sched.c 224.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <trace/sched.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
100
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
101
 */
102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

141 142
static inline int rt_policy(int policy)
{
143
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
144 145 146 147 148 149 150 151 152
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
153
/*
I
Ingo Molnar 已提交
154
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
155
 */
I
Ingo Molnar 已提交
156 157 158 159 160
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

161
struct rt_bandwidth {
I
Ingo Molnar 已提交
162 163 164 165 166
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
200 201
	spin_lock_init(&rt_b->rt_runtime_lock);

202 203 204
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
205
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
206 207
}

208 209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}
212

213 214 215 216
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

217
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
389
	u64 pair_start;
I
Ingo Molnar 已提交
390 391 392

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
393 394 395 396 397 398

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
399 400
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
401
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
402 403 404

	unsigned long nr_spread_over;

405
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
406 407
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
408 409
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
410 411 412 413 414 415
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
416 417
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
418 419 420

#ifdef CONFIG_SMP
	/*
421
	 * the part of load.weight contributed by tasks
422
	 */
423
	unsigned long task_weight;
424

425 426 427 428 429 430 431
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
432

433 434 435 436
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
437 438 439 440 441

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
442
#endif
I
Ingo Molnar 已提交
443 444
#endif
};
L
Linus Torvalds 已提交
445

I
Ingo Molnar 已提交
446 447 448
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
449
	unsigned long rt_nr_running;
450
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
451 452
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
453
#ifdef CONFIG_SMP
454
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
455
	int overloaded;
P
Peter Zijlstra 已提交
456
#endif
P
Peter Zijlstra 已提交
457
	int rt_throttled;
P
Peter Zijlstra 已提交
458
	u64 rt_time;
P
Peter Zijlstra 已提交
459
	u64 rt_runtime;
I
Ingo Molnar 已提交
460
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
461
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
462

463
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
464 465
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
466 467 468 469 470
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
471 472
};

G
Gregory Haskins 已提交
473 474 475 476
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
477 478
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
479 480 481 482 483 484 485 486
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
487

I
Ingo Molnar 已提交
488
	/*
489 490 491 492
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
493
	atomic_t rto_count;
494 495 496
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
497 498
};

499 500 501 502
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
503 504 505 506
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
507 508 509 510 511 512 513
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
514
struct rq {
515 516
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
517 518 519 520 521 522

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
523 524
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
525
	unsigned char idle_at_tick;
526
#ifdef CONFIG_NO_HZ
527
	unsigned long last_tick_seen;
528 529
	unsigned char in_nohz_recently;
#endif
530 531
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
532 533 534 535
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
536 537
	struct rt_rq rt;

I
Ingo Molnar 已提交
538
#ifdef CONFIG_FAIR_GROUP_SCHED
539 540
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
541 542
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
543
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
544 545 546 547 548 549 550 551 552 553
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

554
	struct task_struct *curr, *idle;
555
	unsigned long next_balance;
L
Linus Torvalds 已提交
556
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
557

558
	u64 clock;
I
Ingo Molnar 已提交
559

L
Linus Torvalds 已提交
560 561 562
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
563
	struct root_domain *rd;
L
Linus Torvalds 已提交
564 565 566 567 568
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
569 570
	/* cpu of this runqueue: */
	int cpu;
571
	int online;
L
Linus Torvalds 已提交
572

573
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
574

575
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
576 577 578
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
579
#ifdef CONFIG_SCHED_HRTICK
580 581 582 583
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
584 585 586
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
587 588 589 590 591
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
592 593 594 595
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
596 597

	/* schedule() stats */
598 599 600
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
601 602

	/* try_to_wake_up() stats */
603 604
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
605 606

	/* BKL stats */
607
	unsigned int bkl_count;
L
Linus Torvalds 已提交
608 609 610
#endif
};

611
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
612

613
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
614
{
615
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
616 617
}

618 619 620 621 622 623 624 625 626
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
627 628
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
629
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
630 631 632 633
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
634 635
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
636 637 638 639 640 641

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

642 643 644 645 646
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
647 648 649 650 651 652 653 654 655
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
674 675 676
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
677 678 679 680

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
681
enum {
P
Peter Zijlstra 已提交
682
#include "sched_features.h"
I
Ingo Molnar 已提交
683 684
};

P
Peter Zijlstra 已提交
685 686 687 688 689
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
690
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
691 692 693 694 695 696 697 698 699
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

700
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
701 702 703 704 705 706
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

707
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
735
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
765
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
808

809 810 811 812 813 814
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
815 816
/*
 * ratelimit for updating the group shares.
817
 * default: 0.25ms
P
Peter Zijlstra 已提交
818
 */
819
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
820

P
Peter Zijlstra 已提交
821
/*
P
Peter Zijlstra 已提交
822
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
823 824
 * default: 1s
 */
P
Peter Zijlstra 已提交
825
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
826

827 828
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
829 830 831 832 833
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
834

835 836 837 838 839 840 841
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
842
	if (sysctl_sched_rt_runtime < 0)
843 844 845 846
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
847

L
Linus Torvalds 已提交
848
#ifndef prepare_arch_switch
849 850 851 852 853 854
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

855 856 857 858 859
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

860
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
861
static inline int task_running(struct rq *rq, struct task_struct *p)
862
{
863
	return task_current(rq, p);
864 865
}

866
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
867 868 869
{
}

870
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871
{
872 873 874 875
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
876 877 878 879 880 881 882
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

883 884 885 886
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
887
static inline int task_running(struct rq *rq, struct task_struct *p)
888 889 890 891
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
892
	return task_current(rq, p);
893 894 895
#endif
}

896
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

913
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914 915 916 917 918 919 920 921 922 923 924 925
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
926
#endif
927 928
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
929

930 931 932 933
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
934
static inline struct rq *__task_rq_lock(struct task_struct *p)
935 936
	__acquires(rq->lock)
{
937 938 939 940 941
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
942 943 944 945
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
946 947
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
948
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
949 950
 * explicitly disabling preemption.
 */
951
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
952 953
	__acquires(rq->lock)
{
954
	struct rq *rq;
L
Linus Torvalds 已提交
955

956 957 958 959 960 961
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
962 963 964 965
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
966
static void __task_rq_unlock(struct rq *rq)
967 968 969 970 971
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

972
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
973 974 975 976 977 978
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
979
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
980
 */
A
Alexey Dobriyan 已提交
981
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
982 983
	__acquires(rq->lock)
{
984
	struct rq *rq;
L
Linus Torvalds 已提交
985 986 987 988 989 990 991 992

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1014
	if (!cpu_active(cpu_of(rq)))
1015
		return 0;
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1036
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1043
#ifdef CONFIG_SMP
1044 1045 1046 1047
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1048
{
1049
	struct rq *rq = arg;
1050

1051 1052 1053 1054
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1055 1056
}

1057 1058 1059 1060 1061 1062
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1063
{
1064 1065
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1066

1067 1068 1069 1070 1071 1072 1073 1074
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1089
		hrtick_clear(cpu_rq(cpu));
1090 1091 1092 1093 1094 1095
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1096
static __init void init_hrtick(void)
1097 1098 1099
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1110

A
Andrew Morton 已提交
1111
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1112 1113
{
}
1114
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1115

1116
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1117
{
1118 1119
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1120

1121 1122 1123 1124
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1125

1126 1127
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1128
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1129
}
A
Andrew Morton 已提交
1130
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1131 1132 1133 1134 1135 1136 1137 1138
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1139 1140 1141
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1142
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1143

I
Ingo Molnar 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1157
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1158 1159 1160 1161 1162
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1163
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1164 1165
		return;

1166
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1229
#endif /* CONFIG_NO_HZ */
1230

1231
#else /* !CONFIG_SMP */
1232
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1233 1234
{
	assert_spin_locked(&task_rq(p)->lock);
1235
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1236
}
1237
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1238

1239 1240 1241 1242 1243 1244 1245 1246
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1247 1248 1249
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1250
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1251

1252 1253 1254
/*
 * delta *= weight / lw
 */
1255
static unsigned long
1256 1257 1258 1259 1260
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1261 1262 1263 1264 1265 1266 1267
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1268 1269 1270 1271 1272

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1273
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1274
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1275 1276
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1277
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1278

1279
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1280 1281
}

1282
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1283 1284
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1285
	lw->inv_weight = 0;
1286 1287
}

1288
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1289 1290
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1291
	lw->inv_weight = 0;
1292 1293
}

1294 1295 1296 1297
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1298
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1299 1300 1301 1302
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1314 1315 1316
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1317 1318
 */
static const int prio_to_weight[40] = {
1319 1320 1321 1322 1323 1324 1325 1326
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1327 1328
};

1329 1330 1331 1332 1333 1334 1335
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1336
static const u32 prio_to_wmult[40] = {
1337 1338 1339 1340 1341 1342 1343 1344
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1345
};
1346

I
Ingo Molnar 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1372

1373 1374 1375 1376 1377 1378
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1389
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1390
typedef int (*tg_visitor)(struct task_group *, void *);
1391 1392 1393 1394 1395

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1396
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1397 1398
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1399
	int ret;
1400 1401 1402 1403

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1404 1405 1406
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1407 1408 1409 1410 1411 1412 1413
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1414 1415 1416
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1417 1418 1419 1420 1421

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1422
out_unlock:
1423
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1424 1425

	return ret;
1426 1427
}

P
Peter Zijlstra 已提交
1428 1429 1430
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1431
}
P
Peter Zijlstra 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1450 1451 1452 1453 1454 1455 1456

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1457
__update_group_shares_cpu(struct task_group *tg, int cpu,
1458
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1459
{
1460 1461 1462 1463
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1464
	if (!tg->se[cpu])
1465 1466
		return;

1467
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1479 1480 1481
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1482 1483 1484 1485 1486 1487
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1488
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1489 1490 1491 1492

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1493
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1494
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1495 1496 1497 1498 1499 1500

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1501
	__set_se_shares(tg->se[cpu], shares);
1502
}
1503 1504

/*
1505 1506 1507
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1508
 */
P
Peter Zijlstra 已提交
1509
static int tg_shares_up(struct task_group *tg, void *data)
1510
{
1511 1512
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1513
	struct sched_domain *sd = data;
1514
	int i;
1515

1516 1517 1518
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1519 1520
	}

1521 1522 1523 1524 1525
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1526

P
Peter Zijlstra 已提交
1527 1528 1529
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1530 1531 1532 1533 1534
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1535
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1536 1537
		spin_unlock_irqrestore(&rq->lock, flags);
	}
P
Peter Zijlstra 已提交
1538 1539

	return 0;
1540 1541 1542
}

/*
1543 1544 1545
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1546
 */
P
Peter Zijlstra 已提交
1547
static int tg_load_down(struct task_group *tg, void *data)
1548
{
1549
	unsigned long load;
P
Peter Zijlstra 已提交
1550
	long cpu = (long)data;
1551

1552 1553 1554 1555 1556 1557 1558
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1559

1560
	tg->cfs_rq[cpu]->h_load = load;
1561

P
Peter Zijlstra 已提交
1562
	return 0;
1563 1564
}

1565
static void update_shares(struct sched_domain *sd)
1566
{
P
Peter Zijlstra 已提交
1567 1568 1569 1570 1571
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1572
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1573
	}
1574 1575
}

1576 1577 1578 1579 1580 1581 1582
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1583
static void update_h_load(long cpu)
1584
{
P
Peter Zijlstra 已提交
1585
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1586 1587 1588 1589
}

#else

1590
static inline void update_shares(struct sched_domain *sd)
1591 1592 1593
{
}

1594 1595 1596 1597
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1598 1599 1600 1601
#endif

#endif

V
Vegard Nossum 已提交
1602
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1603 1604
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1605
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1606 1607 1608
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1609
#endif
1610

I
Ingo Molnar 已提交
1611 1612
#include "sched_stats.h"
#include "sched_idletask.c"
1613 1614
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1615 1616 1617 1618 1619
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1620 1621
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1622

1623
static void inc_nr_running(struct rq *rq)
1624 1625 1626 1627
{
	rq->nr_running++;
}

1628
static void dec_nr_running(struct rq *rq)
1629 1630 1631 1632
{
	rq->nr_running--;
}

1633 1634 1635
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1636 1637 1638 1639
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1640

I
Ingo Molnar 已提交
1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1649

I
Ingo Molnar 已提交
1650 1651
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1652 1653
}

1654 1655 1656 1657 1658 1659
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1660
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1661
{
I
Ingo Molnar 已提交
1662
	sched_info_queued(p);
1663
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1664
	p->se.on_rq = 1;
1665 1666
}

1667
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1668
{
1669 1670 1671 1672 1673 1674
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1675
	sched_info_dequeued(p);
1676
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1677
	p->se.on_rq = 0;
1678 1679
}

1680
/*
I
Ingo Molnar 已提交
1681
 * __normal_prio - return the priority that is based on the static prio
1682 1683 1684
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1685
	return p->static_prio;
1686 1687
}

1688 1689 1690 1691 1692 1693 1694
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1695
static inline int normal_prio(struct task_struct *p)
1696 1697 1698
{
	int prio;

1699
	if (task_has_rt_policy(p))
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1713
static int effective_prio(struct task_struct *p)
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1726
/*
I
Ingo Molnar 已提交
1727
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1728
 */
I
Ingo Molnar 已提交
1729
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1730
{
1731
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1732
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1733

1734
	enqueue_task(rq, p, wakeup);
1735
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1741
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1742
{
1743
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1744 1745
		rq->nr_uninterruptible++;

1746
	dequeue_task(rq, p, sleep);
1747
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1754
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1755 1756 1757 1758
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1759 1760
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1761
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1762
#ifdef CONFIG_SMP
1763 1764 1765 1766 1767 1768
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1769 1770
	task_thread_info(p)->cpu = cpu;
#endif
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1785
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1786

1787 1788 1789 1790 1791 1792
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1793 1794 1795
/*
 * Is this task likely cache-hot:
 */
1796
static int
1797 1798 1799 1800
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1801 1802 1803
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1804
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1805 1806
		return 1;

1807 1808 1809
	if (p->sched_class != &fair_sched_class)
		return 0;

1810 1811 1812 1813 1814
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1815 1816 1817 1818 1819 1820
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1821
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1822
{
I
Ingo Molnar 已提交
1823 1824
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1825 1826
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1827
	u64 clock_offset;
I
Ingo Molnar 已提交
1828 1829

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1830 1831 1832 1833

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1834 1835 1836 1837
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1838 1839 1840 1841 1842
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1843
#endif
1844 1845
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1846 1847

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1848 1849
}

1850
struct migration_req {
L
Linus Torvalds 已提交
1851 1852
	struct list_head list;

1853
	struct task_struct *task;
L
Linus Torvalds 已提交
1854 1855 1856
	int dest_cpu;

	struct completion done;
1857
};
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1863
static int
1864
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1865
{
1866
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1872
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1881

L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1888 1889 1890 1891 1892 1893 1894
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1901
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1902 1903
{
	unsigned long flags;
I
Ingo Molnar 已提交
1904
	int running, on_rq;
R
Roland McGrath 已提交
1905
	unsigned long ncsw;
1906
	struct rq *rq;
L
Linus Torvalds 已提交
1907

1908 1909 1910 1911 1912 1913 1914 1915
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1928 1929 1930
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1931
			cpu_relax();
R
Roland McGrath 已提交
1932
		}
1933

1934 1935 1936 1937 1938 1939
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1940
		trace_sched_wait_task(rq, p);
1941 1942
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1943
		ncsw = 0;
1944
		if (!match_state || p->state == match_state)
1945
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1946
		task_rq_unlock(rq, &flags);
1947

R
Roland McGrath 已提交
1948 1949 1950 1951 1952 1953
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1978

1979 1980 1981 1982 1983 1984 1985
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1986 1987

	return ncsw;
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2003
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2015 2016
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2017 2018 2019 2020
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2021
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2022
{
2023
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2024
	unsigned long total = weighted_cpuload(cpu);
2025

2026
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2027
		return total;
2028

I
Ingo Molnar 已提交
2029
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2030 2031 2032
}

/*
2033 2034
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2035
 */
A
Alexey Dobriyan 已提交
2036
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2037
{
2038
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2039
	unsigned long total = weighted_cpuload(cpu);
2040

2041
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2042
		return total;
2043

I
Ingo Molnar 已提交
2044
	return max(rq->cpu_load[type-1], total);
2045 2046
}

N
Nick Piggin 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2064 2065
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2066
			continue;
2067

N
Nick Piggin 已提交
2068 2069 2070 2071 2072
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2073
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2084 2085
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2086 2087 2088 2089 2090 2091 2092 2093

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2094
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2095 2096 2097 2098 2099 2100 2101

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2102
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2103
 */
I
Ingo Molnar 已提交
2104
static int
2105 2106
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2107 2108 2109 2110 2111
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2112
	/* Traverse only the allowed CPUs */
2113
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2114

2115
	for_each_cpu_mask_nr(i, *tmp) {
2116
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2142

2143
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2144 2145 2146
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2147 2148
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2149 2150
		if (tmp->flags & flag)
			sd = tmp;
2151
	}
N
Nick Piggin 已提交
2152

2153 2154 2155
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2156
	while (sd) {
2157
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2158
		struct sched_group *group;
2159 2160 2161 2162 2163 2164
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2165 2166 2167

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2168 2169 2170 2171
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2172

2173
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2174 2175 2176 2177 2178
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2179

2180
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2212
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2213
{
2214
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2215 2216
	unsigned long flags;
	long old_state;
2217
	struct rq *rq;
L
Linus Torvalds 已提交
2218

2219 2220 2221
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2238
	smp_wmb();
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2244
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2245 2246 2247
		goto out_running;

	cpu = task_cpu(p);
2248
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2255 2256 2257
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262 2263
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2264
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2265 2266 2267 2268 2269 2270
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2284
#endif /* CONFIG_SCHEDSTATS */
2285

L
Linus Torvalds 已提交
2286 2287
out_activate:
#endif /* CONFIG_SMP */
2288 2289 2290 2291 2292 2293 2294 2295 2296
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2297
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2298
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2299 2300 2301
	success = 1;

out_running:
2302
	trace_sched_wakeup(rq, p);
2303
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2304

L
Linus Torvalds 已提交
2305
	p->state = TASK_RUNNING;
2306 2307 2308 2309
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2310
out:
2311 2312
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2313 2314 2315 2316 2317
	task_rq_unlock(rq, &flags);

	return success;
}

2318
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2319
{
2320
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2321 2322 2323
}
EXPORT_SYMBOL(wake_up_process);

2324
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329 2330 2331
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2332 2333 2334 2335 2336 2337 2338
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2339
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2340 2341
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2342 2343 2344

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2345 2346 2347 2348 2349 2350
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2351
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2352
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2353
#endif
N
Nick Piggin 已提交
2354

P
Peter Zijlstra 已提交
2355
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2356
	p->se.on_rq = 0;
2357
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2358

2359 2360 2361 2362
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2384
	set_task_cpu(p, cpu);
2385 2386 2387 2388 2389

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2390 2391
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2392

2393
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2394
	if (likely(sched_info_on()))
2395
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2396
#endif
2397
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2398 2399
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2400
#ifdef CONFIG_PREEMPT
2401
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2402
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2403
#endif
N
Nick Piggin 已提交
2404
	put_cpu();
L
Linus Torvalds 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2414
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2415 2416
{
	unsigned long flags;
I
Ingo Molnar 已提交
2417
	struct rq *rq;
L
Linus Torvalds 已提交
2418 2419

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2420
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2421
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2422 2423 2424

	p->prio = effective_prio(p);

2425
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2426
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2427 2428
	} else {
		/*
I
Ingo Molnar 已提交
2429 2430
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2431
		 */
2432
		p->sched_class->task_new(rq, p);
2433
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2434
	}
2435
	trace_sched_wakeup_new(rq, p);
2436
	check_preempt_curr(rq, p, 0);
2437 2438 2439 2440
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2441
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2442 2443
}

2444 2445 2446
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2447 2448
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2449 2450 2451 2452 2453 2454 2455 2456 2457
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2458
 * @notifier: notifier struct to unregister
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2488
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2500
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2501

2502 2503 2504
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2505
 * @prev: the current task that is being switched out
2506 2507 2508 2509 2510 2511 2512 2513 2514
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2515 2516 2517
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2518
{
2519
	fire_sched_out_preempt_notifiers(prev, next);
2520 2521 2522 2523
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2524 2525
/**
 * finish_task_switch - clean up after a task-switch
2526
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2527 2528
 * @prev: the thread we just switched away from.
 *
2529 2530 2531 2532
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2533 2534
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2535
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2536 2537 2538
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2539
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2540 2541 2542
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2543
	long prev_state;
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2549
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2550 2551
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2552
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2558
	prev_state = prev->state;
2559 2560
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2561 2562 2563 2564
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2565

2566
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2567 2568
	if (mm)
		mmdrop(mm);
2569
	if (unlikely(prev_state == TASK_DEAD)) {
2570 2571 2572
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2573
		 */
2574
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2575
		put_task_struct(prev);
2576
	}
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2583
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2584 2585
	__releases(rq->lock)
{
2586 2587
	struct rq *rq = this_rq();

2588 2589 2590 2591 2592
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2593
	if (current->set_child_tid)
2594
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2595 2596 2597 2598 2599 2600
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2601
static inline void
2602
context_switch(struct rq *rq, struct task_struct *prev,
2603
	       struct task_struct *next)
L
Linus Torvalds 已提交
2604
{
I
Ingo Molnar 已提交
2605
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2606

2607
	prepare_task_switch(rq, prev, next);
2608
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2609 2610
	mm = next->mm;
	oldmm = prev->active_mm;
2611 2612 2613 2614 2615 2616 2617
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2618
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2625
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2626 2627 2628
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2629 2630 2631 2632 2633 2634 2635
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2636
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2637
#endif
L
Linus Torvalds 已提交
2638 2639 2640 2641

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2642 2643 2644 2645 2646 2647 2648
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2672
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2687 2688
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2689

2690
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2700
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2721
/*
I
Ingo Molnar 已提交
2722 2723
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2724
 */
I
Ingo Molnar 已提交
2725
static void update_cpu_load(struct rq *this_rq)
2726
{
2727
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2740 2741 2742 2743 2744 2745 2746
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2747 2748
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2749 2750
}

I
Ingo Molnar 已提交
2751 2752
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2759
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2760 2761 2762
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2763
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2764 2765 2766 2767
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2768
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2769
			spin_lock(&rq1->lock);
2770
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2771 2772
		} else {
			spin_lock(&rq2->lock);
2773
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2774 2775
		}
	}
2776 2777
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784 2785
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2786
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2800
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2801 2802 2803 2804
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2805 2806
	int ret = 0;

2807 2808 2809 2810 2811
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2812
	if (unlikely(!spin_trylock(&busiest->lock))) {
2813
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2814 2815
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2816
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2817
			ret = 1;
L
Linus Torvalds 已提交
2818
		} else
2819
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2820
	}
S
Steven Rostedt 已提交
2821
	return ret;
L
Linus Torvalds 已提交
2822 2823
}

2824 2825 2826 2827 2828 2829 2830
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2831 2832 2833
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2834
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2835 2836
 * the cpu_allowed mask is restored.
 */
2837
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2838
{
2839
	struct migration_req req;
L
Linus Torvalds 已提交
2840
	unsigned long flags;
2841
	struct rq *rq;
L
Linus Torvalds 已提交
2842 2843 2844

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2845
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2846 2847
		goto out;

2848
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2849 2850 2851 2852
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2853

L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2859

L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865 2866
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2867 2868
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2869 2870 2871 2872
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2873
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2874
	put_cpu();
N
Nick Piggin 已提交
2875 2876
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2883 2884
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2885
{
2886
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2887
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2888
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2889 2890 2891 2892
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2893
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2894 2895 2896 2897 2898
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2899
static
2900
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2901
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2902
		     int *all_pinned)
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907 2908 2909
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2910 2911
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2912
		return 0;
2913
	}
2914 2915
	*all_pinned = 0;

2916 2917
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2918
		return 0;
2919
	}
L
Linus Torvalds 已提交
2920

2921 2922 2923 2924 2925 2926
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2927 2928
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2929
#ifdef CONFIG_SCHEDSTATS
2930
		if (task_hot(p, rq->clock, sd)) {
2931
			schedstat_inc(sd, lb_hot_gained[idle]);
2932 2933
			schedstat_inc(p, se.nr_forced_migrations);
		}
2934 2935 2936 2937
#endif
		return 1;
	}

2938 2939
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2940
		return 0;
2941
	}
L
Linus Torvalds 已提交
2942 2943 2944
	return 1;
}

2945 2946 2947 2948 2949
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2950
{
2951
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2952 2953
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2954

2955
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2956 2957
		goto out;

2958 2959
	pinned = 1;

L
Linus Torvalds 已提交
2960
	/*
I
Ingo Molnar 已提交
2961
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2962
	 */
I
Ingo Molnar 已提交
2963 2964
	p = iterator->start(iterator->arg);
next:
2965
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2966
		goto out;
2967 2968

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2969 2970 2971
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2972 2973
	}

I
Ingo Molnar 已提交
2974
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2975
	pulled++;
I
Ingo Molnar 已提交
2976
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2977

2978
	/*
2979
	 * We only want to steal up to the prescribed amount of weighted load.
2980
	 */
2981
	if (rem_load_move > 0) {
2982 2983
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2984 2985
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2986 2987 2988
	}
out:
	/*
2989
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2990 2991 2992 2993
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2994 2995 2996

	if (all_pinned)
		*all_pinned = pinned;
2997 2998

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2999 3000
}

I
Ingo Molnar 已提交
3001
/*
P
Peter Williams 已提交
3002 3003 3004
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3005 3006 3007 3008
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3009
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3010 3011 3012
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3013
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3014
	unsigned long total_load_moved = 0;
3015
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3016 3017

	do {
P
Peter Williams 已提交
3018 3019
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3020
				max_load_move - total_load_moved,
3021
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3022
		class = class->next;
3023 3024 3025 3026

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3027
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3028

P
Peter Williams 已提交
3029 3030 3031
	return total_load_moved > 0;
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3068
	const struct sched_class *class;
P
Peter Williams 已提交
3069 3070

	for (class = sched_class_highest; class; class = class->next)
3071
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3072 3073 3074
			return 1;

	return 0;
I
Ingo Molnar 已提交
3075 3076
}

L
Linus Torvalds 已提交
3077 3078
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3079 3080
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3081 3082 3083
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3084
		   unsigned long *imbalance, enum cpu_idle_type idle,
3085
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3086 3087 3088
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3089
	unsigned long max_pull;
3090 3091
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3092
	int load_idx, group_imb = 0;
3093 3094 3095 3096 3097 3098
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3099 3100

	max_load = this_load = total_load = total_pwr = 0;
3101 3102
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3103

I
Ingo Molnar 已提交
3104
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3105
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3106
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3107 3108 3109
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3110 3111

	do {
3112
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3113 3114
		int local_group;
		int i;
3115
		int __group_imb = 0;
3116
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3117
		unsigned long sum_nr_running, sum_weighted_load;
3118 3119
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3120 3121 3122

		local_group = cpu_isset(this_cpu, group->cpumask);

3123 3124 3125
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3126
		/* Tally up the load of all CPUs in the group */
3127
		sum_weighted_load = sum_nr_running = avg_load = 0;
3128 3129
		sum_avg_load_per_task = avg_load_per_task = 0;

3130 3131
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3132

3133
		for_each_cpu_mask_nr(i, group->cpumask) {
3134 3135 3136 3137 3138 3139
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3140

3141
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3142 3143
				*sd_idle = 0;

L
Linus Torvalds 已提交
3144
			/* Bias balancing toward cpus of our domain */
3145 3146 3147 3148 3149 3150
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3151
				load = target_load(i, load_idx);
3152
			} else {
N
Nick Piggin 已提交
3153
				load = source_load(i, load_idx);
3154 3155 3156 3157 3158
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3159 3160

			avg_load += load;
3161
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3162
			sum_weighted_load += weighted_cpuload(i);
3163 3164

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3165 3166
		}

3167 3168 3169
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3170 3171
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3172
		 */
3173 3174
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3175 3176 3177 3178
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3179
		total_load += avg_load;
3180
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3181 3182

		/* Adjust by relative CPU power of the group */
3183 3184
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3200 3201
			__group_imb = 1;

3202
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3203

L
Linus Torvalds 已提交
3204 3205 3206
		if (local_group) {
			this_load = avg_load;
			this = group;
3207 3208 3209
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3210
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3211 3212
			max_load = avg_load;
			busiest = group;
3213 3214
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3215
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3216
		}
3217 3218 3219 3220 3221 3222

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3223 3224 3225
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3226 3227 3228 3229 3230 3231 3232 3233 3234

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3235
		/*
3236 3237
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3238 3239
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3240
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3241
			goto group_next;
3242

I
Ingo Molnar 已提交
3243
		/*
3244
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3245 3246 3247 3248 3249
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3250 3251
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3252 3253
			group_min = group;
			min_nr_running = sum_nr_running;
3254 3255
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3256
		}
3257

I
Ingo Molnar 已提交
3258
		/*
3259
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3271
		}
3272 3273
group_next:
#endif
L
Linus Torvalds 已提交
3274 3275 3276
		group = group->next;
	} while (group != sd->groups);

3277
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3278 3279 3280 3281 3282 3283 3284 3285
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3286
	busiest_load_per_task /= busiest_nr_running;
3287 3288 3289
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3298
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3299 3300
	 * appear as very large values with unsigned longs.
	 */
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3313 3314

	/* Don't want to pull so many tasks that a group would go idle */
3315
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3316

L
Linus Torvalds 已提交
3317
	/* How much load to actually move to equalise the imbalance */
3318 3319
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3320 3321
			/ SCHED_LOAD_SCALE;

3322 3323 3324 3325 3326 3327
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3328
	if (*imbalance < busiest_load_per_task) {
3329
		unsigned long tmp, pwr_now, pwr_move;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3340
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3341

3342
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3343
					busiest_load_per_task * imbn) {
3344
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3354 3355 3356 3357
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3358 3359 3360
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3361 3362
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3363
		if (max_load > tmp)
3364
			pwr_move += busiest->__cpu_power *
3365
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3366 3367

		/* Amount of load we'd add */
3368
		if (max_load * busiest->__cpu_power <
3369
				busiest_load_per_task * SCHED_LOAD_SCALE)
3370 3371
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3372
		else
3373 3374 3375 3376
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3377 3378 3379
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3380 3381
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3382 3383 3384 3385 3386
	}

	return busiest;

out_balanced:
3387
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3388
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3389
		goto ret;
L
Linus Torvalds 已提交
3390

3391 3392 3393 3394 3395
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3396
ret:
L
Linus Torvalds 已提交
3397 3398 3399 3400 3401 3402 3403
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3404
static struct rq *
I
Ingo Molnar 已提交
3405
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3406
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3407
{
3408
	struct rq *busiest = NULL, *rq;
3409
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3410 3411
	int i;

3412
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3413
		unsigned long wl;
3414 3415 3416 3417

		if (!cpu_isset(i, *cpus))
			continue;

3418
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3419
		wl = weighted_cpuload(i);
3420

I
Ingo Molnar 已提交
3421
		if (rq->nr_running == 1 && wl > imbalance)
3422
			continue;
L
Linus Torvalds 已提交
3423

I
Ingo Molnar 已提交
3424 3425
		if (wl > max_load) {
			max_load = wl;
3426
			busiest = rq;
L
Linus Torvalds 已提交
3427 3428 3429 3430 3431 3432
		}
	}

	return busiest;
}

3433 3434 3435 3436 3437 3438
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3439 3440 3441 3442
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3443
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3444
			struct sched_domain *sd, enum cpu_idle_type idle,
3445
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3446
{
P
Peter Williams 已提交
3447
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3448 3449
	struct sched_group *group;
	unsigned long imbalance;
3450
	struct rq *busiest;
3451
	unsigned long flags;
N
Nick Piggin 已提交
3452

3453 3454
	cpus_setall(*cpus);

3455 3456 3457
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3458
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3459
	 * portraying it as CPU_NOT_IDLE.
3460
	 */
I
Ingo Molnar 已提交
3461
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3462
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3463
		sd_idle = 1;
L
Linus Torvalds 已提交
3464

3465
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3466

3467
redo:
3468
	update_shares(sd);
3469
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3470
				   cpus, balance);
3471

3472
	if (*balance == 0)
3473 3474
		goto out_balanced;

L
Linus Torvalds 已提交
3475 3476 3477 3478 3479
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3480
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3486
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3487 3488 3489

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3490
	ld_moved = 0;
L
Linus Torvalds 已提交
3491 3492 3493 3494
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3495
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3496 3497
		 * correctly treated as an imbalance.
		 */
3498
		local_irq_save(flags);
N
Nick Piggin 已提交
3499
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3500
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3501
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3502
		double_rq_unlock(this_rq, busiest);
3503
		local_irq_restore(flags);
3504

3505 3506 3507
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3508
		if (ld_moved && this_cpu != smp_processor_id())
3509 3510
			resched_cpu(this_cpu);

3511
		/* All tasks on this runqueue were pinned by CPU affinity */
3512
		if (unlikely(all_pinned)) {
3513 3514
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3515
				goto redo;
3516
			goto out_balanced;
3517
		}
L
Linus Torvalds 已提交
3518
	}
3519

P
Peter Williams 已提交
3520
	if (!ld_moved) {
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3526
			spin_lock_irqsave(&busiest->lock, flags);
3527 3528 3529 3530 3531

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3532
				spin_unlock_irqrestore(&busiest->lock, flags);
3533 3534 3535 3536
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3537 3538 3539
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3540
				active_balance = 1;
L
Linus Torvalds 已提交
3541
			}
3542
			spin_unlock_irqrestore(&busiest->lock, flags);
3543
			if (active_balance)
L
Linus Torvalds 已提交
3544 3545 3546 3547 3548 3549
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3550
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3551
		}
3552
	} else
L
Linus Torvalds 已提交
3553 3554
		sd->nr_balance_failed = 0;

3555
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3556 3557
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3558 3559 3560 3561 3562 3563 3564 3565 3566
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3567 3568
	}

P
Peter Williams 已提交
3569
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3570
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3571 3572 3573
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3574 3575 3576 3577

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3578
	sd->nr_balance_failed = 0;
3579 3580

out_one_pinned:
L
Linus Torvalds 已提交
3581
	/* tune up the balancing interval */
3582 3583
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3584 3585
		sd->balance_interval *= 2;

3586
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3587
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3588 3589 3590 3591
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3592 3593
	if (ld_moved)
		update_shares(sd);
3594
	return ld_moved;
L
Linus Torvalds 已提交
3595 3596 3597 3598 3599 3600
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3601
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3602 3603
 * this_rq is locked.
 */
3604
static int
3605 3606
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3607 3608
{
	struct sched_group *group;
3609
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3610
	unsigned long imbalance;
P
Peter Williams 已提交
3611
	int ld_moved = 0;
N
Nick Piggin 已提交
3612
	int sd_idle = 0;
3613
	int all_pinned = 0;
3614 3615

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3616

3617 3618 3619 3620
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3621
	 * portraying it as CPU_NOT_IDLE.
3622 3623 3624
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3625
		sd_idle = 1;
L
Linus Torvalds 已提交
3626

3627
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3628
redo:
3629
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3630
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3631
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3632
	if (!group) {
I
Ingo Molnar 已提交
3633
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3634
		goto out_balanced;
L
Linus Torvalds 已提交
3635 3636
	}

3637
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3638
	if (!busiest) {
I
Ingo Molnar 已提交
3639
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3640
		goto out_balanced;
L
Linus Torvalds 已提交
3641 3642
	}

N
Nick Piggin 已提交
3643 3644
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3645
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3646

P
Peter Williams 已提交
3647
	ld_moved = 0;
3648 3649 3650
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3651 3652
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3653
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3654 3655
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3656
		double_unlock_balance(this_rq, busiest);
3657

3658
		if (unlikely(all_pinned)) {
3659 3660
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3661 3662
				goto redo;
		}
3663 3664
	}

P
Peter Williams 已提交
3665
	if (!ld_moved) {
I
Ingo Molnar 已提交
3666
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3667 3668
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3669 3670
			return -1;
	} else
3671
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3672

3673
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3674
	return ld_moved;
3675 3676

out_balanced:
I
Ingo Molnar 已提交
3677
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3678
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3679
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3680
		return -1;
3681
	sd->nr_balance_failed = 0;
3682

3683
	return 0;
L
Linus Torvalds 已提交
3684 3685 3686 3687 3688 3689
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3690
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3691 3692
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3693 3694
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3695
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3696 3697

	for_each_domain(this_cpu, sd) {
3698 3699 3700 3701 3702 3703
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3704
			/* If we've pulled tasks over stop searching: */
3705 3706
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3707 3708 3709 3710 3711 3712

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3713
	}
I
Ingo Molnar 已提交
3714
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3715 3716 3717 3718 3719
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3720
	}
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3731
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3732
{
3733
	int target_cpu = busiest_rq->push_cpu;
3734 3735
	struct sched_domain *sd;
	struct rq *target_rq;
3736

3737
	/* Is there any task to move? */
3738 3739 3740 3741
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3742 3743

	/*
3744
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3745
	 * we need to fix it. Originally reported by
3746
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3747
	 */
3748
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3749

3750 3751
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3752 3753
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3754 3755

	/* Search for an sd spanning us and the target CPU. */
3756
	for_each_domain(target_cpu, sd) {
3757
		if ((sd->flags & SD_LOAD_BALANCE) &&
3758
		    cpu_isset(busiest_cpu, sd->span))
3759
				break;
3760
	}
3761

3762
	if (likely(sd)) {
3763
		schedstat_inc(sd, alb_count);
3764

P
Peter Williams 已提交
3765 3766
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3767 3768 3769 3770
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3771
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3772 3773
}

3774 3775 3776
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3777
	cpumask_t cpu_mask;
3778 3779 3780 3781 3782
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3783
/*
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3794
 *
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3814
		if (!cpu_active(cpu) &&
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3851 3852 3853 3854 3855
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3856
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3857
{
3858 3859
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3860 3861
	unsigned long interval;
	struct sched_domain *sd;
3862
	/* Earliest time when we have to do rebalance again */
3863
	unsigned long next_balance = jiffies + 60*HZ;
3864
	int update_next_balance = 0;
3865
	int need_serialize;
3866
	cpumask_t tmp;
L
Linus Torvalds 已提交
3867

3868
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3869 3870 3871 3872
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3873
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3874 3875 3876 3877 3878 3879
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3880 3881 3882
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3883
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3884

3885
		if (need_serialize) {
3886 3887 3888 3889
			if (!spin_trylock(&balancing))
				goto out;
		}

3890
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3891
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3892 3893
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3894 3895 3896
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3897
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3898
			}
3899
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3900
		}
3901
		if (need_serialize)
3902 3903
			spin_unlock(&balancing);
out:
3904
		if (time_after(next_balance, sd->last_balance + interval)) {
3905
			next_balance = sd->last_balance + interval;
3906 3907
			update_next_balance = 1;
		}
3908 3909 3910 3911 3912 3913 3914 3915

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3916
	}
3917 3918 3919 3920 3921 3922 3923 3924

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3925 3926 3927 3928 3929 3930 3931 3932 3933
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3934 3935 3936 3937
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3938

I
Ingo Molnar 已提交
3939
	rebalance_domains(this_cpu, idle);
3940 3941 3942 3943 3944 3945 3946

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3947 3948
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3949 3950 3951 3952
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3953
		cpu_clear(this_cpu, cpus);
3954
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3955 3956 3957 3958 3959 3960 3961 3962
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3963
			rebalance_domains(balance_cpu, CPU_IDLE);
3964 3965

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3966 3967
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3980
static inline void trigger_load_balance(struct rq *rq, int cpu)
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4007
			if (ilb < nr_cpu_ids)
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4032
}
I
Ingo Molnar 已提交
4033 4034 4035

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4036 4037 4038
/*
 * on UP we do not need to balance between CPUs:
 */
4039
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4040 4041
{
}
I
Ingo Molnar 已提交
4042

L
Linus Torvalds 已提交
4043 4044 4045 4046 4047 4048 4049
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4050 4051
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4052
 */
4053
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4054 4055
{
	unsigned long flags;
4056 4057
	u64 ns, delta_exec;
	struct rq *rq;
4058

4059 4060
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4061
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4062 4063
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4064 4065 4066 4067
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4068

L
Linus Torvalds 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4090 4091
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4092 4093
}

4094 4095 4096 4097 4098
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4099
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4133
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4134 4135
	cputime64_t tmp;

4136 4137 4138 4139
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4140

L
Linus Torvalds 已提交
4141 4142 4143 4144 4145 4146 4147 4148
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4149
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4150
		cpustat->system = cputime64_add(cpustat->system, tmp);
4151
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157 4158
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4179
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4180 4181 4182 4183 4184 4185 4186

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4187
	} else
L
Linus Torvalds 已提交
4188 4189 4190
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4261
	struct task_struct *curr = rq->curr;
4262 4263

	sched_clock_tick();
I
Ingo Molnar 已提交
4264 4265

	spin_lock(&rq->lock);
4266
	update_rq_clock(rq);
4267
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4268
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4269
	spin_unlock(&rq->lock);
4270

4271
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4272 4273
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4274
#endif
L
Linus Torvalds 已提交
4275 4276
}

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4289

4290
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4291
{
4292
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4293 4294 4295
	/*
	 * Underflow?
	 */
4296 4297
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4298
#endif
L
Linus Torvalds 已提交
4299
	preempt_count() += val;
4300
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4301 4302 4303
	/*
	 * Spinlock count overflowing soon?
	 */
4304 4305
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4306 4307 4308
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4309 4310 4311
}
EXPORT_SYMBOL(add_preempt_count);

4312
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4313
{
4314
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4315 4316 4317
	/*
	 * Underflow?
	 */
4318 4319
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4320 4321 4322
	/*
	 * Is the spinlock portion underflowing?
	 */
4323 4324 4325
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4326
#endif
4327

4328 4329
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4337
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4338
 */
I
Ingo Molnar 已提交
4339
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4340
{
4341 4342 4343 4344 4345
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4346
	debug_show_held_locks(prev);
4347
	print_modules();
I
Ingo Molnar 已提交
4348 4349
	if (irqs_disabled())
		print_irqtrace_events(prev);
4350 4351 4352 4353 4354

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4355
}
L
Linus Torvalds 已提交
4356

I
Ingo Molnar 已提交
4357 4358 4359 4360 4361
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4362
	/*
I
Ingo Molnar 已提交
4363
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4364 4365 4366
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4367
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4368 4369
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4370 4371
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4372
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4373 4374
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4375 4376
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4377 4378
	}
#endif
I
Ingo Molnar 已提交
4379 4380 4381 4382 4383 4384
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4385
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4386
{
4387
	const struct sched_class *class;
I
Ingo Molnar 已提交
4388
	struct task_struct *p;
L
Linus Torvalds 已提交
4389 4390

	/*
I
Ingo Molnar 已提交
4391 4392
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4393
	 */
I
Ingo Molnar 已提交
4394
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4395
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4396 4397
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4398 4399
	}

I
Ingo Molnar 已提交
4400 4401
	class = sched_class_highest;
	for ( ; ; ) {
4402
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4412

I
Ingo Molnar 已提交
4413 4414 4415 4416 4417 4418
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4419
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4420
	struct rq *rq;
4421
	int cpu;
I
Ingo Molnar 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4435

4436
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4437
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4438

4439 4440 4441 4442
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4443
	update_rq_clock(rq);
4444 4445
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4446 4447

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4448
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4449
			prev->state = TASK_RUNNING;
4450
		else
4451
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4452
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4453 4454
	}

4455 4456 4457 4458
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4459

I
Ingo Molnar 已提交
4460
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4461 4462
		idle_balance(cpu, rq);

4463
	prev->sched_class->put_prev_task(rq, prev);
4464
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4465 4466

	if (likely(prev != next)) {
4467 4468
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4469 4470 4471 4472
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4473
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4474 4475 4476 4477 4478 4479
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4480 4481 4482
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4483
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4484
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4485

L
Linus Torvalds 已提交
4486 4487 4488 4489 4490 4491 4492 4493
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4494
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4495
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4496 4497 4498 4499 4500
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4501

L
Linus Torvalds 已提交
4502 4503
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4504
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4505
	 */
N
Nick Piggin 已提交
4506
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4507 4508
		return;

4509 4510 4511 4512
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4513

4514 4515 4516 4517 4518 4519
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4520 4521 4522 4523
}
EXPORT_SYMBOL(preempt_schedule);

/*
4524
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529 4530 4531
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4532

4533
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4534 4535
	BUG_ON(ti->preempt_count || !irqs_disabled());

4536 4537 4538 4539 4540 4541
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4542

4543 4544 4545 4546 4547 4548
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4549 4550 4551 4552
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4553 4554
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4555
{
4556
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4557 4558 4559 4560
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4561 4562
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4563 4564 4565
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4566
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4572
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4573

4574
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4575 4576
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4577
		if (curr->func(curr, mode, sync, key) &&
4578
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4588
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4589
 */
4590
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4591
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4604
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4605 4606 4607 4608 4609
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4610
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4622
void
I
Ingo Molnar 已提交
4623
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4640 4641 4642 4643 4644 4645 4646 4647 4648
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4649
void complete(struct completion *x)
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4655
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4656 4657 4658 4659
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4660 4661 4662 4663 4664 4665
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4666
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4667 4668 4669 4670 4671
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4672
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4673 4674 4675 4676
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4677 4678
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684 4685
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4686
			if (signal_pending_state(state, current)) {
4687 4688
				timeout = -ERESTARTSYS;
				break;
4689 4690
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4691 4692 4693
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4694
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4695
		__remove_wait_queue(&x->wait, &wait);
4696 4697
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4698 4699
	}
	x->done--;
4700
	return timeout ?: 1;
L
Linus Torvalds 已提交
4701 4702
}

4703 4704
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4705 4706 4707 4708
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4709
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4710
	spin_unlock_irq(&x->wait.lock);
4711 4712
	return timeout;
}
L
Linus Torvalds 已提交
4713

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4724
void __sched wait_for_completion(struct completion *x)
4725 4726
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4727
}
4728
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4729

4730 4731 4732 4733 4734 4735 4736 4737 4738
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4739
unsigned long __sched
4740
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4741
{
4742
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4743
}
4744
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4745

4746 4747 4748 4749 4750 4751 4752
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4753
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4754
{
4755 4756 4757 4758
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4759
}
4760
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4761

4762 4763 4764 4765 4766 4767 4768 4769
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4770
unsigned long __sched
4771 4772
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4773
{
4774
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4775
}
4776
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4777

4778 4779 4780 4781 4782 4783 4784
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4840 4841
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4842
{
I
Ingo Molnar 已提交
4843 4844 4845 4846
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4847

4848
	__set_current_state(state);
L
Linus Torvalds 已提交
4849

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4864 4865 4866
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4867
long __sched
I
Ingo Molnar 已提交
4868
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4869
{
4870
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4871 4872 4873
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4874
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4875
{
4876
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4877 4878 4879
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4880
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4881
{
4882
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4883 4884 4885
}
EXPORT_SYMBOL(sleep_on_timeout);

4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4898
void rt_mutex_setprio(struct task_struct *p, int prio)
4899 4900
{
	unsigned long flags;
4901
	int oldprio, on_rq, running;
4902
	struct rq *rq;
4903
	const struct sched_class *prev_class = p->sched_class;
4904 4905 4906 4907

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4908
	update_rq_clock(rq);
4909

4910
	oldprio = p->prio;
I
Ingo Molnar 已提交
4911
	on_rq = p->se.on_rq;
4912
	running = task_current(rq, p);
4913
	if (on_rq)
4914
		dequeue_task(rq, p, 0);
4915 4916
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4917 4918 4919 4920 4921 4922

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4923 4924
	p->prio = prio;

4925 4926
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4927
	if (on_rq) {
4928
		enqueue_task(rq, p, 0);
4929 4930

		check_class_changed(rq, p, prev_class, oldprio, running);
4931 4932 4933 4934 4935 4936
	}
	task_rq_unlock(rq, &flags);
}

#endif

4937
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4938
{
I
Ingo Molnar 已提交
4939
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4940
	unsigned long flags;
4941
	struct rq *rq;
L
Linus Torvalds 已提交
4942 4943 4944 4945 4946 4947 4948 4949

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4950
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4951 4952 4953 4954
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4955
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4956
	 */
4957
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4958 4959 4960
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4961
	on_rq = p->se.on_rq;
4962
	if (on_rq)
4963
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4964 4965

	p->static_prio = NICE_TO_PRIO(nice);
4966
	set_load_weight(p);
4967 4968 4969
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4970

I
Ingo Molnar 已提交
4971
	if (on_rq) {
4972
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4973
		/*
4974 4975
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4976
		 */
4977
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4978 4979 4980 4981 4982 4983 4984
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4985 4986 4987 4988 4989
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4990
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4991
{
4992 4993
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4994

M
Matt Mackall 已提交
4995 4996 4997 4998
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5010
	long nice, retval;
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5017 5018
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023 5024 5025 5026 5027
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5028 5029 5030
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5049
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5058
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5059 5060 5061
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5062
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5077
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5078 5079 5080 5081 5082 5083 5084 5085
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5086
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5087
{
5088
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5089 5090 5091
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5092 5093
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5094
{
I
Ingo Molnar 已提交
5095
	BUG_ON(p->se.on_rq);
5096

L
Linus Torvalds 已提交
5097
	p->policy = policy;
I
Ingo Molnar 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5110
	p->rt_priority = prio;
5111 5112 5113
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5114
	set_load_weight(p);
L
Linus Torvalds 已提交
5115 5116
}

5117 5118
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5119
{
5120
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5121
	unsigned long flags;
5122
	const struct sched_class *prev_class = p->sched_class;
5123
	struct rq *rq;
L
Linus Torvalds 已提交
5124

5125 5126
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5132 5133
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5134
		return -EINVAL;
L
Linus Torvalds 已提交
5135 5136
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5137 5138
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5139 5140
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5141
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5142
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5143
		return -EINVAL;
5144
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5145 5146
		return -EINVAL;

5147 5148 5149
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5150
	if (user && !capable(CAP_SYS_NICE)) {
5151
		if (rt_policy(policy)) {
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5168 5169 5170 5171 5172 5173
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5174

5175 5176 5177 5178 5179
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5180

5181
	if (user) {
5182
#ifdef CONFIG_RT_GROUP_SCHED
5183 5184 5185 5186
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5187 5188
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5189
			return -EPERM;
5190 5191
#endif

5192 5193 5194 5195 5196
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5197 5198 5199 5200 5201
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5202 5203 5204 5205
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5206
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5207 5208 5209
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5210 5211
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5212 5213
		goto recheck;
	}
I
Ingo Molnar 已提交
5214
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5215
	on_rq = p->se.on_rq;
5216
	running = task_current(rq, p);
5217
	if (on_rq)
5218
		deactivate_task(rq, p, 0);
5219 5220
	if (running)
		p->sched_class->put_prev_task(rq, p);
5221

L
Linus Torvalds 已提交
5222
	oldprio = p->prio;
I
Ingo Molnar 已提交
5223
	__setscheduler(rq, p, policy, param->sched_priority);
5224

5225 5226
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5227 5228
	if (on_rq) {
		activate_task(rq, p, 0);
5229 5230

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5231
	}
5232 5233 5234
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5235 5236
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5237 5238
	return 0;
}
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5253 5254
EXPORT_SYMBOL_GPL(sched_setscheduler);

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5272 5273
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5274 5275 5276
{
	struct sched_param lparam;
	struct task_struct *p;
5277
	int retval;
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5283 5284 5285

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5286
	p = find_process_by_pid(pid);
5287 5288 5289
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5290

L
Linus Torvalds 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5300 5301
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5302
{
5303 5304 5305 5306
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5326
	struct task_struct *p;
5327
	int retval;
L
Linus Torvalds 已提交
5328 5329

	if (pid < 0)
5330
		return -EINVAL;
L
Linus Torvalds 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5352
	struct task_struct *p;
5353
	int retval;
L
Linus Torvalds 已提交
5354 5355

	if (!param || pid < 0)
5356
		return -EINVAL;
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5383
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5384 5385
{
	cpumask_t cpus_allowed;
5386
	cpumask_t new_mask = *in_mask;
5387 5388
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5389

5390
	get_online_cpus();
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5396
		put_online_cpus();
L
Linus Torvalds 已提交
5397 5398 5399 5400 5401
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5402
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5413 5414 5415 5416
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5417
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5418
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5419
 again:
5420
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5421

P
Paul Menage 已提交
5422
	if (!retval) {
5423
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5434 5435
out_unlock:
	put_task_struct(p);
5436
	put_online_cpus();
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5467
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5468 5469 5470 5471
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5472
	struct task_struct *p;
L
Linus Torvalds 已提交
5473 5474
	int retval;

5475
	get_online_cpus();
L
Linus Torvalds 已提交
5476 5477 5478 5479 5480 5481 5482
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5483 5484 5485 5486
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5487
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5488 5489 5490

out_unlock:
	read_unlock(&tasklist_lock);
5491
	put_online_cpus();
L
Linus Torvalds 已提交
5492

5493
	return retval;
L
Linus Torvalds 已提交
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5524 5525
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5526 5527 5528
 */
asmlinkage long sys_sched_yield(void)
{
5529
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5530

5531
	schedstat_inc(rq, yld_count);
5532
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5533 5534 5535 5536 5537 5538

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5539
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5540 5541 5542 5543 5544 5545 5546 5547
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5548
static void __cond_resched(void)
L
Linus Torvalds 已提交
5549
{
5550 5551 5552
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5553 5554 5555 5556 5557
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5558 5559 5560 5561 5562 5563 5564
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5565
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5566
{
5567 5568
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573
		__cond_resched();
		return 1;
	}
	return 0;
}
5574
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5575 5576 5577 5578 5579

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5580
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5581 5582 5583
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5584
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5585
{
N
Nick Piggin 已提交
5586
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5587 5588
	int ret = 0;

N
Nick Piggin 已提交
5589
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5590
		spin_unlock(lock);
N
Nick Piggin 已提交
5591 5592 5593 5594
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5595
		ret = 1;
L
Linus Torvalds 已提交
5596 5597
		spin_lock(lock);
	}
J
Jan Kara 已提交
5598
	return ret;
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5606
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5607
		local_bh_enable();
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5619
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5630
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5631 5632 5633 5634 5635 5636 5637
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5638
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5639

5640
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5641 5642 5643
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5644
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5650
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5651 5652
	long ret;

5653
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5654 5655 5656
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5657
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5678
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5679
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5703
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5704
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5721
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5722
	unsigned int time_slice;
5723
	int retval;
L
Linus Torvalds 已提交
5724 5725 5726
	struct timespec t;

	if (pid < 0)
5727
		return -EINVAL;
L
Linus Torvalds 已提交
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5739 5740 5741 5742 5743 5744
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5745
		time_slice = DEF_TIMESLICE;
5746
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5747 5748 5749 5750 5751
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5752 5753
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5754 5755
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5756
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5757
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5758 5759
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5760

L
Linus Torvalds 已提交
5761 5762 5763 5764 5765
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5766
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5767

5768
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5769 5770
{
	unsigned long free = 0;
5771
	unsigned state;
L
Linus Torvalds 已提交
5772 5773

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5774
	printk(KERN_INFO "%-13.13s %c", p->comm,
5775
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5776
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5777
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5778
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5779
	else
I
Ingo Molnar 已提交
5780
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5781 5782
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5783
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5784
	else
I
Ingo Molnar 已提交
5785
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5786 5787 5788
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5789
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5790 5791
		while (!*n)
			n++;
5792
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5793 5794
	}
#endif
5795
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5796
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5797

5798
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5799 5800
}

I
Ingo Molnar 已提交
5801
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5802
{
5803
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5804

5805 5806 5807
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5808
#else
5809 5810
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5811 5812 5813 5814 5815 5816 5817 5818
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5819
		if (!state_filter || (p->state & state_filter))
5820
			sched_show_task(p);
L
Linus Torvalds 已提交
5821 5822
	} while_each_thread(g, p);

5823 5824
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5825 5826 5827
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5828
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5829 5830 5831 5832 5833
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5834 5835
}

I
Ingo Molnar 已提交
5836 5837
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5838
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5839 5840
}

5841 5842 5843 5844 5845 5846 5847 5848
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5849
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5850
{
5851
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5852 5853
	unsigned long flags;

I
Ingo Molnar 已提交
5854 5855 5856
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5857
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5858
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5859
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5860 5861 5862

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5863 5864 5865
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5866 5867 5868
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5869 5870 5871
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5872
	task_thread_info(idle)->preempt_count = 0;
5873
#endif
I
Ingo Molnar 已提交
5874 5875 5876 5877
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5912 5913

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5914 5915
}

L
Linus Torvalds 已提交
5916 5917 5918 5919
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5920
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5939
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5940 5941
 * call is not atomic; no spinlocks may be held.
 */
5942
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5943
{
5944
	struct migration_req req;
L
Linus Torvalds 已提交
5945
	unsigned long flags;
5946
	struct rq *rq;
5947
	int ret = 0;
L
Linus Torvalds 已提交
5948 5949

	rq = task_rq_lock(p, &flags);
5950
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5951 5952 5953 5954
		ret = -EINVAL;
		goto out;
	}

5955 5956 5957 5958 5959 5960
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5961
	if (p->sched_class->set_cpus_allowed)
5962
		p->sched_class->set_cpus_allowed(p, new_mask);
5963
	else {
5964 5965
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5966 5967
	}

L
Linus Torvalds 已提交
5968
	/* Can the task run on the task's current CPU? If so, we're done */
5969
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5970 5971
		goto out;

5972
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5982

L
Linus Torvalds 已提交
5983 5984
	return ret;
}
5985
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5986 5987

/*
I
Ingo Molnar 已提交
5988
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5989 5990 5991 5992 5993 5994
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5995 5996
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5997
 */
5998
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5999
{
6000
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6001
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6002

6003
	if (unlikely(!cpu_active(dest_cpu)))
6004
		return ret;
L
Linus Torvalds 已提交
6005 6006 6007 6008 6009 6010 6011

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6012
		goto done;
L
Linus Torvalds 已提交
6013 6014
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6015
		goto fail;
L
Linus Torvalds 已提交
6016

I
Ingo Molnar 已提交
6017
	on_rq = p->se.on_rq;
6018
	if (on_rq)
6019
		deactivate_task(rq_src, p, 0);
6020

L
Linus Torvalds 已提交
6021
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6022 6023
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6024
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6025
	}
L
Linus Torvalds 已提交
6026
done:
6027
	ret = 1;
L
Linus Torvalds 已提交
6028
fail:
L
Linus Torvalds 已提交
6029
	double_rq_unlock(rq_src, rq_dest);
6030
	return ret;
L
Linus Torvalds 已提交
6031 6032 6033 6034 6035 6036 6037
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6038
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6039 6040
{
	int cpu = (long)data;
6041
	struct rq *rq;
L
Linus Torvalds 已提交
6042 6043 6044 6045 6046 6047

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6048
		struct migration_req *req;
L
Linus Torvalds 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6071
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6072 6073
		list_del_init(head->next);

N
Nick Piggin 已提交
6074 6075 6076
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6106
/*
6107
 * Figure out where task on dead CPU should go, use force if necessary.
6108 6109
 * NOTE: interrupts should be disabled by the caller
 */
6110
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6111
{
6112
	unsigned long flags;
L
Linus Torvalds 已提交
6113
	cpumask_t mask;
6114 6115
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6116

6117 6118 6119 6120 6121 6122 6123
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6124
		if (dest_cpu >= nr_cpu_ids)
6125 6126 6127
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6128
		if (dest_cpu >= nr_cpu_ids) {
6129 6130 6131
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6132 6133 6134 6135
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6136
			 * cpuset_cpus_allowed() will not block. It must be
6137 6138
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6139
			rq = task_rq_lock(p, &flags);
6140
			p->cpus_allowed = cpus_allowed;
6141 6142
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6143

6144 6145 6146 6147 6148
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6149
			if (p->mm && printk_ratelimit()) {
6150 6151
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6152 6153
					task_pid_nr(p), p->comm, dead_cpu);
			}
6154
		}
6155
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6165
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6166
{
6167
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6181
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6182

6183
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6184

6185 6186
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6187 6188
			continue;

6189 6190 6191
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6192

6193
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6194 6195
}

I
Ingo Molnar 已提交
6196 6197
/*
 * Schedules idle task to be the next runnable task on current CPU.
6198 6199
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6200 6201 6202
 */
void sched_idle_next(void)
{
6203
	int this_cpu = smp_processor_id();
6204
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6205 6206 6207 6208
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6209
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6210

6211 6212 6213
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6214 6215 6216
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6217
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6218

6219 6220
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6221 6222 6223 6224

	spin_unlock_irqrestore(&rq->lock, flags);
}

6225 6226
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6240
/* called under rq->lock with disabled interrupts */
6241
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6242
{
6243
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6244 6245

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6246
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6247 6248

	/* Cannot have done final schedule yet: would have vanished. */
6249
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6250

6251
	get_task_struct(p);
L
Linus Torvalds 已提交
6252 6253 6254

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6255
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6256 6257
	 * fine.
	 */
6258
	spin_unlock_irq(&rq->lock);
6259
	move_task_off_dead_cpu(dead_cpu, p);
6260
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6261

6262
	put_task_struct(p);
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6268
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6269
	struct task_struct *next;
6270

I
Ingo Molnar 已提交
6271 6272 6273
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6274
		update_rq_clock(rq);
6275
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6276 6277
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6278
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6279
		migrate_dead(dead_cpu, next);
6280

L
Linus Torvalds 已提交
6281 6282 6283 6284
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6285 6286 6287
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6288 6289
	{
		.procname	= "sched_domain",
6290
		.mode		= 0555,
6291
	},
I
Ingo Molnar 已提交
6292
	{0, },
6293 6294 6295
};

static struct ctl_table sd_ctl_root[] = {
6296
	{
6297
		.ctl_name	= CTL_KERN,
6298
		.procname	= "kernel",
6299
		.mode		= 0555,
6300 6301
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6302
	{0, },
6303 6304 6305 6306 6307
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6308
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6309 6310 6311 6312

	return entry;
}

6313 6314
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6315
	struct ctl_table *entry;
6316

6317 6318 6319
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6320
	 * will always be set. In the lowest directory the names are
6321 6322 6323
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6324 6325
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6326 6327 6328
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6329 6330 6331 6332 6333

	kfree(*tablep);
	*tablep = NULL;
}

6334
static void
6335
set_table_entry(struct ctl_table *entry,
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6349
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6350

6351 6352 6353
	if (table == NULL)
		return NULL;

6354
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6355
		sizeof(long), 0644, proc_doulongvec_minmax);
6356
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6357
		sizeof(long), 0644, proc_doulongvec_minmax);
6358
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6359
		sizeof(int), 0644, proc_dointvec_minmax);
6360
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6361
		sizeof(int), 0644, proc_dointvec_minmax);
6362
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6363
		sizeof(int), 0644, proc_dointvec_minmax);
6364
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6365
		sizeof(int), 0644, proc_dointvec_minmax);
6366
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6367
		sizeof(int), 0644, proc_dointvec_minmax);
6368
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6369
		sizeof(int), 0644, proc_dointvec_minmax);
6370
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6371
		sizeof(int), 0644, proc_dointvec_minmax);
6372
	set_table_entry(&table[9], "cache_nice_tries",
6373 6374
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6375
	set_table_entry(&table[10], "flags", &sd->flags,
6376
		sizeof(int), 0644, proc_dointvec_minmax);
6377 6378 6379
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6380 6381 6382 6383

	return table;
}

6384
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6385 6386 6387 6388 6389 6390 6391 6392 6393
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6394 6395
	if (table == NULL)
		return NULL;
6396 6397 6398 6399 6400

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6401
		entry->mode = 0555;
6402 6403 6404 6405 6406 6407 6408 6409
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6410
static void register_sched_domain_sysctl(void)
6411 6412 6413 6414 6415
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6416 6417 6418
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6419 6420 6421
	if (entry == NULL)
		return;

6422
	for_each_online_cpu(i) {
6423 6424
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6425
		entry->mode = 0555;
6426
		entry->child = sd_alloc_ctl_cpu_table(i);
6427
		entry++;
6428
	}
6429 6430

	WARN_ON(sd_sysctl_header);
6431 6432
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6433

6434
/* may be called multiple times per register */
6435 6436
static void unregister_sched_domain_sysctl(void)
{
6437 6438
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6439
	sd_sysctl_header = NULL;
6440 6441
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6442
}
6443
#else
6444 6445 6446 6447
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6448 6449 6450 6451
{
}
#endif

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6482 6483 6484 6485
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6486 6487
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6488 6489
{
	struct task_struct *p;
6490
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6491
	unsigned long flags;
6492
	struct rq *rq;
L
Linus Torvalds 已提交
6493 6494

	switch (action) {
6495

L
Linus Torvalds 已提交
6496
	case CPU_UP_PREPARE:
6497
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6498
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6499 6500 6501 6502 6503
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6504
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6505 6506 6507
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6508

L
Linus Torvalds 已提交
6509
	case CPU_ONLINE:
6510
	case CPU_ONLINE_FROZEN:
6511
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6512
		wake_up_process(cpu_rq(cpu)->migration_thread);
6513 6514 6515 6516 6517 6518

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6519 6520

			set_rq_online(rq);
6521 6522
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6523
		break;
6524

L
Linus Torvalds 已提交
6525 6526
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6527
	case CPU_UP_CANCELED_FROZEN:
6528 6529
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6530
		/* Unbind it from offline cpu so it can run. Fall thru. */
6531 6532
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6533 6534 6535
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6536

L
Linus Torvalds 已提交
6537
	case CPU_DEAD:
6538
	case CPU_DEAD_FROZEN:
6539
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6540 6541 6542 6543 6544
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6545
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6546
		update_rq_clock(rq);
6547
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6548
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6549 6550
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6551
		migrate_dead_tasks(cpu);
6552
		spin_unlock_irq(&rq->lock);
6553
		cpuset_unlock();
L
Linus Torvalds 已提交
6554 6555 6556
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6557 6558 6559 6560 6561
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6562 6563
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6564 6565
			struct migration_req *req;

L
Linus Torvalds 已提交
6566
			req = list_entry(rq->migration_queue.next,
6567
					 struct migration_req, list);
L
Linus Torvalds 已提交
6568 6569 6570 6571 6572
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6573

6574 6575
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6576 6577 6578 6579 6580
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6581
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6582 6583 6584
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6585 6586 6587 6588 6589 6590 6591 6592
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6593
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6594 6595 6596 6597
	.notifier_call = migration_call,
	.priority = 10
};

6598
static int __init migration_init(void)
L
Linus Torvalds 已提交
6599 6600
{
	void *cpu = (void *)(long)smp_processor_id();
6601
	int err;
6602 6603

	/* Start one for the boot CPU: */
6604 6605
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6606 6607
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6608 6609

	return err;
L
Linus Torvalds 已提交
6610
}
6611
early_initcall(migration_init);
L
Linus Torvalds 已提交
6612 6613 6614
#endif

#ifdef CONFIG_SMP
6615

6616
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6617

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6640 6641
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6642
{
I
Ingo Molnar 已提交
6643
	struct sched_group *group = sd->groups;
6644
	char str[256];
L
Linus Torvalds 已提交
6645

6646
	cpulist_scnprintf(str, sizeof(str), sd->span);
6647
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6657 6658
	}

6659 6660
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6661 6662 6663 6664 6665 6666 6667 6668 6669

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6670

I
Ingo Molnar 已提交
6671
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6672
	do {
I
Ingo Molnar 已提交
6673 6674 6675
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6676 6677 6678
			break;
		}

I
Ingo Molnar 已提交
6679 6680 6681 6682 6683 6684
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6685

I
Ingo Molnar 已提交
6686 6687 6688 6689 6690
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6691

6692
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6693 6694 6695 6696
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6697

6698
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6699

6700
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6701
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6702

I
Ingo Molnar 已提交
6703 6704 6705
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6706

6707
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6708
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6709

6710
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6711 6712 6713 6714
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6715

I
Ingo Molnar 已提交
6716 6717
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6718
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6719
	int level = 0;
L
Linus Torvalds 已提交
6720

I
Ingo Molnar 已提交
6721 6722 6723 6724
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6725

I
Ingo Molnar 已提交
6726 6727
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6728 6729 6730 6731 6732 6733
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6734
	for (;;) {
6735
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6736
			break;
L
Linus Torvalds 已提交
6737 6738
		level++;
		sd = sd->parent;
6739
		if (!sd)
I
Ingo Molnar 已提交
6740 6741
			break;
	}
6742
	kfree(groupmask);
L
Linus Torvalds 已提交
6743
}
6744
#else /* !CONFIG_SCHED_DEBUG */
6745
# define sched_domain_debug(sd, cpu) do { } while (0)
6746
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6747

6748
static int sd_degenerate(struct sched_domain *sd)
6749 6750 6751 6752 6753 6754 6755 6756
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6757 6758 6759
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6773 6774
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6793 6794 6795
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6796 6797 6798 6799 6800 6801 6802
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6803 6804 6805 6806 6807 6808 6809 6810 6811
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6812 6813
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6814

6815 6816
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6817 6818 6819 6820 6821 6822 6823
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6824
	cpu_set(rq->cpu, rd->span);
6825
	if (cpu_isset(rq->cpu, cpu_online_map))
6826
		set_rq_online(rq);
G
Gregory Haskins 已提交
6827 6828 6829 6830

	spin_unlock_irqrestore(&rq->lock, flags);
}

6831
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6832 6833 6834
{
	memset(rd, 0, sizeof(*rd));

6835 6836
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6837 6838

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6839 6840 6841 6842
}

static void init_defrootdomain(void)
{
6843
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6844 6845 6846
	atomic_set(&def_root_domain.refcount, 1);
}

6847
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6848 6849 6850 6851 6852 6853 6854
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6855
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6856 6857 6858 6859

	return rd;
}

L
Linus Torvalds 已提交
6860
/*
I
Ingo Molnar 已提交
6861
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6862 6863
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6864 6865
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6866
{
6867
	struct rq *rq = cpu_rq(cpu);
6868 6869 6870 6871 6872 6873 6874
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6875
		if (sd_parent_degenerate(tmp, parent)) {
6876
			tmp->parent = parent->parent;
6877 6878 6879
			if (parent->parent)
				parent->parent->child = tmp;
		}
6880 6881
	}

6882
	if (sd && sd_degenerate(sd)) {
6883
		sd = sd->parent;
6884 6885 6886
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6887 6888 6889

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6890
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6891
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6892 6893 6894
}

/* cpus with isolated domains */
6895
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6896 6897 6898 6899

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6900 6901
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6911
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6912 6913

/*
6914 6915 6916 6917
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6918 6919 6920 6921 6922
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6923
static void
6924
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6925
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6926 6927 6928
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6929 6930 6931 6932
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6933 6934
	cpus_clear(*covered);

6935
	for_each_cpu_mask_nr(i, *span) {
6936
		struct sched_group *sg;
6937
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6938 6939
		int j;

6940
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6941 6942
			continue;

6943
		cpus_clear(sg->cpumask);
6944
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6945

6946
		for_each_cpu_mask_nr(j, *span) {
6947
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6948 6949
				continue;

6950
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6962
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6963

6964
#ifdef CONFIG_NUMA
6965

6966 6967 6968 6969 6970
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6971
 * Find the next node to include in a given scheduling domain. Simply
6972 6973 6974 6975
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6976
static int find_next_best_node(int node, nodemask_t *used_nodes)
6977 6978 6979 6980 6981
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6982
	for (i = 0; i < nr_node_ids; i++) {
6983
		/* Start at @node */
6984
		n = (node + i) % nr_node_ids;
6985 6986 6987 6988 6989

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6990
		if (node_isset(n, *used_nodes))
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7002
	node_set(best_node, *used_nodes);
7003 7004 7005 7006 7007 7008
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7009
 * @span: resulting cpumask
7010
 *
I
Ingo Molnar 已提交
7011
 * Given a node, construct a good cpumask for its sched_domain to span. It
7012 7013 7014
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7015
static void sched_domain_node_span(int node, cpumask_t *span)
7016
{
7017 7018
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7019
	int i;
7020

7021
	cpus_clear(*span);
7022
	nodes_clear(used_nodes);
7023

7024
	cpus_or(*span, *span, *nodemask);
7025
	node_set(node, used_nodes);
7026 7027

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7028
		int next_node = find_next_best_node(node, &used_nodes);
7029

7030
		node_to_cpumask_ptr_next(nodemask, next_node);
7031
		cpus_or(*span, *span, *nodemask);
7032 7033
	}
}
7034
#endif /* CONFIG_NUMA */
7035

7036
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7037

7038
/*
7039
 * SMT sched-domains:
7040
 */
L
Linus Torvalds 已提交
7041 7042
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7043
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7044

I
Ingo Molnar 已提交
7045
static int
7046 7047
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7048
{
7049 7050
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7051 7052
	return cpu;
}
7053
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7054

7055 7056 7057
/*
 * multi-core sched-domains:
 */
7058 7059
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7060
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7061
#endif /* CONFIG_SCHED_MC */
7062 7063

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7064
static int
7065 7066
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7067
{
7068
	int group;
7069 7070 7071 7072

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7073 7074 7075
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7076 7077
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7078
static int
7079 7080
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7081
{
7082 7083
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7084 7085 7086 7087
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7088
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7089
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7090

I
Ingo Molnar 已提交
7091
static int
7092 7093
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7094
{
7095
	int group;
7096
#ifdef CONFIG_SCHED_MC
7097 7098 7099
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7100
#elif defined(CONFIG_SCHED_SMT)
7101 7102 7103
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7104
#else
7105
	group = cpu;
L
Linus Torvalds 已提交
7106
#endif
7107 7108 7109
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7110 7111 7112 7113
}

#ifdef CONFIG_NUMA
/*
7114 7115 7116
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7117
 */
7118
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7119
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7120

7121
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7122
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7123

7124
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7125
				 struct sched_group **sg, cpumask_t *nodemask)
7126
{
7127 7128
	int group;

7129 7130 7131
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7132 7133 7134 7135

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7136
}
7137

7138 7139 7140 7141 7142 7143 7144
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7145
	do {
7146
		for_each_cpu_mask_nr(j, sg->cpumask) {
7147
			struct sched_domain *sd;
7148

7149 7150 7151 7152 7153 7154 7155 7156
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7157

7158 7159 7160 7161
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7162
}
7163
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7164

7165
#ifdef CONFIG_NUMA
7166
/* Free memory allocated for various sched_group structures */
7167
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7168
{
7169
	int cpu, i;
7170

7171
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7172 7173 7174 7175 7176 7177
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7178
		for (i = 0; i < nr_node_ids; i++) {
7179 7180
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7181 7182 7183
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7200
#else /* !CONFIG_NUMA */
7201
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7202 7203
{
}
7204
#endif /* CONFIG_NUMA */
7205

7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7232 7233
	sd->groups->__cpu_power = 0;

7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7244
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7245 7246 7247 7248 7249 7250 7251 7252
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7253
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7254 7255 7256 7257
		group = group->next;
	} while (group != child->groups);
}

7258 7259 7260 7261 7262
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7263 7264 7265 7266 7267 7268
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7269
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7270

7271 7272 7273 7274 7275
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7276
	sd->level = SD_LV_##type;				\
7277
	SD_INIT_NAME(sd, type);					\
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7326 7327 7328 7329
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7330 7331 7332 7333 7334 7335
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7361
/*
7362 7363
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7364
 */
7365 7366
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7367 7368
{
	int i;
G
Gregory Haskins 已提交
7369
	struct root_domain *rd;
7370 7371
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7372 7373
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7374
	int sd_allnodes = 0;
7375 7376 7377 7378

	/*
	 * Allocate the per-node list of sched groups
	 */
7379
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7380
				    GFP_KERNEL);
7381 7382
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7383
		return -ENOMEM;
7384 7385
	}
#endif
L
Linus Torvalds 已提交
7386

7387
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7388 7389
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7390 7391 7392
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7393 7394 7395
		return -ENOMEM;
	}

7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7415
	/*
7416
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7417
	 */
7418
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7419
		struct sched_domain *sd = NULL, *p;
7420
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7421

7422 7423
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7424 7425

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7426
		if (cpus_weight(*cpu_map) >
7427
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7428
			sd = &per_cpu(allnodes_domains, i);
7429
			SD_INIT(sd, ALLNODES);
7430
			set_domain_attribute(sd, attr);
7431
			sd->span = *cpu_map;
7432
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7433
			p = sd;
7434
			sd_allnodes = 1;
7435 7436 7437
		} else
			p = NULL;

L
Linus Torvalds 已提交
7438
		sd = &per_cpu(node_domains, i);
7439
		SD_INIT(sd, NODE);
7440
		set_domain_attribute(sd, attr);
7441
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7442
		sd->parent = p;
7443 7444
		if (p)
			p->child = sd;
7445
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7446 7447 7448 7449
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7450
		SD_INIT(sd, CPU);
7451
		set_domain_attribute(sd, attr);
7452
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7453
		sd->parent = p;
7454 7455
		if (p)
			p->child = sd;
7456
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7457

7458 7459 7460
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7461
		SD_INIT(sd, MC);
7462
		set_domain_attribute(sd, attr);
7463 7464 7465
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7466
		p->child = sd;
7467
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7468 7469
#endif

L
Linus Torvalds 已提交
7470 7471 7472
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7473
		SD_INIT(sd, SIBLING);
7474
		set_domain_attribute(sd, attr);
7475
		sd->span = per_cpu(cpu_sibling_map, i);
7476
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7477
		sd->parent = p;
7478
		p->child = sd;
7479
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7480 7481 7482 7483 7484
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7485
	for_each_cpu_mask_nr(i, *cpu_map) {
7486 7487 7488 7489 7490 7491
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7492 7493
			continue;

I
Ingo Molnar 已提交
7494
		init_sched_build_groups(this_sibling_map, cpu_map,
7495 7496
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7497 7498 7499
	}
#endif

7500 7501
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7502
	for_each_cpu_mask_nr(i, *cpu_map) {
7503 7504 7505 7506 7507 7508
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7509
			continue;
7510

I
Ingo Molnar 已提交
7511
		init_sched_build_groups(this_core_map, cpu_map,
7512 7513
					&cpu_to_core_group,
					send_covered, tmpmask);
7514 7515 7516
	}
#endif

L
Linus Torvalds 已提交
7517
	/* Set up physical groups */
7518
	for (i = 0; i < nr_node_ids; i++) {
7519 7520
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7521

7522 7523 7524
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7525 7526
			continue;

7527 7528 7529
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7530 7531 7532 7533
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7534 7535 7536 7537 7538 7539 7540
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7541

7542
	for (i = 0; i < nr_node_ids; i++) {
7543 7544
		/* Set up node groups */
		struct sched_group *sg, *prev;
7545 7546 7547
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7548 7549
		int j;

7550 7551 7552 7553 7554
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7555
			sched_group_nodes[i] = NULL;
7556
			continue;
7557
		}
7558

7559
		sched_domain_node_span(i, domainspan);
7560
		cpus_and(*domainspan, *domainspan, *cpu_map);
7561

7562
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7563 7564 7565 7566 7567
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7568
		sched_group_nodes[i] = sg;
7569
		for_each_cpu_mask_nr(j, *nodemask) {
7570
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7571

7572 7573 7574
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7575
		sg->__cpu_power = 0;
7576
		sg->cpumask = *nodemask;
7577
		sg->next = sg;
7578
		cpus_or(*covered, *covered, *nodemask);
7579 7580
		prev = sg;

7581
		for (j = 0; j < nr_node_ids; j++) {
7582
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7583
			int n = (i + j) % nr_node_ids;
7584
			node_to_cpumask_ptr(pnodemask, n);
7585

7586 7587 7588 7589
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7590 7591
				break;

7592 7593
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7594 7595
				continue;

7596 7597
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7598 7599 7600
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7601
				goto error;
7602
			}
7603
			sg->__cpu_power = 0;
7604
			sg->cpumask = *tmpmask;
7605
			sg->next = prev->next;
7606
			cpus_or(*covered, *covered, *tmpmask);
7607 7608 7609 7610
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7611 7612 7613
#endif

	/* Calculate CPU power for physical packages and nodes */
7614
#ifdef CONFIG_SCHED_SMT
7615
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7616 7617
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7618
		init_sched_groups_power(i, sd);
7619
	}
L
Linus Torvalds 已提交
7620
#endif
7621
#ifdef CONFIG_SCHED_MC
7622
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7623 7624
		struct sched_domain *sd = &per_cpu(core_domains, i);

7625
		init_sched_groups_power(i, sd);
7626 7627
	}
#endif
7628

7629
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7630 7631
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7632
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7633 7634
	}

7635
#ifdef CONFIG_NUMA
7636
	for (i = 0; i < nr_node_ids; i++)
7637
		init_numa_sched_groups_power(sched_group_nodes[i]);
7638

7639 7640
	if (sd_allnodes) {
		struct sched_group *sg;
7641

7642 7643
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7644 7645
		init_numa_sched_groups_power(sg);
	}
7646 7647
#endif

L
Linus Torvalds 已提交
7648
	/* Attach the domains */
7649
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7650 7651 7652
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7653 7654
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7655 7656 7657
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7658
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7659
	}
7660

7661
	SCHED_CPUMASK_FREE((void *)allmasks);
7662 7663
	return 0;

7664
#ifdef CONFIG_NUMA
7665
error:
7666 7667
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7668
	return -ENOMEM;
7669
#endif
L
Linus Torvalds 已提交
7670
}
P
Paul Jackson 已提交
7671

7672 7673 7674 7675 7676
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7677 7678
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7679 7680
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7681 7682 7683 7684 7685 7686 7687 7688

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7689 7690 7691 7692
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7693
/*
I
Ingo Molnar 已提交
7694
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7695 7696
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7697
 */
7698
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7699
{
7700 7701
	int err;

7702
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7703 7704 7705 7706 7707
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7708
	dattr_cur = NULL;
7709
	err = build_sched_domains(doms_cur);
7710
	register_sched_domain_sysctl();
7711 7712

	return err;
7713 7714
}

7715 7716
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7717
{
7718
	free_sched_groups(cpu_map, tmpmask);
7719
}
L
Linus Torvalds 已提交
7720

7721 7722 7723 7724
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7725
static void detach_destroy_domains(const cpumask_t *cpu_map)
7726
{
7727
	cpumask_t tmpmask;
7728 7729
	int i;

7730 7731
	unregister_sched_domain_sysctl();

7732
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7733
		cpu_attach_domain(NULL, &def_root_domain, i);
7734
	synchronize_sched();
7735
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7736 7737
}

7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7754 7755
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7756
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7757 7758 7759 7760
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7761 7762 7763
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7764 7765 7766
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7767 7768
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7769 7770
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7771
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7772
 *
7773 7774 7775 7776
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7777 7778
 * Call with hotplug lock held
 */
7779 7780
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7781
{
7782
	int i, j, n;
P
Paul Jackson 已提交
7783

7784
	mutex_lock(&sched_domains_mutex);
7785

7786 7787 7788
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7789
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7790 7791 7792

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7793
		for (j = 0; j < n; j++) {
7794 7795
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7796 7797 7798 7799 7800 7801 7802 7803
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7804 7805 7806 7807 7808 7809 7810
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7811 7812 7813
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7814 7815
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7816 7817 7818
				goto match2;
		}
		/* no match - add a new doms_new */
7819 7820
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7821 7822 7823 7824 7825 7826 7827
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7828
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7829
	doms_cur = doms_new;
7830
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7831
	ndoms_cur = ndoms_new;
7832 7833

	register_sched_domain_sysctl();
7834

7835
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7836 7837
}

7838
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7839
int arch_reinit_sched_domains(void)
7840
{
7841
	get_online_cpus();
7842 7843 7844 7845

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7846
	rebuild_sched_domains();
7847
	put_online_cpus();
7848

7849
	return 0;
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7870 7871
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7872 7873 7874
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7875
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7876
					    const char *buf, size_t count)
7877 7878 7879
{
	return sched_power_savings_store(buf, count, 0);
}
7880 7881 7882
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7883 7884 7885
#endif

#ifdef CONFIG_SCHED_SMT
7886 7887
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7888 7889 7890
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7891
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7892
					     const char *buf, size_t count)
7893 7894 7895
{
	return sched_power_savings_store(buf, count, 1);
}
7896 7897
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7917
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7918

7919
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7920
/*
7921 7922
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7923 7924 7925
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7926 7927 7928 7929 7930 7931
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7932
		partition_sched_domains(1, NULL, NULL);
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7943
{
P
Peter Zijlstra 已提交
7944 7945
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7946 7947
	switch (action) {
	case CPU_DOWN_PREPARE:
7948
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7949
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7950 7951 7952
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7953
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7954
	case CPU_ONLINE:
7955
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7956
		enable_runtime(cpu_rq(cpu));
7957 7958
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7959 7960 7961 7962 7963 7964 7965
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7966 7967
	cpumask_t non_isolated_cpus;

7968 7969 7970 7971 7972
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7973
	get_online_cpus();
7974
	mutex_lock(&sched_domains_mutex);
7975
	arch_init_sched_domains(&cpu_online_map);
7976
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7977 7978
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7979
	mutex_unlock(&sched_domains_mutex);
7980
	put_online_cpus();
7981 7982

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7983 7984
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7985 7986 7987 7988 7989
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7990
	init_hrtick();
7991 7992

	/* Move init over to a non-isolated CPU */
7993
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7994
		BUG();
I
Ingo Molnar 已提交
7995
	sched_init_granularity();
L
Linus Torvalds 已提交
7996 7997 7998 7999
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8000
	sched_init_granularity();
L
Linus Torvalds 已提交
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8011
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8012 8013
{
	cfs_rq->tasks_timeline = RB_ROOT;
8014
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8015 8016 8017
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8018
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8019 8020
}

P
Peter Zijlstra 已提交
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8034
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8035 8036
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8037 8038 8039 8040 8041 8042 8043
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8044 8045
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8046

8047
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8048
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8049 8050
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8051 8052
}

P
Peter Zijlstra 已提交
8053
#ifdef CONFIG_FAIR_GROUP_SCHED
8054 8055 8056
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8057
{
8058
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8059 8060 8061 8062 8063 8064 8065
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8066 8067 8068 8069
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8070 8071 8072 8073 8074
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8075 8076
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8077
	se->load.inv_weight = 0;
8078
	se->parent = parent;
P
Peter Zijlstra 已提交
8079
}
8080
#endif
P
Peter Zijlstra 已提交
8081

8082
#ifdef CONFIG_RT_GROUP_SCHED
8083 8084 8085
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8086
{
8087 8088
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8089 8090 8091 8092
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8093
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8094 8095 8096 8097
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8098 8099 8100
	if (!rt_se)
		return;

8101 8102 8103 8104 8105
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8106
	rt_se->my_q = rt_rq;
8107
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8108 8109 8110 8111
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8112 8113
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8114
	int i, j;
8115 8116 8117 8118 8119 8120 8121
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8122 8123 8124
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8125 8126 8127 8128 8129 8130
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8131
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8132 8133 8134 8135 8136 8137 8138

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8139 8140 8141 8142 8143 8144 8145

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8146 8147
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8148 8149 8150 8151 8152
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8153 8154 8155 8156 8157 8158 8159 8160
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8161 8162
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8163
	}
I
Ingo Molnar 已提交
8164

G
Gregory Haskins 已提交
8165 8166 8167 8168
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8169 8170 8171 8172 8173 8174
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8175 8176 8177
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8178 8179
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8180

8181
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8182
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8183 8184 8185 8186 8187 8188
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8189 8190
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8191

8192
	for_each_possible_cpu(i) {
8193
		struct rq *rq;
L
Linus Torvalds 已提交
8194 8195 8196

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8197
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8198
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8199
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8200
#ifdef CONFIG_FAIR_GROUP_SCHED
8201
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8202
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8223
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8224
#elif defined CONFIG_USER_SCHED
8225 8226
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8238
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8239
				&per_cpu(init_cfs_rq, i),
8240 8241
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8242

8243
#endif
D
Dhaval Giani 已提交
8244 8245 8246
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8247
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8248
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8249
#ifdef CONFIG_CGROUP_SCHED
8250
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8251
#elif defined CONFIG_USER_SCHED
8252
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8253
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8254
				&per_cpu(init_rt_rq, i),
8255 8256
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8257
#endif
I
Ingo Molnar 已提交
8258
#endif
L
Linus Torvalds 已提交
8259

I
Ingo Molnar 已提交
8260 8261
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8262
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8263
		rq->sd = NULL;
G
Gregory Haskins 已提交
8264
		rq->rd = NULL;
L
Linus Torvalds 已提交
8265
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8266
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8267
		rq->push_cpu = 0;
8268
		rq->cpu = i;
8269
		rq->online = 0;
L
Linus Torvalds 已提交
8270 8271
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8272
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8273
#endif
P
Peter Zijlstra 已提交
8274
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8275 8276 8277
		atomic_set(&rq->nr_iowait, 0);
	}

8278
	set_load_weight(&init_task);
8279

8280 8281 8282 8283
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8284
#ifdef CONFIG_SMP
8285
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8286 8287
#endif

8288 8289 8290 8291
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8305 8306 8307 8308
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8309 8310

	scheduler_running = 1;
L
Linus Torvalds 已提交
8311 8312 8313 8314 8315
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8316
#ifdef in_atomic
L
Linus Torvalds 已提交
8317 8318
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8338 8339 8340 8341 8342 8343
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8344 8345 8346
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8347

8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8359 8360
void normalize_rt_tasks(void)
{
8361
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8362
	unsigned long flags;
8363
	struct rq *rq;
L
Linus Torvalds 已提交
8364

8365
	read_lock_irqsave(&tasklist_lock, flags);
8366
	do_each_thread(g, p) {
8367 8368 8369 8370 8371 8372
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8373 8374
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8375 8376 8377
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8378
#endif
I
Ingo Molnar 已提交
8379 8380 8381 8382 8383 8384 8385 8386

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8387
			continue;
I
Ingo Molnar 已提交
8388
		}
L
Linus Torvalds 已提交
8389

8390
		spin_lock(&p->pi_lock);
8391
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8392

8393
		normalize_task(rq, p);
8394

8395
		__task_rq_unlock(rq);
8396
		spin_unlock(&p->pi_lock);
8397 8398
	} while_each_thread(g, p);

8399
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8400 8401 8402
}

#endif /* CONFIG_MAGIC_SYSRQ */
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8421
struct task_struct *curr_task(int cpu)
8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8432 8433
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8434 8435 8436 8437 8438 8439 8440
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8441
void set_curr_task(int cpu, struct task_struct *p)
8442 8443 8444 8445 8446
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8447

8448 8449
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8464 8465
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8466 8467
{
	struct cfs_rq *cfs_rq;
8468
	struct sched_entity *se, *parent_se;
8469
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8470 8471
	int i;

8472
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8473 8474
	if (!tg->cfs_rq)
		goto err;
8475
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8476 8477
	if (!tg->se)
		goto err;
8478 8479

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8480 8481

	for_each_possible_cpu(i) {
8482
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8483

P
Peter Zijlstra 已提交
8484 8485
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8486 8487 8488
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8489 8490
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8491 8492 8493
		if (!se)
			goto err;

8494 8495
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8514
#else /* !CONFG_FAIR_GROUP_SCHED */
8515 8516 8517 8518
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8519 8520
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8532
#endif /* CONFIG_FAIR_GROUP_SCHED */
8533 8534

#ifdef CONFIG_RT_GROUP_SCHED
8535 8536 8537 8538
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8539 8540
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8552 8553
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8554 8555
{
	struct rt_rq *rt_rq;
8556
	struct sched_rt_entity *rt_se, *parent_se;
8557 8558 8559
	struct rq *rq;
	int i;

8560
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8561 8562
	if (!tg->rt_rq)
		goto err;
8563
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8564 8565 8566
	if (!tg->rt_se)
		goto err;

8567 8568
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8569 8570 8571 8572

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8573 8574 8575 8576
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8577

P
Peter Zijlstra 已提交
8578 8579 8580 8581
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8582

8583 8584
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8585 8586
	}

8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8603
#else /* !CONFIG_RT_GROUP_SCHED */
8604 8605 8606 8607
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8608 8609
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8621
#endif /* CONFIG_RT_GROUP_SCHED */
8622

8623
#ifdef CONFIG_GROUP_SCHED
8624 8625 8626 8627 8628 8629 8630 8631
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8632
struct task_group *sched_create_group(struct task_group *parent)
8633 8634 8635 8636 8637 8638 8639 8640 8641
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8642
	if (!alloc_fair_sched_group(tg, parent))
8643 8644
		goto err;

8645
	if (!alloc_rt_sched_group(tg, parent))
8646 8647
		goto err;

8648
	spin_lock_irqsave(&task_group_lock, flags);
8649
	for_each_possible_cpu(i) {
8650 8651
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8652
	}
P
Peter Zijlstra 已提交
8653
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8654 8655 8656 8657 8658

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8659
	list_add_rcu(&tg->siblings, &parent->children);
8660
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8661

8662
	return tg;
S
Srivatsa Vaddagiri 已提交
8663 8664

err:
P
Peter Zijlstra 已提交
8665
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8666 8667 8668
	return ERR_PTR(-ENOMEM);
}

8669
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8670
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8671 8672
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8673
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8674 8675
}

8676
/* Destroy runqueue etc associated with a task group */
8677
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8678
{
8679
	unsigned long flags;
8680
	int i;
S
Srivatsa Vaddagiri 已提交
8681

8682
	spin_lock_irqsave(&task_group_lock, flags);
8683
	for_each_possible_cpu(i) {
8684 8685
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8686
	}
P
Peter Zijlstra 已提交
8687
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8688
	list_del_rcu(&tg->siblings);
8689
	spin_unlock_irqrestore(&task_group_lock, flags);
8690 8691

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8692
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8693 8694
}

8695
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8696 8697 8698
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8699 8700
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8701 8702 8703 8704 8705 8706 8707 8708 8709
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8710
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8711 8712
	on_rq = tsk->se.on_rq;

8713
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8714
		dequeue_task(rq, tsk, 0);
8715 8716
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8717

P
Peter Zijlstra 已提交
8718
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8719

P
Peter Zijlstra 已提交
8720 8721 8722 8723 8724
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8725 8726 8727
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8728
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8729 8730 8731

	task_rq_unlock(rq, &flags);
}
8732
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8733

8734
#ifdef CONFIG_FAIR_GROUP_SCHED
8735
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8736 8737 8738 8739 8740
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8741
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8742 8743 8744
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8745
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8746

8747
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8748
		enqueue_entity(cfs_rq, se, 0);
8749
}
8750

8751 8752 8753 8754 8755 8756 8757 8758 8759
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8760 8761
}

8762 8763
static DEFINE_MUTEX(shares_mutex);

8764
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8765 8766
{
	int i;
8767
	unsigned long flags;
8768

8769 8770 8771 8772 8773 8774
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8775 8776
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8777 8778
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8779

8780
	mutex_lock(&shares_mutex);
8781
	if (tg->shares == shares)
8782
		goto done;
S
Srivatsa Vaddagiri 已提交
8783

8784
	spin_lock_irqsave(&task_group_lock, flags);
8785 8786
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8787
	list_del_rcu(&tg->siblings);
8788
	spin_unlock_irqrestore(&task_group_lock, flags);
8789 8790 8791 8792 8793 8794 8795 8796

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8797
	tg->shares = shares;
8798 8799 8800 8801 8802
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8803
		set_se_shares(tg->se[i], shares);
8804
	}
S
Srivatsa Vaddagiri 已提交
8805

8806 8807 8808 8809
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8810
	spin_lock_irqsave(&task_group_lock, flags);
8811 8812
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8813
	list_add_rcu(&tg->siblings, &tg->parent->children);
8814
	spin_unlock_irqrestore(&task_group_lock, flags);
8815
done:
8816
	mutex_unlock(&shares_mutex);
8817
	return 0;
S
Srivatsa Vaddagiri 已提交
8818 8819
}

8820 8821 8822 8823
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8824
#endif
8825

8826
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8827
/*
P
Peter Zijlstra 已提交
8828
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8829
 */
P
Peter Zijlstra 已提交
8830 8831 8832 8833 8834
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8835
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8836

P
Peter Zijlstra 已提交
8837
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8838 8839
}

P
Peter Zijlstra 已提交
8840 8841
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8842
{
P
Peter Zijlstra 已提交
8843
	struct task_struct *g, *p;
8844

P
Peter Zijlstra 已提交
8845 8846 8847 8848
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8849

P
Peter Zijlstra 已提交
8850 8851
	return 0;
}
8852

P
Peter Zijlstra 已提交
8853 8854 8855 8856 8857
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8858

P
Peter Zijlstra 已提交
8859 8860 8861 8862 8863 8864
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8865

P
Peter Zijlstra 已提交
8866 8867
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8868

P
Peter Zijlstra 已提交
8869 8870 8871
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8872 8873
	}

8874 8875 8876 8877 8878 8879 8880 8881 8882
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;

	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8883 8884
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8885

P
Peter Zijlstra 已提交
8886
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8887

8888 8889 8890 8891 8892 8893 8894 8895 8896
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;

	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8897 8898 8899
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8900

P
Peter Zijlstra 已提交
8901 8902 8903 8904
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8905

P
Peter Zijlstra 已提交
8906
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8907
	}
P
Peter Zijlstra 已提交
8908

P
Peter Zijlstra 已提交
8909 8910 8911 8912
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8913 8914
}

P
Peter Zijlstra 已提交
8915
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8916
{
P
Peter Zijlstra 已提交
8917 8918 8919 8920 8921 8922 8923
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8924 8925
}

8926 8927
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8928
{
P
Peter Zijlstra 已提交
8929
	int i, err = 0;
P
Peter Zijlstra 已提交
8930 8931

	mutex_lock(&rt_constraints_mutex);
8932
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8933 8934
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
8935
		goto unlock;
P
Peter Zijlstra 已提交
8936 8937

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8938 8939
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8940 8941 8942 8943 8944 8945 8946 8947 8948

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8949
 unlock:
8950
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8951 8952 8953
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8954 8955
}

8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8968 8969 8970 8971
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8972
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8973 8974
		return -1;

8975
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8976 8977 8978
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8979 8980 8981 8982 8983 8984 8985 8986

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8987 8988 8989
	if (rt_period == 0)
		return -EINVAL;

8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9004
	u64 runtime, period;
9005 9006
	int ret = 0;

9007 9008 9009
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9010 9011 9012 9013 9014 9015 9016 9017
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9018

9019
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9020
	read_lock(&tasklist_lock);
9021
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9022
	read_unlock(&tasklist_lock);
9023 9024 9025 9026
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9027
#else /* !CONFIG_RT_GROUP_SCHED */
9028 9029
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9030 9031 9032
	unsigned long flags;
	int i;

9033 9034 9035
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9046 9047
	return 0;
}
9048
#endif /* CONFIG_RT_GROUP_SCHED */
9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9079

9080
#ifdef CONFIG_CGROUP_SCHED
9081 9082

/* return corresponding task_group object of a cgroup */
9083
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9084
{
9085 9086
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9087 9088 9089
}

static struct cgroup_subsys_state *
9090
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9091
{
9092
	struct task_group *tg, *parent;
9093

9094
	if (!cgrp->parent) {
9095 9096 9097 9098
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9099 9100
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9101 9102 9103 9104 9105 9106
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9107 9108
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9109
{
9110
	struct task_group *tg = cgroup_tg(cgrp);
9111 9112 9113 9114

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9115 9116 9117
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9118
{
9119 9120
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9121
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9122 9123
		return -EINVAL;
#else
9124 9125 9126
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9127
#endif
9128 9129 9130 9131 9132

	return 0;
}

static void
9133
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9134 9135 9136 9137 9138
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9139
#ifdef CONFIG_FAIR_GROUP_SCHED
9140
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9141
				u64 shareval)
9142
{
9143
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9144 9145
}

9146
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9147
{
9148
	struct task_group *tg = cgroup_tg(cgrp);
9149 9150 9151

	return (u64) tg->shares;
}
9152
#endif /* CONFIG_FAIR_GROUP_SCHED */
9153

9154
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9155
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9156
				s64 val)
P
Peter Zijlstra 已提交
9157
{
9158
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9159 9160
}

9161
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9162
{
9163
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9164
}
9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9176
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9177

9178
static struct cftype cpu_files[] = {
9179
#ifdef CONFIG_FAIR_GROUP_SCHED
9180 9181
	{
		.name = "shares",
9182 9183
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9184
	},
9185 9186
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9187
	{
P
Peter Zijlstra 已提交
9188
		.name = "rt_runtime_us",
9189 9190
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9191
	},
9192 9193
	{
		.name = "rt_period_us",
9194 9195
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9196
	},
9197
#endif
9198 9199 9200 9201
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9202
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9203 9204 9205
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9206 9207 9208 9209 9210 9211 9212
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9213 9214 9215
	.early_init	= 1,
};

9216
#endif	/* CONFIG_CGROUP_SCHED */
9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9237
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9238
{
9239
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9252
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9269
static void
9270
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9271
{
9272
	struct cpuacct *ca = cgroup_ca(cgrp);
9273 9274 9275 9276 9277 9278

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9279
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9280
{
9281
	struct cpuacct *ca = cgroup_ca(cgrp);
9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9323 9324 9325
static struct cftype files[] = {
	{
		.name = "usage",
9326 9327
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9328 9329 9330
	},
};

9331
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9332
{
9333
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */