amd_iommu.c 102.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
96
const struct iommu_ops amd_iommu_ops;
97

98
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
99
int amd_iommu_max_glx_val = -1;
100

101
static const struct dma_map_ops amd_iommu_dma_ops;
102

103 104 105 106 107 108 109 110
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
111
	u16 alias;			  /* Alias Device ID */
112
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
113
	bool passthrough;		  /* Device is identity mapped */
114 115 116 117 118 119 120
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
121
	bool use_vapic;			  /* Enable device to use vapic mode */
122 123

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
124 125
};

126 127 128
/*
 * general struct to manage commands send to an IOMMU
 */
129
struct iommu_cmd {
130 131 132
	u32 data[4];
};

133 134
struct kmem_cache *amd_iommu_irq_cache;

135
static void update_domain(struct protection_domain *domain);
136
static int protection_domain_init(struct protection_domain *domain);
137
static void detach_device(struct device *dev);
138

139 140 141 142 143 144 145 146 147 148 149 150
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
};

struct flush_queue {
	struct flush_queue_entry *entries;
	unsigned head, tail;
};

151 152 153 154 155 156 157
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

158 159
	/* IOVA RB-Tree */
	struct iova_domain iovad;
160 161

	struct flush_queue __percpu *flush_queue;
162 163
};

164 165 166
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

167 168 169 170 171 172
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

173 174
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
175
{
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
191 192
}

193
static inline u16 get_pci_device_id(struct device *dev)
194 195 196 197 198 199
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

227 228 229 230 231
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

232 233 234 235 236 237
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

238
static struct iommu_dev_data *alloc_dev_data(u16 devid)
239 240 241 242 243 244 245 246
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

247
	dev_data->devid = devid;
248 249 250 251 252

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

253 254
	ratelimit_default_init(&dev_data->rs);

255 256 257
	return dev_data;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

277 278 279 280 281 282 283 284 285 286 287
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

288
	/* The callers make sure that get_device_id() does not fail here */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
330
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
331 332 333 334 335 336 337 338
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

339 340 341 342 343 344 345 346 347 348 349 350
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

351 352 353 354 355
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

356 357 358 359
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
360
{
361
	struct acpihid_map_entry *p, *entry = NULL;
362
	int devid;
363 364 365 366 367 368 369 370 371 372 373 374

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
375 376
	else
		iommu_group_ref_get(entry->group);
377 378

	return entry->group;
379 380
}

381 382 383 384
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
385 386
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
387 388 389 390 391 392 393 394 395 396 397 398
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

399 400 401 402 403 404 405 406 407
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

408 409 410 411 412 413
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
414
	int devid;
415 416 417 418 419

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
420
	if (devid < 0)
421
		return false;
422 423 424 425 426 427 428 429 430 431 432

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

433
static void init_iommu_group(struct device *dev)
434 435 436
{
	struct iommu_group *group;

437
	group = iommu_group_get_for_dev(dev);
438 439 440 441
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
442 443 444 445 446
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
447
	struct amd_iommu *iommu;
448
	int devid;
449 450 451 452

	if (dev->archdata.iommu)
		return 0;

453
	devid = get_device_id(dev);
454
	if (devid < 0)
455 456
		return devid;

457 458
	iommu = amd_iommu_rlookup_table[devid];

459
	dev_data = find_dev_data(devid);
460 461 462
	if (!dev_data)
		return -ENOMEM;

463 464
	dev_data->alias = get_alias(dev);

465
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
466 467
		struct amd_iommu *iommu;

468
		iommu = amd_iommu_rlookup_table[dev_data->devid];
469 470 471
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

472 473
	dev->archdata.iommu = dev_data;

474
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
475

476 477 478
	return 0;
}

479 480
static void iommu_ignore_device(struct device *dev)
{
481 482
	u16 alias;
	int devid;
483 484

	devid = get_device_id(dev);
485
	if (devid < 0)
486 487
		return;

488
	alias = get_alias(dev);
489 490 491 492 493 494 495 496

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

497 498
static void iommu_uninit_device(struct device *dev)
{
499
	struct iommu_dev_data *dev_data;
500 501
	struct amd_iommu *iommu;
	int devid;
502

503
	devid = get_device_id(dev);
504
	if (devid < 0)
505
		return;
506

507 508
	iommu = amd_iommu_rlookup_table[devid];

509
	dev_data = search_dev_data(devid);
510 511 512
	if (!dev_data)
		return;

513 514 515
	if (dev_data->domain)
		detach_device(dev);

516
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
517

518 519
	iommu_group_remove_device(dev);

520
	/* Remove dma-ops */
521
	dev->dma_ops = NULL;
522

523
	/*
524 525
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
526
	 */
527
}
J
Joerg Roedel 已提交
528

529 530 531 532 533 534
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

535 536 537 538
static void dump_dte_entry(u16 devid)
{
	int i;

539 540
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
541 542 543
			amd_iommu_dev_table[devid].data[i]);
}

544 545 546 547 548 549 550 551 552
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

576
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
577
{
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
599

600 601 602 603 604 605
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
606 607 608 609 610

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
611
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612
		       address, flags);
613
		dump_dte_entry(devid);
614 615 616 617
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
618
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619 620 621 622 623
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
624
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
625 626 627 628
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
629
		dump_command(address);
630 631 632 633 634 635 636 637
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
638
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
639 640 641 642 643
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
644
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
645 646 647 648 649
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
650 651

	memset(__evt, 0, 4 * sizeof(u32));
652 653 654 655 656 657 658 659 660 661
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
662
		iommu_print_event(iommu, iommu->evt_buf + head);
663
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
664 665 666 667 668
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

669
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
714

715 716 717
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
718

719 720 721 722 723 724 725
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
726 727
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
728 729 730 731 732 733

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
734 735 736 737
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

798
irqreturn_t amd_iommu_int_thread(int irq, void *data)
799
{
800 801
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
802

803 804 805
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
806
			iommu->mmio_base + MMIO_STATUS_OFFSET);
807

808 809 810 811
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
812

813 814 815 816
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
817

818 819 820 821 822 823 824
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
840
	return IRQ_HANDLED;
841 842
}

843 844 845 846 847
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

848 849 850 851 852 853
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
872
			       struct iommu_cmd *cmd)
873 874 875
{
	u8 *target;

876 877 878 879
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
880 881 882 883 884

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
885
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
886
}
887

888
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
889
{
890 891
	WARN_ON(address & 0x7ULL);

892
	memset(cmd, 0, sizeof(*cmd));
893 894 895
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
896 897 898
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

899 900 901 902 903 904 905
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

906 907 908 909
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
910
	bool s;
911 912

	pages = iommu_num_pages(address, size, PAGE_SIZE);
913
	s     = false;
914 915 916 917 918 919 920

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
921
		s = true;
922 923 924 925 926 927 928 929 930 931 932
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
933
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
934 935 936
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

937 938 939 940
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
941
	bool s;
942 943

	pages = iommu_num_pages(address, size, PAGE_SIZE);
944
	s     = false;
945 946 947 948 949 950 951

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
952
		s = true;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

968 969 970 971 972 973 974
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

975
	cmd->data[0]  = pasid;
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
994
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
995 996
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
997
	cmd->data[1] |= (pasid & 0xff) << 16;
998 999 1000 1001 1002 1003 1004 1005
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1006 1007 1008 1009 1010 1011 1012
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1013
		cmd->data[1]  = pasid;
1014 1015 1016 1017 1018 1019 1020 1021
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1022 1023 1024 1025
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1026 1027
}

1028 1029 1030 1031 1032 1033 1034
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1035 1036
/*
 * Writes the command to the IOMMUs command buffer and informs the
1037
 * hardware about the new command.
1038
 */
1039 1040 1041
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1042
{
1043
	unsigned int count = 0;
1044
	u32 left, next_tail;
1045

1046
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1047
again:
1048
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1049

1050
	if (left <= 0x20) {
1051 1052 1053 1054 1055 1056
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1057

1058 1059
			udelay(1);
		}
1060

1061 1062 1063
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1064 1065

		goto again;
1066 1067
	}

1068
	copy_cmd_to_buffer(iommu, cmd);
1069

1070
	/* Do we need to make sure all commands are processed? */
1071
	iommu->need_sync = sync;
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1085
	spin_unlock_irqrestore(&iommu->lock, flags);
1086

1087
	return ret;
1088 1089
}

1090 1091 1092 1093 1094
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1095 1096 1097 1098
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1099
static int iommu_completion_wait(struct amd_iommu *iommu)
1100 1101
{
	struct iommu_cmd cmd;
1102
	unsigned long flags;
1103
	int ret;
1104

1105
	if (!iommu->need_sync)
1106
		return 0;
1107

1108

1109 1110 1111 1112 1113 1114 1115
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1116
	if (ret)
1117 1118 1119 1120 1121 1122
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1123

1124
	return ret;
1125 1126
}

1127
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1128
{
1129
	struct iommu_cmd cmd;
1130

1131
	build_inv_dte(&cmd, devid);
1132

1133 1134
	return iommu_queue_command(iommu, &cmd);
}
1135

1136 1137 1138
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1139

1140 1141
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1142

1143 1144
	iommu_completion_wait(iommu);
}
1145

1146 1147 1148 1149 1150 1151 1152
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1153

1154 1155 1156 1157 1158 1159
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1160

1161
	iommu_completion_wait(iommu);
1162 1163
}

1164
static void iommu_flush_all(struct amd_iommu *iommu)
1165
{
1166
	struct iommu_cmd cmd;
1167

1168
	build_inv_all(&cmd);
1169

1170 1171 1172 1173
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1193 1194
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1195 1196 1197 1198
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1199
		iommu_flush_irt_all(iommu);
1200
		iommu_flush_tlb_all(iommu);
1201 1202 1203
	}
}

1204
/*
1205
 * Command send function for flushing on-device TLB
1206
 */
1207 1208
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1209 1210
{
	struct amd_iommu *iommu;
1211
	struct iommu_cmd cmd;
1212
	int qdep;
1213

1214 1215
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1216

1217
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1218 1219

	return iommu_queue_command(iommu, &cmd);
1220 1221
}

1222 1223 1224
/*
 * Command send function for invalidating a device table entry
 */
1225
static int device_flush_dte(struct iommu_dev_data *dev_data)
1226
{
1227
	struct amd_iommu *iommu;
1228
	u16 alias;
1229
	int ret;
1230

1231
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1232
	alias = dev_data->alias;
1233

1234
	ret = iommu_flush_dte(iommu, dev_data->devid);
1235 1236
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1237 1238 1239
	if (ret)
		return ret;

1240
	if (dev_data->ats.enabled)
1241
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1242 1243

	return ret;
1244 1245
}

1246 1247 1248 1249 1250
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1251 1252
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1253
{
1254
	struct iommu_dev_data *dev_data;
1255 1256
	struct iommu_cmd cmd;
	int ret = 0, i;
1257

1258
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1259

1260
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1261 1262 1263 1264 1265 1266 1267
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1268
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1269 1270
	}

1271 1272
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1273
		if (!dev_data->ats.enabled)
1274 1275
			continue;

1276
		ret |= device_flush_iotlb(dev_data, address, size);
1277 1278
	}

1279
	WARN_ON(ret);
1280 1281
}

1282 1283
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1284
{
1285
	__domain_flush_pages(domain, address, size, 0);
1286
}
1287

1288
/* Flush the whole IO/TLB for a given protection domain */
1289
static void domain_flush_tlb(struct protection_domain *domain)
1290
{
1291
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1292 1293
}

1294
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1295
static void domain_flush_tlb_pde(struct protection_domain *domain)
1296
{
1297
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1298 1299
}

1300
static void domain_flush_complete(struct protection_domain *domain)
1301
{
1302
	int i;
1303

1304
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1305
		if (domain && !domain->dev_iommu[i])
1306
			continue;
1307

1308 1309 1310 1311 1312
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1313
	}
1314 1315
}

1316

1317
/*
1318
 * This function flushes the DTEs for all devices in domain
1319
 */
1320
static void domain_flush_devices(struct protection_domain *domain)
1321
{
1322
	struct iommu_dev_data *dev_data;
1323

1324
	list_for_each_entry(dev_data, &domain->dev_list, list)
1325
		device_flush_dte(dev_data);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1364
		      unsigned long page_size,
1365 1366 1367
		      u64 **pte_page,
		      gfp_t gfp)
{
1368
	int level, end_lvl;
1369
	u64 *pte, *page;
1370 1371

	BUG_ON(!is_power_of_2(page_size));
1372 1373 1374 1375

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1376 1377 1378 1379
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1380 1381

	while (level > end_lvl) {
1382 1383 1384 1385 1386
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1387 1388 1389
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1390 1391 1392

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1393 1394
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1395 1396 1397
				free_page((unsigned long)page);
				continue;
			}
1398 1399
		}

1400 1401 1402 1403
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1421 1422 1423
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1424 1425 1426 1427
{
	int level;
	u64 *pte;

1428 1429 1430
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1431 1432 1433
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1434

1435 1436 1437
	while (level > 0) {

		/* Not Present */
1438 1439 1440
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1441
		/* Large PTE */
1442 1443 1444
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1445 1446 1447 1448 1449

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1450 1451
		level -= 1;

1452
		/* Walk to the next level */
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1468 1469 1470 1471 1472
	}

	return pte;
}

1473 1474 1475 1476 1477 1478 1479
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1480 1481 1482
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1483
			  unsigned long page_size,
1484
			  int prot,
1485
			  gfp_t gfp)
1486
{
1487
	u64 __pte, *pte;
1488
	int i, count;
1489

1490 1491 1492
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1493
	if (!(prot & IOMMU_PROT_MASK))
1494 1495
		return -EINVAL;

1496
	count = PAGE_SIZE_PTE_COUNT(page_size);
1497
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1498

1499 1500 1501
	if (!pte)
		return -ENOMEM;

1502 1503 1504
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1505

1506
	if (count > 1) {
1507 1508 1509 1510
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1511 1512 1513 1514 1515 1516

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1517 1518
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1519

1520 1521
	update_domain(dom);

1522 1523 1524
	return 0;
}

1525 1526 1527
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1528
{
1529 1530
	unsigned long long unmapped;
	unsigned long unmap_size;
1531 1532 1533 1534 1535
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1536

1537 1538
	while (unmapped < page_size) {

1539 1540 1541 1542 1543 1544
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1545 1546 1547 1548 1549 1550 1551 1552
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1553
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1554

1555
	return unmapped;
1556 1557
}

1558 1559 1560
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1561
 * interface functions.
1562 1563
 *
 ****************************************************************************/
1564

1565

1566 1567 1568
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1569
{
1570
	unsigned long pfn = 0;
1571

1572
	pages = __roundup_pow_of_two(pages);
1573

1574 1575 1576
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1577

1578 1579
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1580

1581
	return (pfn << PAGE_SHIFT);
1582 1583
}

1584 1585 1586
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1587
{
1588 1589
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1590

1591
	free_iova_fast(&dma_dom->iovad, address, pages);
1592 1593
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1666
		/* PTE present? */				\
1667 1668 1669
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1670 1671 1672 1673 1674
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1687
static void free_pagetable(struct protection_domain *domain)
1688
{
1689
	unsigned long root = (unsigned long)domain->pt_root;
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1714 1715 1716
	}
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1747 1748
static void free_gcr3_table(struct protection_domain *domain)
{
1749 1750 1751 1752
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1753 1754
	else
		BUG_ON(domain->glx != 0);
1755

1756 1757 1758
	free_page((unsigned long)domain->gcr3_tbl);
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
static void dma_ops_domain_free_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		kfree(queue->entries);
	}

	free_percpu(dom->flush_queue);

	dom->flush_queue = NULL;
}

static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

	dom->flush_queue = alloc_percpu(struct flush_queue);
	if (!dom->flush_queue)
		return -ENOMEM;

	/* First make sure everything is cleared */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->head    = 0;
		queue->tail    = 0;
		queue->entries = NULL;
	}

	/* Now start doing the allocation */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->entries = kzalloc(FLUSH_QUEUE_SIZE * sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries) {
			dma_ops_domain_free_flush_queue(dom);
			return -ENOMEM;
		}
	}

	return 0;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static inline bool queue_ring_full(struct flush_queue *queue)
{
	return (((queue->tail + 1) % FLUSH_QUEUE_SIZE) == queue->head);
}

#define queue_ring_for_each(i, q) \
	for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)

static void queue_release(struct dma_ops_domain *dom,
			  struct flush_queue *queue)
{
	unsigned i;

	queue_ring_for_each(i, queue)
		free_iova_fast(&dom->iovad,
			       queue->entries[i].iova_pfn,
			       queue->entries[i].pages);

	queue->head = queue->tail = 0;
}

static inline unsigned queue_ring_add(struct flush_queue *queue)
{
	unsigned idx = queue->tail;

	queue->tail = (idx + 1) % FLUSH_QUEUE_SIZE;

	return idx;
}

static void queue_add(struct dma_ops_domain *dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue *queue;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(dom->flush_queue);

	if (queue_ring_full(queue)) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
		queue_release(dom, queue);
	}

	idx = queue_ring_add(queue);

	queue->entries[idx].iova_pfn = address;
	queue->entries[idx].pages    = pages;

	put_cpu_ptr(dom->flush_queue);
}

1864 1865 1866 1867
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1868 1869 1870 1871 1872
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1873 1874
	del_domain_from_list(&dom->domain);

1875 1876
	dma_ops_domain_free_flush_queue(dom);

1877
	put_iova_domain(&dom->iovad);
1878

1879
	free_pagetable(&dom->domain);
1880

1881 1882 1883
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1884 1885 1886
	kfree(dom);
}

1887 1888
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1889
 * It also initializes the page table and the address allocator data
1890 1891
 * structures required for the dma_ops interface
 */
1892
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1893 1894 1895 1896 1897 1898 1899
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1900
	if (protection_domain_init(&dma_dom->domain))
1901
		goto free_dma_dom;
1902

1903
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1904
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1905
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1906 1907 1908
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1909 1910 1911
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1912 1913 1914
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1915 1916 1917
	if (dma_ops_domain_alloc_flush_queue(dma_dom))
		goto free_dma_dom;

1918 1919
	add_domain_to_list(&dma_dom->domain);

1920 1921 1922 1923 1924 1925 1926 1927
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1937
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1938
{
1939
	u64 pte_root = 0;
1940
	u64 flags = 0;
1941

1942 1943 1944
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1945 1946 1947
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1948

1949 1950
	flags = amd_iommu_dev_table[devid].data[1];

1951 1952 1953
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1980 1981 1982 1983 1984
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1985 1986 1987 1988 1989
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1990 1991
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1992 1993

	amd_iommu_apply_erratum_63(devid);
1994 1995
}

1996 1997
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1998 1999
{
	struct amd_iommu *iommu;
2000
	u16 alias;
2001
	bool ats;
2002

2003
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2004
	alias = dev_data->alias;
2005
	ats   = dev_data->ats.enabled;
2006 2007 2008 2009 2010 2011 2012 2013 2014

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2015 2016 2017
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2018
		set_dte_entry(alias, domain, ats);
2019

2020
	device_flush_dte(dev_data);
2021 2022
}

2023
static void do_detach(struct iommu_dev_data *dev_data)
2024 2025
{
	struct amd_iommu *iommu;
2026
	u16 alias;
2027

2028 2029 2030 2031 2032 2033 2034 2035 2036
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2037
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2038
	alias = dev_data->alias;
2039 2040

	/* decrease reference counters */
2041 2042 2043 2044 2045 2046
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2047
	clear_dte_entry(dev_data->devid);
2048 2049
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2050

2051
	/* Flush the DTE entry */
2052
	device_flush_dte(dev_data);
2053 2054 2055 2056 2057 2058
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2059
static int __attach_device(struct iommu_dev_data *dev_data,
2060
			   struct protection_domain *domain)
2061
{
2062
	int ret;
2063

2064 2065 2066 2067 2068 2069
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2070 2071 2072
	/* lock domain */
	spin_lock(&domain->lock);

2073
	ret = -EBUSY;
2074
	if (dev_data->domain != NULL)
2075
		goto out_unlock;
2076

2077
	/* Attach alias group root */
2078
	do_attach(dev_data, domain);
2079

2080 2081 2082 2083
	ret = 0;

out_unlock:

2084 2085
	/* ready */
	spin_unlock(&domain->lock);
2086

2087
	return ret;
2088
}
2089

2090 2091 2092 2093 2094 2095 2096 2097

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2098 2099 2100 2101 2102 2103
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2104
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2105 2106 2107
	if (!pos)
		return -EINVAL;

2108 2109 2110
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2111 2112 2113 2114

	return 0;
}

2115 2116
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2117 2118 2119 2120 2121 2122 2123 2124
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2136 2137
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2138 2139 2140
	if (ret)
		goto out_err;

2141 2142 2143 2144 2145 2146
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2160
/* FIXME: Move this to PCI code */
2161
#define PCI_PRI_TLP_OFF		(1 << 15)
2162

J
Joerg Roedel 已提交
2163
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2164
{
2165
	u16 status;
2166 2167
	int pos;

2168
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2169 2170 2171
	if (!pos)
		return false;

2172
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2173

2174
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2175 2176
}

2177
/*
F
Frank Arnold 已提交
2178
 * If a device is not yet associated with a domain, this function
2179 2180
 * assigns it visible for the hardware
 */
2181 2182
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2183
{
2184
	struct pci_dev *pdev;
2185
	struct iommu_dev_data *dev_data;
2186
	unsigned long flags;
2187
	int ret;
2188

2189 2190
	dev_data = get_dev_data(dev);

2191 2192 2193 2194
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2195
	if (domain->flags & PD_IOMMUV2_MASK) {
2196
		if (!dev_data->passthrough)
2197 2198
			return -EINVAL;

2199 2200 2201
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2202

2203 2204 2205 2206
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2207 2208
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2209 2210 2211
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2212

2213
skip_ats_check:
2214
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2215
	ret = __attach_device(dev_data, domain);
2216 2217
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2218 2219 2220 2221 2222
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2223
	domain_flush_tlb_pde(domain);
2224 2225

	return ret;
2226 2227
}

2228 2229 2230
/*
 * Removes a device from a protection domain (unlocked)
 */
2231
static void __detach_device(struct iommu_dev_data *dev_data)
2232
{
2233
	struct protection_domain *domain;
2234

2235 2236 2237 2238 2239
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2240

2241 2242
	if (WARN_ON(!dev_data->domain))
		return;
2243

2244
	domain = dev_data->domain;
2245

2246
	spin_lock(&domain->lock);
2247

2248
	do_detach(dev_data);
2249

2250
	spin_unlock(&domain->lock);
2251 2252 2253 2254 2255
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2256
static void detach_device(struct device *dev)
2257
{
2258
	struct protection_domain *domain;
2259
	struct iommu_dev_data *dev_data;
2260 2261
	unsigned long flags;

2262
	dev_data = get_dev_data(dev);
2263
	domain   = dev_data->domain;
2264

2265 2266
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2267
	__detach_device(dev_data);
2268
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2269

2270 2271 2272
	if (!dev_is_pci(dev))
		return;

2273
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2274 2275
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2276
		pci_disable_ats(to_pci_dev(dev));
2277 2278

	dev_data->ats.enabled = false;
2279
}
2280

2281
static int amd_iommu_add_device(struct device *dev)
2282
{
2283
	struct iommu_dev_data *dev_data;
2284
	struct iommu_domain *domain;
2285
	struct amd_iommu *iommu;
2286
	int ret, devid;
2287

2288
	if (!check_device(dev) || get_dev_data(dev))
2289
		return 0;
2290

2291
	devid = get_device_id(dev);
2292
	if (devid < 0)
2293 2294
		return devid;

2295
	iommu = amd_iommu_rlookup_table[devid];
2296

2297
	ret = iommu_init_device(dev);
2298 2299 2300 2301
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2302

2303
		iommu_ignore_device(dev);
2304
		dev->dma_ops = &nommu_dma_ops;
2305 2306 2307
		goto out;
	}
	init_iommu_group(dev);
2308

2309
	dev_data = get_dev_data(dev);
2310

2311
	BUG_ON(!dev_data);
2312

2313
	if (iommu_pass_through || dev_data->iommu_v2)
2314
		iommu_request_dm_for_dev(dev);
2315

2316 2317
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2318
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2319
		dev_data->passthrough = true;
2320
	else
2321
		dev->dma_ops = &amd_iommu_dma_ops;
2322

2323
out:
2324 2325 2326 2327 2328
	iommu_completion_wait(iommu);

	return 0;
}

2329
static void amd_iommu_remove_device(struct device *dev)
2330
{
2331
	struct amd_iommu *iommu;
2332
	int devid;
2333 2334 2335 2336 2337

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2338
	if (devid < 0)
2339 2340
		return;

2341 2342 2343 2344
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2345 2346
}

2347 2348 2349 2350 2351 2352 2353 2354
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2368
static struct protection_domain *get_domain(struct device *dev)
2369
{
2370
	struct protection_domain *domain;
2371

2372
	if (!check_device(dev))
2373
		return ERR_PTR(-EINVAL);
2374

2375
	domain = get_dev_data(dev)->domain;
2376
	if (!dma_ops_domain(domain))
2377
		return ERR_PTR(-EBUSY);
2378

2379
	return domain;
2380 2381
}

2382 2383
static void update_device_table(struct protection_domain *domain)
{
2384
	struct iommu_dev_data *dev_data;
2385

2386
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2387
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2388 2389 2390 2391 2392 2393 2394

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2395 2396 2397 2398 2399 2400 2401 2402
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2403 2404 2405

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2406 2407 2408 2409

	domain->updated = false;
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2421 2422
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2423 2424
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2425 2426
 * Must be called with the domain lock held.
 */
2427 2428 2429 2430
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2431
			       enum dma_data_direction direction,
2432
			       u64 dma_mask)
2433 2434
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2435
	dma_addr_t address, start, ret;
2436
	unsigned int pages;
2437
	int prot = 0;
2438 2439
	int i;

2440
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2441 2442
	paddr &= PAGE_MASK;

2443
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2444 2445
	if (address == DMA_ERROR_CODE)
		goto out;
2446

2447
	prot = dir2prot(direction);
2448

2449 2450
	start = address;
	for (i = 0; i < pages; ++i) {
2451 2452 2453
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2454 2455
			goto out_unmap;

2456 2457 2458 2459 2460
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2461
	if (unlikely(amd_iommu_np_cache)) {
2462
		domain_flush_pages(&dma_dom->domain, address, size);
2463 2464
		domain_flush_complete(&dma_dom->domain);
	}
2465

2466 2467
out:
	return address;
2468 2469 2470 2471 2472

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2473
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2474 2475
	}

2476 2477 2478 2479
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2480

2481
	return DMA_ERROR_CODE;
2482 2483
}

2484 2485 2486 2487
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2488
static void __unmap_single(struct dma_ops_domain *dma_dom,
2489 2490 2491 2492
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2493
	dma_addr_t flush_addr;
2494 2495 2496
	dma_addr_t i, start;
	unsigned int pages;

2497
	flush_addr = dma_addr;
2498
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2499 2500 2501 2502
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2503
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2504 2505 2506
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2507 2508 2509 2510 2511
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2512
		queue_add(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2513
	}
2514 2515
}

2516 2517 2518
/*
 * The exported map_single function for dma_ops.
 */
2519 2520 2521
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2522
			   unsigned long attrs)
2523
{
2524
	phys_addr_t paddr = page_to_phys(page) + offset;
2525
	struct protection_domain *domain;
2526
	struct dma_ops_domain *dma_dom;
2527
	u64 dma_mask;
2528

2529 2530
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2531
		return (dma_addr_t)paddr;
2532 2533
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2534

2535
	dma_mask = *dev->dma_mask;
2536
	dma_dom = to_dma_ops_domain(domain);
2537

2538
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2539 2540
}

2541 2542 2543
/*
 * The exported unmap_single function for dma_ops.
 */
2544
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2545
		       enum dma_data_direction dir, unsigned long attrs)
2546 2547
{
	struct protection_domain *domain;
2548
	struct dma_ops_domain *dma_dom;
2549

2550 2551
	domain = get_domain(dev);
	if (IS_ERR(domain))
2552 2553
		return;

2554 2555 2556
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2557 2558
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2585 2586 2587 2588
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2589
static int map_sg(struct device *dev, struct scatterlist *sglist,
2590
		  int nelems, enum dma_data_direction direction,
2591
		  unsigned long attrs)
2592
{
2593
	int mapped_pages = 0, npages = 0, prot = 0, i;
2594
	struct protection_domain *domain;
2595
	struct dma_ops_domain *dma_dom;
2596
	struct scatterlist *s;
2597
	unsigned long address;
2598
	u64 dma_mask;
2599

2600
	domain = get_domain(dev);
2601
	if (IS_ERR(domain))
2602
		return 0;
2603

2604
	dma_dom  = to_dma_ops_domain(domain);
2605
	dma_mask = *dev->dma_mask;
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2616
	for_each_sg(sglist, s, nelems, i) {
2617 2618 2619 2620 2621
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2622

2623 2624 2625 2626 2627
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2628

2629 2630
			mapped_pages += 1;
		}
2631 2632
	}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2650

2651 2652 2653 2654 2655 2656
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2657 2658
	}

2659 2660 2661 2662
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2663
	return 0;
2664 2665
}

2666 2667 2668 2669
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2670
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2671
		     int nelems, enum dma_data_direction dir,
2672
		     unsigned long attrs)
2673 2674
{
	struct protection_domain *domain;
2675
	struct dma_ops_domain *dma_dom;
2676 2677
	unsigned long startaddr;
	int npages = 2;
2678

2679 2680
	domain = get_domain(dev);
	if (IS_ERR(domain))
2681 2682
		return;

2683
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2684
	dma_dom   = to_dma_ops_domain(domain);
2685 2686
	npages    = sg_num_pages(dev, sglist, nelems);

2687
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2688 2689
}

2690 2691 2692
/*
 * The exported alloc_coherent function for dma_ops.
 */
2693
static void *alloc_coherent(struct device *dev, size_t size,
2694
			    dma_addr_t *dma_addr, gfp_t flag,
2695
			    unsigned long attrs)
2696
{
2697
	u64 dma_mask = dev->coherent_dma_mask;
2698
	struct protection_domain *domain;
2699
	struct dma_ops_domain *dma_dom;
2700
	struct page *page;
2701

2702 2703
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2704 2705 2706
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2707 2708
	} else if (IS_ERR(domain))
		return NULL;
2709

2710
	dma_dom   = to_dma_ops_domain(domain);
2711
	size	  = PAGE_ALIGN(size);
2712 2713
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2714
	flag     |= __GFP_ZERO;
2715

2716 2717
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2718
		if (!gfpflags_allow_blocking(flag))
2719
			return NULL;
2720

2721
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2722
						 get_order(size), flag);
2723 2724 2725
		if (!page)
			return NULL;
	}
2726

2727 2728 2729
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2730
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2731
				 size, DMA_BIDIRECTIONAL, dma_mask);
2732

2733
	if (*dma_addr == DMA_ERROR_CODE)
2734
		goto out_free;
2735

2736
	return page_address(page);
2737 2738 2739

out_free:

2740 2741
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2742 2743

	return NULL;
2744 2745
}

2746 2747 2748
/*
 * The exported free_coherent function for dma_ops.
 */
2749
static void free_coherent(struct device *dev, size_t size,
2750
			  void *virt_addr, dma_addr_t dma_addr,
2751
			  unsigned long attrs)
2752 2753
{
	struct protection_domain *domain;
2754
	struct dma_ops_domain *dma_dom;
2755
	struct page *page;
2756

2757 2758 2759
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2760 2761
	domain = get_domain(dev);
	if (IS_ERR(domain))
2762 2763
		goto free_mem;

2764 2765 2766
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2767 2768

free_mem:
2769 2770
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2771 2772
}

2773 2774 2775 2776 2777 2778
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2779
	return check_device(dev);
2780 2781
}

2782
static const struct dma_map_ops amd_iommu_dma_ops = {
2783 2784 2785 2786 2787 2788 2789
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2790 2791
};

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2845
int __init amd_iommu_init_api(void)
2846
{
2847
	int ret, err = 0;
2848 2849 2850 2851

	ret = iova_cache_get();
	if (ret)
		return ret;
2852

2853 2854 2855 2856
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2857 2858 2859 2860 2861 2862 2863 2864
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2865 2866 2867
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2868

2869
	return 0;
2870 2871
}

2872 2873
int __init amd_iommu_init_dma_ops(void)
{
2874
	swiotlb        = iommu_pass_through ? 1 : 0;
2875 2876
	iommu_detected = 1;

2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2886 2887 2888 2889 2890
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2891
	return 0;
2892

2893
}
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2907
	struct iommu_dev_data *entry;
2908 2909 2910 2911
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2912 2913 2914 2915
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2916
	}
2917 2918 2919 2920

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2921 2922 2923 2924 2925
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2926 2927
	del_domain_from_list(domain);

2928 2929 2930 2931 2932 2933
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2946
static struct protection_domain *protection_domain_alloc(void)
2947 2948 2949 2950 2951
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2952
		return NULL;
2953

2954
	if (protection_domain_init(domain))
2955 2956
		goto out_err;

2957 2958
	add_domain_to_list(domain);

2959 2960 2961 2962 2963 2964 2965 2966
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2967
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2968
{
2969
	struct protection_domain *pdomain;
2970
	struct dma_ops_domain *dma_domain;
2971

2972 2973 2974 2975 2976
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2977

2978 2979 2980 2981 2982 2983
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2984

2985 2986 2987
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2988

2989 2990 2991 2992 2993 2994 2995 2996 2997
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2998 2999 3000 3001
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3002

3003 3004
		pdomain->mode = PAGE_MODE_NONE;
		break;
3005 3006 3007
	default:
		return NULL;
	}
3008

3009
	return &pdomain->domain;
3010 3011
}

3012
static void amd_iommu_domain_free(struct iommu_domain *dom)
3013
{
3014
	struct protection_domain *domain;
3015
	struct dma_ops_domain *dma_dom;
3016

3017 3018
	domain = to_pdomain(dom);

3019 3020 3021 3022 3023
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3024 3025
	if (!dom)
		return;
3026

3027 3028
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3029
		/* Now release the domain */
3030
		dma_dom = to_dma_ops_domain(domain);
3031 3032 3033 3034 3035
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3036

3037 3038 3039 3040 3041 3042
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3043 3044
}

3045 3046 3047
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3048
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3049
	struct amd_iommu *iommu;
3050
	int devid;
3051

3052
	if (!check_device(dev))
3053 3054
		return;

3055
	devid = get_device_id(dev);
3056
	if (devid < 0)
3057
		return;
3058

3059
	if (dev_data->domain != NULL)
3060
		detach_device(dev);
3061 3062 3063 3064 3065

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3066 3067 3068 3069 3070 3071
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3072 3073 3074
	iommu_completion_wait(iommu);
}

3075 3076 3077
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3078
	struct protection_domain *domain = to_pdomain(dom);
3079
	struct iommu_dev_data *dev_data;
3080
	struct amd_iommu *iommu;
3081
	int ret;
3082

3083
	if (!check_device(dev))
3084 3085
		return -EINVAL;

3086 3087
	dev_data = dev->archdata.iommu;

3088
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3089 3090 3091
	if (!iommu)
		return -EINVAL;

3092
	if (dev_data->domain)
3093
		detach_device(dev);
3094

3095
	ret = attach_device(dev, domain);
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3106 3107
	iommu_completion_wait(iommu);

3108
	return ret;
3109 3110
}

3111
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3112
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3113
{
3114
	struct protection_domain *domain = to_pdomain(dom);
3115 3116 3117
	int prot = 0;
	int ret;

3118 3119 3120
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3121 3122 3123 3124 3125
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3126
	mutex_lock(&domain->api_lock);
3127
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3128 3129
	mutex_unlock(&domain->api_lock);

3130
	return ret;
3131 3132
}

3133 3134
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3135
{
3136
	struct protection_domain *domain = to_pdomain(dom);
3137
	size_t unmap_size;
3138

3139 3140 3141
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3142
	mutex_lock(&domain->api_lock);
3143
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3144
	mutex_unlock(&domain->api_lock);
3145

3146
	domain_flush_tlb_pde(domain);
3147

3148
	return unmap_size;
3149 3150
}

3151
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3152
					  dma_addr_t iova)
3153
{
3154
	struct protection_domain *domain = to_pdomain(dom);
3155
	unsigned long offset_mask, pte_pgsize;
3156
	u64 *pte, __pte;
3157

3158 3159 3160
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3161
	pte = fetch_pte(domain, iova, &pte_pgsize);
3162

3163
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3164 3165
		return 0;

3166 3167
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3168

3169
	return (__pte & ~offset_mask) | (iova & offset_mask);
3170 3171
}

3172
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3173
{
3174 3175
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3176
		return true;
3177
	case IOMMU_CAP_INTR_REMAP:
3178
		return (irq_remapping_enabled == 1);
3179 3180
	case IOMMU_CAP_NOEXEC:
		return false;
3181 3182
	}

3183
	return false;
S
Sheng Yang 已提交
3184 3185
}

3186 3187
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3188
{
3189
	struct iommu_resv_region *region;
3190
	struct unity_map_entry *entry;
3191
	int devid;
3192 3193

	devid = get_device_id(dev);
3194
	if (devid < 0)
3195
		return;
3196 3197

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3198 3199
		size_t length;
		int prot = 0;
3200 3201 3202 3203

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3204 3205 3206 3207 3208 3209 3210 3211 3212
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3213 3214 3215 3216 3217 3218 3219
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3220 3221 3222

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3223
					 0, IOMMU_RESV_MSI);
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3234 3235
}

3236
static void amd_iommu_put_resv_regions(struct device *dev,
3237 3238
				     struct list_head *head)
{
3239
	struct iommu_resv_region *entry, *next;
3240 3241 3242 3243 3244

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3245
static void amd_iommu_apply_resv_region(struct device *dev,
3246
				      struct iommu_domain *domain,
3247
				      struct iommu_resv_region *region)
3248
{
3249
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3250 3251 3252 3253 3254 3255 3256 3257
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3258
const struct iommu_ops amd_iommu_ops = {
3259
	.capable = amd_iommu_capable,
3260 3261
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3262 3263
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3264 3265
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3266
	.map_sg = default_iommu_map_sg,
3267
	.iova_to_phys = amd_iommu_iova_to_phys,
3268 3269
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3270
	.device_group = amd_iommu_device_group,
3271 3272 3273
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3274
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3275 3276
};

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3299 3300 3301

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3302
	struct protection_domain *domain = to_pdomain(dom);
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3320 3321 3322

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3323
	struct protection_domain *domain = to_pdomain(dom);
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3384
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3401 3402 3403 3404 3405 3406
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3438
	struct protection_domain *domain = to_pdomain(dom);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3458
	struct protection_domain *domain = to_pdomain(dom);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3538
	struct protection_domain *domain = to_pdomain(dom);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3552
	struct protection_domain *domain = to_pdomain(dom);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3580 3581 3582

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3583
	struct protection_domain *pdomain;
3584

3585 3586
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3587 3588 3589
		return NULL;

	/* Only return IOMMUv2 domains */
3590
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3591 3592
		return NULL;

3593
	return &pdomain->domain;
3594 3595
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3651 3652 3653 3654 3655 3656 3657 3658 3659

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3660 3661
static struct irq_chip amd_ir_chip;

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3696
		goto out_unlock;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3710
		goto out_unlock;
3711

3712 3713 3714
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3715 3716 3717 3718 3719 3720 3721
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3722
		table = NULL;
3723
		goto out_unlock;
3724 3725
	}

3726 3727 3728 3729 3730 3731
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3732 3733 3734 3735 3736

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3737
			iommu->irte_ops->set_allocated(table, i);
3738 3739 3740 3741 3742 3743 3744
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3745
		set_dte_irq_entry(alias, table);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3758
static int alloc_irq_index(u16 devid, int count)
3759 3760 3761 3762
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3763 3764 3765 3766
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3778
		if (!iommu->irte_ops->is_allocated(table, index))
3779 3780 3781 3782 3783 3784
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3785
				iommu->irte_ops->set_allocated(table, index - c + 1);
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3800 3801
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3802 3803 3804 3805
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3806
	struct irte_ga *entry;
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3817 3818 3819 3820 3821 3822 3823

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3824 3825
	if (data)
		data->ref = entry;
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3850
	table->table[index] = irte->val;
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3874
	iommu->irte_ops->clear_allocated(table, index);
3875 3876 3877 3878 3879 3880
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3881 3882
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3883
			 u8 vector, u32 dest_apicid, int devid)
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3897
			    u8 vector, u32 dest_apicid, int devid)
3898 3899
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3900
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3901 3902 3903

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3904
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3925
	modify_irte_ga(devid, index, irte, NULL);
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3941
	modify_irte_ga(devid, index, irte, NULL);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3958
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3959

3960 3961 3962 3963 3964 3965
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3966 3967
}

3968
#define IRTE_ALLOCATED (~1U)
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4014
static int get_devid(struct irq_alloc_info *info)
4015
{
4016
	int devid = -1;
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4033

4034 4035
	return devid;
}
4036

4037 4038 4039 4040
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4041

4042 4043
	if (!info)
		return NULL;
4044

4045 4046 4047 4048 4049 4050
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4051

4052
	return NULL;
4053 4054
}

4055
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4056
{
4057 4058
	struct amd_iommu *iommu;
	int devid;
4059

4060 4061
	if (!info)
		return NULL;
4062

4063 4064 4065 4066
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4067
		if (devid < 0)
4068 4069
			return NULL;

4070 4071 4072
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4073 4074 4075 4076
		break;
	default:
		break;
	}
4077

4078 4079
	return NULL;
}
4080

4081 4082 4083 4084 4085 4086
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4087 4088 4089
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4090

4091 4092 4093 4094 4095 4096 4097 4098
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4099 4100 4101 4102
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4103

4104 4105
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4106 4107
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4108
				 irq_cfg->dest_apicid, devid);
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4124

4125 4126 4127 4128 4129 4130 4131
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4132

4133 4134 4135 4136
	default:
		BUG_ON(1);
		break;
	}
4137 4138
}

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4159 4160
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4161
{
4162 4163
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4164
	struct amd_ir_data *data = NULL;
4165
	struct irq_cfg *cfg;
4166 4167
	int i, ret, devid;
	int index = -1;
4168

4169 4170 4171 4172
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4173 4174
		return -EINVAL;

4175 4176 4177 4178 4179 4180
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4181

4182 4183 4184
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4185

4186 4187 4188
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4189

4190 4191 4192 4193 4194 4195
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4196
		index = alloc_irq_index(devid, nr_irqs);
4197 4198 4199
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4200
		ret = index;
4201 4202
		goto out_free_parent;
	}
4203

4204 4205 4206 4207 4208 4209 4210
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4211

4212 4213 4214 4215 4216
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4227 4228 4229 4230 4231 4232
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4233

4234
	return 0;
4235

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4247 4248
}

4249 4250
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4251
{
4252 4253 4254 4255
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4256

4257 4258 4259 4260 4261 4262
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4263
			kfree(data->entry);
4264 4265 4266 4267 4268
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4269

4270 4271 4272 4273 4274
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4275
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4276

4277 4278 4279
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4280 4281
}

4282 4283
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4284
{
4285 4286
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4287
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4288

4289 4290 4291
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4292
}
4293

4294
static const struct irq_domain_ops amd_ir_domain_ops = {
4295 4296 4297 4298
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4299
};
4300

4301 4302 4303 4304 4305 4306 4307 4308
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4309 4310 4311 4312 4313 4314 4315 4316
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4365 4366 4367 4368 4369 4370 4371
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4372
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4373
	int ret;
4374

4375 4376 4377
	if (!iommu)
		return -ENODEV;

4378 4379 4380
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4381

4382 4383 4384 4385
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4386 4387
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4388

4389 4390 4391 4392 4393
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4394
	send_cleanup_vector(cfg);
4395 4396

	return IRQ_SET_MASK_OK_DONE;
4397 4398
}

4399
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4400
{
4401
	struct amd_ir_data *ir_data = irq_data->chip_data;
4402

4403 4404
	*msg = ir_data->msi_entry;
}
4405

4406 4407 4408
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4409
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4410 4411
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4412

4413 4414 4415 4416 4417
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4418

4419 4420
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4421 4422 4423

	return 0;
}
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4463
#endif