;
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
668 669
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
670 671 672 673 674 675 676
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
677 678 679 680
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
681
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
682 683 684 685 686 687 688 689
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

690
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
691
  BindImperative(&m);
692
  BindEager(&m);
J
Jack Zhou 已提交
693
  BindEagerStringTensor(&m);
694
  BindCudaStream(&m);
J
james 已提交
695
  BindXpuStream(&m);
696
  BindJit(&m);
697
  BindEvalFrame(&m);
698
  BindCustomDevicePy(&m);
699

Y
Yu Yang 已提交
700
  // Not used, just make sure cpu_info.cc is linked.
701
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
702

Y
Refine  
Yu Yang 已提交
703
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
704

705 706
  AssertStaticGraphAndDygraphGradMakerNoDiff();

707
  m.doc() = "C++ core of PaddlePaddle";
708

709 710 711 712
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

713
  BindException(&m);
Y
Yu Yang 已提交
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

753 754 755 756 757 758 759 760 761 762
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
763 764 765 766
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
767 768
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
769 770
  m.def("set_num_threads", &platform::SetNumThreads);

771 772
  m.def("disable_signal_handler", &DisableSignalHandler);

773 774 775 776 777 778 779 780
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

781 782 783 784 785 786 787
  py::class_<egr::GradNodeBase>(m, "GradNodeBase")
      .def("name", &egr::GradNodeBase::name)
      .def_property_readonly("next_functions",
                             &egr::GradNodeBase::NextFunctions)
      .def("input_meta", &egr::GradNodeBase::InputMeta)
      .def("output_meta", &egr::GradNodeBase::OutputMeta);

788
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
789
  m.def("cudnn_version", &platform::DnnVersion);
790 791 792 793 794 795
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
796
#endif
797

Z
Zeng Jinle 已提交
798 799 800 801
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

802 803
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
804
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
805 806 807 808 809 810
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
811
      .def_static("gen_new_memory_pool_id",
812 813 814 815 816
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
817 818
#endif

Z
Zeng Jinle 已提交
819 820 821 822
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
823 824 825
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
826 827

    PADDLE_ENFORCE_NOT_NULL(
828 829 830 831
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
832

6
633WHU 已提交
833 834
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
835
    phi::DenseTensor tensor;
6
633WHU 已提交
836

S
Siming Dai 已提交
837
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
838
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
839
    }
840
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
841
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
842
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
843 844 845 846
    }
#endif
    return tensor;
  });
H
hong 已提交
847

848
  m.def("_create_loaded_parameter",
849 850
        [](const py::handle &vec_var_list,
           const Scope &scope,
851
           const Executor *executor) {
O
OccupyMars2025 已提交
852
          CreateVariableIfNotExist(vec_var_list, scope, executor);
853 854
        });

855 856 857 858 859 860
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
861 862
  });

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

888 889 890 891 892 893
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
894

S
sneaxiy 已提交
895
  m.def(
S
sneaxiy 已提交
896
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
897 898 899 900
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
901 902 903
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
920
            }
921
            all_kernels_info.emplace(op_type, kernel_types);
922
          }
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
939
                }
940 941
              } else {
                kernel_types.emplace_back(kernel_type_str);
942
              }
943
            }
944 945 946
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
947
          }
948
        }
949

950 951 952 953
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
954 955 956
           Return the registered kernels in paddle.

           Args:
957
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
958
           )DOC");
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1012 1013 1014 1015 1016 1017
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1018 1019
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1020
    platform::XCCLCommContext::Release();
1021 1022 1023
    platform::CustomTracer::Release();
    platform::CustomDeviceEventResourcePool::Release();
    platform::CustomDeviceStreamResourcePool::Release();
1024
    phi::DeviceManager::Release();
1025 1026
#endif
  });
1027

S
sneaxiy 已提交
1028 1029 1030
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1031
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1032

1033
  m.def("_set_fuse_parameter_group_size",
1034
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1035
  m.def("_set_fuse_parameter_memory_size",
1036
        &paddle::framework::ir::SetFuseParameterMemorySize);
1037

S
sneaxiy 已提交
1038 1039 1040
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1041 1042
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1043 1044
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1045 1046 1047
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1048
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1049 1050 1051

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1052
      .def(py::init<>())
1053
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1054
      .def("set_int",
1055 1056
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1057 1058 1059 1060 1061 1062 1063
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1064 1065
      .def(
          "get_tensor",
1066 1067
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1068 1069
          },
          py::return_value_policy::reference)
1070 1071
      .def("get_bytes",
           [](Variable &self) {
1072 1073 1074 1075 1076 1077
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1078
           })
S
Steffy-zxf 已提交
1079
      .def("set_string_list",
1080
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1081 1082
             *self.GetMutable<Strings>() = str_list;
           })
1083
      .def("set_vocab",
1084 1085
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1086 1087
             *self.GetMutable<Vocab>() = vocab;
           })
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1114
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1115 1116 1117 1118 1119 1120
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1121
#endif
1122 1123 1124
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1125 1126
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1137 1138
                scope_vec->size(),
                0,
1139 1140 1141 1142 1143
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1144 1145 1146 1147
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1148

S
sneaxiy 已提交
1149
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1150

0
0x45f 已提交
1151
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1165
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1166 1167 1168 1169 1170
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1171 1172 1173
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1174 1175
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1176 1177
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1178 1179 1180 1181 1182 1183 1184
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1185
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1186

1187
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1188
           current scope, the variable would be created. Otherwise,
1189
           return the existing variable.
S
sneaxiy 已提交
1190 1191

           Args:
1192 1193
               name (str): the variable name.

S
sneaxiy 已提交
1194
           Returns:
1195
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1196
           )DOC",
1197
          py::return_value_policy::reference)
1198 1199 1200
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1201
           R"DOC(
1202
           Find variable named :code:`name` in the current scope or
1203
           its parent scope. Return None if not found.
1204

S
sneaxiy 已提交
1205 1206
           Args:
               name (str): the variable name.
1207

S
sneaxiy 已提交
1208
           Returns:
1209
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1210
           )DOC",
1211
           py::return_value_policy::reference)
1212
      .def("size", &Scope::Size)
1213 1214 1215
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1216 1217
           R"DOC(
           Find variable named :code:`name` in the current scope or
1218
           its parent scope. Return None if not found.
1219 1220 1221 1222 1223 1224 1225 1226

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1227
      .def(
1228 1229
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1230
          R"DOC(
S
sneaxiy 已提交
1231 1232 1233 1234 1235
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1236
          py::return_value_policy::reference)
1237 1238
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1239 1240
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1241
           )DOC")
1242
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1243
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1244

1245 1246 1247 1248 1249 1250 1251 1252
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1253
        Create a new scope.
1254

S
sneaxiy 已提交
1255 1256 1257
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1258
      py::return_value_policy::reference);
S
sneaxiy 已提交
1259

Y
Yu Yang 已提交
1260 1261
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1262 1263
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1264 1265 1266 1267
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1268
        PADDLE_ENFORCE_EQ(
1269 1270
            info.Proto().SerializeToString(&str),
            true,
1271 1272
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1273 1274 1275
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1276 1277
    return ret_values;
  });
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1316 1317 1318 1319 1320 1321 1322 1323
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1324
              res = op_checker->GetDefaultAttrsMap();
1325 1326 1327 1328
            }
          }
          return res;
        });
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1345 1346 1347
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1348 1349 1350 1351 1352
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1353 1354 1355

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1356
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1357 1358 1359 1360

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1361
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1362
            PADDLE_THROW(platform::errors::NotFound(
1363
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1364 1365 1366 1367 1368 1369 1370 1371
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1372
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1373 1374
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1375
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1376 1377
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1378 1379 1380
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1381
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1382
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1383 1384
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1396
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1397
                      << op_desc.Type();
J
Jiabin Yang 已提交
1398 1399 1400
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1401
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1402
                      << op_desc.Type();
J
Jiabin Yang 已提交
1403 1404 1405 1406 1407 1408 1409 1410
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1411 1412 1413 1414 1415 1416 1417 1418
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1419 1420 1421
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1422 1423 1424
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1425 1426 1427 1428 1429
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1430 1431 1432
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1433 1434 1435
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1436
  m.def("infer_no_need_buffer_slots",
1437 1438
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1466 1467 1468 1469 1470 1471
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1472 1473
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1474

1475
            Args:
1476 1477 1478
                   program (ProgramDesc): The original program.

             Returns:
1479
                   tuple(ProgramDesc, map<int, int>): The first part is
1480 1481 1482 1483
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1484 1485 1486 1487
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1488 1489
    VLOG(4) << s;
    return s;
1490 1491 1492 1493 1494 1495
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1496
  });
1497 1498 1499 1500
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1501 1502 1503
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1504 1505
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1506

Y
Yu Yang 已提交
1507
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1508
      .def_static("create",
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1524 1525 1526 1527
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1528
                    return context;
Q
qijun 已提交
1529
                  })
1530 1531 1532 1533
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1534
#ifndef PADDLE_WITH_XPU
1535 1536 1537
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1538
#else
W
Wilber 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1552 1553 1554 1555
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1556
      return context;
1557
#endif
1558 1559 1560 1561
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1562
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1563 1564 1565 1566
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1567 1568
#else
                return new paddle::platform::CustomDeviceContext(place);
1569
#endif
1570 1571 1572 1573 1574
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1575
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1576 1577 1578
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1579
#else
L
Leo Chen 已提交
1580
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1593 1594 1595 1596
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1597 1598 1599 1600
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1601 1602
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1603
#endif
1604 1605 1606 1607 1608
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1609
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1610 1611 1612
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1613 1614 1615
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1616
          });
1617
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1618 1619
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1620 1621 1622
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1623
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1624
#else
R
ronnywang 已提交
1625
          VLOG(1) << string::Sprintf(
1626 1627 1628 1629
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1630
              "PaddlePaddle by: pip install paddlepaddle\n");
1631 1632 1633 1634 1635 1636
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1637
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1638
#else
R
ronnywang 已提交
1639
          VLOG(1) << string::Sprintf(
1640 1641 1642 1643
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1644
              "PaddlePaddle by: pip install paddlepaddle\n");
1645 1646 1647 1648 1649 1650
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1651
    devices = phi::DeviceManager::GetAllDeviceList();
1652
#else
R
ronnywang 已提交
1653
          VLOG(1) << string::Sprintf(
1654 1655 1656 1657
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1658
              "PaddlePaddle by: pip install paddlepaddle\n");
1659 1660 1661 1662 1663 1664
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1665
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1666
#else
R
ronnywang 已提交
1667
          VLOG(1) << string::Sprintf(
1668 1669 1670 1671 1672 1673
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1674
              "PaddlePaddle by: pip install paddlepaddle\n");
1675 1676 1677
#endif
    return devices;
  });
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1697

Y
Yu Yang 已提交
1698
  py::class_<OperatorBase>(m, "Operator")
1699 1700 1701 1702 1703 1704 1705
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1706 1707
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1708 1709 1710 1711 1712 1713
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1714
      .def("run",
1715 1716
           [](OperatorBase &self,
              const Scope &scope,
1717 1718 1719 1720
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1721
      .def("run",
1722 1723
           [](OperatorBase &self,
              const Scope &scope,
1724 1725 1726 1727
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1728
      .def("run",
1729 1730
           [](OperatorBase &self,
              const Scope &scope,
1731 1732 1733 1734
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1735
      .def("run",
1736 1737
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1738
              const platform::CUDAPinnedPlace &place) {
1739
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1740 1741
             self.Run(scope, place);
           })
R
ronnywang 已提交
1742
      .def("run",
1743 1744
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1745 1746 1747 1748
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1749 1750 1751 1752 1753
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1754 1755
             return op.Outputs();
           })
Q
qijun 已提交
1756 1757
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1758
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1759
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1760 1761 1762 1763
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1764

1765 1766 1767
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1768 1769
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1770 1771 1772 1773 1774 1775
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1776 1777
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1778

1779 1780
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1781
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1782
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1783
      .def("close", &Executor::Close)
1784 1785
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1786
           py::call_guard<py::gil_scoped_release>())
1787 1788
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1789
           py::call_guard<py::gil_scoped_release>())
1790
      .def("init_for_dataset",
1791 1792 1793 1794
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1795
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1796
             pybind11::gil_scoped_release release;
1797 1798 1799 1800 1801 1802 1803
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1804
      .def("run_prepared_ctx",
1805 1806 1807
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1808
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1809
              std::map<std::string, FetchType *> *fetch_targets,
1810 1811
              bool create_local_scope = true,
              bool create_vars = true,
1812 1813 1814
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1815 1816 1817 1818 1819 1820 1821 1822
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1823
           })
1824
      .def("run_prepared_ctx",
1825 1826 1827 1828 1829
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1830 1831
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1832 1833
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1834
           })
1835
      .def("prepare",
1836 1837 1838
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1839 1840 1841 1842
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1843 1844
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1845 1846
           })
      .def("create_variables", &Executor::CreateVariables)
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1863

1864
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1865
      .def(py::init<>())
1866 1867 1868 1869 1870
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1871

1872
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1873 1874 1875
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1876
      .def("run",
1877
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1878 1879 1880
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1881
               ret = self.Run(feed_names);
1882 1883
             }
             return py::cast(std::move(ret));
H
hong 已提交
1884 1885
           });

1886 1887
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1888
      .def(py::init<const std::string &>(), py::arg("type"))
1889 1890 1891 1892
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1893 1894
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1907

D
dzhwinter 已提交
1908
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1909
  m.def("init_glog", framework::InitGLOG);
1910
  m.def("init_memory_method", framework::InitMemoryMethod);
1911 1912 1913 1914
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1915 1916 1917 1918 1919 1920 1921 1922
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1923 1924
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1925 1926 1927 1928 1929 1930 1931 1932 1933
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1934
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1935
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1936
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1937
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1938
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1939
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1940
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1941
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1942 1943
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1944
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1945
  m.def("is_run_with_cinn", IsRunWithCINN);
1946
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1947
  m.def("supports_bfloat16", SupportsBfloat16);
1948
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1949 1950
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1951
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1952
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1953
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1954 1955 1956
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
1957 1958 1959 1960 1961
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1981 1982 1983
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
1984 1985
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
1986 1987
  m.def(
      "run_cmd",
1988 1989
      [](const std::string &cmd,
         int time_out = -1,
1990
         int sleep_inter = -1) -> const std::string {
1991 1992
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1993
      },
1994 1995 1996
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1997 1998
  m.def(
      "shell_execute_cmd",
1999 2000 2001
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2002
         bool redirect_stderr = false) -> std::vector<std::string> {
2003 2004
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2005
      },
2006 2007 2008
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2009
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2010

S
Steffy-zxf 已提交
2011
  m.def("set_feed_variable",
2012 2013
        static_cast<void (*)(  // NOLINT
            Scope *,
2014
            const phi::DenseTensor &,
2015 2016
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2017
  m.def("set_feed_variable",
2018 2019
        static_cast<void (*)(  // NOLINT
            Scope *,
2020
            const std::vector<std::string> &,
2021 2022
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2023
  m.def("get_fetch_variable",
2024 2025
        [](const Scope &scope,
           const std::string &var_name,
2026 2027 2028
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2029
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2030
          } else {
R
Ruibiao Chen 已提交
2031
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2032 2033
          }
        });
2034
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2035

X
Xin Pan 已提交
2036 2037
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2038 2039 2040 2041
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2042
  BindCostModel(&m);
2043
  BindConstValue(&m);
2044
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2045
  BindFleetExecutor(&m);
2046
  BindTCPStore(&m);
2047
  BindCommContextManager(&m);
2048
  BindAutoParallel(&m);
2049
  BindJitProperty(&m);
Y
Yu Yang 已提交
2050

Y
Yu Yang 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2060
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2061
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2062 2063 2064

    Examples:
        .. code-block:: python
2065

Z
Zeng Jinle 已提交
2066 2067 2068
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2069 2070 2071 2072
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2073 2074
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2075 2076 2077 2078
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2079 2080
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2081
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2082 2083
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2084 2085 2086
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2087 2088 2089
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2090 2091
      .def(
          "append",
2092
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2093 2094 2095 2096
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2097 2098
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2099
             Append a LoDensor to LoDTensorArray.
2100

2101 2102 2103 2104 2105
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2117
           )DOC")
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2129

2130
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2131
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2132
        )DOC")
2133 2134 2135 2136 2137 2138
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2139
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2140
                res[i] = py::cast(std::move(data));
2141 2142 2143
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2144
              } else {
R
Ruibiao Chen 已提交
2145
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2157

2158 2159
      .def(
          "append",
2160
          [](FetchList &self, const phi::DenseTensor &t) {
2161
            self.emplace_back();
2162
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2163 2164 2165 2166 2167 2168 2169 2170 2171
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2172
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2173 2174 2175 2176 2177 2178
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2179 2180

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2181
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2182
        )DOC")
2183 2184 2185 2186 2187 2188 2189 2190
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2191
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2192 2193
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2194
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2209

Y
Yu Yang 已提交
2210
  m.def("op_support_gpu", OpSupportGPU);
2211
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2212
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2213
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2214 2215 2216 2217 2218 2219 2220 2221
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2222 2223 2224 2225 2226 2227
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2228 2229

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2255
      });
D
dangqingqing 已提交
2256

2257
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2258 2259 2260
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2261 2262 2263
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2264 2265 2266
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2267
#endif
P
peizhilin 已提交
2268
#endif
Y
Yu Yang 已提交
2269

J
jianghaicheng 已提交
2270 2271 2272 2273
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2274 2275 2276 2277 2278 2279
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2280 2281 2282 2283
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2284
      .value("kAll", platform::ProfilerState::kAll)
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2296
  m.def("set_tracer_option", platform::SetTracerOption);
2297 2298
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2299
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2300
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2301
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2302
    PADDLE_ENFORCE_EQ(
2303 2304
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2305 2306 2307
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2308
    callable.inc_ref();
2309 2310 2311 2312
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2313 2314
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2315 2316
          return pass;
        });
2317
  });
2318
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2319 2320 2321
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2322

2323
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2324 2325
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2326 2327
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2328 2329
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2330 2331 2332 2333 2334 2335 2336 2337 2338
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2339

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2403 2404
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2405 2406 2407 2408
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2409 2410 2411
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2412 2413 2414 2415 2416
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2417 2418 2419
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2420 2421

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2422 2423
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2424
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2425
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2426 2427
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2428
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2429 2430 2431 2432 2433 2434
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2458 2459 2460 2461 2462 2463 2464 2465
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2484 2485
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2486 2487
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2488

2489
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2490 2491 2492 2493
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2494
#endif  // PADDLE_WITH_CUDA
2495 2496 2497 2498 2499 2500 2501 2502
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2503

J
jianghaicheng 已提交
2504 2505
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2506 2507 2508
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2509 2510 2511 2512 2513 2514 2515
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2516
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2517 2518
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2519
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2530 2531 2532 2533
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2556 2557
                         option.get_type(),
                         option_name));
2558 2559 2560 2561 2562 2563 2564
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2565 2566
                         option_name,
                         option.first.cast<std::string>(),
2567 2568
                         option.second.cast<std::uint64_t>());
                   }
2569 2570 2571 2572 2573 2574
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2620 2621
                           option.second.get_type(),
                           option_key));
2622
                     }
2623 2624
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2625 2626 2627 2628 2629 2630
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2631 2632
                     element.second.get_type(),
                     option_name));
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2663 2664
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2665 2666 2667
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2668 2669
#endif

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2687 2688 2689 2690 2691 2692 2693 2694
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2695
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2696 2697 2698 2699 2700 2701 2702 2703 2704
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2705
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2706 2707 2708 2709 2710 2711 2712
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2713 2714
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2715

2716 2717
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2718

2719 2720
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2721
  // Add the api for nan op debug
2722 2723 2724 2725
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2726 2727
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2728

2729 2730 2731 2732 2733 2734 2735
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });
2736
  m.def("translate_newirprogram", &paddle::TranslateLegacyProgramToProgram);
D
dongdaxiang 已提交
2737
  BindFleetWrapper(&m);
2738
  BindIO(&m);
2739 2740 2741
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2742

T
Thunderbrook 已提交
2743
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2744
  BindHeterWrapper(&m);
2745
  BindMetrics(&m);
T
Thunderbrook 已提交
2746
#endif
T
Thunderbrook 已提交
2747
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2748
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2749 2750 2751
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2752
#endif
2753
  BindGlooWrapper(&m);
H
hutuxian 已提交
2754
  BindBoxHelper(&m);
H
hutuxian 已提交
2755 2756 2757
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2758
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2759
  BindNCCLWrapper(&m);
2760 2761 2762
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2763
#endif
F
flame 已提交
2764 2765
  BindGraph(&m);
  BindNode(&m);
2766
  BindPass(&m);
F
flame 已提交
2767
  BindInferenceApi(&m);
2768
  BindCompatible(&m);
2769
  BindDataset(&m);
Y
yaoxuefeng 已提交
2770
  BindGenerator(&m);
2771
#ifndef PADDLE_NO_PYTHON
2772 2773
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2774 2775 2776
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2777

T
tangwei12 已提交
2778
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2779 2780
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2781
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2782 2783
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2784 2785 2786 2787 2788
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2789 2790 2791 2792
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2793
#ifdef PADDLE_WITH_HETERPS
2794 2795
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2796 2797 2798
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2799
#endif
X
Xinger 已提交
2800
#if defined(PADDLE_WITH_RPC)
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
2813 2814

  BindNewIR(&m);
L
Luo Tao 已提交
2815
}
2816
}  // namespace pybind
2817
}  // namespace paddle