sched.c 220.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
I
Ingo Molnar 已提交
378 379 380

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
381 382 383 384 385 386

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
387 388
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
389
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
390 391 392

	unsigned long nr_spread_over;

393
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
394 395
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
396 397
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
398 399 400 401 402 403
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
404 405
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
443 444
#endif
};
L
Linus Torvalds 已提交
445

I
Ingo Molnar 已提交
446 447 448
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
449
	unsigned long rt_nr_running;
450
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
451 452
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
453
#ifdef CONFIG_SMP
454
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
455
	int overloaded;
P
Peter Zijlstra 已提交
456
#endif
P
Peter Zijlstra 已提交
457
	int rt_throttled;
P
Peter Zijlstra 已提交
458
	u64 rt_time;
P
Peter Zijlstra 已提交
459
	u64 rt_runtime;
I
Ingo Molnar 已提交
460
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
461
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
462

463
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
464 465
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
466 467 468 469 470
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
471 472
};

G
Gregory Haskins 已提交
473 474 475 476
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
477 478
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
479 480 481 482 483 484 485 486
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
487

I
Ingo Molnar 已提交
488
	/*
489 490 491 492
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
493
	atomic_t rto_count;
494 495 496
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
497 498
};

499 500 501 502
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
503 504 505 506
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
507 508 509 510 511 512 513
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
514
struct rq {
515 516
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
517 518 519 520 521 522

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
523 524
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
525
	unsigned char idle_at_tick;
526
#ifdef CONFIG_NO_HZ
527
	unsigned long last_tick_seen;
528 529
	unsigned char in_nohz_recently;
#endif
530 531
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
532 533 534 535
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
536 537
	struct rt_rq rt;

I
Ingo Molnar 已提交
538
#ifdef CONFIG_FAIR_GROUP_SCHED
539 540
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
541 542
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
543
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
544 545 546 547 548 549 550 551 552 553
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

554
	struct task_struct *curr, *idle;
555
	unsigned long next_balance;
L
Linus Torvalds 已提交
556
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
557

558
	u64 clock;
I
Ingo Molnar 已提交
559

L
Linus Torvalds 已提交
560 561 562
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
563
	struct root_domain *rd;
L
Linus Torvalds 已提交
564 565 566 567 568
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
569 570
	/* cpu of this runqueue: */
	int cpu;
571
	int online;
L
Linus Torvalds 已提交
572

573
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
574 575 576
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
577 578 579 580 581 582
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
583 584 585 586 587
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
588 589 590 591
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
592 593

	/* schedule() stats */
594 595 596
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
597 598

	/* try_to_wake_up() stats */
599 600
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
601 602

	/* BKL stats */
603
	unsigned int bkl_count;
L
Linus Torvalds 已提交
604
#endif
605
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
606 607
};

608
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
609

I
Ingo Molnar 已提交
610 611 612 613 614
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

615 616 617 618 619 620 621 622 623
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
624 625
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
626
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
627 628 629 630
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
631 632
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
633 634 635 636 637 638

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

639 640 641 642 643
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
656 657 658 659

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
660
enum {
P
Peter Zijlstra 已提交
661
#include "sched_features.h"
I
Ingo Molnar 已提交
662 663
};

P
Peter Zijlstra 已提交
664 665 666 667 668
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
669
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
670 671 672 673 674 675 676 677 678
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

679
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
680 681 682 683 684 685
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

686
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
714
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
744
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
787

788 789 790 791 792 793
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
794
/*
P
Peter Zijlstra 已提交
795
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
796 797
 * default: 1s
 */
P
Peter Zijlstra 已提交
798
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
799

800 801
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
802 803 804 805 806
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
807

808 809 810 811 812 813 814 815 816 817 818 819
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
820

L
Linus Torvalds 已提交
821
#ifndef prepare_arch_switch
822 823 824 825 826 827
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

828 829 830 831 832
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

833
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
834
static inline int task_running(struct rq *rq, struct task_struct *p)
835
{
836
	return task_current(rq, p);
837 838
}

839
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
840 841 842
{
}

843
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
844
{
845 846 847 848
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
849 850 851 852 853 854 855
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

856 857 858 859
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
860
static inline int task_running(struct rq *rq, struct task_struct *p)
861 862 863 864
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
865
	return task_current(rq, p);
866 867 868
#endif
}

869
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

886
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 888 889 890 891 892 893 894 895 896 897 898
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
899
#endif
900 901
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
902

903 904 905 906
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
907
static inline struct rq *__task_rq_lock(struct task_struct *p)
908 909
	__acquires(rq->lock)
{
910 911 912 913 914
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
915 916 917 918
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
919 920
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
921
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
922 923
 * explicitly disabling preemption.
 */
924
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
925 926
	__acquires(rq->lock)
{
927
	struct rq *rq;
L
Linus Torvalds 已提交
928

929 930 931 932 933 934
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
935 936 937 938
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
939
static void __task_rq_unlock(struct rq *rq)
940 941 942 943 944
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

945
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
946 947 948 949 950 951
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
952
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
953
 */
A
Alexey Dobriyan 已提交
954
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
955 956
	__acquires(rq->lock)
{
957
	struct rq *rq;
L
Linus Torvalds 已提交
958 959 960 961 962 963 964 965

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1001
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1013 1014
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1090
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1091 1092 1093 1094 1095 1096
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1097
#ifdef CONFIG_SMP
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1153
#endif /* CONFIG_SMP */
1154 1155

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1192 1193 1194 1195

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1196 1197
#endif

I
Ingo Molnar 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1211
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1212 1213 1214 1215 1216
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1217
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1218 1219
		return;

P
Peter Zijlstra 已提交
1220
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1283
#endif /* CONFIG_NO_HZ */
1284

1285
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1286
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1287 1288
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1289
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1290
}
1291
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1292

1293 1294 1295 1296 1297 1298 1299 1300
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1301 1302 1303
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1304
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1305

1306 1307 1308
/*
 * delta *= weight / lw
 */
1309
static unsigned long
1310 1311 1312 1313 1314
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1315 1316 1317 1318 1319 1320 1321
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1322 1323 1324 1325 1326

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1327
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1328
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1329 1330
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1331
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332

1333
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 1335
}

1336
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 1338
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 1344
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1345
	lw->inv_weight = 0;
1346 1347
}

1348 1349 1350 1351
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1352
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1353 1354 1355 1356
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1368 1369 1370
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1371 1372
 */
static const int prio_to_weight[40] = {
1373 1374 1375 1376 1377 1378 1379 1380
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1381 1382
};

1383 1384 1385 1386 1387 1388 1389
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1390
static const u32 prio_to_wmult[40] = {
1391 1392 1393 1394 1395 1396 1397 1398
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1399
};
1400

I
Ingo Molnar 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1426

1427 1428 1429 1430 1431 1432
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1443 1444 1445 1446 1447
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

	if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
		shares = tg->shares;

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

1768 1769
#endif

I
Ingo Molnar 已提交
1770 1771
#include "sched_stats.h"
#include "sched_idletask.c"
1772 1773
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1774 1775 1776 1777 1778
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1779 1780
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1781

1782
static void inc_nr_running(struct rq *rq)
1783 1784 1785 1786
{
	rq->nr_running++;
}

1787
static void dec_nr_running(struct rq *rq)
1788 1789 1790 1791
{
	rq->nr_running--;
}

1792 1793 1794
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1795 1796 1797 1798
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1799

I
Ingo Molnar 已提交
1800 1801 1802 1803 1804 1805 1806 1807
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1808

I
Ingo Molnar 已提交
1809 1810
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1811 1812
}

1813
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1814
{
I
Ingo Molnar 已提交
1815
	sched_info_queued(p);
1816
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1817
	p->se.on_rq = 1;
1818 1819
}

1820
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1821
{
1822
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1823
	p->se.on_rq = 0;
1824 1825
}

1826
/*
I
Ingo Molnar 已提交
1827
 * __normal_prio - return the priority that is based on the static prio
1828 1829 1830
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1831
	return p->static_prio;
1832 1833
}

1834 1835 1836 1837 1838 1839 1840
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1841
static inline int normal_prio(struct task_struct *p)
1842 1843 1844
{
	int prio;

1845
	if (task_has_rt_policy(p))
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1859
static int effective_prio(struct task_struct *p)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1872
/*
I
Ingo Molnar 已提交
1873
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1874
 */
I
Ingo Molnar 已提交
1875
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1876
{
1877
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1878
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1879

1880
	enqueue_task(rq, p, wakeup);
1881
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1887
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1888
{
1889
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1890 1891
		rq->nr_uninterruptible++;

1892
	dequeue_task(rq, p, sleep);
1893
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1894 1895 1896 1897 1898 1899
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1900
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1901 1902 1903 1904
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1905 1906
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1907
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1908
#ifdef CONFIG_SMP
1909 1910 1911 1912 1913 1914
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1915 1916
	task_thread_info(p)->cpu = cpu;
#endif
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1931
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1932

1933 1934 1935 1936 1937 1938
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1939 1940 1941
/*
 * Is this task likely cache-hot:
 */
1942
static int
1943 1944 1945 1946
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1947 1948 1949
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1950
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1951 1952
		return 1;

1953 1954 1955
	if (p->sched_class != &fair_sched_class)
		return 0;

1956 1957 1958 1959 1960
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1961 1962 1963 1964 1965 1966
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1967
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1968
{
I
Ingo Molnar 已提交
1969 1970
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1971 1972
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1973
	u64 clock_offset;
I
Ingo Molnar 已提交
1974 1975

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1976 1977 1978 1979

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1980 1981 1982 1983
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1984 1985 1986 1987 1988
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1989
#endif
1990 1991
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1992 1993

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1994 1995
}

1996
struct migration_req {
L
Linus Torvalds 已提交
1997 1998
	struct list_head list;

1999
	struct task_struct *task;
L
Linus Torvalds 已提交
2000 2001 2002
	int dest_cpu;

	struct completion done;
2003
};
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2009
static int
2010
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2011
{
2012
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2018
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024 2025 2026
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2027

L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2040
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2041 2042
{
	unsigned long flags;
I
Ingo Molnar 已提交
2043
	int running, on_rq;
2044
	struct rq *rq;
L
Linus Torvalds 已提交
2045

2046 2047 2048 2049 2050 2051 2052 2053
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2103

2104 2105 2106 2107 2108 2109 2110
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2126
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2138 2139
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2140 2141 2142 2143
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2144
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2145
{
2146
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2147
	unsigned long total = weighted_cpuload(cpu);
2148

2149
	if (type == 0)
I
Ingo Molnar 已提交
2150
		return total;
2151

I
Ingo Molnar 已提交
2152
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2153 2154 2155
}

/*
2156 2157
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2158
 */
A
Alexey Dobriyan 已提交
2159
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2160
{
2161
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2162
	unsigned long total = weighted_cpuload(cpu);
2163

N
Nick Piggin 已提交
2164
	if (type == 0)
I
Ingo Molnar 已提交
2165
		return total;
2166

I
Ingo Molnar 已提交
2167
	return max(rq->cpu_load[type-1], total);
2168 2169 2170 2171 2172
}

/*
 * Return the average load per task on the cpu's run queue
 */
2173
static unsigned long cpu_avg_load_per_task(int cpu)
2174
{
2175
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2176
	unsigned long total = weighted_cpuload(cpu);
2177 2178
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2179
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2180 2181
}

N
Nick Piggin 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2199 2200
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2201
			continue;
2202

N
Nick Piggin 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2219 2220
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2221 2222 2223 2224 2225 2226 2227 2228

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2229
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2230 2231 2232 2233 2234 2235 2236

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2237
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2238
 */
I
Ingo Molnar 已提交
2239
static int
2240 2241
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2242 2243 2244 2245 2246
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2247
	/* Traverse only the allowed CPUs */
2248
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2249

2250
	for_each_cpu_mask(i, *tmp) {
2251
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2277

2278
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2279 2280 2281
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2282 2283
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2284 2285
		if (tmp->flags & flag)
			sd = tmp;
2286
	}
N
Nick Piggin 已提交
2287 2288

	while (sd) {
2289
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2290
		struct sched_group *group;
2291 2292 2293 2294 2295 2296
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2297 2298 2299

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2300 2301 2302 2303
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2304

2305
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2306 2307 2308 2309 2310
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2311

2312
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2344
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2345
{
2346
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2347 2348
	unsigned long flags;
	long old_state;
2349
	struct rq *rq;
L
Linus Torvalds 已提交
2350

2351 2352 2353
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2354
	smp_wmb();
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2360
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2361 2362 2363
		goto out_running;

	cpu = task_cpu(p);
2364
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2371 2372 2373
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2380
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2381 2382 2383 2384 2385 2386
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2400
#endif /* CONFIG_SCHEDSTATS */
2401

L
Linus Torvalds 已提交
2402 2403
out_activate:
#endif /* CONFIG_SMP */
2404 2405 2406 2407 2408 2409 2410 2411 2412
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2413
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2414
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2415 2416 2417
	success = 1;

out_running:
I
Ingo Molnar 已提交
2418 2419
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2420
	p->state = TASK_RUNNING;
2421 2422 2423 2424
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2425 2426 2427 2428 2429 2430
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2431
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2432
{
2433
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2434 2435 2436
}
EXPORT_SYMBOL(wake_up_process);

2437
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2438 2439 2440 2441 2442 2443 2444
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2445 2446 2447 2448 2449 2450 2451
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2452
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2453 2454
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2455 2456 2457

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2458 2459 2460 2461 2462 2463
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2464
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2465
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2466
#endif
N
Nick Piggin 已提交
2467

P
Peter Zijlstra 已提交
2468
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2469
	p->se.on_rq = 0;
2470
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2471

2472 2473 2474 2475
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2476 2477 2478 2479 2480 2481 2482
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2497
	set_task_cpu(p, cpu);
2498 2499 2500 2501 2502

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2503 2504
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2505

2506
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2507
	if (likely(sched_info_on()))
2508
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2509
#endif
2510
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2511 2512
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2513
#ifdef CONFIG_PREEMPT
2514
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2515
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2516
#endif
N
Nick Piggin 已提交
2517
	put_cpu();
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2527
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2528 2529
{
	unsigned long flags;
I
Ingo Molnar 已提交
2530
	struct rq *rq;
L
Linus Torvalds 已提交
2531 2532

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2533
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2534
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2535 2536 2537

	p->prio = effective_prio(p);

2538
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2539
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2540 2541
	} else {
		/*
I
Ingo Molnar 已提交
2542 2543
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2544
		 */
2545
		p->sched_class->task_new(rq, p);
2546
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2547
	}
I
Ingo Molnar 已提交
2548
	check_preempt_curr(rq, p);
2549 2550 2551 2552
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2553
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2554 2555
}

2556 2557 2558
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2559 2560
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2561 2562 2563 2564 2565 2566 2567 2568 2569
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2570
 * @notifier: notifier struct to unregister
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2600
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2612
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2613

2614 2615 2616
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2617
 * @prev: the current task that is being switched out
2618 2619 2620 2621 2622 2623 2624 2625 2626
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2627 2628 2629
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2630
{
2631
	fire_sched_out_preempt_notifiers(prev, next);
2632 2633 2634 2635
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2636 2637
/**
 * finish_task_switch - clean up after a task-switch
2638
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2639 2640
 * @prev: the thread we just switched away from.
 *
2641 2642 2643 2644
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2645 2646
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2647
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2648 2649 2650
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2651
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2652 2653 2654
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2655
	long prev_state;
L
Linus Torvalds 已提交
2656 2657 2658 2659 2660

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2661
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2662 2663
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2664
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2670
	prev_state = prev->state;
2671 2672
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2673 2674 2675 2676
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2677

2678
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2679 2680
	if (mm)
		mmdrop(mm);
2681
	if (unlikely(prev_state == TASK_DEAD)) {
2682 2683 2684
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2685
		 */
2686
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2687
		put_task_struct(prev);
2688
	}
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2695
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2696 2697
	__releases(rq->lock)
{
2698 2699
	struct rq *rq = this_rq();

2700 2701 2702 2703 2704
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2705
	if (current->set_child_tid)
2706
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2713
static inline void
2714
context_switch(struct rq *rq, struct task_struct *prev,
2715
	       struct task_struct *next)
L
Linus Torvalds 已提交
2716
{
I
Ingo Molnar 已提交
2717
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2718

2719
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2720 2721
	mm = next->mm;
	oldmm = prev->active_mm;
2722 2723 2724 2725 2726 2727 2728
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2729
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2736
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2737 2738 2739
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2740 2741 2742 2743 2744 2745 2746
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2747
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2748
#endif
L
Linus Torvalds 已提交
2749 2750 2751 2752

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2753 2754 2755 2756 2757 2758 2759
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2783
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2798 2799
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2800

2801
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2811
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2832
/*
I
Ingo Molnar 已提交
2833 2834
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2835
 */
I
Ingo Molnar 已提交
2836
static void update_cpu_load(struct rq *this_rq)
2837
{
2838
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2851 2852 2853 2854 2855 2856 2857
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2858 2859
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2860 2861
}

I
Ingo Molnar 已提交
2862 2863
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2864 2865 2866 2867 2868 2869
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2870
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2871 2872 2873
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2874
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2875 2876 2877 2878
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2879
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885 2886
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2887 2888
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2889 2890 2891 2892 2893 2894 2895 2896
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2897
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2911
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2912 2913 2914 2915
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2916 2917
	int ret = 0;

2918 2919 2920 2921 2922
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2923
	if (unlikely(!spin_trylock(&busiest->lock))) {
2924
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2925 2926 2927
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2928
			ret = 1;
L
Linus Torvalds 已提交
2929 2930 2931
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2932
	return ret;
L
Linus Torvalds 已提交
2933 2934 2935 2936 2937
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2938
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2939 2940
 * the cpu_allowed mask is restored.
 */
2941
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2942
{
2943
	struct migration_req req;
L
Linus Torvalds 已提交
2944
	unsigned long flags;
2945
	struct rq *rq;
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2956

L
Linus Torvalds 已提交
2957 2958 2959 2960 2961
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2962

L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2970 2971
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2972 2973 2974 2975
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2976
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2977
	put_cpu();
N
Nick Piggin 已提交
2978 2979
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2986 2987
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2988
{
2989
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2990
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2991
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2992 2993 2994 2995
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2996
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2997 2998 2999 3000 3001
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3002
static
3003
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3004
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3005
		     int *all_pinned)
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3013 3014
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3015
		return 0;
3016
	}
3017 3018
	*all_pinned = 0;

3019 3020
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3021
		return 0;
3022
	}
L
Linus Torvalds 已提交
3023

3024 3025 3026 3027 3028 3029
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3030 3031
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3032
#ifdef CONFIG_SCHEDSTATS
3033
		if (task_hot(p, rq->clock, sd)) {
3034
			schedstat_inc(sd, lb_hot_gained[idle]);
3035 3036
			schedstat_inc(p, se.nr_forced_migrations);
		}
3037 3038 3039 3040
#endif
		return 1;
	}

3041 3042
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3043
		return 0;
3044
	}
L
Linus Torvalds 已提交
3045 3046 3047
	return 1;
}

3048 3049 3050 3051 3052
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3053
{
3054
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3055 3056
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3057

3058
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3059 3060
		goto out;

3061 3062
	pinned = 1;

L
Linus Torvalds 已提交
3063
	/*
I
Ingo Molnar 已提交
3064
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3065
	 */
I
Ingo Molnar 已提交
3066 3067
	p = iterator->start(iterator->arg);
next:
3068
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3069
		goto out;
3070
	/*
3071
	 * To help distribute high priority tasks across CPUs we don't
3072 3073 3074
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3075 3076
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3077
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3078 3079 3080
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3081 3082
	}

I
Ingo Molnar 已提交
3083
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3084
	pulled++;
I
Ingo Molnar 已提交
3085
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3086

3087
	/*
3088
	 * We only want to steal up to the prescribed amount of weighted load.
3089
	 */
3090
	if (rem_load_move > 0) {
3091 3092
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3093 3094
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3095 3096 3097
	}
out:
	/*
3098
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3099 3100 3101 3102
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3103 3104 3105

	if (all_pinned)
		*all_pinned = pinned;
3106 3107

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3108 3109
}

I
Ingo Molnar 已提交
3110
/*
P
Peter Williams 已提交
3111 3112 3113
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3114 3115 3116 3117
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3118
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3119 3120 3121
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3122
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3123
	unsigned long total_load_moved = 0;
3124
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3125 3126

	do {
P
Peter Williams 已提交
3127 3128
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3129
				max_load_move - total_load_moved,
3130
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3131
		class = class->next;
P
Peter Williams 已提交
3132
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3133

P
Peter Williams 已提交
3134 3135 3136
	return total_load_moved > 0;
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3173
	const struct sched_class *class;
P
Peter Williams 已提交
3174 3175

	for (class = sched_class_highest; class; class = class->next)
3176
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3177 3178 3179
			return 1;

	return 0;
I
Ingo Molnar 已提交
3180 3181
}

L
Linus Torvalds 已提交
3182 3183
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3184 3185
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3186 3187 3188
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3189
		   unsigned long *imbalance, enum cpu_idle_type idle,
3190
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3191 3192 3193
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3194
	unsigned long max_pull;
3195 3196
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3197
	int load_idx, group_imb = 0;
3198 3199 3200 3201 3202 3203
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3204 3205

	max_load = this_load = total_load = total_pwr = 0;
3206 3207
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3208
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3209
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3210
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3211 3212 3213
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3214 3215

	do {
3216
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3217 3218
		int local_group;
		int i;
3219
		int __group_imb = 0;
3220
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3221
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3222 3223 3224

		local_group = cpu_isset(this_cpu, group->cpumask);

3225 3226 3227
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3228
		/* Tally up the load of all CPUs in the group */
3229
		sum_weighted_load = sum_nr_running = avg_load = 0;
3230 3231
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3232 3233

		for_each_cpu_mask(i, group->cpumask) {
3234 3235 3236 3237 3238 3239
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3240

3241
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3242 3243
				*sd_idle = 0;

L
Linus Torvalds 已提交
3244
			/* Bias balancing toward cpus of our domain */
3245 3246 3247 3248 3249 3250
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3251
				load = target_load(i, load_idx);
3252
			} else {
N
Nick Piggin 已提交
3253
				load = source_load(i, load_idx);
3254 3255 3256 3257 3258
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3259 3260

			avg_load += load;
3261
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3262
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3263 3264
		}

3265 3266 3267
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3268 3269
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3270
		 */
3271 3272
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3273 3274 3275 3276
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3277
		total_load += avg_load;
3278
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3279 3280

		/* Adjust by relative CPU power of the group */
3281 3282
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3283

3284 3285 3286
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3287
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3288

L
Linus Torvalds 已提交
3289 3290 3291
		if (local_group) {
			this_load = avg_load;
			this = group;
3292 3293 3294
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3295
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3296 3297
			max_load = avg_load;
			busiest = group;
3298 3299
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3300
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3301
		}
3302 3303 3304 3305 3306 3307

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3308 3309 3310
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3311 3312 3313 3314 3315 3316 3317 3318 3319

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3320
		/*
3321 3322
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3323 3324
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3325
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3326
			goto group_next;
3327

I
Ingo Molnar 已提交
3328
		/*
3329
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3330 3331 3332 3333 3334
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3335 3336
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3337 3338
			group_min = group;
			min_nr_running = sum_nr_running;
3339 3340
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3341
		}
3342

I
Ingo Molnar 已提交
3343
		/*
3344
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3356
		}
3357 3358
group_next:
#endif
L
Linus Torvalds 已提交
3359 3360 3361
		group = group->next;
	} while (group != sd->groups);

3362
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367 3368 3369 3370
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3371
	busiest_load_per_task /= busiest_nr_running;
3372 3373 3374
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3375 3376 3377 3378 3379 3380 3381 3382
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3383
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3384 3385
	 * appear as very large values with unsigned longs.
	 */
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3398 3399

	/* Don't want to pull so many tasks that a group would go idle */
3400
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3401

L
Linus Torvalds 已提交
3402
	/* How much load to actually move to equalise the imbalance */
3403 3404
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3405 3406
			/ SCHED_LOAD_SCALE;

3407 3408 3409 3410 3411 3412
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3413
	if (*imbalance < busiest_load_per_task) {
3414
		unsigned long tmp, pwr_now, pwr_move;
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3426

I
Ingo Molnar 已提交
3427 3428
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3429
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3439 3440 3441 3442
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3443 3444 3445
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3446 3447
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3448
		if (max_load > tmp)
3449
			pwr_move += busiest->__cpu_power *
3450
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3451 3452

		/* Amount of load we'd add */
3453
		if (max_load * busiest->__cpu_power <
3454
				busiest_load_per_task * SCHED_LOAD_SCALE)
3455 3456
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3457
		else
3458 3459 3460 3461
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3462 3463 3464
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3465 3466
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471
	}

	return busiest;

out_balanced:
3472
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3473
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3474
		goto ret;
L
Linus Torvalds 已提交
3475

3476 3477 3478 3479 3480
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3481
ret:
L
Linus Torvalds 已提交
3482 3483 3484 3485 3486 3487 3488
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3489
static struct rq *
I
Ingo Molnar 已提交
3490
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3491
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3492
{
3493
	struct rq *busiest = NULL, *rq;
3494
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3495 3496 3497
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3498
		unsigned long wl;
3499 3500 3501 3502

		if (!cpu_isset(i, *cpus))
			continue;

3503
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3504
		wl = weighted_cpuload(i);
3505

I
Ingo Molnar 已提交
3506
		if (rq->nr_running == 1 && wl > imbalance)
3507
			continue;
L
Linus Torvalds 已提交
3508

I
Ingo Molnar 已提交
3509 3510
		if (wl > max_load) {
			max_load = wl;
3511
			busiest = rq;
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516 3517
		}
	}

	return busiest;
}

3518 3519 3520 3521 3522 3523
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3524 3525 3526 3527
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3528
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3529
			struct sched_domain *sd, enum cpu_idle_type idle,
3530
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3531
{
P
Peter Williams 已提交
3532
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3533 3534
	struct sched_group *group;
	unsigned long imbalance;
3535
	struct rq *busiest;
3536
	unsigned long flags;
3537
	int unlock_aggregate;
N
Nick Piggin 已提交
3538

3539 3540
	cpus_setall(*cpus);

3541 3542
	unlock_aggregate = get_aggregate(sd);

3543 3544 3545
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3546
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3547
	 * portraying it as CPU_NOT_IDLE.
3548
	 */
I
Ingo Molnar 已提交
3549
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3550
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3551
		sd_idle = 1;
L
Linus Torvalds 已提交
3552

3553
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3554

3555 3556
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3557
				   cpus, balance);
3558

3559
	if (*balance == 0)
3560 3561
		goto out_balanced;

L
Linus Torvalds 已提交
3562 3563 3564 3565 3566
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3567
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3573
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3574 3575 3576

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3577
	ld_moved = 0;
L
Linus Torvalds 已提交
3578 3579 3580 3581
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3582
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3583 3584
		 * correctly treated as an imbalance.
		 */
3585
		local_irq_save(flags);
N
Nick Piggin 已提交
3586
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3587
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3588
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3589
		double_rq_unlock(this_rq, busiest);
3590
		local_irq_restore(flags);
3591

3592 3593 3594
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3595
		if (ld_moved && this_cpu != smp_processor_id())
3596 3597
			resched_cpu(this_cpu);

3598
		/* All tasks on this runqueue were pinned by CPU affinity */
3599
		if (unlikely(all_pinned)) {
3600 3601
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3602
				goto redo;
3603
			goto out_balanced;
3604
		}
L
Linus Torvalds 已提交
3605
	}
3606

P
Peter Williams 已提交
3607
	if (!ld_moved) {
L
Linus Torvalds 已提交
3608 3609 3610 3611 3612
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3613
			spin_lock_irqsave(&busiest->lock, flags);
3614 3615 3616 3617 3618

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3619
				spin_unlock_irqrestore(&busiest->lock, flags);
3620 3621 3622 3623
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3624 3625 3626
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3627
				active_balance = 1;
L
Linus Torvalds 已提交
3628
			}
3629
			spin_unlock_irqrestore(&busiest->lock, flags);
3630
			if (active_balance)
L
Linus Torvalds 已提交
3631 3632 3633 3634 3635 3636
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3637
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3638
		}
3639
	} else
L
Linus Torvalds 已提交
3640 3641
		sd->nr_balance_failed = 0;

3642
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3643 3644
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3645 3646 3647 3648 3649 3650 3651 3652 3653
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3654 3655
	}

P
Peter Williams 已提交
3656
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3657
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3658 3659 3660
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3661 3662 3663 3664

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3665
	sd->nr_balance_failed = 0;
3666 3667

out_one_pinned:
L
Linus Torvalds 已提交
3668
	/* tune up the balancing interval */
3669 3670
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3671 3672
		sd->balance_interval *= 2;

3673
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 3676 3677 3678 3679 3680 3681
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3688
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3689 3690
 * this_rq is locked.
 */
3691
static int
3692 3693
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3694 3695
{
	struct sched_group *group;
3696
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3697
	unsigned long imbalance;
P
Peter Williams 已提交
3698
	int ld_moved = 0;
N
Nick Piggin 已提交
3699
	int sd_idle = 0;
3700
	int all_pinned = 0;
3701 3702

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3703

3704 3705 3706 3707
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3708
	 * portraying it as CPU_NOT_IDLE.
3709 3710 3711
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3712
		sd_idle = 1;
L
Linus Torvalds 已提交
3713

3714
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3715
redo:
I
Ingo Molnar 已提交
3716
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3717
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3718
	if (!group) {
I
Ingo Molnar 已提交
3719
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3720
		goto out_balanced;
L
Linus Torvalds 已提交
3721 3722
	}

3723
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3724
	if (!busiest) {
I
Ingo Molnar 已提交
3725
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3726
		goto out_balanced;
L
Linus Torvalds 已提交
3727 3728
	}

N
Nick Piggin 已提交
3729 3730
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3731
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3732

P
Peter Williams 已提交
3733
	ld_moved = 0;
3734 3735 3736
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3737 3738
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3739
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3740 3741
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3742
		spin_unlock(&busiest->lock);
3743

3744
		if (unlikely(all_pinned)) {
3745 3746
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3747 3748
				goto redo;
		}
3749 3750
	}

P
Peter Williams 已提交
3751
	if (!ld_moved) {
I
Ingo Molnar 已提交
3752
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3753 3754
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3755 3756
			return -1;
	} else
3757
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3758

P
Peter Williams 已提交
3759
	return ld_moved;
3760 3761

out_balanced:
I
Ingo Molnar 已提交
3762
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3763
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3764
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3765
		return -1;
3766
	sd->nr_balance_failed = 0;
3767

3768
	return 0;
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3775
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3776 3777
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3778 3779
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3780
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3781 3782

	for_each_domain(this_cpu, sd) {
3783 3784 3785 3786 3787 3788
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3789
			/* If we've pulled tasks over stop searching: */
3790 3791
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3792 3793 3794 3795 3796 3797

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3798
	}
I
Ingo Molnar 已提交
3799
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3800 3801 3802 3803 3804
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3805
	}
L
Linus Torvalds 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3816
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3817
{
3818
	int target_cpu = busiest_rq->push_cpu;
3819 3820
	struct sched_domain *sd;
	struct rq *target_rq;
3821

3822
	/* Is there any task to move? */
3823 3824 3825 3826
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3827 3828

	/*
3829
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3830
	 * we need to fix it. Originally reported by
3831
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3832
	 */
3833
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3834

3835 3836
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3837 3838
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3839 3840

	/* Search for an sd spanning us and the target CPU. */
3841
	for_each_domain(target_cpu, sd) {
3842
		if ((sd->flags & SD_LOAD_BALANCE) &&
3843
		    cpu_isset(busiest_cpu, sd->span))
3844
				break;
3845
	}
3846

3847
	if (likely(sd)) {
3848
		schedstat_inc(sd, alb_count);
3849

P
Peter Williams 已提交
3850 3851
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3852 3853 3854 3855
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3856
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3857 3858
}

3859 3860 3861
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3862
	cpumask_t cpu_mask;
3863 3864 3865 3866 3867
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3868
/*
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3879
 *
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3936 3937 3938 3939 3940
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3941
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3942
{
3943 3944
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3945 3946
	unsigned long interval;
	struct sched_domain *sd;
3947
	/* Earliest time when we have to do rebalance again */
3948
	unsigned long next_balance = jiffies + 60*HZ;
3949
	int update_next_balance = 0;
3950
	int need_serialize;
3951
	cpumask_t tmp;
L
Linus Torvalds 已提交
3952

3953
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3954 3955 3956 3957
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3958
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3959 3960 3961 3962 3963 3964
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3965 3966 3967
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3968
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3969

3970
		if (need_serialize) {
3971 3972 3973 3974
			if (!spin_trylock(&balancing))
				goto out;
		}

3975
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3976
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3977 3978
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3979 3980 3981
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3982
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3983
			}
3984
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3985
		}
3986
		if (need_serialize)
3987 3988
			spin_unlock(&balancing);
out:
3989
		if (time_after(next_balance, sd->last_balance + interval)) {
3990
			next_balance = sd->last_balance + interval;
3991 3992
			update_next_balance = 1;
		}
3993 3994 3995 3996 3997 3998 3999 4000

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4001
	}
4002 4003 4004 4005 4006 4007 4008 4009

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4010 4011 4012 4013 4014 4015 4016 4017 4018
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4019 4020 4021 4022
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4023

I
Ingo Molnar 已提交
4024
	rebalance_domains(this_cpu, idle);
4025 4026 4027 4028 4029 4030 4031

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4032 4033
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4034 4035 4036 4037
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4038
		cpu_clear(this_cpu, cpus);
4039 4040 4041 4042 4043 4044 4045 4046 4047
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4048
			rebalance_domains(balance_cpu, CPU_IDLE);
4049 4050

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4051 4052
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4065
static inline void trigger_load_balance(struct rq *rq, int cpu)
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4092
			if (ilb < nr_cpu_ids)
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4117
}
I
Ingo Molnar 已提交
4118 4119 4120

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4121 4122 4123
/*
 * on UP we do not need to balance between CPUs:
 */
4124
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4125 4126
{
}
I
Ingo Molnar 已提交
4127

L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4135 4136
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4137
 */
4138
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4139 4140
{
	unsigned long flags;
4141 4142
	u64 ns, delta_exec;
	struct rq *rq;
4143

4144 4145
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4146
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4147 4148
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4149 4150 4151 4152
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4153

L
Linus Torvalds 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4177 4178 4179 4180 4181
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4182
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4216
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4217 4218
	cputime64_t tmp;

4219 4220 4221 4222
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4223

L
Linus Torvalds 已提交
4224 4225 4226 4227 4228 4229 4230 4231
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4232
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4233
		cpustat->system = cputime64_add(cpustat->system, tmp);
4234
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239 4240 4241
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4262
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4263 4264 4265 4266 4267 4268 4269

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4270
	} else
L
Linus Torvalds 已提交
4271 4272 4273
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4285
	struct task_struct *curr = rq->curr;
4286 4287

	sched_clock_tick();
I
Ingo Molnar 已提交
4288 4289

	spin_lock(&rq->lock);
4290
	update_rq_clock(rq);
4291
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4292
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4293
	spin_unlock(&rq->lock);
4294

4295
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4296 4297
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4298
#endif
L
Linus Torvalds 已提交
4299 4300 4301 4302
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4303
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4304 4305 4306 4307
{
	/*
	 * Underflow?
	 */
4308 4309
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4310 4311 4312 4313
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4314 4315
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4316 4317 4318
}
EXPORT_SYMBOL(add_preempt_count);

4319
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4320 4321 4322 4323
{
	/*
	 * Underflow?
	 */
4324 4325
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4326 4327 4328
	/*
	 * Is the spinlock portion underflowing?
	 */
4329 4330 4331 4332
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4340
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4341
 */
I
Ingo Molnar 已提交
4342
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4343
{
4344 4345 4346 4347 4348
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4349
	debug_show_held_locks(prev);
4350
	print_modules();
I
Ingo Molnar 已提交
4351 4352
	if (irqs_disabled())
		print_irqtrace_events(prev);
4353 4354 4355 4356 4357

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4358
}
L
Linus Torvalds 已提交
4359

I
Ingo Molnar 已提交
4360 4361 4362 4363 4364
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4365
	/*
I
Ingo Molnar 已提交
4366
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4367 4368 4369
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4370
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4371 4372
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4373 4374
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4375
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4376 4377
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4378 4379
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4380 4381
	}
#endif
I
Ingo Molnar 已提交
4382 4383 4384 4385 4386 4387
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4388
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4389
{
4390
	const struct sched_class *class;
I
Ingo Molnar 已提交
4391
	struct task_struct *p;
L
Linus Torvalds 已提交
4392 4393

	/*
I
Ingo Molnar 已提交
4394 4395
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4396
	 */
I
Ingo Molnar 已提交
4397
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4398
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4399 4400
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4401 4402
	}

I
Ingo Molnar 已提交
4403 4404
	class = sched_class_highest;
	for ( ; ; ) {
4405
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4415

I
Ingo Molnar 已提交
4416 4417 4418 4419 4420 4421
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4422
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4423
	struct rq *rq;
M
Mike Galbraith 已提交
4424
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4438

M
Mike Galbraith 已提交
4439 4440
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4441

4442 4443 4444 4445
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4446
	update_rq_clock(rq);
4447 4448
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4449 4450

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4451
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4452
			prev->state = TASK_RUNNING;
4453
		else
4454
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4455
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4456 4457
	}

4458 4459 4460 4461
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4462

I
Ingo Molnar 已提交
4463
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4464 4465
		idle_balance(cpu, rq);

4466
	prev->sched_class->put_prev_task(rq, prev);
4467
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4468 4469

	if (likely(prev != next)) {
4470 4471
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4472 4473 4474 4475
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4476
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4477 4478 4479 4480 4481 4482
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4483 4484 4485
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4486 4487
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4488 4489

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4490
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4491

L
Linus Torvalds 已提交
4492 4493 4494 4495 4496 4497 4498 4499
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4500
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4501
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4502 4503 4504 4505 4506
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4507

L
Linus Torvalds 已提交
4508 4509
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4510
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4511
	 */
N
Nick Piggin 已提交
4512
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4513 4514
		return;

4515 4516 4517 4518
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4519

4520 4521 4522 4523 4524 4525
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4526 4527 4528 4529
}
EXPORT_SYMBOL(preempt_schedule);

/*
4530
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4531 4532 4533 4534 4535 4536 4537
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4538

4539
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4540 4541
	BUG_ON(ti->preempt_count || !irqs_disabled());

4542 4543 4544 4545 4546 4547
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4548

4549 4550 4551 4552 4553 4554
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4555 4556 4557 4558
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4559 4560
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4561
{
4562
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4563 4564 4565 4566
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4567 4568
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4569 4570 4571
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4572
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4573 4574 4575 4576 4577
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4578
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4579

4580
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4581 4582
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4583
		if (curr->func(curr, mode, sync, key) &&
4584
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4594
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4595
 */
4596
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4597
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4610
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4616
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4628
void
I
Ingo Molnar 已提交
4629
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4646
void complete(struct completion *x)
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4652
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4653 4654 4655 4656
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4657
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4663
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4664 4665 4666 4667
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4668 4669
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4677 4678 4679 4680
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4681 4682
				timeout = -ERESTARTSYS;
				break;
4683 4684
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4685 4686 4687
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4688
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4689
		__remove_wait_queue(&x->wait, &wait);
4690 4691
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4692 4693
	}
	x->done--;
4694
	return timeout ?: 1;
L
Linus Torvalds 已提交
4695 4696
}

4697 4698
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4699 4700 4701 4702
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4703
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4704
	spin_unlock_irq(&x->wait.lock);
4705 4706
	return timeout;
}
L
Linus Torvalds 已提交
4707

4708
void __sched wait_for_completion(struct completion *x)
4709 4710
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4711
}
4712
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4713

4714
unsigned long __sched
4715
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4716
{
4717
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4718
}
4719
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4720

4721
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4722
{
4723 4724 4725 4726
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4727
}
4728
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4729

4730
unsigned long __sched
4731 4732
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4733
{
4734
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4735
}
4736
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4737

M
Matthew Wilcox 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4747 4748
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4749
{
I
Ingo Molnar 已提交
4750 4751 4752 4753
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4754

4755
	__set_current_state(state);
L
Linus Torvalds 已提交
4756

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4771 4772 4773
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4774
long __sched
I
Ingo Molnar 已提交
4775
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4776
{
4777
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4778 4779 4780
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4781
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4782
{
4783
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4784 4785 4786
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4787
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4788
{
4789
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4790 4791 4792
}
EXPORT_SYMBOL(sleep_on_timeout);

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4805
void rt_mutex_setprio(struct task_struct *p, int prio)
4806 4807
{
	unsigned long flags;
4808
	int oldprio, on_rq, running;
4809
	struct rq *rq;
4810
	const struct sched_class *prev_class = p->sched_class;
4811 4812 4813 4814

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4815
	update_rq_clock(rq);
4816

4817
	oldprio = p->prio;
I
Ingo Molnar 已提交
4818
	on_rq = p->se.on_rq;
4819
	running = task_current(rq, p);
4820
	if (on_rq)
4821
		dequeue_task(rq, p, 0);
4822 4823
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4824 4825 4826 4827 4828 4829

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4830 4831
	p->prio = prio;

4832 4833
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4834
	if (on_rq) {
4835
		enqueue_task(rq, p, 0);
4836 4837

		check_class_changed(rq, p, prev_class, oldprio, running);
4838 4839 4840 4841 4842 4843
	}
	task_rq_unlock(rq, &flags);
}

#endif

4844
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4845
{
I
Ingo Molnar 已提交
4846
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4847
	unsigned long flags;
4848
	struct rq *rq;
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4857
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4858 4859 4860 4861
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4862
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4863
	 */
4864
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4865 4866 4867
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4868
	on_rq = p->se.on_rq;
4869
	if (on_rq)
4870
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4871 4872

	p->static_prio = NICE_TO_PRIO(nice);
4873
	set_load_weight(p);
4874 4875 4876
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4877

I
Ingo Molnar 已提交
4878
	if (on_rq) {
4879
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4880
		/*
4881 4882
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4883
		 */
4884
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4892 4893 4894 4895 4896
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4897
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4898
{
4899 4900
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4901

M
Matt Mackall 已提交
4902 4903 4904 4905
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4917
	long nice, retval;
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4924 4925
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4935 4936 4937
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4956
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4965
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4966 4967 4968
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4969
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4984
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990 4991 4992
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4993
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4994
{
4995
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4996 4997 4998
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4999 5000
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5001
{
I
Ingo Molnar 已提交
5002
	BUG_ON(p->se.on_rq);
5003

L
Linus Torvalds 已提交
5004
	p->policy = policy;
I
Ingo Molnar 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5017
	p->rt_priority = prio;
5018 5019 5020
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5021
	set_load_weight(p);
L
Linus Torvalds 已提交
5022 5023 5024
}

/**
5025
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5026 5027 5028
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5029
 *
5030
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5031
 */
I
Ingo Molnar 已提交
5032 5033
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5034
{
5035
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5036
	unsigned long flags;
5037
	const struct sched_class *prev_class = p->sched_class;
5038
	struct rq *rq;
L
Linus Torvalds 已提交
5039

5040 5041
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5047 5048
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5049
		return -EINVAL;
L
Linus Torvalds 已提交
5050 5051
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5052 5053
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5054 5055
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5056
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5057
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5058
		return -EINVAL;
5059
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5060 5061
		return -EINVAL;

5062 5063 5064 5065
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5066
		if (rt_policy(policy)) {
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5083 5084 5085 5086 5087 5088
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5089

5090 5091 5092 5093 5094
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5095

5096 5097 5098 5099 5100
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5101
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5102 5103 5104
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5105 5106 5107
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5108 5109 5110 5111 5112
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5113 5114 5115 5116
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5117
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5118 5119 5120
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5121 5122
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5123 5124
		goto recheck;
	}
I
Ingo Molnar 已提交
5125
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5126
	on_rq = p->se.on_rq;
5127
	running = task_current(rq, p);
5128
	if (on_rq)
5129
		deactivate_task(rq, p, 0);
5130 5131
	if (running)
		p->sched_class->put_prev_task(rq, p);
5132

L
Linus Torvalds 已提交
5133
	oldprio = p->prio;
I
Ingo Molnar 已提交
5134
	__setscheduler(rq, p, policy, param->sched_priority);
5135

5136 5137
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5138 5139
	if (on_rq) {
		activate_task(rq, p, 0);
5140 5141

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5142
	}
5143 5144 5145
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5146 5147
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5148 5149 5150 5151
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5152 5153
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5154 5155 5156
{
	struct sched_param lparam;
	struct task_struct *p;
5157
	int retval;
L
Linus Torvalds 已提交
5158 5159 5160 5161 5162

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5163 5164 5165

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5166
	p = find_process_by_pid(pid);
5167 5168 5169
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5170

L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5180 5181
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5182
{
5183 5184 5185 5186
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5206
	struct task_struct *p;
5207
	int retval;
L
Linus Torvalds 已提交
5208 5209

	if (pid < 0)
5210
		return -EINVAL;
L
Linus Torvalds 已提交
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5232
	struct task_struct *p;
5233
	int retval;
L
Linus Torvalds 已提交
5234 5235

	if (!param || pid < 0)
5236
		return -EINVAL;
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5263
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5264 5265
{
	cpumask_t cpus_allowed;
5266
	cpumask_t new_mask = *in_mask;
5267 5268
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5269

5270
	get_online_cpus();
L
Linus Torvalds 已提交
5271 5272 5273 5274 5275
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5276
		put_online_cpus();
L
Linus Torvalds 已提交
5277 5278 5279 5280 5281
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5282
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5293 5294 5295 5296
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5297
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5298
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5299
 again:
5300
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5301

P
Paul Menage 已提交
5302
	if (!retval) {
5303
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5314 5315
out_unlock:
	put_task_struct(p);
5316
	put_online_cpus();
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5347
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5348 5349 5350 5351
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5352
	struct task_struct *p;
L
Linus Torvalds 已提交
5353 5354
	int retval;

5355
	get_online_cpus();
L
Linus Torvalds 已提交
5356 5357 5358 5359 5360 5361 5362
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5363 5364 5365 5366
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5367
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5368 5369 5370

out_unlock:
	read_unlock(&tasklist_lock);
5371
	put_online_cpus();
L
Linus Torvalds 已提交
5372

5373
	return retval;
L
Linus Torvalds 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5404 5405
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5406 5407 5408
 */
asmlinkage long sys_sched_yield(void)
{
5409
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5410

5411
	schedstat_inc(rq, yld_count);
5412
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5413 5414 5415 5416 5417 5418

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5419
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5420 5421 5422 5423 5424 5425 5426 5427
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5428
static void __cond_resched(void)
L
Linus Torvalds 已提交
5429
{
5430 5431 5432
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5433 5434 5435 5436 5437
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5438 5439 5440 5441 5442 5443 5444
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5445
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5446
{
5447 5448
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5449 5450 5451 5452 5453
		__cond_resched();
		return 1;
	}
	return 0;
}
5454
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5455 5456 5457 5458 5459

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5460
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5461 5462 5463
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5464
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5465
{
N
Nick Piggin 已提交
5466
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5467 5468
	int ret = 0;

N
Nick Piggin 已提交
5469
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5470
		spin_unlock(lock);
N
Nick Piggin 已提交
5471 5472 5473 5474
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5475
		ret = 1;
L
Linus Torvalds 已提交
5476 5477
		spin_lock(lock);
	}
J
Jan Kara 已提交
5478
	return ret;
L
Linus Torvalds 已提交
5479 5480 5481 5482 5483 5484 5485
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5486
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5487
		local_bh_enable();
L
Linus Torvalds 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5499
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5510
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5511 5512 5513 5514 5515 5516 5517
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5518
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5519

5520
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5521 5522 5523
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5524
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5525 5526 5527 5528 5529
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5530
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5531 5532
	long ret;

5533
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5534 5535 5536
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5537
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5558
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5559
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5583
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5584
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5601
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5602
	unsigned int time_slice;
5603
	int retval;
L
Linus Torvalds 已提交
5604 5605 5606
	struct timespec t;

	if (pid < 0)
5607
		return -EINVAL;
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5619 5620 5621 5622 5623 5624
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5625
		time_slice = DEF_TIMESLICE;
5626
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5627 5628 5629 5630 5631
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5632 5633
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5634 5635
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5636
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5637
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5638 5639
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5640

L
Linus Torvalds 已提交
5641 5642 5643 5644 5645
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5646
static const char stat_nam[] = "RSDTtZX";
5647

5648
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5649 5650
{
	unsigned long free = 0;
5651
	unsigned state;
L
Linus Torvalds 已提交
5652 5653

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5654
	printk(KERN_INFO "%-13.13s %c", p->comm,
5655
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5656
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5657
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5658
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5659
	else
I
Ingo Molnar 已提交
5660
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5661 5662
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5663
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5664
	else
I
Ingo Molnar 已提交
5665
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5666 5667 5668
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5669
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5670 5671
		while (!*n)
			n++;
5672
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5673 5674
	}
#endif
5675
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5676
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5677

5678
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5679 5680
}

I
Ingo Molnar 已提交
5681
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5682
{
5683
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5684

5685 5686 5687
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5688
#else
5689 5690
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5699
		if (!state_filter || (p->state & state_filter))
5700
			sched_show_task(p);
L
Linus Torvalds 已提交
5701 5702
	} while_each_thread(g, p);

5703 5704
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5705 5706 5707
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5708
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5709 5710 5711 5712 5713
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5714 5715
}

I
Ingo Molnar 已提交
5716 5717
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5718
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5719 5720
}

5721 5722 5723 5724 5725 5726 5727 5728
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5729
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5730
{
5731
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5732 5733
	unsigned long flags;

I
Ingo Molnar 已提交
5734 5735 5736
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5737
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5738
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5739
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5740 5741 5742

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5743 5744 5745
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5746 5747 5748
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5749 5750 5751
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5752
	task_thread_info(idle)->preempt_count = 0;
5753
#endif
I
Ingo Molnar 已提交
5754 5755 5756 5757
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5794 5795 5796 5797
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5798
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5817
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5818 5819
 * call is not atomic; no spinlocks may be held.
 */
5820
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5821
{
5822
	struct migration_req req;
L
Linus Torvalds 已提交
5823
	unsigned long flags;
5824
	struct rq *rq;
5825
	int ret = 0;
L
Linus Torvalds 已提交
5826 5827

	rq = task_rq_lock(p, &flags);
5828
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5829 5830 5831 5832
		ret = -EINVAL;
		goto out;
	}

5833 5834 5835 5836 5837 5838
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5839
	if (p->sched_class->set_cpus_allowed)
5840
		p->sched_class->set_cpus_allowed(p, new_mask);
5841
	else {
5842 5843
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5844 5845
	}

L
Linus Torvalds 已提交
5846
	/* Can the task run on the task's current CPU? If so, we're done */
5847
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5848 5849
		goto out;

5850
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5851 5852 5853 5854 5855 5856 5857 5858 5859
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5860

L
Linus Torvalds 已提交
5861 5862
	return ret;
}
5863
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5864 5865

/*
I
Ingo Molnar 已提交
5866
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5867 5868 5869 5870 5871 5872
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5873 5874
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5875
 */
5876
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5877
{
5878
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5879
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5880 5881

	if (unlikely(cpu_is_offline(dest_cpu)))
5882
		return ret;
L
Linus Torvalds 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5895
	on_rq = p->se.on_rq;
5896
	if (on_rq)
5897
		deactivate_task(rq_src, p, 0);
5898

L
Linus Torvalds 已提交
5899
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5900 5901 5902
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5903
	}
5904
	ret = 1;
L
Linus Torvalds 已提交
5905 5906
out:
	double_rq_unlock(rq_src, rq_dest);
5907
	return ret;
L
Linus Torvalds 已提交
5908 5909 5910 5911 5912 5913 5914
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5915
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5916 5917
{
	int cpu = (long)data;
5918
	struct rq *rq;
L
Linus Torvalds 已提交
5919 5920 5921 5922 5923 5924

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5925
		struct migration_req *req;
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5948
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5949 5950
		list_del_init(head->next);

N
Nick Piggin 已提交
5951 5952 5953
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5983
/*
5984
 * Figure out where task on dead CPU should go, use force if necessary.
5985 5986
 * NOTE: interrupts should be disabled by the caller
 */
5987
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5988
{
5989
	unsigned long flags;
L
Linus Torvalds 已提交
5990
	cpumask_t mask;
5991 5992
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5993

5994 5995 5996 5997 5998 5999 6000
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6001
		if (dest_cpu >= nr_cpu_ids)
6002 6003 6004
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6005
		if (dest_cpu >= nr_cpu_ids) {
6006 6007 6008
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6009 6010 6011 6012
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6013
			 * cpuset_cpus_allowed() will not block. It must be
6014 6015
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6016
			rq = task_rq_lock(p, &flags);
6017
			p->cpus_allowed = cpus_allowed;
6018 6019
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6020

6021 6022 6023 6024 6025
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6026
			if (p->mm && printk_ratelimit()) {
6027 6028
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6029 6030
					task_pid_nr(p), p->comm, dead_cpu);
			}
6031
		}
6032
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6042
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6043
{
6044
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6058
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6059

6060
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6061

6062 6063
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6064 6065
			continue;

6066 6067 6068
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6069

6070
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6071 6072
}

I
Ingo Molnar 已提交
6073 6074
/*
 * Schedules idle task to be the next runnable task on current CPU.
6075 6076
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6077 6078 6079
 */
void sched_idle_next(void)
{
6080
	int this_cpu = smp_processor_id();
6081
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6082 6083 6084 6085
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6086
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6087

6088 6089 6090
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6091 6092 6093
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6094
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6095

6096 6097
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6098 6099 6100 6101

	spin_unlock_irqrestore(&rq->lock, flags);
}

6102 6103
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6117
/* called under rq->lock with disabled interrupts */
6118
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6119
{
6120
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6121 6122

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6123
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6124 6125

	/* Cannot have done final schedule yet: would have vanished. */
6126
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6127

6128
	get_task_struct(p);
L
Linus Torvalds 已提交
6129 6130 6131

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6132
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6133 6134
	 * fine.
	 */
6135
	spin_unlock_irq(&rq->lock);
6136
	move_task_off_dead_cpu(dead_cpu, p);
6137
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6138

6139
	put_task_struct(p);
L
Linus Torvalds 已提交
6140 6141 6142 6143 6144
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6145
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6146
	struct task_struct *next;
6147

I
Ingo Molnar 已提交
6148 6149 6150
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6151
		update_rq_clock(rq);
6152
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6153 6154 6155
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6156

L
Linus Torvalds 已提交
6157 6158 6159 6160
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6161 6162 6163
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6164 6165
	{
		.procname	= "sched_domain",
6166
		.mode		= 0555,
6167
	},
I
Ingo Molnar 已提交
6168
	{0, },
6169 6170 6171
};

static struct ctl_table sd_ctl_root[] = {
6172
	{
6173
		.ctl_name	= CTL_KERN,
6174
		.procname	= "kernel",
6175
		.mode		= 0555,
6176 6177
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6178
	{0, },
6179 6180 6181 6182 6183
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6184
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6185 6186 6187 6188

	return entry;
}

6189 6190
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6191
	struct ctl_table *entry;
6192

6193 6194 6195
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6196
	 * will always be set. In the lowest directory the names are
6197 6198 6199
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6200 6201
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6202 6203 6204
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6205 6206 6207 6208 6209

	kfree(*tablep);
	*tablep = NULL;
}

6210
static void
6211
set_table_entry(struct ctl_table *entry,
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6225
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6226

6227 6228 6229
	if (table == NULL)
		return NULL;

6230
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6231
		sizeof(long), 0644, proc_doulongvec_minmax);
6232
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6233
		sizeof(long), 0644, proc_doulongvec_minmax);
6234
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6235
		sizeof(int), 0644, proc_dointvec_minmax);
6236
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6237
		sizeof(int), 0644, proc_dointvec_minmax);
6238
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6239
		sizeof(int), 0644, proc_dointvec_minmax);
6240
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6241
		sizeof(int), 0644, proc_dointvec_minmax);
6242
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6243
		sizeof(int), 0644, proc_dointvec_minmax);
6244
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6245
		sizeof(int), 0644, proc_dointvec_minmax);
6246
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6247
		sizeof(int), 0644, proc_dointvec_minmax);
6248
	set_table_entry(&table[9], "cache_nice_tries",
6249 6250
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6251
	set_table_entry(&table[10], "flags", &sd->flags,
6252
		sizeof(int), 0644, proc_dointvec_minmax);
6253
	/* &table[11] is terminator */
6254 6255 6256 6257

	return table;
}

6258
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6259 6260 6261 6262 6263 6264 6265 6266 6267
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6268 6269
	if (table == NULL)
		return NULL;
6270 6271 6272 6273 6274

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6275
		entry->mode = 0555;
6276 6277 6278 6279 6280 6281 6282 6283
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6284
static void register_sched_domain_sysctl(void)
6285 6286 6287 6288 6289
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6290 6291 6292
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6293 6294 6295
	if (entry == NULL)
		return;

6296
	for_each_online_cpu(i) {
6297 6298
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6299
		entry->mode = 0555;
6300
		entry->child = sd_alloc_ctl_cpu_table(i);
6301
		entry++;
6302
	}
6303 6304

	WARN_ON(sd_sysctl_header);
6305 6306
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6307

6308
/* may be called multiple times per register */
6309 6310
static void unregister_sched_domain_sysctl(void)
{
6311 6312
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6313
	sd_sysctl_header = NULL;
6314 6315
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6316
}
6317
#else
6318 6319 6320 6321
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6322 6323 6324 6325
{
}
#endif

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6356 6357 6358 6359
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6360 6361
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6362 6363
{
	struct task_struct *p;
6364
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6365
	unsigned long flags;
6366
	struct rq *rq;
L
Linus Torvalds 已提交
6367 6368

	switch (action) {
6369

L
Linus Torvalds 已提交
6370
	case CPU_UP_PREPARE:
6371
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6372
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6373 6374 6375 6376 6377
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6378
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6379 6380 6381
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6382

L
Linus Torvalds 已提交
6383
	case CPU_ONLINE:
6384
	case CPU_ONLINE_FROZEN:
6385
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6386
		wake_up_process(cpu_rq(cpu)->migration_thread);
6387 6388 6389 6390 6391 6392

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6393 6394

			set_rq_online(rq);
6395 6396
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6397
		break;
6398

L
Linus Torvalds 已提交
6399 6400
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6401
	case CPU_UP_CANCELED_FROZEN:
6402 6403
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6404
		/* Unbind it from offline cpu so it can run. Fall thru. */
6405 6406
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6407 6408 6409
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6410

L
Linus Torvalds 已提交
6411
	case CPU_DEAD:
6412
	case CPU_DEAD_FROZEN:
6413
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6414 6415 6416 6417 6418
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6419
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6420
		update_rq_clock(rq);
6421
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6422
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6423 6424
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6425
		migrate_dead_tasks(cpu);
6426
		spin_unlock_irq(&rq->lock);
6427
		cpuset_unlock();
L
Linus Torvalds 已提交
6428 6429 6430
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6431 6432 6433 6434 6435
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6436 6437
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6438 6439
			struct migration_req *req;

L
Linus Torvalds 已提交
6440
			req = list_entry(rq->migration_queue.next,
6441
					 struct migration_req, list);
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6447

6448 6449
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6450 6451 6452 6453 6454
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6455
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6456 6457 6458
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6459 6460 6461 6462 6463 6464 6465 6466
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6467
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6468 6469 6470 6471
	.notifier_call = migration_call,
	.priority = 10
};

6472
void __init migration_init(void)
L
Linus Torvalds 已提交
6473 6474
{
	void *cpu = (void *)(long)smp_processor_id();
6475
	int err;
6476 6477

	/* Start one for the boot CPU: */
6478 6479
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6480 6481 6482 6483 6484 6485
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6486

6487
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6488

6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6511 6512
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6513
{
I
Ingo Molnar 已提交
6514
	struct sched_group *group = sd->groups;
6515
	char str[256];
L
Linus Torvalds 已提交
6516

6517
	cpulist_scnprintf(str, sizeof(str), sd->span);
6518
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6528 6529
	}

6530 6531
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6541

I
Ingo Molnar 已提交
6542
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6543
	do {
I
Ingo Molnar 已提交
6544 6545 6546
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6547 6548 6549
			break;
		}

I
Ingo Molnar 已提交
6550 6551 6552 6553 6554 6555
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6556

I
Ingo Molnar 已提交
6557 6558 6559 6560 6561
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6562

6563
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6564 6565 6566 6567
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6568

6569
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6570

6571
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6572
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6573

I
Ingo Molnar 已提交
6574 6575 6576
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6577

6578
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6579
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6580

6581
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6582 6583 6584 6585
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6586

I
Ingo Molnar 已提交
6587 6588
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6589
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6590
	int level = 0;
L
Linus Torvalds 已提交
6591

I
Ingo Molnar 已提交
6592 6593 6594 6595
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6596

I
Ingo Molnar 已提交
6597 6598
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6599 6600 6601 6602 6603 6604
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6605
	for (;;) {
6606
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6607
			break;
L
Linus Torvalds 已提交
6608 6609
		level++;
		sd = sd->parent;
6610
		if (!sd)
I
Ingo Molnar 已提交
6611 6612
			break;
	}
6613
	kfree(groupmask);
L
Linus Torvalds 已提交
6614
}
6615
#else /* !CONFIG_SCHED_DEBUG */
6616
# define sched_domain_debug(sd, cpu) do { } while (0)
6617
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6618

6619
static int sd_degenerate(struct sched_domain *sd)
6620 6621 6622 6623 6624 6625 6626 6627
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6628 6629 6630
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6644 6645
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6664 6665 6666
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6667 6668 6669 6670 6671 6672 6673
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6674 6675 6676 6677 6678 6679 6680 6681 6682
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6683 6684
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6685

6686 6687
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6688 6689 6690 6691 6692 6693 6694
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6695
	cpu_set(rq->cpu, rd->span);
6696
	if (cpu_isset(rq->cpu, cpu_online_map))
6697
		set_rq_online(rq);
G
Gregory Haskins 已提交
6698 6699 6700 6701

	spin_unlock_irqrestore(&rq->lock, flags);
}

6702
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6703 6704 6705
{
	memset(rd, 0, sizeof(*rd));

6706 6707
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6708 6709

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6710 6711 6712 6713
}

static void init_defrootdomain(void)
{
6714
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6715 6716 6717
	atomic_set(&def_root_domain.refcount, 1);
}

6718
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6719 6720 6721 6722 6723 6724 6725
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6726
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6727 6728 6729 6730

	return rd;
}

L
Linus Torvalds 已提交
6731
/*
I
Ingo Molnar 已提交
6732
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6733 6734
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6735 6736
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6737
{
6738
	struct rq *rq = cpu_rq(cpu);
6739 6740 6741 6742 6743 6744 6745
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6746
		if (sd_parent_degenerate(tmp, parent)) {
6747
			tmp->parent = parent->parent;
6748 6749 6750
			if (parent->parent)
				parent->parent->child = tmp;
		}
6751 6752
	}

6753
	if (sd && sd_degenerate(sd)) {
6754
		sd = sd->parent;
6755 6756 6757
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6758 6759 6760

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6761
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6762
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6763 6764 6765
}

/* cpus with isolated domains */
6766
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6781
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6782 6783

/*
6784 6785 6786 6787
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6788 6789 6790 6791 6792
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6793
static void
6794
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6795
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6796 6797 6798
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6799 6800 6801 6802
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6803 6804 6805
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6806
		struct sched_group *sg;
6807
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6808 6809
		int j;

6810
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6811 6812
			continue;

6813
		cpus_clear(sg->cpumask);
6814
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6815

6816 6817
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6818 6819
				continue;

6820
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6832
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6833

6834
#ifdef CONFIG_NUMA
6835

6836 6837 6838 6839 6840
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6841
 * Find the next node to include in a given scheduling domain. Simply
6842 6843 6844 6845
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6846
static int find_next_best_node(int node, nodemask_t *used_nodes)
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6860
		if (node_isset(n, *used_nodes))
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6872
	node_set(best_node, *used_nodes);
6873 6874 6875 6876 6877 6878
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6879
 * @span: resulting cpumask
6880
 *
I
Ingo Molnar 已提交
6881
 * Given a node, construct a good cpumask for its sched_domain to span. It
6882 6883 6884
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6885
static void sched_domain_node_span(int node, cpumask_t *span)
6886
{
6887 6888
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6889
	int i;
6890

6891
	cpus_clear(*span);
6892
	nodes_clear(used_nodes);
6893

6894
	cpus_or(*span, *span, *nodemask);
6895
	node_set(node, used_nodes);
6896 6897

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6898
		int next_node = find_next_best_node(node, &used_nodes);
6899

6900
		node_to_cpumask_ptr_next(nodemask, next_node);
6901
		cpus_or(*span, *span, *nodemask);
6902 6903
	}
}
6904
#endif /* CONFIG_NUMA */
6905

6906
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6907

6908
/*
6909
 * SMT sched-domains:
6910
 */
L
Linus Torvalds 已提交
6911 6912
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6913
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6914

I
Ingo Molnar 已提交
6915
static int
6916 6917
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6918
{
6919 6920
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6921 6922
	return cpu;
}
6923
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6924

6925 6926 6927
/*
 * multi-core sched-domains:
 */
6928 6929
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6930
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6931
#endif /* CONFIG_SCHED_MC */
6932 6933

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6934
static int
6935 6936
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6937
{
6938
	int group;
6939 6940 6941 6942

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6943 6944 6945
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6946 6947
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6948
static int
6949 6950
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6951
{
6952 6953
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6954 6955 6956 6957
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6958
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6959
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6960

I
Ingo Molnar 已提交
6961
static int
6962 6963
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6964
{
6965
	int group;
6966
#ifdef CONFIG_SCHED_MC
6967 6968 6969
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6970
#elif defined(CONFIG_SCHED_SMT)
6971 6972 6973
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6974
#else
6975
	group = cpu;
L
Linus Torvalds 已提交
6976
#endif
6977 6978 6979
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6980 6981 6982 6983
}

#ifdef CONFIG_NUMA
/*
6984 6985 6986
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6987
 */
6988
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6989
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6990

6991
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6992
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6993

6994
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6995
				 struct sched_group **sg, cpumask_t *nodemask)
6996
{
6997 6998
	int group;

6999 7000 7001
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7002 7003 7004 7005

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7006
}
7007

7008 7009 7010 7011 7012 7013 7014
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7015 7016 7017
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7018

7019 7020 7021 7022 7023 7024 7025 7026
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7027

7028 7029 7030 7031
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7032
}
7033
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7034

7035
#ifdef CONFIG_NUMA
7036
/* Free memory allocated for various sched_group structures */
7037
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7038
{
7039
	int cpu, i;
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7051 7052 7053
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7070
#else /* !CONFIG_NUMA */
7071
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7072 7073
{
}
7074
#endif /* CONFIG_NUMA */
7075

7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7102 7103
	sd->groups->__cpu_power = 0;

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7114
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7115 7116 7117 7118 7119 7120 7121 7122
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7123
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7124 7125 7126 7127
		group = group->next;
	} while (group != child->groups);
}

7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7139
	sd->level = SD_LV_##type;				\
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7188 7189 7190 7191
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7192 7193 7194 7195 7196 7197
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7223
/*
7224 7225
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7226
 */
7227 7228
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7229 7230
{
	int i;
G
Gregory Haskins 已提交
7231
	struct root_domain *rd;
7232 7233
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7234 7235
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7236
	int sd_allnodes = 0;
7237 7238 7239 7240

	/*
	 * Allocate the per-node list of sched groups
	 */
7241
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7242
				    GFP_KERNEL);
7243 7244
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7245
		return -ENOMEM;
7246 7247
	}
#endif
L
Linus Torvalds 已提交
7248

7249
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7250 7251
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7252 7253 7254
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7255 7256 7257
		return -ENOMEM;
	}

7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7277
	/*
7278
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7279
	 */
7280
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7281
		struct sched_domain *sd = NULL, *p;
7282
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7283

7284 7285
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7286 7287

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7288
		if (cpus_weight(*cpu_map) >
7289
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7290
			sd = &per_cpu(allnodes_domains, i);
7291
			SD_INIT(sd, ALLNODES);
7292
			set_domain_attribute(sd, attr);
7293
			sd->span = *cpu_map;
7294
			sd->first_cpu = first_cpu(sd->span);
7295
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7296
			p = sd;
7297
			sd_allnodes = 1;
7298 7299 7300
		} else
			p = NULL;

L
Linus Torvalds 已提交
7301
		sd = &per_cpu(node_domains, i);
7302
		SD_INIT(sd, NODE);
7303
		set_domain_attribute(sd, attr);
7304
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7305
		sd->first_cpu = first_cpu(sd->span);
7306
		sd->parent = p;
7307 7308
		if (p)
			p->child = sd;
7309
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7310 7311 7312 7313
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7314
		SD_INIT(sd, CPU);
7315
		set_domain_attribute(sd, attr);
7316
		sd->span = *nodemask;
7317
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7318
		sd->parent = p;
7319 7320
		if (p)
			p->child = sd;
7321
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7322

7323 7324 7325
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7326
		SD_INIT(sd, MC);
7327
		set_domain_attribute(sd, attr);
7328
		sd->span = cpu_coregroup_map(i);
7329
		sd->first_cpu = first_cpu(sd->span);
7330 7331
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7332
		p->child = sd;
7333
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7334 7335
#endif

L
Linus Torvalds 已提交
7336 7337 7338
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7339
		SD_INIT(sd, SIBLING);
7340
		set_domain_attribute(sd, attr);
7341
		sd->span = per_cpu(cpu_sibling_map, i);
7342
		sd->first_cpu = first_cpu(sd->span);
7343
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7344
		sd->parent = p;
7345
		p->child = sd;
7346
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7347 7348 7349 7350 7351
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7352
	for_each_cpu_mask(i, *cpu_map) {
7353 7354 7355 7356 7357 7358
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7359 7360
			continue;

I
Ingo Molnar 已提交
7361
		init_sched_build_groups(this_sibling_map, cpu_map,
7362 7363
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7364 7365 7366
	}
#endif

7367 7368 7369
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7370 7371 7372 7373 7374 7375
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7376
			continue;
7377

I
Ingo Molnar 已提交
7378
		init_sched_build_groups(this_core_map, cpu_map,
7379 7380
					&cpu_to_core_group,
					send_covered, tmpmask);
7381 7382 7383
	}
#endif

L
Linus Torvalds 已提交
7384 7385
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7386 7387
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7388

7389 7390 7391
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7392 7393
			continue;

7394 7395 7396
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7397 7398 7399 7400
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7401 7402 7403 7404 7405 7406 7407
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7408 7409 7410 7411

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7412 7413 7414
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7415 7416
		int j;

7417 7418 7419 7420 7421
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7422
			sched_group_nodes[i] = NULL;
7423
			continue;
7424
		}
7425

7426
		sched_domain_node_span(i, domainspan);
7427
		cpus_and(*domainspan, *domainspan, *cpu_map);
7428

7429
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7430 7431 7432 7433 7434
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7435
		sched_group_nodes[i] = sg;
7436
		for_each_cpu_mask(j, *nodemask) {
7437
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7438

7439 7440 7441
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7442
		sg->__cpu_power = 0;
7443
		sg->cpumask = *nodemask;
7444
		sg->next = sg;
7445
		cpus_or(*covered, *covered, *nodemask);
7446 7447 7448
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7449
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7450
			int n = (i + j) % MAX_NUMNODES;
7451
			node_to_cpumask_ptr(pnodemask, n);
7452

7453 7454 7455 7456
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7457 7458
				break;

7459 7460
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7461 7462
				continue;

7463 7464
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7465 7466 7467
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7468
				goto error;
7469
			}
7470
			sg->__cpu_power = 0;
7471
			sg->cpumask = *tmpmask;
7472
			sg->next = prev->next;
7473
			cpus_or(*covered, *covered, *tmpmask);
7474 7475 7476 7477
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7478 7479 7480
#endif

	/* Calculate CPU power for physical packages and nodes */
7481
#ifdef CONFIG_SCHED_SMT
7482
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7483 7484
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7485
		init_sched_groups_power(i, sd);
7486
	}
L
Linus Torvalds 已提交
7487
#endif
7488
#ifdef CONFIG_SCHED_MC
7489
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7490 7491
		struct sched_domain *sd = &per_cpu(core_domains, i);

7492
		init_sched_groups_power(i, sd);
7493 7494
	}
#endif
7495

7496
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7497 7498
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7499
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7500 7501
	}

7502
#ifdef CONFIG_NUMA
7503 7504
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7505

7506 7507
	if (sd_allnodes) {
		struct sched_group *sg;
7508

7509 7510
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7511 7512
		init_numa_sched_groups_power(sg);
	}
7513 7514
#endif

L
Linus Torvalds 已提交
7515
	/* Attach the domains */
7516
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7517 7518 7519
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7520 7521
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7522 7523 7524
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7525
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7526
	}
7527

7528
	SCHED_CPUMASK_FREE((void *)allmasks);
7529 7530
	return 0;

7531
#ifdef CONFIG_NUMA
7532
error:
7533 7534
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7535
	return -ENOMEM;
7536
#endif
L
Linus Torvalds 已提交
7537
}
P
Paul Jackson 已提交
7538

7539 7540 7541 7542 7543
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7544 7545
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7546 7547
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7548 7549 7550 7551 7552 7553 7554 7555

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7556 7557 7558 7559
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7572
/*
I
Ingo Molnar 已提交
7573
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7574 7575
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7576
 */
7577
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7578
{
7579 7580
	int err;

7581
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7582 7583 7584 7585 7586
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7587
	dattr_cur = NULL;
7588
	err = build_sched_domains(doms_cur);
7589
	register_sched_domain_sysctl();
7590 7591

	return err;
7592 7593
}

7594 7595
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7596
{
7597
	free_sched_groups(cpu_map, tmpmask);
7598
}
L
Linus Torvalds 已提交
7599

7600 7601 7602 7603
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7604
static void detach_destroy_domains(const cpumask_t *cpu_map)
7605
{
7606
	cpumask_t tmpmask;
7607 7608
	int i;

7609 7610
	unregister_sched_domain_sysctl();

7611
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7612
		cpu_attach_domain(NULL, &def_root_domain, i);
7613
	synchronize_sched();
7614
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7615 7616
}

7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7633 7634
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7635
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7636 7637 7638 7639
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7640 7641 7642
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7643 7644 7645
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7646 7647
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7648 7649 7650 7651 7652 7653
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7654 7655
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7656 7657 7658
{
	int i, j;

7659
	mutex_lock(&sched_domains_mutex);
7660

7661 7662 7663
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7664 7665 7666 7667
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7668
		dattr_new = NULL;
P
Paul Jackson 已提交
7669 7670 7671 7672 7673
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7674 7675
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7687 7688
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7689 7690 7691
				goto match2;
		}
		/* no match - add a new doms_new */
7692 7693
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7694 7695 7696 7697 7698 7699 7700
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7701
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7702
	doms_cur = doms_new;
7703
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7704
	ndoms_cur = ndoms_new;
7705 7706

	register_sched_domain_sysctl();
7707

7708
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7709 7710
}

7711
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7712
int arch_reinit_sched_domains(void)
7713 7714 7715
{
	int err;

7716
	get_online_cpus();
7717
	mutex_lock(&sched_domains_mutex);
7718
	detach_destroy_domains(&cpu_online_map);
7719
	free_sched_domains();
7720
	err = arch_init_sched_domains(&cpu_online_map);
7721
	mutex_unlock(&sched_domains_mutex);
7722
	put_online_cpus();
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7749 7750
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7751 7752 7753
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7754 7755
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7756 7757 7758 7759 7760 7761 7762
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7763 7764
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7765 7766 7767
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7788
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7789

L
Linus Torvalds 已提交
7790
/*
I
Ingo Molnar 已提交
7791
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7792
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7793
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7794 7795 7796 7797 7798
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7799 7800
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7801 7802
	switch (action) {
	case CPU_DOWN_PREPARE:
7803
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7804 7805 7806 7807
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7808
		detach_destroy_domains(&cpu_online_map);
7809
		free_sched_domains();
L
Linus Torvalds 已提交
7810 7811
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7812

L
Linus Torvalds 已提交
7813
	case CPU_DOWN_FAILED:
7814
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7815
	case CPU_ONLINE:
7816
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7817 7818 7819 7820
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7821
	case CPU_DEAD:
7822
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7823 7824 7825 7826 7827 7828 7829 7830
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7831 7832 7833 7834 7835 7836 7837
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7838
	/* The hotplug lock is already held by cpu_up/cpu_down */
7839
	arch_init_sched_domains(&cpu_online_map);
7840
#endif
L
Linus Torvalds 已提交
7841 7842 7843 7844 7845 7846

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7847 7848
	cpumask_t non_isolated_cpus;

7849 7850 7851 7852 7853
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7854
	get_online_cpus();
7855
	mutex_lock(&sched_domains_mutex);
7856
	arch_init_sched_domains(&cpu_online_map);
7857
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7858 7859
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7860
	mutex_unlock(&sched_domains_mutex);
7861
	put_online_cpus();
L
Linus Torvalds 已提交
7862 7863
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7864
	init_hrtick();
7865 7866

	/* Move init over to a non-isolated CPU */
7867
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7868
		BUG();
I
Ingo Molnar 已提交
7869
	sched_init_granularity();
L
Linus Torvalds 已提交
7870 7871 7872 7873
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7874
	sched_init_granularity();
L
Linus Torvalds 已提交
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7885
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7886 7887
{
	cfs_rq->tasks_timeline = RB_ROOT;
7888
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7889 7890 7891
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7892
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7893 7894
}

P
Peter Zijlstra 已提交
7895 7896 7897 7898 7899 7900 7901
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7902
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7903 7904 7905 7906 7907
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7908
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7909 7910
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7911 7912 7913 7914 7915 7916 7917
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7918 7919
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7920

7921
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7922
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7923 7924
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7925 7926
}

P
Peter Zijlstra 已提交
7927
#ifdef CONFIG_FAIR_GROUP_SCHED
7928 7929 7930
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7931
{
7932
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7933 7934 7935 7936 7937 7938 7939
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7940 7941 7942 7943
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7944 7945 7946 7947 7948
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7949 7950
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7951
	se->load.inv_weight = 0;
7952
	se->parent = parent;
P
Peter Zijlstra 已提交
7953
}
7954
#endif
P
Peter Zijlstra 已提交
7955

7956
#ifdef CONFIG_RT_GROUP_SCHED
7957 7958 7959
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7960
{
7961 7962
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7963 7964 7965 7966
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7967
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7968 7969 7970 7971
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7972 7973 7974
	if (!rt_se)
		return;

7975 7976 7977 7978 7979
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7980
	rt_se->my_q = rt_rq;
7981
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7982 7983 7984 7985
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7986 7987
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7988
	int i, j;
7989 7990 7991 7992 7993 7994 7995
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7996 7997 7998
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7999 8000 8001 8002 8003 8004
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8005
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8006 8007 8008 8009 8010 8011 8012

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8013 8014 8015 8016 8017 8018 8019

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8020 8021
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8022 8023 8024 8025 8026
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8027 8028 8029 8030 8031 8032 8033 8034
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8035 8036
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8037
	}
I
Ingo Molnar 已提交
8038

G
Gregory Haskins 已提交
8039
#ifdef CONFIG_SMP
8040
	init_aggregate();
G
Gregory Haskins 已提交
8041 8042 8043
	init_defrootdomain();
#endif

8044 8045 8046 8047 8048 8049
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8050 8051 8052
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8053 8054
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8055

8056
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8057
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8058 8059 8060 8061 8062 8063
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8064 8065
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8066

8067
	for_each_possible_cpu(i) {
8068
		struct rq *rq;
L
Linus Torvalds 已提交
8069 8070 8071

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8072
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8073
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8074
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8075
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8076
#ifdef CONFIG_FAIR_GROUP_SCHED
8077
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8078
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8099
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8100
#elif defined CONFIG_USER_SCHED
8101 8102
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8114
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8115
				&per_cpu(init_cfs_rq, i),
8116 8117
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8118

8119
#endif
D
Dhaval Giani 已提交
8120 8121 8122
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8123
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8124
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8125
#ifdef CONFIG_CGROUP_SCHED
8126
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8127
#elif defined CONFIG_USER_SCHED
8128
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8129
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8130
				&per_cpu(init_rt_rq, i),
8131 8132
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8133
#endif
I
Ingo Molnar 已提交
8134
#endif
L
Linus Torvalds 已提交
8135

I
Ingo Molnar 已提交
8136 8137
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8138
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8139
		rq->sd = NULL;
G
Gregory Haskins 已提交
8140
		rq->rd = NULL;
L
Linus Torvalds 已提交
8141
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8142
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8143
		rq->push_cpu = 0;
8144
		rq->cpu = i;
8145
		rq->online = 0;
L
Linus Torvalds 已提交
8146 8147
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8148
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8149
#endif
P
Peter Zijlstra 已提交
8150
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8151 8152 8153
		atomic_set(&rq->nr_iowait, 0);
	}

8154
	set_load_weight(&init_task);
8155

8156 8157 8158 8159
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8160 8161 8162 8163
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8164 8165 8166 8167
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8181 8182 8183 8184
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8185 8186

	scheduler_running = 1;
L
Linus Torvalds 已提交
8187 8188 8189 8190 8191
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8192
#ifdef in_atomic
L
Linus Torvalds 已提交
8193 8194 8195 8196 8197 8198 8199
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8200
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8201 8202 8203
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8204
		debug_show_held_locks(current);
8205 8206
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8207 8208 8209 8210 8211 8212 8213 8214
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8215 8216 8217
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8218

8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8230 8231
void normalize_rt_tasks(void)
{
8232
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8233
	unsigned long flags;
8234
	struct rq *rq;
L
Linus Torvalds 已提交
8235

8236
	read_lock_irqsave(&tasklist_lock, flags);
8237
	do_each_thread(g, p) {
8238 8239 8240 8241 8242 8243
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8244 8245
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8246 8247 8248
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8249
#endif
I
Ingo Molnar 已提交
8250 8251 8252 8253 8254 8255 8256 8257

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8258
			continue;
I
Ingo Molnar 已提交
8259
		}
L
Linus Torvalds 已提交
8260

8261
		spin_lock(&p->pi_lock);
8262
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8263

8264
		normalize_task(rq, p);
8265

8266
		__task_rq_unlock(rq);
8267
		spin_unlock(&p->pi_lock);
8268 8269
	} while_each_thread(g, p);

8270
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8271 8272 8273
}

#endif /* CONFIG_MAGIC_SYSRQ */
8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8292
struct task_struct *curr_task(int cpu)
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8303 8304
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8305 8306 8307 8308 8309 8310 8311
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8312
void set_curr_task(int cpu, struct task_struct *p)
8313 8314 8315 8316 8317
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8318

8319 8320
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8335 8336
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8337 8338
{
	struct cfs_rq *cfs_rq;
8339
	struct sched_entity *se, *parent_se;
8340
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8341 8342
	int i;

8343
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8344 8345
	if (!tg->cfs_rq)
		goto err;
8346
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8347 8348
	if (!tg->se)
		goto err;
8349 8350

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8351 8352

	for_each_possible_cpu(i) {
8353
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8354

P
Peter Zijlstra 已提交
8355 8356
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8357 8358 8359
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8360 8361
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8362 8363 8364
		if (!se)
			goto err;

8365 8366
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8385
#else /* !CONFG_FAIR_GROUP_SCHED */
8386 8387 8388 8389
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8390 8391
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8403
#endif /* CONFIG_FAIR_GROUP_SCHED */
8404 8405

#ifdef CONFIG_RT_GROUP_SCHED
8406 8407 8408 8409
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8410 8411
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8423 8424
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8425 8426
{
	struct rt_rq *rt_rq;
8427
	struct sched_rt_entity *rt_se, *parent_se;
8428 8429 8430
	struct rq *rq;
	int i;

8431
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8432 8433
	if (!tg->rt_rq)
		goto err;
8434
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8435 8436 8437
	if (!tg->rt_se)
		goto err;

8438 8439
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8440 8441 8442 8443

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8444 8445 8446 8447
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8448

P
Peter Zijlstra 已提交
8449 8450 8451 8452
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8453

8454 8455
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8456 8457
	}

8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8474
#else /* !CONFIG_RT_GROUP_SCHED */
8475 8476 8477 8478
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8479 8480
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8492
#endif /* CONFIG_RT_GROUP_SCHED */
8493

8494
#ifdef CONFIG_GROUP_SCHED
8495 8496 8497 8498 8499 8500 8501 8502
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8503
struct task_group *sched_create_group(struct task_group *parent)
8504 8505 8506 8507 8508 8509 8510 8511 8512
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8513
	if (!alloc_fair_sched_group(tg, parent))
8514 8515
		goto err;

8516
	if (!alloc_rt_sched_group(tg, parent))
8517 8518
		goto err;

8519
	spin_lock_irqsave(&task_group_lock, flags);
8520
	for_each_possible_cpu(i) {
8521 8522
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8523
	}
P
Peter Zijlstra 已提交
8524
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8525 8526 8527 8528 8529 8530

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8531
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8532

8533
	return tg;
S
Srivatsa Vaddagiri 已提交
8534 8535

err:
P
Peter Zijlstra 已提交
8536
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8537 8538 8539
	return ERR_PTR(-ENOMEM);
}

8540
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8541
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8542 8543
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8544
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8545 8546
}

8547
/* Destroy runqueue etc associated with a task group */
8548
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8549
{
8550
	unsigned long flags;
8551
	int i;
S
Srivatsa Vaddagiri 已提交
8552

8553
	spin_lock_irqsave(&task_group_lock, flags);
8554
	for_each_possible_cpu(i) {
8555 8556
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8557
	}
P
Peter Zijlstra 已提交
8558
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8559
	list_del_rcu(&tg->siblings);
8560
	spin_unlock_irqrestore(&task_group_lock, flags);
8561 8562

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8563
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8564 8565
}

8566
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8567 8568 8569
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8570 8571
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8572 8573 8574 8575 8576 8577 8578 8579 8580
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8581
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8582 8583
	on_rq = tsk->se.on_rq;

8584
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8585
		dequeue_task(rq, tsk, 0);
8586 8587
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8588

P
Peter Zijlstra 已提交
8589
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8590

P
Peter Zijlstra 已提交
8591 8592 8593 8594 8595
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8596 8597 8598
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8599
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8600 8601 8602

	task_rq_unlock(rq, &flags);
}
8603
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8604

8605
#ifdef CONFIG_FAIR_GROUP_SCHED
8606
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8607 8608 8609 8610 8611
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8612
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8613 8614 8615
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8616
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8617

8618
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8619
		enqueue_entity(cfs_rq, se, 0);
8620
}
8621

8622 8623 8624 8625 8626 8627 8628 8629 8630
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8631 8632
}

8633 8634
static DEFINE_MUTEX(shares_mutex);

8635
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8636 8637
{
	int i;
8638
	unsigned long flags;
8639

8640 8641 8642 8643 8644 8645
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8646 8647
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8648 8649
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8650

8651
	mutex_lock(&shares_mutex);
8652
	if (tg->shares == shares)
8653
		goto done;
S
Srivatsa Vaddagiri 已提交
8654

8655
	spin_lock_irqsave(&task_group_lock, flags);
8656 8657
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8658
	list_del_rcu(&tg->siblings);
8659
	spin_unlock_irqrestore(&task_group_lock, flags);
8660 8661 8662 8663 8664 8665 8666 8667

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8668
	tg->shares = shares;
8669 8670 8671 8672 8673
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8674
		set_se_shares(tg->se[i], shares);
8675
	}
S
Srivatsa Vaddagiri 已提交
8676

8677 8678 8679 8680
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8681
	spin_lock_irqsave(&task_group_lock, flags);
8682 8683
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8684
	list_add_rcu(&tg->siblings, &tg->parent->children);
8685
	spin_unlock_irqrestore(&task_group_lock, flags);
8686
done:
8687
	mutex_unlock(&shares_mutex);
8688
	return 0;
S
Srivatsa Vaddagiri 已提交
8689 8690
}

8691 8692 8693 8694
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8695
#endif
8696

8697
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8698
/*
P
Peter Zijlstra 已提交
8699
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8700
 */
P
Peter Zijlstra 已提交
8701 8702 8703 8704 8705 8706 8707
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8708
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8709 8710
}

8711 8712 8713
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8714
	struct task_group *tgi, *parent = tg->parent;
8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8738
	return total + to_ratio(period, runtime) <=
8739 8740 8741 8742
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8743
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8744 8745 8746
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8747
	unsigned long global_ratio =
8748
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8749 8750

	rcu_read_lock();
P
Peter Zijlstra 已提交
8751 8752 8753
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8754

8755 8756
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8757 8758
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8759

P
Peter Zijlstra 已提交
8760
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8761
}
8762
#endif
P
Peter Zijlstra 已提交
8763

8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8775 8776
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8777
{
P
Peter Zijlstra 已提交
8778
	int i, err = 0;
P
Peter Zijlstra 已提交
8779 8780

	mutex_lock(&rt_constraints_mutex);
8781
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8782
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8783 8784 8785
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8786 8787 8788 8789
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8790 8791

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8792 8793
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8794 8795 8796 8797 8798 8799 8800 8801 8802

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8803
 unlock:
8804
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8805 8806 8807
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8808 8809
}

8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8822 8823 8824 8825
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8826
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8827 8828
		return -1;

8829
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8830 8831 8832
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8855 8856
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8857 8858
	int ret = 0;

8859 8860 8861
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8862
	mutex_lock(&rt_constraints_mutex);
8863
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8864 8865 8866 8867 8868
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8869
#else /* !CONFIG_RT_GROUP_SCHED */
8870 8871
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8885 8886
	return 0;
}
8887
#endif /* CONFIG_RT_GROUP_SCHED */
8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8918

8919
#ifdef CONFIG_CGROUP_SCHED
8920 8921

/* return corresponding task_group object of a cgroup */
8922
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8923
{
8924 8925
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8926 8927 8928
}

static struct cgroup_subsys_state *
8929
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8930
{
8931
	struct task_group *tg, *parent;
8932

8933
	if (!cgrp->parent) {
8934
		/* This is early initialization for the top cgroup */
8935
		init_task_group.css.cgroup = cgrp;
8936 8937 8938
		return &init_task_group.css;
	}

8939 8940
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8941 8942 8943 8944
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8945
	tg->css.cgroup = cgrp;
8946 8947 8948 8949

	return &tg->css;
}

I
Ingo Molnar 已提交
8950 8951
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8952
{
8953
	struct task_group *tg = cgroup_tg(cgrp);
8954 8955 8956 8957

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8958 8959 8960
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8961
{
8962 8963
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8964
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8965 8966
		return -EINVAL;
#else
8967 8968 8969
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8970
#endif
8971 8972 8973 8974 8975

	return 0;
}

static void
8976
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8977 8978 8979 8980 8981
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8982
#ifdef CONFIG_FAIR_GROUP_SCHED
8983
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8984
				u64 shareval)
8985
{
8986
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8987 8988
}

8989
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8990
{
8991
	struct task_group *tg = cgroup_tg(cgrp);
8992 8993 8994

	return (u64) tg->shares;
}
8995
#endif /* CONFIG_FAIR_GROUP_SCHED */
8996

8997
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8998
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8999
				s64 val)
P
Peter Zijlstra 已提交
9000
{
9001
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9002 9003
}

9004
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9005
{
9006
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9007
}
9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9019
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9020

9021
static struct cftype cpu_files[] = {
9022
#ifdef CONFIG_FAIR_GROUP_SCHED
9023 9024
	{
		.name = "shares",
9025 9026
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9027
	},
9028 9029
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9030
	{
P
Peter Zijlstra 已提交
9031
		.name = "rt_runtime_us",
9032 9033
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9034
	},
9035 9036
	{
		.name = "rt_period_us",
9037 9038
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9039
	},
9040
#endif
9041 9042 9043 9044
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9045
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9046 9047 9048
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9049 9050 9051 9052 9053 9054 9055
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9056 9057 9058
	.early_init	= 1,
};

9059
#endif	/* CONFIG_CGROUP_SCHED */
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9080
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9081
{
9082
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9095
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9112
static void
9113
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9114
{
9115
	struct cpuacct *ca = cgroup_ca(cgrp);
9116 9117 9118 9119 9120 9121

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9122
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9123
{
9124
	struct cpuacct *ca = cgroup_ca(cgrp);
9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9166 9167 9168
static struct cftype files[] = {
	{
		.name = "usage",
9169 9170
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9171 9172 9173
	},
};

9174
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9175
{
9176
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */