amd_iommu.c 93.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38
#include <linux/percpu.h>
39 40 41 42
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
43
#include <asm/msidef.h>
44
#include <asm/proto.h>
45
#include <asm/iommu.h>
46
#include <asm/gart.h>
47
#include <asm/dma.h>
48 49 50

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
51
#include "irq_remapping.h"
52 53 54

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

55
#define LOOP_TIMEOUT	100000
56

57 58 59 60 61 62
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
63
 * 512GB Pages are not supported due to a hardware bug
64
 */
J
Joerg Roedel 已提交
65
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
66

67 68
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

69 70 71 72
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

73 74 75
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

76 77 78 79
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
80
static const struct iommu_ops amd_iommu_ops;
81

82
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83
int amd_iommu_max_glx_val = -1;
84

85 86
static struct dma_map_ops amd_iommu_dma_ops;

87 88 89 90 91 92 93 94 95
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
96
	bool passthrough;		  /* Device is identity mapped */
97 98 99 100 101 102 103 104 105
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

106 107 108
/*
 * general struct to manage commands send to an IOMMU
 */
109
struct iommu_cmd {
110 111 112
	u32 data[4];
};

113 114
struct kmem_cache *amd_iommu_irq_cache;

115
static void update_domain(struct protection_domain *domain);
116
static int protection_domain_init(struct protection_domain *domain);
117

118 119 120 121 122 123
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

124 125
	spinlock_t bitmap_lock;

126 127
	/* address allocation bitmap */
	unsigned long *bitmap;
128
	unsigned long offset;
129
	unsigned long next_bit;
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

150
	/* aperture index we start searching for free addresses */
151
	u32 __percpu *next_index;
152 153 154 155 156

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

157 158 159 160 161 162
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

163 164 165 166 167
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

168
static struct iommu_dev_data *alloc_dev_data(u16 devid)
169 170 171 172 173 174 175 176
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

177
	dev_data->devid = devid;
178 179 180 181 182 183 184 185

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

217 218 219 220
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

221
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
222 223
}

224 225 226 227 228
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

229 230 231 232
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
233 234
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
235 236 237 238 239 240 241 242 243 244 245 246
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

247 248 249 250 251 252 253 254 255
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

256
/*
257 258
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
259
 */
260 261
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
262
{
263
	u64 addr;
264

265 266 267 268 269
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
270
	}
271
}
272

273 274 275 276 277 278 279 280
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
281

282
	devid = get_device_id(dev);
283

284 285 286 287 288
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
289 290
}

291 292 293 294 295 296 297 298 299 300 301
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

302 303
	/* No PCI device */
	if (!dev_is_pci(dev))
304 305 306 307 308 309 310 311 312 313 314 315 316 317
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

318
static void init_iommu_group(struct device *dev)
319
{
320 321
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
322 323
	struct iommu_group *group;

324
	group = iommu_group_get_for_dev(dev);
325 326 327 328 329 330 331 332 333 334 335 336
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
337 338 339 340 341 342 343 344 345 346 347 348 349 350
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

351 352 353 354 355 356 357
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

358 359
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
360 361 362
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

363 364 365
	return 0;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

380 381
static void iommu_uninit_device(struct device *dev)
{
382 383 384 385 386
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
387 388 389
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

390 391
	iommu_group_remove_device(dev);

392 393 394
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

395
	/*
396 397
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
398
	 */
399
}
J
Joerg Roedel 已提交
400

401 402 403 404 405 406
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

407
DECLARE_STATS_COUNTER(compl_wait);
408
DECLARE_STATS_COUNTER(cnt_map_single);
409
DECLARE_STATS_COUNTER(cnt_unmap_single);
410
DECLARE_STATS_COUNTER(cnt_map_sg);
411
DECLARE_STATS_COUNTER(cnt_unmap_sg);
412
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
413
DECLARE_STATS_COUNTER(cnt_free_coherent);
414
DECLARE_STATS_COUNTER(cross_page);
415
DECLARE_STATS_COUNTER(domain_flush_single);
416
DECLARE_STATS_COUNTER(domain_flush_all);
417
DECLARE_STATS_COUNTER(alloced_io_mem);
418
DECLARE_STATS_COUNTER(total_map_requests);
419 420 421 422 423
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
443
					 &amd_iommu_unmap_flush);
444 445

	amd_iommu_stats_add(&compl_wait);
446
	amd_iommu_stats_add(&cnt_map_single);
447
	amd_iommu_stats_add(&cnt_unmap_single);
448
	amd_iommu_stats_add(&cnt_map_sg);
449
	amd_iommu_stats_add(&cnt_unmap_sg);
450
	amd_iommu_stats_add(&cnt_alloc_coherent);
451
	amd_iommu_stats_add(&cnt_free_coherent);
452
	amd_iommu_stats_add(&cross_page);
453
	amd_iommu_stats_add(&domain_flush_single);
454
	amd_iommu_stats_add(&domain_flush_all);
455
	amd_iommu_stats_add(&alloced_io_mem);
456
	amd_iommu_stats_add(&total_map_requests);
457 458 459 460
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
461 462 463 464
}

#endif

465 466 467 468 469 470
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

471 472 473 474
static void dump_dte_entry(u16 devid)
{
	int i;

475 476
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
477 478 479
			amd_iommu_dev_table[devid].data[i]);
}

480 481 482 483 484 485 486 487 488
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

489
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
490
{
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
512

513
	printk(KERN_ERR "AMD-Vi: Event logged [");
514 515 516 517 518

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
519
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
520
		       address, flags);
521
		dump_dte_entry(devid);
522 523 524 525
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
526
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
527 528 529 530 531
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
532
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
533 534 535 536 537
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
538
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
539 540 541 542
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
543
		dump_command(address);
544 545 546 547 548 549 550 551
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
552
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
553 554 555 556 557
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
558
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
559 560 561 562 563
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
564 565

	memset(__evt, 0, 4 * sizeof(u32));
566 567 568 569 570 571 572 573 574 575
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
576
		iommu_print_event(iommu, iommu->evt_buf + head);
577
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
578 579 580 581 582
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

583
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
584 585 586
{
	struct amd_iommu_fault fault;

587 588
	INC_STATS_COUNTER(pri_requests);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
630

631 632 633
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
634

635 636 637 638 639 640 641
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
642 643
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
644 645 646 647 648 649

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
650 651 652 653
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

654
irqreturn_t amd_iommu_int_thread(int irq, void *data)
655
{
656 657
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
658

659 660 661 662
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
663

664 665 666 667
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
668

669 670 671 672
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
689
	return IRQ_HANDLED;
690 691
}

692 693 694 695 696
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

697 698 699 700 701 702
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
723 724 725
{
	u8 *target;

726
	target = iommu->cmd_buf + tail;
727
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
728 729 730 731 732

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
733
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
734
}
735

736
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
737
{
738 739
	WARN_ON(address & 0x7ULL);

740
	memset(cmd, 0, sizeof(*cmd));
741 742 743
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
744 745 746
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

747 748 749 750 751 752 753
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

754 755 756 757
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
758
	bool s;
759 760

	pages = iommu_num_pages(address, size, PAGE_SIZE);
761
	s     = false;
762 763 764 765 766 767 768

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
769
		s = true;
770 771 772 773 774 775 776 777 778 779 780
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
781
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
782 783 784
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

785 786 787 788
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
789
	bool s;
790 791

	pages = iommu_num_pages(address, size, PAGE_SIZE);
792
	s     = false;
793 794 795 796 797 798 799

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
800
		s = true;
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

816 817 818 819 820 821 822
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

823
	cmd->data[0]  = pasid;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
842
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
843 844
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
845
	cmd->data[1] |= (pasid & 0xff) << 16;
846 847 848 849 850 851 852 853
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

854 855 856 857 858 859 860
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
861
		cmd->data[1]  = pasid;
862 863 864 865 866 867 868 869
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

870 871 872 873
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
874 875
}

876 877 878 879 880 881 882
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

883 884
/*
 * Writes the command to the IOMMUs command buffer and informs the
885
 * hardware about the new command.
886
 */
887 888 889
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
890
{
891
	u32 left, tail, head, next_tail;
892 893
	unsigned long flags;

894
again:
895 896
	spin_lock_irqsave(&iommu->lock, flags);

897 898
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
899 900
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
901

902 903 904 905
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
906

907 908
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
909

910 911 912 913 914 915
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
916 917
	}

918 919 920
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
921
	iommu->need_sync = sync;
922

923
	spin_unlock_irqrestore(&iommu->lock, flags);
924

925
	return 0;
926 927
}

928 929 930 931 932
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

933 934 935 936
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
937
static int iommu_completion_wait(struct amd_iommu *iommu)
938 939
{
	struct iommu_cmd cmd;
940
	volatile u64 sem = 0;
941
	int ret;
942

943
	if (!iommu->need_sync)
944
		return 0;
945

946
	build_completion_wait(&cmd, (u64)&sem);
947

948
	ret = iommu_queue_command_sync(iommu, &cmd, false);
949
	if (ret)
950
		return ret;
951

952
	return wait_on_sem(&sem);
953 954
}

955
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
956
{
957
	struct iommu_cmd cmd;
958

959
	build_inv_dte(&cmd, devid);
960

961 962
	return iommu_queue_command(iommu, &cmd);
}
963

964 965 966
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
967

968 969
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
970

971 972
	iommu_completion_wait(iommu);
}
973

974 975 976 977 978 979 980
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
981

982 983 984 985 986 987
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
988

989
	iommu_completion_wait(iommu);
990 991
}

992
static void iommu_flush_all(struct amd_iommu *iommu)
993
{
994
	struct iommu_cmd cmd;
995

996
	build_inv_all(&cmd);
997

998 999 1000 1001
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1021 1022
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1023 1024 1025 1026
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1027
		iommu_flush_irt_all(iommu);
1028
		iommu_flush_tlb_all(iommu);
1029 1030 1031
	}
}

1032
/*
1033
 * Command send function for flushing on-device TLB
1034
 */
1035 1036
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1037 1038
{
	struct amd_iommu *iommu;
1039
	struct iommu_cmd cmd;
1040
	int qdep;
1041

1042 1043
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1044

1045
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1046 1047

	return iommu_queue_command(iommu, &cmd);
1048 1049
}

1050 1051 1052
/*
 * Command send function for invalidating a device table entry
 */
1053
static int device_flush_dte(struct iommu_dev_data *dev_data)
1054
{
1055
	struct amd_iommu *iommu;
1056
	u16 alias;
1057
	int ret;
1058

1059
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1060
	alias = amd_iommu_alias_table[dev_data->devid];
1061

1062
	ret = iommu_flush_dte(iommu, dev_data->devid);
1063 1064
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1065 1066 1067
	if (ret)
		return ret;

1068
	if (dev_data->ats.enabled)
1069
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1070 1071

	return ret;
1072 1073
}

1074 1075 1076 1077 1078
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1079 1080
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1081
{
1082
	struct iommu_dev_data *dev_data;
1083 1084
	struct iommu_cmd cmd;
	int ret = 0, i;
1085

1086
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1087

1088 1089 1090 1091 1092 1093 1094 1095
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1096
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1097 1098
	}

1099 1100
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1101
		if (!dev_data->ats.enabled)
1102 1103
			continue;

1104
		ret |= device_flush_iotlb(dev_data, address, size);
1105 1106
	}

1107
	WARN_ON(ret);
1108 1109
}

1110 1111
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1112
{
1113
	__domain_flush_pages(domain, address, size, 0);
1114
}
1115

1116
/* Flush the whole IO/TLB for a given protection domain */
1117
static void domain_flush_tlb(struct protection_domain *domain)
1118
{
1119
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1120 1121
}

1122
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1123
static void domain_flush_tlb_pde(struct protection_domain *domain)
1124
{
1125
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1126 1127
}

1128
static void domain_flush_complete(struct protection_domain *domain)
1129
{
1130
	int i;
1131

1132 1133 1134
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1135

1136 1137 1138 1139 1140
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1141
	}
1142 1143
}

1144

1145
/*
1146
 * This function flushes the DTEs for all devices in domain
1147
 */
1148
static void domain_flush_devices(struct protection_domain *domain)
1149
{
1150
	struct iommu_dev_data *dev_data;
1151

1152
	list_for_each_entry(dev_data, &domain->dev_list, list)
1153
		device_flush_dte(dev_data);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1192
		      unsigned long page_size,
1193 1194 1195
		      u64 **pte_page,
		      gfp_t gfp)
{
1196
	int level, end_lvl;
1197
	u64 *pte, *page;
1198 1199

	BUG_ON(!is_power_of_2(page_size));
1200 1201 1202 1203

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1204 1205 1206 1207
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1208 1209

	while (level > end_lvl) {
1210 1211 1212 1213 1214
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1215 1216 1217
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1218 1219 1220 1221 1222 1223 1224

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1225 1226
		}

1227 1228 1229 1230
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1248 1249 1250
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1251 1252 1253 1254
{
	int level;
	u64 *pte;

1255 1256 1257
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1258 1259 1260
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1261

1262 1263 1264
	while (level > 0) {

		/* Not Present */
1265 1266 1267
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1268
		/* Large PTE */
1269 1270 1271
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1272 1273 1274 1275 1276

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1277 1278
		level -= 1;

1279
		/* Walk to the next level */
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1295 1296 1297 1298 1299
	}

	return pte;
}

1300 1301 1302 1303 1304 1305 1306
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1307 1308 1309
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1310
			  int prot,
1311
			  unsigned long page_size)
1312
{
1313
	u64 __pte, *pte;
1314
	int i, count;
1315

1316 1317 1318
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1319
	if (!(prot & IOMMU_PROT_MASK))
1320 1321
		return -EINVAL;

1322 1323
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1324

1325 1326 1327
	if (!pte)
		return -ENOMEM;

1328 1329 1330
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1331

1332
	if (count > 1) {
1333 1334 1335 1336
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1337 1338 1339 1340 1341 1342

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1343 1344
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1345

1346 1347
	update_domain(dom);

1348 1349 1350
	return 0;
}

1351 1352 1353
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1354
{
1355 1356
	unsigned long long unmapped;
	unsigned long unmap_size;
1357 1358 1359 1360 1361
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1362

1363 1364
	while (unmapped < page_size) {

1365 1366 1367 1368 1369 1370
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1371 1372 1373 1374 1375 1376 1377 1378
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1379
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1380

1381
	return unmapped;
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391 1392
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1393

1394
/*
1395
 * The address allocator core functions.
1396 1397 1398
 *
 * called with domain->lock held
 */
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1420 1421 1422 1423 1424
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1425
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1426 1427 1428
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1429
	unsigned long i, old_size, pte_pgsize;
1430 1431 1432
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1433

1434 1435 1436 1437
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1438 1439 1440
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1441 1442
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1443 1444
		return -ENOMEM;

1445 1446
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1447 1448
		goto out_free;

1449
	range->offset = dma_dom->aperture_size;
1450

1451
	spin_lock_init(&range->bitmap_lock);
1452

1453 1454 1455 1456 1457 1458
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1459
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1460 1461 1462 1463
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1464
			range->pte_pages[i] = pte_page;
1465 1466 1467 1468 1469

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1470 1471
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1472
	/* First take the bitmap_lock and then publish the range */
1473
	spin_lock(&range->bitmap_lock);
1474 1475 1476 1477

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1491
	/* Initialize the exclusion range if necessary */
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1513
	     i += pte_pgsize) {
1514
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1515 1516 1517
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1518 1519
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1520 1521
	}

1522 1523
	update_domain(&dma_dom->domain);

1524 1525 1526
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1527

1528 1529 1530
	return 0;

out_free:
1531 1532
	update_domain(&dma_dom->domain);

1533
	free_page((unsigned long)range->bitmap);
1534

1535
	kfree(range);
1536 1537 1538 1539

	return -ENOMEM;
}

1540 1541
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1542 1543 1544
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1545 1546
					 unsigned long align_mask,
					 bool trylock)
1547 1548 1549
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1550
	bool flush = false;
1551 1552 1553 1554 1555

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1556 1557 1558 1559 1560 1561 1562
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1563 1564
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1565
	if (address == -1) {
1566 1567 1568 1569
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1570 1571
		flush = true;
	}
1572 1573 1574 1575

	if (address != -1)
		range->next_bit = address + pages;

1576 1577
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1578 1579 1580 1581 1582
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1583 1584 1585
	return address;
}

1586 1587 1588 1589
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1590
					u64 dma_mask)
1591
{
1592
	unsigned long boundary_size, mask;
1593
	unsigned long address = -1;
1594
	bool first = true;
1595 1596 1597
	u32 start, i;

	preempt_disable();
1598

1599 1600
	mask = dma_get_seg_boundary(dev);

1601
again:
1602 1603 1604 1605 1606 1607 1608 1609
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1610 1611
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1612

1613 1614
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1615 1616 1617
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1618

1619
		range = dom->aperture[index];
1620 1621 1622

		if (!range || range->offset >= dma_mask)
			continue;
1623

1624
		address = dma_ops_aperture_alloc(dom, range, pages,
1625
						 dma_mask, boundary_size,
1626
						 align_mask, first);
1627
		if (address != -1) {
1628
			address = range->offset + (address << PAGE_SHIFT);
1629
			this_cpu_write(*dom->next_index, index);
1630 1631 1632 1633
			break;
		}
	}

1634 1635 1636 1637 1638
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1639 1640
	preempt_enable();

1641 1642 1643
	return address;
}

1644 1645
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1646
					     unsigned int pages,
1647 1648
					     unsigned long align_mask,
					     u64 dma_mask)
1649
{
1650
	unsigned long address = -1;
1651

1652 1653 1654 1655
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1656
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1657 1658
			break;
	}
1659

1660
	if (unlikely(address == -1))
1661
		address = DMA_ERROR_CODE;
1662 1663 1664 1665 1666 1667

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1668 1669 1670 1671 1672
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1673 1674 1675 1676
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1677 1678
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1679
	unsigned long flags;
1680

1681 1682
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1683 1684 1685 1686
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1687

1688
	if (amd_iommu_unmap_flush) {
1689 1690 1691
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1692 1693

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1694

1695
	spin_lock_irqsave(&range->bitmap_lock, flags);
1696 1697
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1698
	bitmap_clear(range->bitmap, address, pages);
1699
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1700

1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1775
		/* PTE present? */				\
1776 1777 1778
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1779 1780 1781 1782 1783
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1796
static void free_pagetable(struct protection_domain *domain)
1797
{
1798
	unsigned long root = (unsigned long)domain->pt_root;
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1823 1824 1825
	}
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1856 1857
static void free_gcr3_table(struct protection_domain *domain)
{
1858 1859 1860 1861
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1862 1863
	else
		BUG_ON(domain->glx != 0);
1864

1865 1866 1867
	free_page((unsigned long)domain->gcr3_tbl);
}

1868 1869 1870 1871
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1872 1873
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1874 1875
	int i;

1876 1877 1878
	if (!dom)
		return;

1879 1880
	free_percpu(dom->next_index);

1881 1882
	del_domain_from_list(&dom->domain);

1883
	free_pagetable(&dom->domain);
1884

1885 1886 1887 1888 1889 1890
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1891 1892 1893 1894

	kfree(dom);
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

1912 1913
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1914
 * It also initializes the page table and the address allocator data
1915 1916
 * structures required for the dma_ops interface
 */
1917
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1918 1919
{
	struct dma_ops_domain *dma_dom;
1920
	int cpu;
1921 1922 1923 1924 1925

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1926
	if (protection_domain_init(&dma_dom->domain))
1927
		goto free_dma_dom;
1928

1929 1930 1931 1932
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

1933
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1934
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1935
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1936 1937 1938 1939
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1940 1941
	add_domain_to_list(&dma_dom->domain);

1942
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1943 1944
		goto free_dma_dom;

1945
	/*
1946 1947
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1948
	 */
1949
	dma_dom->aperture[0]->bitmap[0] = 1;
1950

1951 1952
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
1953 1954 1955 1956 1957 1958 1959 1960 1961

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1971
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1972
{
1973
	u64 pte_root = 0;
1974
	u64 flags = 0;
1975

1976 1977 1978
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1979 1980 1981
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1982

1983 1984
	flags = amd_iommu_dev_table[devid].data[1];

1985 1986 1987
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2014 2015 2016 2017 2018
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2019 2020 2021 2022 2023
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2024 2025
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2026 2027

	amd_iommu_apply_erratum_63(devid);
2028 2029
}

2030 2031
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2032 2033
{
	struct amd_iommu *iommu;
2034
	u16 alias;
2035
	bool ats;
2036

2037
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2038
	alias = amd_iommu_alias_table[dev_data->devid];
2039
	ats   = dev_data->ats.enabled;
2040 2041 2042 2043 2044 2045 2046 2047 2048

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2049 2050 2051
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2052
		set_dte_entry(alias, domain, ats);
2053

2054
	device_flush_dte(dev_data);
2055 2056
}

2057
static void do_detach(struct iommu_dev_data *dev_data)
2058 2059
{
	struct amd_iommu *iommu;
2060
	u16 alias;
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2071
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2072
	alias = amd_iommu_alias_table[dev_data->devid];
2073 2074

	/* decrease reference counters */
2075 2076 2077 2078 2079 2080
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2081
	clear_dte_entry(dev_data->devid);
2082 2083
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2084

2085
	/* Flush the DTE entry */
2086
	device_flush_dte(dev_data);
2087 2088 2089 2090 2091 2092
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2093
static int __attach_device(struct iommu_dev_data *dev_data,
2094
			   struct protection_domain *domain)
2095
{
2096
	int ret;
2097

2098 2099 2100 2101 2102 2103
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2104 2105 2106
	/* lock domain */
	spin_lock(&domain->lock);

2107
	ret = -EBUSY;
2108
	if (dev_data->domain != NULL)
2109
		goto out_unlock;
2110

2111
	/* Attach alias group root */
2112
	do_attach(dev_data, domain);
2113

2114 2115 2116 2117
	ret = 0;

out_unlock:

2118 2119
	/* ready */
	spin_unlock(&domain->lock);
2120

2121
	return ret;
2122
}
2123

2124 2125 2126 2127 2128 2129 2130 2131

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2132 2133 2134 2135 2136 2137
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2138
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2139 2140 2141
	if (!pos)
		return -EINVAL;

2142 2143 2144
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2145 2146 2147 2148

	return 0;
}

2149 2150
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2151 2152 2153 2154 2155 2156 2157 2158
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2170 2171
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2172 2173 2174
	if (ret)
		goto out_err;

2175 2176 2177 2178 2179 2180
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2194
/* FIXME: Move this to PCI code */
2195
#define PCI_PRI_TLP_OFF		(1 << 15)
2196

J
Joerg Roedel 已提交
2197
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2198
{
2199
	u16 status;
2200 2201
	int pos;

2202
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2203 2204 2205
	if (!pos)
		return false;

2206
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2207

2208
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2209 2210
}

2211
/*
F
Frank Arnold 已提交
2212
 * If a device is not yet associated with a domain, this function
2213 2214
 * assigns it visible for the hardware
 */
2215 2216
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2217
{
2218
	struct pci_dev *pdev = to_pci_dev(dev);
2219
	struct iommu_dev_data *dev_data;
2220
	unsigned long flags;
2221
	int ret;
2222

2223 2224
	dev_data = get_dev_data(dev);

2225
	if (domain->flags & PD_IOMMUV2_MASK) {
2226
		if (!dev_data->passthrough)
2227 2228
			return -EINVAL;

2229 2230 2231
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2232

2233 2234 2235 2236
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2237 2238
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2239 2240 2241
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2242

2243
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2244
	ret = __attach_device(dev_data, domain);
2245 2246
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2247 2248 2249 2250 2251
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2252
	domain_flush_tlb_pde(domain);
2253 2254

	return ret;
2255 2256
}

2257 2258 2259
/*
 * Removes a device from a protection domain (unlocked)
 */
2260
static void __detach_device(struct iommu_dev_data *dev_data)
2261
{
2262
	struct protection_domain *domain;
2263

2264 2265 2266 2267 2268
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2269

2270 2271
	if (WARN_ON(!dev_data->domain))
		return;
2272

2273
	domain = dev_data->domain;
2274

2275
	spin_lock(&domain->lock);
2276

2277
	do_detach(dev_data);
2278

2279
	spin_unlock(&domain->lock);
2280 2281 2282 2283 2284
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2285
static void detach_device(struct device *dev)
2286
{
2287
	struct protection_domain *domain;
2288
	struct iommu_dev_data *dev_data;
2289 2290
	unsigned long flags;

2291
	dev_data = get_dev_data(dev);
2292
	domain   = dev_data->domain;
2293

2294 2295
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2296
	__detach_device(dev_data);
2297
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2298

2299
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2300 2301
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2302
		pci_disable_ats(to_pci_dev(dev));
2303 2304

	dev_data->ats.enabled = false;
2305
}
2306

2307
static int amd_iommu_add_device(struct device *dev)
2308
{
2309
	struct iommu_dev_data *dev_data;
2310
	struct iommu_domain *domain;
2311
	struct amd_iommu *iommu;
2312
	u16 devid;
2313
	int ret;
2314

2315
	if (!check_device(dev) || get_dev_data(dev))
2316
		return 0;
2317

2318 2319
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2320

2321
	ret = iommu_init_device(dev);
2322 2323 2324 2325
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2326

2327
		iommu_ignore_device(dev);
2328
		dev->archdata.dma_ops = &nommu_dma_ops;
2329 2330 2331
		goto out;
	}
	init_iommu_group(dev);
2332

2333
	dev_data = get_dev_data(dev);
2334

2335
	BUG_ON(!dev_data);
2336

2337
	if (iommu_pass_through || dev_data->iommu_v2)
2338
		iommu_request_dm_for_dev(dev);
2339

2340 2341
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2342
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2343
		dev_data->passthrough = true;
2344
	else
2345
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2346

2347
out:
2348 2349 2350 2351 2352
	iommu_completion_wait(iommu);

	return 0;
}

2353
static void amd_iommu_remove_device(struct device *dev)
2354
{
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2366 2367
}

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2381
static struct protection_domain *get_domain(struct device *dev)
2382
{
2383
	struct protection_domain *domain;
2384
	struct iommu_domain *io_domain;
2385

2386
	if (!check_device(dev))
2387
		return ERR_PTR(-EINVAL);
2388

2389
	io_domain = iommu_get_domain_for_dev(dev);
2390 2391
	if (!io_domain)
		return NULL;
2392

2393 2394
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2395
		return ERR_PTR(-EBUSY);
2396

2397
	return domain;
2398 2399
}

2400 2401
static void update_device_table(struct protection_domain *domain)
{
2402
	struct iommu_dev_data *dev_data;
2403

2404 2405
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2406 2407 2408 2409 2410 2411 2412 2413
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2414 2415 2416

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2417 2418 2419 2420

	domain->updated = false;
}

2421 2422 2423 2424 2425 2426
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2427
	struct aperture_range *aperture;
2428 2429
	u64 *pte, *pte_page;

2430 2431 2432 2433 2434
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2435
	if (!pte) {
2436
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2437
				GFP_ATOMIC);
2438 2439
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2440
		pte += PM_LEVEL_INDEX(0, address);
2441

2442
	update_domain(&dom->domain);
2443 2444 2445 2446

	return pte;
}

2447 2448 2449 2450
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2451
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2462
	pte  = dma_ops_get_pte(dom, address);
2463
	if (!pte)
2464
		return DMA_ERROR_CODE;
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2475
	WARN_ON_ONCE(*pte);
2476 2477 2478 2479 2480 2481

	*pte = __pte;

	return (dma_addr_t)address;
}

2482 2483 2484
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2485
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2486 2487
				 unsigned long address)
{
2488
	struct aperture_range *aperture;
2489 2490 2491 2492 2493
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2494 2495 2496 2497 2498 2499 2500
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2501

2502
	pte += PM_LEVEL_INDEX(0, address);
2503

2504
	WARN_ON_ONCE(!*pte);
2505 2506 2507 2508

	*pte = 0ULL;
}

2509 2510
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2511 2512
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2513 2514
 * Must be called with the domain lock held.
 */
2515 2516 2517 2518
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2519
			       int dir,
2520 2521
			       bool align,
			       u64 dma_mask)
2522 2523
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2524
	dma_addr_t address, start, ret;
2525
	unsigned int pages;
2526
	unsigned long align_mask = 0;
2527 2528
	int i;

2529
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2530 2531
	paddr &= PAGE_MASK;

2532 2533
	INC_STATS_COUNTER(total_map_requests);

2534 2535 2536
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2537 2538 2539
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2540 2541
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2542

2543 2544
	if (address == DMA_ERROR_CODE)
		goto out;
2545 2546 2547

	start = address;
	for (i = 0; i < pages; ++i) {
2548
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2549
		if (ret == DMA_ERROR_CODE)
2550 2551
			goto out_unmap;

2552 2553 2554 2555 2556
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2557 2558
	ADD_STATS_COUNTER(alloced_io_mem, size);

2559
	if (unlikely(amd_iommu_np_cache)) {
2560
		domain_flush_pages(&dma_dom->domain, address, size);
2561 2562
		domain_flush_complete(&dma_dom->domain);
	}
2563

2564 2565
out:
	return address;
2566 2567 2568 2569 2570

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2571
		dma_ops_domain_unmap(dma_dom, start);
2572 2573 2574 2575
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2576
	return DMA_ERROR_CODE;
2577 2578
}

2579 2580 2581 2582
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2583
static void __unmap_single(struct dma_ops_domain *dma_dom,
2584 2585 2586 2587
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2588
	dma_addr_t flush_addr;
2589 2590 2591
	dma_addr_t i, start;
	unsigned int pages;

2592
	if ((dma_addr == DMA_ERROR_CODE) ||
2593
	    (dma_addr + size > dma_dom->aperture_size))
2594 2595
		return;

2596
	flush_addr = dma_addr;
2597
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2598 2599 2600 2601
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2602
		dma_ops_domain_unmap(dma_dom, start);
2603 2604 2605
		start += PAGE_SIZE;
	}

2606 2607 2608
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2609 2610
}

2611 2612 2613
/*
 * The exported map_single function for dma_ops.
 */
2614 2615 2616 2617
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2618
{
2619
	phys_addr_t paddr = page_to_phys(page) + offset;
2620
	struct protection_domain *domain;
2621
	u64 dma_mask;
2622

2623 2624
	INC_STATS_COUNTER(cnt_map_single);

2625 2626
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2627
		return (dma_addr_t)paddr;
2628 2629
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2630

2631 2632
	dma_mask = *dev->dma_mask;

2633
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2634
			    dma_mask);
2635 2636
}

2637 2638 2639
/*
 * The exported unmap_single function for dma_ops.
 */
2640 2641
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2642 2643 2644
{
	struct protection_domain *domain;

2645 2646
	INC_STATS_COUNTER(cnt_unmap_single);

2647 2648
	domain = get_domain(dev);
	if (IS_ERR(domain))
2649 2650
		return;

2651
	__unmap_single(domain->priv, dma_addr, size, dir);
2652 2653
}

2654 2655 2656 2657
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2658
static int map_sg(struct device *dev, struct scatterlist *sglist,
2659 2660
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2661 2662 2663 2664 2665 2666
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2667
	u64 dma_mask;
2668

2669 2670
	INC_STATS_COUNTER(cnt_map_sg);

2671
	domain = get_domain(dev);
2672
	if (IS_ERR(domain))
2673
		return 0;
2674

2675
	dma_mask = *dev->dma_mask;
2676 2677 2678 2679

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2680
		s->dma_address = __map_single(dev, domain->priv,
2681 2682
					      paddr, s->length, dir, false,
					      dma_mask);
2683 2684 2685 2686 2687 2688 2689 2690 2691

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2692

2693 2694 2695
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2696
			__unmap_single(domain->priv, s->dma_address,
2697 2698 2699 2700
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2701
	return 0;
2702 2703
}

2704 2705 2706 2707
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2708
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2709 2710
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2711 2712 2713 2714 2715
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2716 2717
	INC_STATS_COUNTER(cnt_unmap_sg);

2718 2719
	domain = get_domain(dev);
	if (IS_ERR(domain))
2720 2721
		return;

2722
	for_each_sg(sglist, s, nelems, i) {
2723
		__unmap_single(domain->priv, s->dma_address,
2724 2725 2726 2727 2728
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2729 2730 2731
/*
 * The exported alloc_coherent function for dma_ops.
 */
2732
static void *alloc_coherent(struct device *dev, size_t size,
2733 2734
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2735
{
2736
	u64 dma_mask = dev->coherent_dma_mask;
2737 2738
	struct protection_domain *domain;
	struct page *page;
2739

2740 2741
	INC_STATS_COUNTER(cnt_alloc_coherent);

2742 2743
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2744 2745 2746
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2747 2748
	} else if (IS_ERR(domain))
		return NULL;
2749

2750
	size	  = PAGE_ALIGN(size);
2751 2752
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2753
	flag     |= __GFP_ZERO;
2754

2755 2756
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2757
		if (!gfpflags_allow_blocking(flag))
2758
			return NULL;
2759

2760 2761 2762 2763 2764
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2765

2766 2767 2768
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2769
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2770
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2771

2772
	if (*dma_addr == DMA_ERROR_CODE)
2773
		goto out_free;
2774

2775
	return page_address(page);
2776 2777 2778

out_free:

2779 2780
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2781 2782

	return NULL;
2783 2784
}

2785 2786 2787
/*
 * The exported free_coherent function for dma_ops.
 */
2788
static void free_coherent(struct device *dev, size_t size,
2789 2790
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2791 2792
{
	struct protection_domain *domain;
2793
	struct page *page;
2794

2795 2796
	INC_STATS_COUNTER(cnt_free_coherent);

2797 2798 2799
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2800 2801
	domain = get_domain(dev);
	if (IS_ERR(domain))
2802 2803
		goto free_mem;

2804
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2805 2806

free_mem:
2807 2808
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2809 2810
}

2811 2812 2813 2814 2815 2816
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2817
	return check_device(dev);
2818 2819
}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2848
static struct dma_map_ops amd_iommu_dma_ops = {
2849 2850 2851 2852 2853 2854 2855 2856
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2857 2858
};

2859
int __init amd_iommu_init_api(void)
2860
{
2861
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2862 2863
}

2864 2865
int __init amd_iommu_init_dma_ops(void)
{
2866
	swiotlb        = iommu_pass_through ? 1 : 0;
2867 2868
	iommu_detected = 1;

2869 2870 2871 2872 2873 2874 2875 2876 2877
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2878 2879
	amd_iommu_stats_init();

2880 2881 2882 2883 2884
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2885 2886
	return 0;
}
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2900
	struct iommu_dev_data *entry;
2901 2902 2903 2904
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2905 2906 2907 2908
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2909
	}
2910 2911 2912 2913

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2914 2915 2916 2917 2918
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2919 2920
	del_domain_from_list(domain);

2921 2922 2923 2924 2925 2926
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2939
static struct protection_domain *protection_domain_alloc(void)
2940 2941 2942 2943 2944
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2945
		return NULL;
2946

2947
	if (protection_domain_init(domain))
2948 2949
		goto out_err;

2950 2951
	add_domain_to_list(domain);

2952 2953 2954 2955 2956 2957 2958 2959
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2960
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2961
{
2962
	struct protection_domain *pdomain;
2963
	struct dma_ops_domain *dma_domain;
2964

2965 2966 2967 2968 2969
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2970

2971 2972 2973 2974 2975 2976
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2977

2978 2979 2980
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2991 2992 2993 2994
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2995

2996 2997
		pdomain->mode = PAGE_MODE_NONE;
		break;
2998 2999 3000
	default:
		return NULL;
	}
3001

3002
	return &pdomain->domain;
3003 3004
}

3005
static void amd_iommu_domain_free(struct iommu_domain *dom)
3006
{
3007
	struct protection_domain *domain;
3008

3009
	if (!dom)
3010 3011
		return;

3012 3013
	domain = to_pdomain(dom);

3014 3015 3016 3017 3018
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3019 3020
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3021

3022 3023 3024
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3025
	protection_domain_free(domain);
3026 3027
}

3028 3029 3030
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3031
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3032 3033 3034
	struct amd_iommu *iommu;
	u16 devid;

3035
	if (!check_device(dev))
3036 3037
		return;

3038
	devid = get_device_id(dev);
3039

3040
	if (dev_data->domain != NULL)
3041
		detach_device(dev);
3042 3043 3044 3045 3046 3047 3048 3049

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3050 3051 3052
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3053
	struct protection_domain *domain = to_pdomain(dom);
3054
	struct iommu_dev_data *dev_data;
3055
	struct amd_iommu *iommu;
3056
	int ret;
3057

3058
	if (!check_device(dev))
3059 3060
		return -EINVAL;

3061 3062
	dev_data = dev->archdata.iommu;

3063
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3064 3065 3066
	if (!iommu)
		return -EINVAL;

3067
	if (dev_data->domain)
3068
		detach_device(dev);
3069

3070
	ret = attach_device(dev, domain);
3071 3072 3073

	iommu_completion_wait(iommu);

3074
	return ret;
3075 3076
}

3077
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3078
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3079
{
3080
	struct protection_domain *domain = to_pdomain(dom);
3081 3082 3083
	int prot = 0;
	int ret;

3084 3085 3086
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3087 3088 3089 3090 3091
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3092
	mutex_lock(&domain->api_lock);
3093
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3094 3095
	mutex_unlock(&domain->api_lock);

3096
	return ret;
3097 3098
}

3099 3100
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3101
{
3102
	struct protection_domain *domain = to_pdomain(dom);
3103
	size_t unmap_size;
3104

3105 3106 3107
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3108
	mutex_lock(&domain->api_lock);
3109
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3110
	mutex_unlock(&domain->api_lock);
3111

3112
	domain_flush_tlb_pde(domain);
3113

3114
	return unmap_size;
3115 3116
}

3117
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3118
					  dma_addr_t iova)
3119
{
3120
	struct protection_domain *domain = to_pdomain(dom);
3121
	unsigned long offset_mask, pte_pgsize;
3122
	u64 *pte, __pte;
3123

3124 3125 3126
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3127
	pte = fetch_pte(domain, iova, &pte_pgsize);
3128

3129
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3130 3131
		return 0;

3132 3133
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3134

3135
	return (__pte & ~offset_mask) | (iova & offset_mask);
3136 3137
}

3138
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3139
{
3140 3141
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3142
		return true;
3143
	case IOMMU_CAP_INTR_REMAP:
3144
		return (irq_remapping_enabled == 1);
3145 3146
	case IOMMU_CAP_NOEXEC:
		return false;
3147 3148
	}

3149
	return false;
S
Sheng Yang 已提交
3150 3151
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3193
static const struct iommu_ops amd_iommu_ops = {
3194
	.capable = amd_iommu_capable,
3195 3196
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3197 3198
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3199 3200
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3201
	.map_sg = default_iommu_map_sg,
3202
	.iova_to_phys = amd_iommu_iova_to_phys,
3203 3204
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3205
	.device_group = pci_device_group,
3206 3207
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3208
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3209 3210
};

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3233 3234 3235

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3236
	struct protection_domain *domain = to_pdomain(dom);
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3254 3255 3256

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3257
	struct protection_domain *domain = to_pdomain(dom);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3335 3336 3337 3338 3339 3340
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3366 3367
	INC_STATS_COUNTER(invalidate_iotlb);

3368 3369 3370 3371 3372 3373
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3374
	struct protection_domain *domain = to_pdomain(dom);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3388 3389
	INC_STATS_COUNTER(invalidate_iotlb_all);

3390 3391 3392 3393 3394 3395
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3396
	struct protection_domain *domain = to_pdomain(dom);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3476
	struct protection_domain *domain = to_pdomain(dom);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3490
	struct protection_domain *domain = to_pdomain(dom);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3501 3502 3503 3504 3505 3506 3507 3508

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3509 3510
	INC_STATS_COUNTER(complete_ppr);

3511 3512 3513 3514 3515 3516 3517 3518 3519
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3520 3521 3522

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3523
	struct protection_domain *pdomain;
3524

3525 3526
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3527 3528 3529
		return NULL;

	/* Only return IOMMUv2 domains */
3530
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3531 3532
		return NULL;

3533
	return &pdomain->domain;
3534 3535
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3615 3616 3617 3618 3619
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3682 3683 3684
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3685 3686 3687 3688 3689 3690 3691
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3692
		table = NULL;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3710
		set_dte_irq_entry(alias, table);
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3723
static int alloc_irq_index(u16 devid, int count)
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3807
static int get_devid(struct irq_alloc_info *info)
3808
{
3809
	int devid = -1;
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3826

3827 3828
	return devid;
}
3829

3830 3831 3832 3833
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3834

3835 3836
	if (!info)
		return NULL;
3837

3838 3839 3840 3841 3842 3843
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3844

3845
	return NULL;
3846 3847
}

3848
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3849
{
3850 3851
	struct amd_iommu *iommu;
	int devid;
3852

3853 3854
	if (!info)
		return NULL;
3855

3856 3857 3858 3859
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3860 3861 3862
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3863 3864 3865 3866
		break;
	default:
		break;
	}
3867

3868 3869
	return NULL;
}
3870

3871 3872 3873 3874 3875 3876
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3877 3878 3879
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3880

3881 3882 3883 3884 3885 3886 3887 3888 3889
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3890

3891 3892
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3916

3917 3918 3919 3920 3921 3922 3923
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3924

3925 3926 3927 3928
	default:
		BUG_ON(1);
		break;
	}
3929 3930
}

3931 3932
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3933
{
3934 3935 3936
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3937
	struct irq_cfg *cfg;
3938 3939
	int i, ret, devid;
	int index = -1;
3940

3941 3942 3943 3944
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3945 3946
		return -EINVAL;

3947 3948 3949 3950 3951 3952
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3953

3954 3955 3956
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3957

3958 3959 3960
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3961

3962 3963 3964 3965 3966 3967
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3968
		index = alloc_irq_index(devid, nr_irqs);
3969 3970 3971 3972 3973
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3974

3975 3976 3977 3978 3979 3980 3981
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3982

3983 3984 3985 3986 3987
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3988 3989 3990 3991 3992 3993
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3994

3995
	return 0;
3996

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4008 4009
}

4010 4011
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4012
{
4013 4014 4015 4016
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4029

4030 4031 4032 4033 4034
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4035

4036
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4037 4038
}

4039 4040
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4041
{
4042 4043 4044
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4045

4046 4047 4048
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4049

4050 4051 4052 4053 4054
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4055
};
4056

4057 4058 4059 4060 4061 4062 4063 4064
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4065

4066 4067 4068
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4069

4070 4071 4072 4073 4074 4075 4076
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4077

4078 4079 4080 4081 4082
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4083
	send_cleanup_vector(cfg);
4084 4085

	return IRQ_SET_MASK_OK_DONE;
4086 4087
}

4088
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4089
{
4090
	struct amd_ir_data *ir_data = irq_data->chip_data;
4091

4092 4093
	*msg = ir_data->msi_entry;
}
4094

4095 4096 4097 4098 4099
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4100

4101 4102 4103 4104 4105
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4106

4107 4108
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4109 4110 4111

	return 0;
}
4112
#endif