amd_iommu.c 101.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
static const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120 121
static struct dma_map_ops amd_iommu_dma_ops;

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142
};

143 144 145
/*
 * general struct to manage commands send to an IOMMU
 */
146
struct iommu_cmd {
147 148 149
	u32 data[4];
};

150 151
struct kmem_cache *amd_iommu_irq_cache;

152
static void update_domain(struct protection_domain *domain);
153
static int protection_domain_init(struct protection_domain *domain);
154
static void detach_device(struct device *dev);
155

156 157 158 159 160 161 162
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

163 164
	/* IOVA RB-Tree */
	struct iova_domain iovad;
165 166
};

167 168 169
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

170 171 172 173 174 175
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

176 177
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
178
{
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
194 195
}

196
static inline u16 get_pci_device_id(struct device *dev)
197 198 199 200 201 202
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

230 231 232 233 234
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

235 236 237 238 239 240
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

241
static struct iommu_dev_data *alloc_dev_data(u16 devid)
242 243 244 245 246 247 248 249
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

250
	dev_data->devid = devid;
251 252 253 254 255 256 257 258

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

278 279 280 281 282 283 284 285 286 287 288
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

289
	/* The callers make sure that get_device_id() does not fail here */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
331
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
332 333 334 335 336 337 338 339
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

340 341 342 343 344 345 346 347 348 349 350 351
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

352 353 354 355 356
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

357 358 359 360
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
361
{
362
	struct acpihid_map_entry *p, *entry = NULL;
363
	int devid;
364 365 366 367 368 369 370 371 372 373 374 375 376 377

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
378 379
}

380 381 382 383
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
384 385
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
386 387 388 389 390 391 392 393 394 395 396 397
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

398 399 400 401 402 403 404 405 406
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

407 408 409 410 411 412
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
413
	int devid;
414 415 416 417 418

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
419
	if (devid < 0)
420
		return false;
421 422 423 424 425 426 427 428 429 430 431

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

432
static void init_iommu_group(struct device *dev)
433 434 435
{
	struct iommu_group *group;

436
	group = iommu_group_get_for_dev(dev);
437 438 439 440
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
441 442 443 444 445
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
446
	int devid;
447 448 449 450

	if (dev->archdata.iommu)
		return 0;

451
	devid = get_device_id(dev);
452
	if (devid < 0)
453 454 455
		return devid;

	dev_data = find_dev_data(devid);
456 457 458
	if (!dev_data)
		return -ENOMEM;

459 460
	dev_data->alias = get_alias(dev);

461
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
462 463
		struct amd_iommu *iommu;

464
		iommu = amd_iommu_rlookup_table[dev_data->devid];
465 466 467
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

468 469
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
470 471 472
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

473 474 475
	return 0;
}

476 477
static void iommu_ignore_device(struct device *dev)
{
478 479
	u16 alias;
	int devid;
480 481

	devid = get_device_id(dev);
482
	if (devid < 0)
483 484
		return;

485
	alias = get_alias(dev);
486 487 488 489 490 491 492 493

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

494 495
static void iommu_uninit_device(struct device *dev)
{
496 497
	int devid;
	struct iommu_dev_data *dev_data;
498

499
	devid = get_device_id(dev);
500
	if (devid < 0)
501
		return;
502

503
	dev_data = search_dev_data(devid);
504 505 506
	if (!dev_data)
		return;

507 508 509
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
510 511 512
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

513 514
	iommu_group_remove_device(dev);

515 516 517
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

518
	/*
519 520
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
521
	 */
522
}
J
Joerg Roedel 已提交
523

524 525 526 527 528 529
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

530 531 532 533
static void dump_dte_entry(u16 devid)
{
	int i;

534 535
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
536 537 538
			amd_iommu_dev_table[devid].data[i]);
}

539 540 541 542 543 544 545 546 547
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

548
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549
{
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
571

572
	printk(KERN_ERR "AMD-Vi: Event logged [");
573 574 575 576 577

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
578
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579
		       address, flags);
580
		dump_dte_entry(devid);
581 582 583 584
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
585
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
586 587 588 589 590
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
591
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 593 594 595 596
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
602
		dump_command(address);
603 604 605 606 607 608 609 610
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
611
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612 613 614 615 616
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620 621 622
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
623 624

	memset(__evt, 0, 4 * sizeof(u32));
625 626 627 628 629 630 631 632 633 634
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
635
		iommu_print_event(iommu, iommu->evt_buf + head);
636
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
637 638 639 640 641
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

642
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
687

688 689 690
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
691

692 693 694 695 696 697 698
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
699 700
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
701 702 703 704 705 706

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
707 708 709 710
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

771
irqreturn_t amd_iommu_int_thread(int irq, void *data)
772
{
773 774
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
775

776 777 778
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
779
			iommu->mmio_base + MMIO_STATUS_OFFSET);
780

781 782 783 784
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
785

786 787 788 789
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
790

791 792 793 794 795 796 797
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
813
	return IRQ_HANDLED;
814 815
}

816 817 818 819 820
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

821 822 823 824 825 826
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
847 848 849
{
	u8 *target;

850
	target = iommu->cmd_buf + tail;
851
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
852 853 854 855 856

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
857
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
858
}
859

860
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
861
{
862 863
	WARN_ON(address & 0x7ULL);

864
	memset(cmd, 0, sizeof(*cmd));
865 866 867
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
868 869 870
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

871 872 873 874 875 876 877
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

878 879 880 881
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
882
	bool s;
883 884

	pages = iommu_num_pages(address, size, PAGE_SIZE);
885
	s     = false;
886 887 888 889 890 891 892

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
893
		s = true;
894 895 896 897 898 899 900 901 902 903 904
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
905
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
906 907 908
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

909 910 911 912
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
913
	bool s;
914 915

	pages = iommu_num_pages(address, size, PAGE_SIZE);
916
	s     = false;
917 918 919 920 921 922 923

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
924
		s = true;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

940 941 942 943 944 945 946
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

947
	cmd->data[0]  = pasid;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
966
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
967 968
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
969
	cmd->data[1] |= (pasid & 0xff) << 16;
970 971 972 973 974 975 976 977
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

978 979 980 981 982 983 984
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
985
		cmd->data[1]  = pasid;
986 987 988 989 990 991 992 993
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

994 995 996 997
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
998 999
}

1000 1001 1002 1003 1004 1005 1006
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1007 1008
/*
 * Writes the command to the IOMMUs command buffer and informs the
1009
 * hardware about the new command.
1010
 */
1011 1012 1013
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1014
{
1015
	u32 left, tail, head, next_tail;
1016 1017
	unsigned long flags;

1018
again:
1019 1020
	spin_lock_irqsave(&iommu->lock, flags);

1021 1022
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1023 1024
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1025

1026 1027 1028 1029
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1030

1031 1032
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1033

1034 1035 1036 1037 1038 1039
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1040 1041
	}

1042 1043 1044
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1045
	iommu->need_sync = sync;
1046

1047
	spin_unlock_irqrestore(&iommu->lock, flags);
1048

1049
	return 0;
1050 1051
}

1052 1053 1054 1055 1056
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1057 1058 1059 1060
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1061
static int iommu_completion_wait(struct amd_iommu *iommu)
1062 1063
{
	struct iommu_cmd cmd;
1064
	volatile u64 sem = 0;
1065
	int ret;
1066

1067
	if (!iommu->need_sync)
1068
		return 0;
1069

1070
	build_completion_wait(&cmd, (u64)&sem);
1071

1072
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1073
	if (ret)
1074
		return ret;
1075

1076
	return wait_on_sem(&sem);
1077 1078
}

1079
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1080
{
1081
	struct iommu_cmd cmd;
1082

1083
	build_inv_dte(&cmd, devid);
1084

1085 1086
	return iommu_queue_command(iommu, &cmd);
}
1087

1088 1089 1090
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1091

1092 1093
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1094

1095 1096
	iommu_completion_wait(iommu);
}
1097

1098 1099 1100 1101 1102 1103 1104
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1105

1106 1107 1108 1109 1110 1111
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1112

1113
	iommu_completion_wait(iommu);
1114 1115
}

1116
static void iommu_flush_all(struct amd_iommu *iommu)
1117
{
1118
	struct iommu_cmd cmd;
1119

1120
	build_inv_all(&cmd);
1121

1122 1123 1124 1125
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1145 1146
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1147 1148 1149 1150
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1151
		iommu_flush_irt_all(iommu);
1152
		iommu_flush_tlb_all(iommu);
1153 1154 1155
	}
}

1156
/*
1157
 * Command send function for flushing on-device TLB
1158
 */
1159 1160
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1161 1162
{
	struct amd_iommu *iommu;
1163
	struct iommu_cmd cmd;
1164
	int qdep;
1165

1166 1167
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1168

1169
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1170 1171

	return iommu_queue_command(iommu, &cmd);
1172 1173
}

1174 1175 1176
/*
 * Command send function for invalidating a device table entry
 */
1177
static int device_flush_dte(struct iommu_dev_data *dev_data)
1178
{
1179
	struct amd_iommu *iommu;
1180
	u16 alias;
1181
	int ret;
1182

1183
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1184
	alias = dev_data->alias;
1185

1186
	ret = iommu_flush_dte(iommu, dev_data->devid);
1187 1188
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1189 1190 1191
	if (ret)
		return ret;

1192
	if (dev_data->ats.enabled)
1193
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1194 1195

	return ret;
1196 1197
}

1198 1199 1200 1201 1202
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1203 1204
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1205
{
1206
	struct iommu_dev_data *dev_data;
1207 1208
	struct iommu_cmd cmd;
	int ret = 0, i;
1209

1210
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1211

1212 1213 1214 1215 1216 1217 1218 1219
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1220
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1221 1222
	}

1223 1224
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1225
		if (!dev_data->ats.enabled)
1226 1227
			continue;

1228
		ret |= device_flush_iotlb(dev_data, address, size);
1229 1230
	}

1231
	WARN_ON(ret);
1232 1233
}

1234 1235
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1236
{
1237
	__domain_flush_pages(domain, address, size, 0);
1238
}
1239

1240
/* Flush the whole IO/TLB for a given protection domain */
1241
static void domain_flush_tlb(struct protection_domain *domain)
1242
{
1243
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1244 1245
}

1246
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1247
static void domain_flush_tlb_pde(struct protection_domain *domain)
1248
{
1249
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1250 1251
}

1252
static void domain_flush_complete(struct protection_domain *domain)
1253
{
1254
	int i;
1255

1256
	for (i = 0; i < amd_iommus_present; ++i) {
1257
		if (domain && !domain->dev_iommu[i])
1258
			continue;
1259

1260 1261 1262 1263 1264
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1265
	}
1266 1267
}

1268

1269
/*
1270
 * This function flushes the DTEs for all devices in domain
1271
 */
1272
static void domain_flush_devices(struct protection_domain *domain)
1273
{
1274
	struct iommu_dev_data *dev_data;
1275

1276
	list_for_each_entry(dev_data, &domain->dev_list, list)
1277
		device_flush_dte(dev_data);
1278 1279
}

1280 1281 1282 1283 1284 1285 1286
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1316
		      unsigned long page_size,
1317 1318 1319
		      u64 **pte_page,
		      gfp_t gfp)
{
1320
	int level, end_lvl;
1321
	u64 *pte, *page;
1322 1323

	BUG_ON(!is_power_of_2(page_size));
1324 1325 1326 1327

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1328 1329 1330 1331
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1332 1333

	while (level > end_lvl) {
1334 1335 1336 1337 1338
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1339 1340 1341
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1342 1343 1344

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1345 1346
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1347 1348 1349
				free_page((unsigned long)page);
				continue;
			}
1350 1351
		}

1352 1353 1354 1355
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1373 1374 1375
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1376 1377 1378 1379
{
	int level;
	u64 *pte;

1380 1381 1382
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1383 1384 1385
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1386

1387 1388 1389
	while (level > 0) {

		/* Not Present */
1390 1391 1392
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1393
		/* Large PTE */
1394 1395 1396
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1397 1398 1399 1400 1401

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1402 1403
		level -= 1;

1404
		/* Walk to the next level */
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1420 1421 1422 1423 1424
	}

	return pte;
}

1425 1426 1427 1428 1429 1430 1431
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1432 1433 1434
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1435
			  unsigned long page_size,
1436
			  int prot,
1437
			  gfp_t gfp)
1438
{
1439
	u64 __pte, *pte;
1440
	int i, count;
1441

1442 1443 1444
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1445
	if (!(prot & IOMMU_PROT_MASK))
1446 1447
		return -EINVAL;

1448
	count = PAGE_SIZE_PTE_COUNT(page_size);
1449
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1450

1451 1452 1453
	if (!pte)
		return -ENOMEM;

1454 1455 1456
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1457

1458
	if (count > 1) {
1459 1460 1461 1462
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1463 1464 1465 1466 1467 1468

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1469 1470
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1471

1472 1473
	update_domain(dom);

1474 1475 1476
	return 0;
}

1477 1478 1479
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1480
{
1481 1482
	unsigned long long unmapped;
	unsigned long unmap_size;
1483 1484 1485 1486 1487
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1488

1489 1490
	while (unmapped < page_size) {

1491 1492 1493 1494 1495 1496
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1497 1498 1499 1500 1501 1502 1503 1504
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1505
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1506

1507
	return unmapped;
1508 1509
}

1510 1511 1512
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1513
 * interface functions.
1514 1515
 *
 ****************************************************************************/
1516

1517

1518 1519 1520
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1521
{
1522
	unsigned long pfn = 0;
1523

1524
	pages = __roundup_pow_of_two(pages);
1525

1526 1527 1528
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1529

1530 1531
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1532

1533
	return (pfn << PAGE_SHIFT);
1534 1535
}

1536 1537 1538
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1539
{
1540 1541
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1542

1543
	free_iova_fast(&dma_dom->iovad, address, pages);
1544 1545
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1618
		/* PTE present? */				\
1619 1620 1621
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1622 1623 1624 1625 1626
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1639
static void free_pagetable(struct protection_domain *domain)
1640
{
1641
	unsigned long root = (unsigned long)domain->pt_root;
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1666 1667 1668
	}
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1699 1700
static void free_gcr3_table(struct protection_domain *domain)
{
1701 1702 1703 1704
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1705 1706
	else
		BUG_ON(domain->glx != 0);
1707

1708 1709 1710
	free_page((unsigned long)domain->gcr3_tbl);
}

1711 1712 1713 1714
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1715 1716 1717 1718 1719
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1720 1721
	del_domain_from_list(&dom->domain);

1722
	put_iova_domain(&dom->iovad);
1723

1724
	free_pagetable(&dom->domain);
1725

1726 1727 1728
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1729 1730 1731
	kfree(dom);
}

1732 1733
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1734
 * It also initializes the page table and the address allocator data
1735 1736
 * structures required for the dma_ops interface
 */
1737
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1738 1739 1740 1741 1742 1743 1744
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1745
	if (protection_domain_init(&dma_dom->domain))
1746
		goto free_dma_dom;
1747

1748
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1749
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1750
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1751 1752 1753
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1754 1755 1756
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1757 1758 1759
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1760 1761
	add_domain_to_list(&dma_dom->domain);

1762 1763 1764 1765 1766 1767 1768 1769
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1779
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1780
{
1781
	u64 pte_root = 0;
1782
	u64 flags = 0;
1783

1784 1785 1786
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1787 1788 1789
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1790

1791 1792
	flags = amd_iommu_dev_table[devid].data[1];

1793 1794 1795
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1822 1823 1824 1825 1826
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1827 1828 1829 1830 1831
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1832 1833
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1834 1835

	amd_iommu_apply_erratum_63(devid);
1836 1837
}

1838 1839
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1840 1841
{
	struct amd_iommu *iommu;
1842
	u16 alias;
1843
	bool ats;
1844

1845
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1846
	alias = dev_data->alias;
1847
	ats   = dev_data->ats.enabled;
1848 1849 1850 1851 1852 1853 1854 1855 1856

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1857 1858 1859
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1860
		set_dte_entry(alias, domain, ats);
1861

1862
	device_flush_dte(dev_data);
1863 1864
}

1865
static void do_detach(struct iommu_dev_data *dev_data)
1866 1867
{
	struct amd_iommu *iommu;
1868
	u16 alias;
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1879
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1880
	alias = dev_data->alias;
1881 1882

	/* decrease reference counters */
1883 1884 1885 1886 1887 1888
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1889
	clear_dte_entry(dev_data->devid);
1890 1891
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1892

1893
	/* Flush the DTE entry */
1894
	device_flush_dte(dev_data);
1895 1896 1897 1898 1899 1900
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1901
static int __attach_device(struct iommu_dev_data *dev_data,
1902
			   struct protection_domain *domain)
1903
{
1904
	int ret;
1905

1906 1907 1908 1909 1910 1911
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1912 1913 1914
	/* lock domain */
	spin_lock(&domain->lock);

1915
	ret = -EBUSY;
1916
	if (dev_data->domain != NULL)
1917
		goto out_unlock;
1918

1919
	/* Attach alias group root */
1920
	do_attach(dev_data, domain);
1921

1922 1923 1924 1925
	ret = 0;

out_unlock:

1926 1927
	/* ready */
	spin_unlock(&domain->lock);
1928

1929
	return ret;
1930
}
1931

1932 1933 1934 1935 1936 1937 1938 1939

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1940 1941 1942 1943 1944 1945
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1946
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1947 1948 1949
	if (!pos)
		return -EINVAL;

1950 1951 1952
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1953 1954 1955 1956

	return 0;
}

1957 1958
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1959 1960 1961 1962 1963 1964 1965 1966
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1978 1979
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
1980 1981 1982
	if (ret)
		goto out_err;

1983 1984 1985 1986 1987 1988
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2002
/* FIXME: Move this to PCI code */
2003
#define PCI_PRI_TLP_OFF		(1 << 15)
2004

J
Joerg Roedel 已提交
2005
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2006
{
2007
	u16 status;
2008 2009
	int pos;

2010
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2011 2012 2013
	if (!pos)
		return false;

2014
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2015

2016
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2017 2018
}

2019
/*
F
Frank Arnold 已提交
2020
 * If a device is not yet associated with a domain, this function
2021 2022
 * assigns it visible for the hardware
 */
2023 2024
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2025
{
2026
	struct pci_dev *pdev;
2027
	struct iommu_dev_data *dev_data;
2028
	unsigned long flags;
2029
	int ret;
2030

2031 2032
	dev_data = get_dev_data(dev);

2033 2034 2035 2036
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2037
	if (domain->flags & PD_IOMMUV2_MASK) {
2038
		if (!dev_data->passthrough)
2039 2040
			return -EINVAL;

2041 2042 2043
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2044

2045 2046 2047 2048
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2049 2050
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2051 2052 2053
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2054

2055
skip_ats_check:
2056
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2057
	ret = __attach_device(dev_data, domain);
2058 2059
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2060 2061 2062 2063 2064
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2065
	domain_flush_tlb_pde(domain);
2066 2067

	return ret;
2068 2069
}

2070 2071 2072
/*
 * Removes a device from a protection domain (unlocked)
 */
2073
static void __detach_device(struct iommu_dev_data *dev_data)
2074
{
2075
	struct protection_domain *domain;
2076

2077 2078 2079 2080 2081
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2082

2083 2084
	if (WARN_ON(!dev_data->domain))
		return;
2085

2086
	domain = dev_data->domain;
2087

2088
	spin_lock(&domain->lock);
2089

2090
	do_detach(dev_data);
2091

2092
	spin_unlock(&domain->lock);
2093 2094 2095 2096 2097
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2098
static void detach_device(struct device *dev)
2099
{
2100
	struct protection_domain *domain;
2101
	struct iommu_dev_data *dev_data;
2102 2103
	unsigned long flags;

2104
	dev_data = get_dev_data(dev);
2105
	domain   = dev_data->domain;
2106

2107 2108
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2109
	__detach_device(dev_data);
2110
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2111

2112 2113 2114
	if (!dev_is_pci(dev))
		return;

2115
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2116 2117
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2118
		pci_disable_ats(to_pci_dev(dev));
2119 2120

	dev_data->ats.enabled = false;
2121
}
2122

2123
static int amd_iommu_add_device(struct device *dev)
2124
{
2125
	struct iommu_dev_data *dev_data;
2126
	struct iommu_domain *domain;
2127
	struct amd_iommu *iommu;
2128
	int ret, devid;
2129

2130
	if (!check_device(dev) || get_dev_data(dev))
2131
		return 0;
2132

2133
	devid = get_device_id(dev);
2134
	if (devid < 0)
2135 2136
		return devid;

2137
	iommu = amd_iommu_rlookup_table[devid];
2138

2139
	ret = iommu_init_device(dev);
2140 2141 2142 2143
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2144

2145
		iommu_ignore_device(dev);
2146
		dev->archdata.dma_ops = &nommu_dma_ops;
2147 2148 2149
		goto out;
	}
	init_iommu_group(dev);
2150

2151
	dev_data = get_dev_data(dev);
2152

2153
	BUG_ON(!dev_data);
2154

2155
	if (iommu_pass_through || dev_data->iommu_v2)
2156
		iommu_request_dm_for_dev(dev);
2157

2158 2159
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2160
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2161
		dev_data->passthrough = true;
2162
	else
2163
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2164

2165
out:
2166 2167 2168 2169 2170
	iommu_completion_wait(iommu);

	return 0;
}

2171
static void amd_iommu_remove_device(struct device *dev)
2172
{
2173
	struct amd_iommu *iommu;
2174
	int devid;
2175 2176 2177 2178 2179

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2180
	if (devid < 0)
2181 2182
		return;

2183 2184 2185 2186
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2197 2198 2199 2200 2201 2202
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2234
static void queue_flush_all(void)
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2250 2251 2252 2253 2254 2255
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2281 2282 2283 2284

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2285 2286 2287 2288
	put_cpu_ptr(&flush_queue);
}


2289 2290 2291 2292 2293 2294 2295
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2296
static struct protection_domain *get_domain(struct device *dev)
2297
{
2298
	struct protection_domain *domain;
2299

2300
	if (!check_device(dev))
2301
		return ERR_PTR(-EINVAL);
2302

2303
	domain = get_dev_data(dev)->domain;
2304
	if (!dma_ops_domain(domain))
2305
		return ERR_PTR(-EBUSY);
2306

2307
	return domain;
2308 2309
}

2310 2311
static void update_device_table(struct protection_domain *domain)
{
2312
	struct iommu_dev_data *dev_data;
2313

2314
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2315
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2316 2317 2318 2319 2320 2321 2322

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2323 2324 2325 2326 2327 2328 2329 2330
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2331 2332 2333

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2334 2335 2336 2337

	domain->updated = false;
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2349 2350
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2351 2352
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2353 2354
 * Must be called with the domain lock held.
 */
2355 2356 2357 2358
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2359
			       enum dma_data_direction direction,
2360
			       u64 dma_mask)
2361 2362
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2363
	dma_addr_t address, start, ret;
2364
	unsigned int pages;
2365
	int prot = 0;
2366 2367
	int i;

2368
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2369 2370
	paddr &= PAGE_MASK;

2371
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2372 2373
	if (address == DMA_ERROR_CODE)
		goto out;
2374

2375
	prot = dir2prot(direction);
2376

2377 2378
	start = address;
	for (i = 0; i < pages; ++i) {
2379 2380 2381
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2382 2383
			goto out_unmap;

2384 2385 2386 2387 2388
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2389
	if (unlikely(amd_iommu_np_cache)) {
2390
		domain_flush_pages(&dma_dom->domain, address, size);
2391 2392
		domain_flush_complete(&dma_dom->domain);
	}
2393

2394 2395
out:
	return address;
2396 2397 2398 2399 2400

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2401
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2402 2403
	}

2404 2405 2406 2407
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2408

2409
	return DMA_ERROR_CODE;
2410 2411
}

2412 2413 2414 2415
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2416
static void __unmap_single(struct dma_ops_domain *dma_dom,
2417 2418 2419 2420
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2421
	dma_addr_t flush_addr;
2422 2423 2424
	dma_addr_t i, start;
	unsigned int pages;

2425
	flush_addr = dma_addr;
2426
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2427 2428 2429 2430
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2431
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2432 2433 2434
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2435 2436 2437 2438 2439 2440 2441
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2442 2443
}

2444 2445 2446
/*
 * The exported map_single function for dma_ops.
 */
2447 2448 2449
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2450
			   unsigned long attrs)
2451
{
2452
	phys_addr_t paddr = page_to_phys(page) + offset;
2453
	struct protection_domain *domain;
2454
	struct dma_ops_domain *dma_dom;
2455
	u64 dma_mask;
2456

2457 2458
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2459
		return (dma_addr_t)paddr;
2460 2461
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2462

2463
	dma_mask = *dev->dma_mask;
2464
	dma_dom = to_dma_ops_domain(domain);
2465

2466
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2467 2468
}

2469 2470 2471
/*
 * The exported unmap_single function for dma_ops.
 */
2472
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2473
		       enum dma_data_direction dir, unsigned long attrs)
2474 2475
{
	struct protection_domain *domain;
2476
	struct dma_ops_domain *dma_dom;
2477

2478 2479
	domain = get_domain(dev);
	if (IS_ERR(domain))
2480 2481
		return;

2482 2483 2484
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2485 2486
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2513 2514 2515 2516
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2517
static int map_sg(struct device *dev, struct scatterlist *sglist,
2518
		  int nelems, enum dma_data_direction direction,
2519
		  unsigned long attrs)
2520
{
2521
	int mapped_pages = 0, npages = 0, prot = 0, i;
2522
	struct protection_domain *domain;
2523
	struct dma_ops_domain *dma_dom;
2524
	struct scatterlist *s;
2525
	unsigned long address;
2526
	u64 dma_mask;
2527

2528
	domain = get_domain(dev);
2529
	if (IS_ERR(domain))
2530
		return 0;
2531

2532
	dma_dom  = to_dma_ops_domain(domain);
2533
	dma_mask = *dev->dma_mask;
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2544
	for_each_sg(sglist, s, nelems, i) {
2545 2546 2547 2548 2549
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2550

2551 2552 2553 2554 2555
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2556

2557 2558
			mapped_pages += 1;
		}
2559 2560
	}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2578

2579 2580 2581 2582 2583 2584
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2585 2586
	}

2587 2588 2589 2590
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2591
	return 0;
2592 2593
}

2594 2595 2596 2597
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2598
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2599
		     int nelems, enum dma_data_direction dir,
2600
		     unsigned long attrs)
2601 2602
{
	struct protection_domain *domain;
2603
	struct dma_ops_domain *dma_dom;
2604 2605
	unsigned long startaddr;
	int npages = 2;
2606

2607 2608
	domain = get_domain(dev);
	if (IS_ERR(domain))
2609 2610
		return;

2611
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2612
	dma_dom   = to_dma_ops_domain(domain);
2613 2614
	npages    = sg_num_pages(dev, sglist, nelems);

2615
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2616 2617
}

2618 2619 2620
/*
 * The exported alloc_coherent function for dma_ops.
 */
2621
static void *alloc_coherent(struct device *dev, size_t size,
2622
			    dma_addr_t *dma_addr, gfp_t flag,
2623
			    unsigned long attrs)
2624
{
2625
	u64 dma_mask = dev->coherent_dma_mask;
2626
	struct protection_domain *domain;
2627
	struct dma_ops_domain *dma_dom;
2628
	struct page *page;
2629

2630 2631
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2632 2633 2634
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2635 2636
	} else if (IS_ERR(domain))
		return NULL;
2637

2638
	dma_dom   = to_dma_ops_domain(domain);
2639
	size	  = PAGE_ALIGN(size);
2640 2641
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2642
	flag     |= __GFP_ZERO;
2643

2644 2645
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2646
		if (!gfpflags_allow_blocking(flag))
2647
			return NULL;
2648

2649 2650 2651 2652 2653
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2654

2655 2656 2657
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2658
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2659
				 size, DMA_BIDIRECTIONAL, dma_mask);
2660

2661
	if (*dma_addr == DMA_ERROR_CODE)
2662
		goto out_free;
2663

2664
	return page_address(page);
2665 2666 2667

out_free:

2668 2669
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2670 2671

	return NULL;
2672 2673
}

2674 2675 2676
/*
 * The exported free_coherent function for dma_ops.
 */
2677
static void free_coherent(struct device *dev, size_t size,
2678
			  void *virt_addr, dma_addr_t dma_addr,
2679
			  unsigned long attrs)
2680 2681
{
	struct protection_domain *domain;
2682
	struct dma_ops_domain *dma_dom;
2683
	struct page *page;
2684

2685 2686 2687
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2688 2689
	domain = get_domain(dev);
	if (IS_ERR(domain))
2690 2691
		goto free_mem;

2692 2693 2694
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2695 2696

free_mem:
2697 2698
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2699 2700
}

2701 2702 2703 2704 2705 2706
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2707
	return check_device(dev);
2708 2709
}

2710
static struct dma_map_ops amd_iommu_dma_ops = {
2711 2712 2713 2714 2715 2716 2717
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2718 2719
};

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2773
int __init amd_iommu_init_api(void)
2774
{
2775
	int ret, cpu, err = 0;
2776 2777 2778 2779

	ret = iova_cache_get();
	if (ret)
		return ret;
2780

2781 2782 2783 2784
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2797 2798 2799 2800 2801 2802 2803 2804
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2805 2806 2807
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2808
	return 0;
2809 2810 2811 2812 2813 2814 2815 2816 2817

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2818 2819
}

2820 2821
int __init amd_iommu_init_dma_ops(void)
{
2822 2823 2824
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2825
	swiotlb        = iommu_pass_through ? 1 : 0;
2826 2827
	iommu_detected = 1;

2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2837 2838 2839 2840 2841
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2842
	return 0;
2843

2844
}
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2858
	struct iommu_dev_data *entry;
2859 2860 2861 2862
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2863 2864 2865 2866
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2867
	}
2868 2869 2870 2871

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2872 2873 2874 2875 2876
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2877 2878
	del_domain_from_list(domain);

2879 2880 2881 2882 2883 2884
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2897
static struct protection_domain *protection_domain_alloc(void)
2898 2899 2900 2901 2902
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2903
		return NULL;
2904

2905
	if (protection_domain_init(domain))
2906 2907
		goto out_err;

2908 2909
	add_domain_to_list(domain);

2910 2911 2912 2913 2914 2915 2916 2917
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2918
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2919
{
2920
	struct protection_domain *pdomain;
2921
	struct dma_ops_domain *dma_domain;
2922

2923 2924 2925 2926 2927
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2928

2929 2930 2931 2932 2933 2934
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2935

2936 2937 2938
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2949 2950 2951 2952
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2953

2954 2955
		pdomain->mode = PAGE_MODE_NONE;
		break;
2956 2957 2958
	default:
		return NULL;
	}
2959

2960
	return &pdomain->domain;
2961 2962
}

2963
static void amd_iommu_domain_free(struct iommu_domain *dom)
2964
{
2965
	struct protection_domain *domain;
2966
	struct dma_ops_domain *dma_dom;
2967

2968 2969
	domain = to_pdomain(dom);

2970 2971 2972 2973 2974
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2975 2976
	if (!dom)
		return;
2977

2978 2979
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2980 2981 2982 2983 2984 2985 2986
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
2987
		dma_dom = to_dma_ops_domain(domain);
2988 2989 2990 2991 2992
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2993

2994 2995 2996 2997 2998 2999
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3000 3001
}

3002 3003 3004
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3005
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3006
	struct amd_iommu *iommu;
3007
	int devid;
3008

3009
	if (!check_device(dev))
3010 3011
		return;

3012
	devid = get_device_id(dev);
3013
	if (devid < 0)
3014
		return;
3015

3016
	if (dev_data->domain != NULL)
3017
		detach_device(dev);
3018 3019 3020 3021 3022

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3023 3024 3025 3026 3027 3028
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3029 3030 3031
	iommu_completion_wait(iommu);
}

3032 3033 3034
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3035
	struct protection_domain *domain = to_pdomain(dom);
3036
	struct iommu_dev_data *dev_data;
3037
	struct amd_iommu *iommu;
3038
	int ret;
3039

3040
	if (!check_device(dev))
3041 3042
		return -EINVAL;

3043 3044
	dev_data = dev->archdata.iommu;

3045
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3046 3047 3048
	if (!iommu)
		return -EINVAL;

3049
	if (dev_data->domain)
3050
		detach_device(dev);
3051

3052
	ret = attach_device(dev, domain);
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3063 3064
	iommu_completion_wait(iommu);

3065
	return ret;
3066 3067
}

3068
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3069
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3070
{
3071
	struct protection_domain *domain = to_pdomain(dom);
3072 3073 3074
	int prot = 0;
	int ret;

3075 3076 3077
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3078 3079 3080 3081 3082
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3083
	mutex_lock(&domain->api_lock);
3084
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3085 3086
	mutex_unlock(&domain->api_lock);

3087
	return ret;
3088 3089
}

3090 3091
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3092
{
3093
	struct protection_domain *domain = to_pdomain(dom);
3094
	size_t unmap_size;
3095

3096 3097 3098
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3099
	mutex_lock(&domain->api_lock);
3100
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3101
	mutex_unlock(&domain->api_lock);
3102

3103
	domain_flush_tlb_pde(domain);
3104

3105
	return unmap_size;
3106 3107
}

3108
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3109
					  dma_addr_t iova)
3110
{
3111
	struct protection_domain *domain = to_pdomain(dom);
3112
	unsigned long offset_mask, pte_pgsize;
3113
	u64 *pte, __pte;
3114

3115 3116 3117
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3118
	pte = fetch_pte(domain, iova, &pte_pgsize);
3119

3120
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3121 3122
		return 0;

3123 3124
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3125

3126
	return (__pte & ~offset_mask) | (iova & offset_mask);
3127 3128
}

3129
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3130
{
3131 3132
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3133
		return true;
3134
	case IOMMU_CAP_INTR_REMAP:
3135
		return (irq_remapping_enabled == 1);
3136 3137
	case IOMMU_CAP_NOEXEC:
		return false;
3138 3139
	}

3140
	return false;
S
Sheng Yang 已提交
3141 3142
}

3143 3144 3145 3146
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3147
	int devid;
3148 3149

	devid = get_device_id(dev);
3150
	if (devid < 0)
3151
		return;
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3186 3187 3188 3189
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
3190
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3191 3192 3193 3194 3195 3196 3197 3198
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3199
static const struct iommu_ops amd_iommu_ops = {
3200
	.capable = amd_iommu_capable,
3201 3202
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3203 3204
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3205 3206
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3207
	.map_sg = default_iommu_map_sg,
3208
	.iova_to_phys = amd_iommu_iova_to_phys,
3209 3210
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3211
	.device_group = amd_iommu_device_group,
3212 3213
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3214
	.apply_dm_region = amd_iommu_apply_dm_region,
3215
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3216 3217
};

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3240 3241 3242

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3243
	struct protection_domain *domain = to_pdomain(dom);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3261 3262 3263

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3264
	struct protection_domain *domain = to_pdomain(dom);
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3342 3343 3344 3345 3346 3347
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3379
	struct protection_domain *domain = to_pdomain(dom);
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3399
	struct protection_domain *domain = to_pdomain(dom);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3479
	struct protection_domain *domain = to_pdomain(dom);
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3493
	struct protection_domain *domain = to_pdomain(dom);
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3521 3522 3523

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3524
	struct protection_domain *pdomain;
3525

3526 3527
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3528 3529 3530
		return NULL;

	/* Only return IOMMUv2 domains */
3531
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3532 3533
		return NULL;

3534
	return &pdomain->domain;
3535 3536
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3592 3593 3594 3595 3596 3597 3598 3599 3600

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3601 3602
static struct irq_chip amd_ir_chip;

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3653 3654 3655
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3656 3657 3658 3659 3660 3661 3662
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3663
		table = NULL;
3664 3665 3666
		goto out;
	}

3667 3668 3669 3670 3671 3672
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3673 3674 3675 3676 3677

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3678
			iommu->irte_ops->set_allocated(table, i);
3679 3680 3681 3682 3683 3684 3685
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3686
		set_dte_irq_entry(alias, table);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3699
static int alloc_irq_index(u16 devid, int count)
3700 3701 3702 3703
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3704 3705 3706 3707
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3719
		if (!iommu->irte_ops->is_allocated(table, index))
3720 3721 3722 3723 3724 3725
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3726
				iommu->irte_ops->set_allocated(table, index - c + 1);
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3741 3742
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3743 3744 3745 3746
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3747
	struct irte_ga *entry;
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3758 3759 3760 3761 3762 3763 3764

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3765 3766
	if (data)
		data->ref = entry;
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3791
	table->table[index] = irte->val;
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3815
	iommu->irte_ops->clear_allocated(table, index);
3816 3817 3818 3819 3820 3821
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3822 3823
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3824
			 u8 vector, u32 dest_apicid, int devid)
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3838
			    u8 vector, u32 dest_apicid, int devid)
3839 3840
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3841
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3842 3843 3844

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3845
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3866
	modify_irte_ga(devid, index, irte, NULL);
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3882
	modify_irte_ga(devid, index, irte, NULL);
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3899
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3900

3901 3902 3903 3904 3905 3906
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3907 3908
}

3909
#define IRTE_ALLOCATED (~1U)
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3955
static int get_devid(struct irq_alloc_info *info)
3956
{
3957
	int devid = -1;
3958

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3974

3975 3976
	return devid;
}
3977

3978 3979 3980 3981
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3982

3983 3984
	if (!info)
		return NULL;
3985

3986 3987 3988 3989 3990 3991
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3992

3993
	return NULL;
3994 3995
}

3996
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3997
{
3998 3999
	struct amd_iommu *iommu;
	int devid;
4000

4001 4002
	if (!info)
		return NULL;
4003

4004 4005 4006 4007
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4008
		if (devid < 0)
4009 4010
			return NULL;

4011 4012 4013
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4014 4015 4016 4017
		break;
	default:
		break;
	}
4018

4019 4020
	return NULL;
}
4021

4022 4023 4024 4025 4026 4027
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4028 4029 4030
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4031

4032 4033 4034 4035 4036 4037 4038 4039
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4040 4041 4042 4043
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4044

4045 4046
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4047 4048
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4049
				 irq_cfg->dest_apicid, devid);
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4065

4066 4067 4068 4069 4070 4071 4072
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4073

4074 4075 4076 4077
	default:
		BUG_ON(1);
		break;
	}
4078 4079
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4100 4101
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4102
{
4103 4104
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4105
	struct amd_ir_data *data = NULL;
4106
	struct irq_cfg *cfg;
4107 4108
	int i, ret, devid;
	int index = -1;
4109

4110 4111 4112 4113
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4114 4115
		return -EINVAL;

4116 4117 4118 4119 4120 4121
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4122

4123 4124 4125
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4126

4127 4128 4129
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4130

4131 4132 4133 4134 4135 4136
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4137
		index = alloc_irq_index(devid, nr_irqs);
4138 4139 4140
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4141
		ret = index;
4142 4143
		goto out_free_parent;
	}
4144

4145 4146 4147 4148 4149 4150 4151
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4152

4153 4154 4155 4156 4157
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4168 4169 4170 4171 4172 4173
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4174

4175
	return 0;
4176

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4188 4189
}

4190 4191
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4192
{
4193 4194 4195 4196
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4197

4198 4199 4200 4201 4202 4203
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4204
			kfree(data->entry);
4205 4206 4207 4208 4209
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4210

4211 4212 4213 4214 4215
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4216
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4217

4218 4219 4220
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4221 4222
}

4223 4224
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4225
{
4226 4227
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4228
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4229

4230 4231 4232
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4233
}
4234

4235 4236 4237 4238 4239
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4240
};
4241

4242 4243 4244 4245 4246 4247 4248 4249
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4250 4251 4252 4253 4254 4255 4256 4257
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4306 4307 4308 4309 4310 4311 4312
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4313
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4314
	int ret;
4315

4316 4317 4318
	if (!iommu)
		return -ENODEV;

4319 4320 4321
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4322

4323 4324 4325 4326
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4327 4328
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4329

4330 4331 4332 4333 4334
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4335
	send_cleanup_vector(cfg);
4336 4337

	return IRQ_SET_MASK_OK_DONE;
4338 4339
}

4340
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4341
{
4342
	struct amd_ir_data *ir_data = irq_data->chip_data;
4343

4344 4345
	*msg = ir_data->msi_entry;
}
4346

4347 4348 4349
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4350
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4351 4352
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4353

4354 4355 4356 4357 4358
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4359

4360 4361
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4362 4363 4364

	return 0;
}
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4404
#endif