amd_iommu.c 83.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77 78 79 80
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

81 82
static struct iommu_ops amd_iommu_ops;

83
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84
int amd_iommu_max_glx_val = -1;
85

86 87
static struct dma_map_ops amd_iommu_dma_ops;

88 89 90
/*
 * general struct to manage commands send to an IOMMU
 */
91
struct iommu_cmd {
92 93 94
	u32 data[4];
};

95
static void update_domain(struct protection_domain *domain);
96
static int __init alloc_passthrough_domain(void);
97

98 99 100 101 102 103
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

104
static struct iommu_dev_data *alloc_dev_data(u16 devid)
105 106 107 108 109 110 111 112
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

113
	dev_data->devid = devid;
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

165 166 167 168 169 170 171
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

172 173 174 175 176
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

177 178 179 180
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
181 182
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
183 184 185 186 187 188 189 190 191 192 193 194
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

195 196 197 198 199 200 201 202 203
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
244
	if (dev->bus != &pci_bus_type)
245 246 247 248 249 250 251 252 253 254 255 256 257 258
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

259 260
static int iommu_init_device(struct device *dev)
{
261
	struct pci_dev *pdev = to_pci_dev(dev);
262
	struct iommu_dev_data *dev_data;
263
	u16 alias;
264 265 266 267

	if (dev->archdata.iommu)
		return 0;

268
	dev_data = find_dev_data(get_device_id(dev));
269 270 271
	if (!dev_data)
		return -ENOMEM;

272
	alias = amd_iommu_alias_table[dev_data->devid];
273
	if (alias != dev_data->devid) {
274
		struct iommu_dev_data *alias_data;
275

276 277 278 279
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
280 281 282
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
283
		dev_data->alias_data = alias_data;
284
	}
285

286 287 288 289 290 291 292
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

293 294 295 296 297
	dev->archdata.iommu = dev_data;

	return 0;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

312 313
static void iommu_uninit_device(struct device *dev)
{
314 315 316 317 318
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
319
}
J
Joerg Roedel 已提交
320 321 322

void __init amd_iommu_uninit_devices(void)
{
323
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
324 325 326 327 328 329 330 331 332
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
333 334 335 336

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
350 351 352
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
353 354 355 356 357 358 359 360 361 362 363
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
364 365 366 367 368 369
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

370
DECLARE_STATS_COUNTER(compl_wait);
371
DECLARE_STATS_COUNTER(cnt_map_single);
372
DECLARE_STATS_COUNTER(cnt_unmap_single);
373
DECLARE_STATS_COUNTER(cnt_map_sg);
374
DECLARE_STATS_COUNTER(cnt_unmap_sg);
375
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
376
DECLARE_STATS_COUNTER(cnt_free_coherent);
377
DECLARE_STATS_COUNTER(cross_page);
378
DECLARE_STATS_COUNTER(domain_flush_single);
379
DECLARE_STATS_COUNTER(domain_flush_all);
380
DECLARE_STATS_COUNTER(alloced_io_mem);
381
DECLARE_STATS_COUNTER(total_map_requests);
382 383 384 385 386
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
406
					 &amd_iommu_unmap_flush);
407 408

	amd_iommu_stats_add(&compl_wait);
409
	amd_iommu_stats_add(&cnt_map_single);
410
	amd_iommu_stats_add(&cnt_unmap_single);
411
	amd_iommu_stats_add(&cnt_map_sg);
412
	amd_iommu_stats_add(&cnt_unmap_sg);
413
	amd_iommu_stats_add(&cnt_alloc_coherent);
414
	amd_iommu_stats_add(&cnt_free_coherent);
415
	amd_iommu_stats_add(&cross_page);
416
	amd_iommu_stats_add(&domain_flush_single);
417
	amd_iommu_stats_add(&domain_flush_all);
418
	amd_iommu_stats_add(&alloced_io_mem);
419
	amd_iommu_stats_add(&total_map_requests);
420 421 422 423
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
424 425 426 427
}

#endif

428 429 430 431 432 433
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

434 435 436 437
static void dump_dte_entry(u16 devid)
{
	int i;

438 439
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
440 441 442
			amd_iommu_dev_table[devid].data[i]);
}

443 444 445 446 447 448 449 450 451
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

452
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
453
{
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
475

476
	printk(KERN_ERR "AMD-Vi: Event logged [");
477 478 479 480 481 482 483

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
484
		dump_dte_entry(devid);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
506
		dump_command(address);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
527 528

	memset(__evt, 0, 4 * sizeof(u32));
529 530 531 532 533 534 535 536 537 538 539 540 541
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
542
		iommu_print_event(iommu, iommu->evt_buf + head);
543 544 545 546 547 548 549 550
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

551
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
552 553 554
{
	struct amd_iommu_fault fault;

555 556
	INC_STATS_COUNTER(pri_requests);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

579 580 581
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

582 583 584 585 586 587
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
604

605 606 607
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
608

609 610 611 612 613 614 615
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
616 617
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
618 619 620 621 622 623 624 625 626 627 628 629 630 631

		/*
		 * Release iommu->lock because ppr-handling might need to
		 * re-aquire it
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
632 633 634 635 636 637
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

638
irqreturn_t amd_iommu_int_thread(int irq, void *data)
639
{
640 641
	struct amd_iommu *iommu;

642
	for_each_iommu(iommu) {
643
		iommu_poll_events(iommu);
644 645
		iommu_poll_ppr_log(iommu);
	}
646 647

	return IRQ_HANDLED;
648 649
}

650 651 652 653 654
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

655 656 657 658 659 660
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
681 682 683
{
	u8 *target;

684
	target = iommu->cmd_buf + tail;
685 686 687 688 689 690
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
691
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
692
}
693

694
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
695
{
696 697
	WARN_ON(address & 0x7ULL);

698
	memset(cmd, 0, sizeof(*cmd));
699 700 701
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
702 703 704
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

705 706 707 708 709 710 711
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

828 829 830 831
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
832 833
}

834 835
/*
 * Writes the command to the IOMMUs command buffer and informs the
836
 * hardware about the new command.
837
 */
838 839 840
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
841
{
842
	u32 left, tail, head, next_tail;
843 844
	unsigned long flags;

845
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
846 847

again:
848 849
	spin_lock_irqsave(&iommu->lock, flags);

850 851 852 853
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
854

855 856 857 858
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
859

860 861
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
862

863 864 865 866 867 868
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
869 870
	}

871 872 873
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
874
	iommu->need_sync = sync;
875

876
	spin_unlock_irqrestore(&iommu->lock, flags);
877

878
	return 0;
879 880
}

881 882 883 884 885
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

886 887 888 889
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
890
static int iommu_completion_wait(struct amd_iommu *iommu)
891 892
{
	struct iommu_cmd cmd;
893
	volatile u64 sem = 0;
894
	int ret;
895

896
	if (!iommu->need_sync)
897
		return 0;
898

899
	build_completion_wait(&cmd, (u64)&sem);
900

901
	ret = iommu_queue_command_sync(iommu, &cmd, false);
902
	if (ret)
903
		return ret;
904

905
	return wait_on_sem(&sem);
906 907
}

908
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
909
{
910
	struct iommu_cmd cmd;
911

912
	build_inv_dte(&cmd, devid);
913

914 915
	return iommu_queue_command(iommu, &cmd);
}
916

917 918 919
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
920

921 922
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
923

924 925
	iommu_completion_wait(iommu);
}
926

927 928 929 930 931 932 933
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
934

935 936 937 938 939 940
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
941

942
	iommu_completion_wait(iommu);
943 944
}

945
static void iommu_flush_all(struct amd_iommu *iommu)
946
{
947
	struct iommu_cmd cmd;
948

949
	build_inv_all(&cmd);
950

951 952 953 954
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

955 956
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
957 958 959 960 961
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
962 963 964
	}
}

965
/*
966
 * Command send function for flushing on-device TLB
967
 */
968 969
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
970 971
{
	struct amd_iommu *iommu;
972
	struct iommu_cmd cmd;
973
	int qdep;
974

975 976
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
977

978
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
979 980

	return iommu_queue_command(iommu, &cmd);
981 982
}

983 984 985
/*
 * Command send function for invalidating a device table entry
 */
986
static int device_flush_dte(struct iommu_dev_data *dev_data)
987
{
988
	struct amd_iommu *iommu;
989
	int ret;
990

991
	iommu = amd_iommu_rlookup_table[dev_data->devid];
992

993
	ret = iommu_flush_dte(iommu, dev_data->devid);
994 995 996
	if (ret)
		return ret;

997
	if (dev_data->ats.enabled)
998
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
999 1000

	return ret;
1001 1002
}

1003 1004 1005 1006 1007
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1008 1009
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1010
{
1011
	struct iommu_dev_data *dev_data;
1012 1013
	struct iommu_cmd cmd;
	int ret = 0, i;
1014

1015
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1016

1017 1018 1019 1020 1021 1022 1023 1024
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1025
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1026 1027
	}

1028 1029
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1030
		if (!dev_data->ats.enabled)
1031 1032
			continue;

1033
		ret |= device_flush_iotlb(dev_data, address, size);
1034 1035
	}

1036
	WARN_ON(ret);
1037 1038
}

1039 1040
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1041
{
1042
	__domain_flush_pages(domain, address, size, 0);
1043
}
1044

1045
/* Flush the whole IO/TLB for a given protection domain */
1046
static void domain_flush_tlb(struct protection_domain *domain)
1047
{
1048
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1049 1050
}

1051
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1052
static void domain_flush_tlb_pde(struct protection_domain *domain)
1053
{
1054
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1055 1056
}

1057
static void domain_flush_complete(struct protection_domain *domain)
1058
{
1059
	int i;
1060

1061 1062 1063
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1064

1065 1066 1067 1068 1069
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1070
	}
1071 1072
}

1073

1074
/*
1075
 * This function flushes the DTEs for all devices in domain
1076
 */
1077
static void domain_flush_devices(struct protection_domain *domain)
1078
{
1079
	struct iommu_dev_data *dev_data;
1080

1081
	list_for_each_entry(dev_data, &domain->dev_list, list)
1082
		device_flush_dte(dev_data);
1083 1084
}

1085 1086 1087 1088 1089 1090 1091
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1121
		      unsigned long page_size,
1122 1123 1124
		      u64 **pte_page,
		      gfp_t gfp)
{
1125
	int level, end_lvl;
1126
	u64 *pte, *page;
1127 1128

	BUG_ON(!is_power_of_2(page_size));
1129 1130 1131 1132

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1133 1134 1135 1136
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1137 1138 1139 1140 1141 1142 1143 1144 1145

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1146 1147 1148 1149
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1167
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1168 1169 1170 1171
{
	int level;
	u64 *pte;

1172 1173 1174 1175 1176
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1177

1178 1179 1180
	while (level > 0) {

		/* Not Present */
1181 1182 1183
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1203 1204
		level -= 1;

1205
		/* Walk to the next level */
1206 1207 1208 1209 1210 1211 1212
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1213 1214 1215 1216 1217 1218 1219
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1220 1221 1222
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1223
			  int prot,
1224
			  unsigned long page_size)
1225
{
1226
	u64 __pte, *pte;
1227
	int i, count;
1228

1229
	if (!(prot & IOMMU_PROT_MASK))
1230 1231
		return -EINVAL;

1232 1233 1234 1235 1236 1237 1238 1239
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1240

1241 1242 1243 1244 1245
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1246 1247 1248 1249 1250 1251

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1252 1253
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1254

1255 1256
	update_domain(dom);

1257 1258 1259
	return 0;
}

1260 1261 1262
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1263
{
1264 1265 1266 1267 1268 1269
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1300

1301
	return unmapped;
1302 1303
}

1304 1305 1306 1307
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1322 1323 1324 1325
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1326 1327 1328 1329 1330 1331 1332 1333
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1334
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1335
				     PAGE_SIZE);
1336 1337 1338 1339 1340 1341 1342
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1343
			__set_bit(addr >> PAGE_SHIFT,
1344
				  dma_dom->aperture[0]->bitmap);
1345 1346 1347 1348 1349
	}

	return 0;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1372 1373 1374
/*
 * Inits the unity mappings required for a specific device
 */
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1401

1402
/*
1403
 * The address allocator core functions.
1404 1405 1406
 *
 * called with domain->lock held
 */
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1428 1429 1430 1431 1432
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1433
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1434 1435 1436
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1437
	struct amd_iommu *iommu;
1438
	unsigned long i, old_size;
1439

1440 1441 1442 1443
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1463
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1474
	old_size                = dma_dom->aperture_size;
1475 1476
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1489
	/* Initialize the exclusion range if necessary */
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1512
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1513 1514 1515
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1516
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1517 1518
	}

1519 1520
	update_domain(&dma_dom->domain);

1521 1522 1523
	return 0;

out_free:
1524 1525
	update_domain(&dma_dom->domain);

1526 1527 1528 1529 1530 1531 1532 1533
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1534 1535 1536 1537 1538 1539 1540
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1541
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1542 1543 1544 1545 1546 1547
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1548 1549
	next_bit >>= PAGE_SHIFT;

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1568
			dom->next_address = address + (pages << PAGE_SHIFT);
1569 1570 1571 1572 1573 1574 1575 1576 1577
			break;
		}

		next_bit = 0;
	}

	return address;
}

1578 1579
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1580
					     unsigned int pages,
1581 1582
					     unsigned long align_mask,
					     u64 dma_mask)
1583 1584 1585
{
	unsigned long address;

1586 1587 1588 1589
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1590

1591
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1592
				     dma_mask, dom->next_address);
1593

1594
	if (address == -1) {
1595
		dom->next_address = 0;
1596 1597
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1598 1599
		dom->need_flush = true;
	}
1600

1601
	if (unlikely(address == -1))
1602
		address = DMA_ERROR_CODE;
1603 1604 1605 1606 1607 1608

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1609 1610 1611 1612 1613
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1614 1615 1616 1617
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1618 1619
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1620

1621 1622
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1623 1624 1625 1626
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1627

1628
	if (address >= dom->next_address)
1629
		dom->need_flush = true;
1630 1631

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1632

A
Akinobu Mita 已提交
1633
	bitmap_clear(range->bitmap, address, pages);
1634

1635 1636
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1699
static void free_pagetable(struct protection_domain *domain)
1700 1701 1702 1703
{
	int i, j;
	u64 *p1, *p2, *p3;

1704
	p1 = domain->pt_root;
1705 1706 1707 1708 1709 1710 1711 1712 1713

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1714
		for (j = 0; j < 512; ++j) {
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1725 1726

	domain->pt_root = NULL;
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1759 1760
static void free_gcr3_table(struct protection_domain *domain)
{
1761 1762 1763 1764 1765 1766 1767
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1768 1769 1770
	free_page((unsigned long)domain->gcr3_tbl);
}

1771 1772 1773 1774
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1775 1776
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1777 1778
	int i;

1779 1780 1781
	if (!dom)
		return;

1782 1783
	del_domain_from_list(&dom->domain);

1784
	free_pagetable(&dom->domain);
1785

1786 1787 1788 1789 1790 1791
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1792 1793 1794 1795

	kfree(dom);
}

1796 1797
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1798
 * It also initializes the page table and the address allocator data
1799 1800
 * structures required for the dma_ops interface
 */
1801
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1814
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1815
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1816
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1817
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1818 1819 1820 1821
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1822
	dma_dom->need_flush = false;
1823
	dma_dom->target_dev = 0xffff;
1824

1825 1826
	add_domain_to_list(&dma_dom->domain);

1827
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1828 1829
		goto free_dma_dom;

1830
	/*
1831 1832
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1833
	 */
1834
	dma_dom->aperture[0]->bitmap[0] = 1;
1835
	dma_dom->next_address = 0;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1855
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1856
{
1857
	u64 pte_root = 0;
1858
	u64 flags = 0;
1859

1860 1861 1862
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1863 1864 1865
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1866

1867 1868
	flags = amd_iommu_dev_table[devid].data[1];

1869 1870 1871
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1898 1899 1900 1901 1902
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1903 1904 1905 1906 1907 1908 1909 1910 1911
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1912 1913
}

1914 1915
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1916 1917
{
	struct amd_iommu *iommu;
1918
	bool ats;
1919

1920 1921
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1922 1923 1924 1925

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1926
	set_dte_entry(dev_data->devid, domain, ats);
1927 1928 1929 1930 1931 1932

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1933
	device_flush_dte(dev_data);
1934 1935
}

1936
static void do_detach(struct iommu_dev_data *dev_data)
1937 1938 1939
{
	struct amd_iommu *iommu;

1940
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1941 1942

	/* decrease reference counters */
1943 1944 1945 1946 1947 1948
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1949
	clear_dte_entry(dev_data->devid);
1950

1951
	/* Flush the DTE entry */
1952
	device_flush_dte(dev_data);
1953 1954 1955 1956 1957 1958
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1959
static int __attach_device(struct iommu_dev_data *dev_data,
1960
			   struct protection_domain *domain)
1961
{
1962
	int ret;
1963

1964 1965 1966
	/* lock domain */
	spin_lock(&domain->lock);

1967 1968
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1969

1970 1971 1972 1973 1974
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1975

1976 1977 1978
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1979

1980
		/* Do real assignment */
1981
		if (alias_data->domain == NULL)
1982
			do_attach(alias_data, domain);
1983 1984

		atomic_inc(&alias_data->bind);
1985
	}
1986

1987
	if (dev_data->domain == NULL)
1988
		do_attach(dev_data, domain);
1989

1990 1991
	atomic_inc(&dev_data->bind);

1992 1993 1994 1995
	ret = 0;

out_unlock:

1996 1997
	/* ready */
	spin_unlock(&domain->lock);
1998

1999
	return ret;
2000
}
2001

2002 2003 2004 2005 2006 2007 2008 2009

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2010 2011 2012 2013 2014 2015
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2016
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2017 2018 2019
	if (!pos)
		return -EINVAL;

2020 2021 2022
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2023 2024 2025 2026

	return 0;
}

2027 2028
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2029 2030 2031 2032 2033 2034 2035 2036
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2048 2049
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2050 2051 2052
	if (ret)
		goto out_err;

2053 2054 2055 2056 2057 2058
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2072
/* FIXME: Move this to PCI code */
2073
#define PCI_PRI_TLP_OFF		(1 << 15)
2074

J
Joerg Roedel 已提交
2075
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2076
{
2077
	u16 status;
2078 2079
	int pos;

2080
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2081 2082 2083
	if (!pos)
		return false;

2084
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2085

2086
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2087 2088
}

2089 2090 2091 2092
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2093 2094
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2095
{
2096
	struct pci_dev *pdev = to_pci_dev(dev);
2097
	struct iommu_dev_data *dev_data;
2098
	unsigned long flags;
2099
	int ret;
2100

2101 2102
	dev_data = get_dev_data(dev);

2103 2104 2105 2106 2107 2108 2109 2110 2111
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2112
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2113 2114
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2115 2116 2117
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2118

2119
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2120
	ret = __attach_device(dev_data, domain);
2121 2122
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2123 2124 2125 2126 2127
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2128
	domain_flush_tlb_pde(domain);
2129 2130

	return ret;
2131 2132
}

2133 2134 2135
/*
 * Removes a device from a protection domain (unlocked)
 */
2136
static void __detach_device(struct iommu_dev_data *dev_data)
2137
{
2138
	struct protection_domain *domain;
2139
	unsigned long flags;
2140

2141
	BUG_ON(!dev_data->domain);
2142

2143 2144 2145
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2146

2147 2148 2149
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2150
		if (atomic_dec_and_test(&alias_data->bind))
2151
			do_detach(alias_data);
2152 2153
	}

2154
	if (atomic_dec_and_test(&dev_data->bind))
2155
		do_detach(dev_data);
2156

2157
	spin_unlock_irqrestore(&domain->lock, flags);
2158 2159 2160

	/*
	 * If we run in passthrough mode the device must be assigned to the
2161 2162
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2163
	 */
2164
	if (dev_data->passthrough &&
2165
	    (dev_data->domain == NULL && domain != pt_domain))
2166
		__attach_device(dev_data, pt_domain);
2167 2168 2169 2170 2171
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2172
static void detach_device(struct device *dev)
2173
{
2174
	struct protection_domain *domain;
2175
	struct iommu_dev_data *dev_data;
2176 2177
	unsigned long flags;

2178
	dev_data = get_dev_data(dev);
2179
	domain   = dev_data->domain;
2180

2181 2182
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2183
	__detach_device(dev_data);
2184
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2185

2186 2187 2188
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2189
		pci_disable_ats(to_pci_dev(dev));
2190 2191

	dev_data->ats.enabled = false;
2192
}
2193

2194 2195 2196 2197 2198 2199
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2200
	struct iommu_dev_data *dev_data;
2201
	struct protection_domain *dom = NULL;
2202 2203
	unsigned long flags;

2204
	dev_data   = get_dev_data(dev);
2205

2206 2207
	if (dev_data->domain)
		return dev_data->domain;
2208

2209 2210
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2211 2212 2213 2214 2215 2216 2217 2218

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2219 2220 2221 2222

	return dom;
}

2223 2224 2225 2226
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2227 2228 2229
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2230
	struct amd_iommu *iommu;
2231
	unsigned long flags;
2232
	u16 devid;
2233

2234 2235
	if (!check_device(dev))
		return 0;
2236

2237 2238 2239
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2240 2241

	switch (action) {
2242
	case BUS_NOTIFY_UNBOUND_DRIVER:
2243 2244 2245

		domain = domain_for_device(dev);

2246 2247
		if (!domain)
			goto out;
2248
		if (dev_data->passthrough)
2249
			break;
2250
		detach_device(dev);
2251 2252
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2253 2254 2255 2256 2257

		iommu_init_device(dev);

		domain = domain_for_device(dev);

2258 2259 2260 2261
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2262
		dma_domain = dma_ops_domain_alloc();
2263 2264 2265 2266 2267 2268 2269 2270
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2271 2272 2273 2274 2275 2276 2277
		dev_data = get_dev_data(dev);

		if (!dev_data->passthrough)
			dev->archdata.dma_ops = &amd_iommu_dma_ops;
		else
			dev->archdata.dma_ops = &nommu_dma_ops;

2278
		break;
2279 2280 2281 2282
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2293
static struct notifier_block device_nb = {
2294 2295
	.notifier_call = device_change_notifier,
};
2296

2297 2298 2299 2300 2301
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2315
static struct protection_domain *get_domain(struct device *dev)
2316
{
2317
	struct protection_domain *domain;
2318
	struct dma_ops_domain *dma_dom;
2319
	u16 devid = get_device_id(dev);
2320

2321
	if (!check_device(dev))
2322
		return ERR_PTR(-EINVAL);
2323

2324 2325 2326
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2327

2328 2329
	if (domain != NULL)
		return domain;
2330

2331
	/* Device not bount yet - bind it */
2332
	dma_dom = find_protection_domain(devid);
2333
	if (!dma_dom)
2334 2335
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2336
	DUMP_printk("Using protection domain %d for device %s\n",
2337
		    dma_dom->domain.id, dev_name(dev));
2338

2339
	return &dma_dom->domain;
2340 2341
}

2342 2343
static void update_device_table(struct protection_domain *domain)
{
2344
	struct iommu_dev_data *dev_data;
2345

2346 2347
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2348 2349 2350 2351 2352 2353 2354 2355
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2356 2357 2358

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2359 2360 2361 2362

	domain->updated = false;
}

2363 2364 2365 2366 2367 2368
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2369
	struct aperture_range *aperture;
2370 2371
	u64 *pte, *pte_page;

2372 2373 2374 2375 2376
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2377
	if (!pte) {
2378
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2379
				GFP_ATOMIC);
2380 2381
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2382
		pte += PM_LEVEL_INDEX(0, address);
2383

2384
	update_domain(&dom->domain);
2385 2386 2387 2388

	return pte;
}

2389 2390 2391 2392
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2393
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2404
	pte  = dma_ops_get_pte(dom, address);
2405
	if (!pte)
2406
		return DMA_ERROR_CODE;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2424 2425 2426
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2427
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2428 2429
				 unsigned long address)
{
2430
	struct aperture_range *aperture;
2431 2432 2433 2434 2435
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2436 2437 2438 2439 2440 2441 2442
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2443

2444
	pte += PM_LEVEL_INDEX(0, address);
2445 2446 2447 2448 2449 2450

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2451 2452
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2453 2454
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2455 2456
 * Must be called with the domain lock held.
 */
2457 2458 2459 2460
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2461
			       int dir,
2462 2463
			       bool align,
			       u64 dma_mask)
2464 2465
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2466
	dma_addr_t address, start, ret;
2467
	unsigned int pages;
2468
	unsigned long align_mask = 0;
2469 2470
	int i;

2471
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2472 2473
	paddr &= PAGE_MASK;

2474 2475
	INC_STATS_COUNTER(total_map_requests);

2476 2477 2478
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2479 2480 2481
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2482
retry:
2483 2484
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2485
	if (unlikely(address == DMA_ERROR_CODE)) {
2486 2487 2488 2489 2490 2491 2492
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2493
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2494 2495 2496
			goto out;

		/*
2497
		 * aperture was successfully enlarged by 128 MB, try
2498 2499 2500 2501
		 * allocation again
		 */
		goto retry;
	}
2502 2503 2504

	start = address;
	for (i = 0; i < pages; ++i) {
2505
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2506
		if (ret == DMA_ERROR_CODE)
2507 2508
			goto out_unmap;

2509 2510 2511 2512 2513
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2514 2515
	ADD_STATS_COUNTER(alloced_io_mem, size);

2516
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2517
		domain_flush_tlb(&dma_dom->domain);
2518
		dma_dom->need_flush = false;
2519
	} else if (unlikely(amd_iommu_np_cache))
2520
		domain_flush_pages(&dma_dom->domain, address, size);
2521

2522 2523
out:
	return address;
2524 2525 2526 2527 2528

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2529
		dma_ops_domain_unmap(dma_dom, start);
2530 2531 2532 2533
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2534
	return DMA_ERROR_CODE;
2535 2536
}

2537 2538 2539 2540
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2541
static void __unmap_single(struct dma_ops_domain *dma_dom,
2542 2543 2544 2545
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2546
	dma_addr_t flush_addr;
2547 2548 2549
	dma_addr_t i, start;
	unsigned int pages;

2550
	if ((dma_addr == DMA_ERROR_CODE) ||
2551
	    (dma_addr + size > dma_dom->aperture_size))
2552 2553
		return;

2554
	flush_addr = dma_addr;
2555
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2556 2557 2558 2559
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2560
		dma_ops_domain_unmap(dma_dom, start);
2561 2562 2563
		start += PAGE_SIZE;
	}

2564 2565
	SUB_STATS_COUNTER(alloced_io_mem, size);

2566
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2567

2568
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2569
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2570 2571
		dma_dom->need_flush = false;
	}
2572 2573
}

2574 2575 2576
/*
 * The exported map_single function for dma_ops.
 */
2577 2578 2579 2580
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2581 2582 2583 2584
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2585
	u64 dma_mask;
2586
	phys_addr_t paddr = page_to_phys(page) + offset;
2587

2588 2589
	INC_STATS_COUNTER(cnt_map_single);

2590 2591
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2592
		return (dma_addr_t)paddr;
2593 2594
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2595

2596 2597
	dma_mask = *dev->dma_mask;

2598
	spin_lock_irqsave(&domain->lock, flags);
2599

2600
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2601
			    dma_mask);
2602
	if (addr == DMA_ERROR_CODE)
2603 2604
		goto out;

2605
	domain_flush_complete(domain);
2606 2607 2608 2609 2610 2611 2612

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2613 2614 2615
/*
 * The exported unmap_single function for dma_ops.
 */
2616 2617
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2618 2619 2620 2621
{
	unsigned long flags;
	struct protection_domain *domain;

2622 2623
	INC_STATS_COUNTER(cnt_unmap_single);

2624 2625
	domain = get_domain(dev);
	if (IS_ERR(domain))
2626 2627
		return;

2628 2629
	spin_lock_irqsave(&domain->lock, flags);

2630
	__unmap_single(domain->priv, dma_addr, size, dir);
2631

2632
	domain_flush_complete(domain);
2633 2634 2635 2636

	spin_unlock_irqrestore(&domain->lock, flags);
}

2637 2638 2639 2640
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2655 2656 2657 2658
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2659
static int map_sg(struct device *dev, struct scatterlist *sglist,
2660 2661
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2662 2663 2664 2665 2666 2667 2668
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2669
	u64 dma_mask;
2670

2671 2672
	INC_STATS_COUNTER(cnt_map_sg);

2673 2674
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2675
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2676 2677
	else if (IS_ERR(domain))
		return 0;
2678

2679
	dma_mask = *dev->dma_mask;
2680 2681 2682 2683 2684 2685

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2686
		s->dma_address = __map_single(dev, domain->priv,
2687 2688
					      paddr, s->length, dir, false,
					      dma_mask);
2689 2690 2691 2692 2693 2694 2695 2696

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2697
	domain_flush_complete(domain);
2698 2699 2700 2701 2702 2703 2704 2705

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2706
			__unmap_single(domain->priv, s->dma_address,
2707 2708 2709 2710 2711 2712 2713 2714 2715
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2716 2717 2718 2719
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2720
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2721 2722
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2723 2724 2725 2726 2727 2728
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2729 2730
	INC_STATS_COUNTER(cnt_unmap_sg);

2731 2732
	domain = get_domain(dev);
	if (IS_ERR(domain))
2733 2734
		return;

2735 2736 2737
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2738
		__unmap_single(domain->priv, s->dma_address,
2739 2740 2741 2742
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2743
	domain_flush_complete(domain);
2744 2745 2746 2747

	spin_unlock_irqrestore(&domain->lock, flags);
}

2748 2749 2750
/*
 * The exported alloc_coherent function for dma_ops.
 */
2751
static void *alloc_coherent(struct device *dev, size_t size,
2752 2753
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2754 2755 2756 2757 2758
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2759
	u64 dma_mask = dev->coherent_dma_mask;
2760

2761 2762
	INC_STATS_COUNTER(cnt_alloc_coherent);

2763 2764
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2765 2766 2767
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2768 2769
	} else if (IS_ERR(domain))
		return NULL;
2770

2771 2772 2773
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2774 2775 2776

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2777
		return NULL;
2778 2779 2780

	paddr = virt_to_phys(virt_addr);

2781 2782 2783
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2784 2785
	spin_lock_irqsave(&domain->lock, flags);

2786
	*dma_addr = __map_single(dev, domain->priv, paddr,
2787
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2788

2789
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2790
		spin_unlock_irqrestore(&domain->lock, flags);
2791
		goto out_free;
J
Jiri Slaby 已提交
2792
	}
2793

2794
	domain_flush_complete(domain);
2795 2796 2797 2798

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2799 2800 2801 2802 2803 2804

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2805 2806
}

2807 2808 2809
/*
 * The exported free_coherent function for dma_ops.
 */
2810
static void free_coherent(struct device *dev, size_t size,
2811 2812
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2813 2814 2815 2816
{
	unsigned long flags;
	struct protection_domain *domain;

2817 2818
	INC_STATS_COUNTER(cnt_free_coherent);

2819 2820
	domain = get_domain(dev);
	if (IS_ERR(domain))
2821 2822
		goto free_mem;

2823 2824
	spin_lock_irqsave(&domain->lock, flags);

2825
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2826

2827
	domain_flush_complete(domain);
2828 2829 2830 2831 2832 2833 2834

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2835 2836 2837 2838 2839 2840
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2841
	return check_device(dev);
2842 2843
}

2844
/*
2845 2846
 * The function for pre-allocating protection domains.
 *
2847 2848 2849 2850
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
2851
static void __init prealloc_protection_domains(void)
2852
{
2853
	struct iommu_dev_data *dev_data;
2854
	struct dma_ops_domain *dma_dom;
2855
	struct pci_dev *dev = NULL;
2856
	u16 devid;
2857

2858
	for_each_pci_dev(dev) {
2859 2860 2861

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2862
			continue;
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2874
		/* Is there already any domain for it? */
2875
		if (domain_for_device(&dev->dev))
2876
			continue;
2877 2878 2879

		devid = get_device_id(&dev->dev);

2880
		dma_dom = dma_ops_domain_alloc();
2881 2882 2883
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2884 2885
		dma_dom->target_dev = devid;

2886
		attach_device(&dev->dev, &dma_dom->domain);
2887

2888
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2889 2890 2891
	}
}

2892
static struct dma_map_ops amd_iommu_dma_ops = {
2893 2894
	.alloc = alloc_coherent,
	.free = free_coherent,
2895 2896
	.map_page = map_page,
	.unmap_page = unmap_page,
2897 2898
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2899
	.dma_supported = amd_iommu_dma_supported,
2900 2901
};

2902 2903
static unsigned device_dma_ops_init(void)
{
2904
	struct iommu_dev_data *dev_data;
2905 2906 2907 2908 2909
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2910 2911 2912

			iommu_ignore_device(&pdev->dev);

2913 2914 2915 2916
			unhandled += 1;
			continue;
		}

2917 2918 2919 2920 2921 2922
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2923 2924 2925 2926 2927
	}

	return unhandled;
}

2928 2929 2930
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2931 2932 2933

void __init amd_iommu_init_api(void)
{
2934
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2935 2936
}

2937 2938 2939
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2940
	int ret, unhandled;
2941

2942 2943 2944 2945 2946
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2947
	for_each_iommu(iommu) {
2948
		iommu->default_dom = dma_ops_domain_alloc();
2949 2950
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2951
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2952 2953 2954 2955 2956
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2957
	/*
2958
	 * Pre-allocate the protection domains for each device.
2959
	 */
2960
	prealloc_protection_domains();
2961 2962

	iommu_detected = 1;
2963
	swiotlb = 0;
2964

2965
	/* Make the driver finally visible to the drivers */
2966 2967 2968 2969 2970
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2971

2972 2973
	amd_iommu_stats_init();

2974 2975 2976 2977
	return 0;

free_domains:

2978
	for_each_iommu(iommu) {
2979 2980 2981 2982 2983 2984
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2998
	struct iommu_dev_data *dev_data, *next;
2999 3000 3001 3002
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3003
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3004
		__detach_device(dev_data);
3005 3006
		atomic_set(&dev_data->bind, 0);
	}
3007 3008 3009 3010

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3011 3012 3013 3014 3015
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3016 3017
	del_domain_from_list(domain);

3018 3019 3020 3021 3022 3023 3024
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3025 3026 3027 3028 3029
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3030
		return NULL;
3031 3032

	spin_lock_init(&domain->lock);
3033
	mutex_init(&domain->api_lock);
3034 3035
	domain->id = domain_id_alloc();
	if (!domain->id)
3036
		goto out_err;
3037
	INIT_LIST_HEAD(&domain->dev_list);
3038

3039 3040
	add_domain_to_list(domain);

3041 3042 3043 3044 3045 3046 3047 3048
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3063 3064 3065 3066 3067 3068
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3069
		goto out_free;
3070 3071

	domain->mode    = PAGE_MODE_3_LEVEL;
3072 3073 3074 3075
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3076 3077
	domain->iommu_domain = dom;

3078 3079 3080 3081 3082
	dom->priv = domain;

	return 0;

out_free:
3083
	protection_domain_free(domain);
3084 3085 3086 3087

	return -ENOMEM;
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3100 3101
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3102

3103 3104 3105
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3106
	protection_domain_free(domain);
3107 3108 3109 3110

	dom->priv = NULL;
}

3111 3112 3113
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3114
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3115 3116 3117
	struct amd_iommu *iommu;
	u16 devid;

3118
	if (!check_device(dev))
3119 3120
		return;

3121
	devid = get_device_id(dev);
3122

3123
	if (dev_data->domain != NULL)
3124
		detach_device(dev);
3125 3126 3127 3128 3129 3130 3131 3132

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3133 3134 3135 3136
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3137
	struct iommu_dev_data *dev_data;
3138
	struct amd_iommu *iommu;
3139
	int ret;
3140

3141
	if (!check_device(dev))
3142 3143
		return -EINVAL;

3144 3145
	dev_data = dev->archdata.iommu;

3146
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3147 3148 3149
	if (!iommu)
		return -EINVAL;

3150
	if (dev_data->domain)
3151
		detach_device(dev);
3152

3153
	ret = attach_device(dev, domain);
3154 3155 3156

	iommu_completion_wait(iommu);

3157
	return ret;
3158 3159
}

3160
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3161
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3162 3163 3164 3165 3166
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3167 3168 3169
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3170 3171 3172 3173 3174
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3175
	mutex_lock(&domain->api_lock);
3176
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3177 3178
	mutex_unlock(&domain->api_lock);

3179
	return ret;
3180 3181
}

3182 3183
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3184 3185
{
	struct protection_domain *domain = dom->priv;
3186
	size_t unmap_size;
3187

3188 3189 3190
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3191
	mutex_lock(&domain->api_lock);
3192
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3193
	mutex_unlock(&domain->api_lock);
3194

3195
	domain_flush_tlb_pde(domain);
3196

3197
	return unmap_size;
3198 3199
}

3200 3201 3202 3203
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3204
	unsigned long offset_mask;
3205
	phys_addr_t paddr;
3206
	u64 *pte, __pte;
3207

3208 3209 3210
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3211
	pte = fetch_pte(domain, iova);
3212

3213
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3214 3215
		return 0;

3216 3217 3218 3219 3220 3221 3222
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3223 3224 3225 3226

	return paddr;
}

S
Sheng Yang 已提交
3227 3228 3229
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3230 3231 3232 3233 3234
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3235 3236 3237
	return 0;
}

3238 3239 3240
static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3241 3242
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid;
3243 3244 3245 3246

	if (!dev_data)
		return -ENODEV;

3247 3248 3249 3250 3251 3252 3253
	if (pdev->is_virtfn || !iommu_group_mf)
		devid = dev_data->devid;
	else
		devid = calc_devid(pdev->bus->number,
				   PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));

	*groupid = amd_iommu_alias_table[devid];
3254 3255 3256 3257

	return 0;
}

3258 3259 3260 3261 3262
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3263 3264
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3265
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3266
	.domain_has_cap = amd_iommu_domain_has_cap,
3267
	.device_group = amd_iommu_device_group,
3268
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3269 3270
};

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3283
	struct iommu_dev_data *dev_data;
3284
	struct pci_dev *dev = NULL;
3285
	struct amd_iommu *iommu;
3286
	u16 devid;
3287
	int ret;
3288

3289 3290 3291
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3292

3293
	for_each_pci_dev(dev) {
3294
		if (!check_device(&dev->dev))
3295 3296
			continue;

3297 3298 3299
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3300 3301
		devid = get_device_id(&dev->dev);

3302
		iommu = amd_iommu_rlookup_table[devid];
3303 3304 3305
		if (!iommu)
			continue;

3306
		attach_device(&dev->dev, pt_domain);
3307 3308
	}

J
Joerg Roedel 已提交
3309 3310
	amd_iommu_stats_init();

3311 3312 3313 3314
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3456 3457
	INC_STATS_COUNTER(invalidate_iotlb);

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3478 3479
	INC_STATS_COUNTER(invalidate_iotlb_all);

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3591 3592 3593 3594 3595 3596 3597 3598

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3599 3600
	INC_STATS_COUNTER(complete_ppr);

3601 3602 3603 3604 3605 3606 3607 3608 3609
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);