amd_iommu.c 98.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
96
static const struct iommu_ops amd_iommu_ops;
97

98
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
99
int amd_iommu_max_glx_val = -1;
100

101 102
static struct dma_map_ops amd_iommu_dma_ops;

103 104 105 106 107 108 109 110
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
111
	u16 alias;			  /* Alias Device ID */
112
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
113
	bool passthrough;		  /* Device is identity mapped */
114 115 116 117 118 119 120 121 122
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

123 124 125
/*
 * general struct to manage commands send to an IOMMU
 */
126
struct iommu_cmd {
127 128 129
	u32 data[4];
};

130 131
struct kmem_cache *amd_iommu_irq_cache;

132
static void update_domain(struct protection_domain *domain);
133
static int protection_domain_init(struct protection_domain *domain);
134
static void detach_device(struct device *dev);
135

136 137 138 139 140 141
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

142 143
	spinlock_t bitmap_lock;

144 145
	/* address allocation bitmap */
	unsigned long *bitmap;
146
	unsigned long offset;
147
	unsigned long next_bit;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

168
	/* aperture index we start searching for free addresses */
169
	u32 __percpu *next_index;
170 171 172

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
173 174 175

	/* IOVA RB-Tree */
	struct iova_domain iovad;
176 177
};

178 179 180
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

181 182 183 184 185 186
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

187 188
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
189
{
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
205 206
}

207
static inline u16 get_pci_device_id(struct device *dev)
208 209 210 211 212 213
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

241 242 243 244 245
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

246
static struct iommu_dev_data *alloc_dev_data(u16 devid)
247 248 249 250 251 252 253 254
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

255
	dev_data->devid = devid;
256 257 258 259 260 261 262 263

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

283 284 285 286 287 288 289 290 291 292 293
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

294
	/* The callers make sure that get_device_id() does not fail here */
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
336
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
337 338 339 340 341 342 343 344
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

345 346 347 348 349 350 351 352 353 354 355 356
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

357 358 359 360 361
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

362 363 364 365
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
366
{
367
	struct acpihid_map_entry *p, *entry = NULL;
368
	int devid;
369 370 371 372 373 374 375 376 377 378 379 380 381 382

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
383 384
}

385 386 387 388
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
389 390
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
391 392 393 394 395 396 397 398 399 400 401 402
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

403 404 405 406 407 408 409 410 411
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

412
/*
413 414
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
415
 */
416 417
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
418
{
419
	u64 addr;
420

421 422 423 424 425
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
426
	}
427
}
428

429 430 431 432 433 434 435
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
436
	int devid;
437

438
	devid = get_device_id(dev);
439
	if (devid < 0)
440
		return;
441

442 443 444 445 446
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
447 448
}

449 450 451 452 453 454
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
455
	int devid;
456 457 458 459 460

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
461
	if (devid < 0)
462
		return false;
463 464 465 466 467 468 469 470 471 472 473

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

474
static void init_iommu_group(struct device *dev)
475
{
476 477
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
478 479
	struct iommu_group *group;

480
	group = iommu_group_get_for_dev(dev);
481 482 483 484 485 486 487
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

488 489 490 491
	if (to_pdomain(domain)->flags == PD_DMA_OPS_MASK) {
		dma_domain = to_pdomain(domain)->priv;
		init_unity_mappings_for_device(dev, dma_domain);
	}
492 493 494

out:
	iommu_group_put(group);
495 496 497 498 499
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
500
	int devid;
501 502 503 504

	if (dev->archdata.iommu)
		return 0;

505
	devid = get_device_id(dev);
506
	if (devid < 0)
507 508 509
		return devid;

	dev_data = find_dev_data(devid);
510 511 512
	if (!dev_data)
		return -ENOMEM;

513 514
	dev_data->alias = get_alias(dev);

515
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
516 517
		struct amd_iommu *iommu;

518
		iommu = amd_iommu_rlookup_table[dev_data->devid];
519 520 521
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

522 523
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
524 525 526
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

527 528 529
	return 0;
}

530 531
static void iommu_ignore_device(struct device *dev)
{
532 533
	u16 alias;
	int devid;
534 535

	devid = get_device_id(dev);
536
	if (devid < 0)
537 538
		return;

539
	alias = get_alias(dev);
540 541 542 543 544 545 546 547

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

548 549
static void iommu_uninit_device(struct device *dev)
{
550 551
	int devid;
	struct iommu_dev_data *dev_data;
552

553
	devid = get_device_id(dev);
554
	if (devid < 0)
555
		return;
556

557
	dev_data = search_dev_data(devid);
558 559 560
	if (!dev_data)
		return;

561 562 563
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
564 565 566
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

567 568
	iommu_group_remove_device(dev);

569 570 571
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

572
	/*
573 574
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
575
	 */
576
}
J
Joerg Roedel 已提交
577

578 579 580 581 582 583
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

584 585 586 587
static void dump_dte_entry(u16 devid)
{
	int i;

588 589
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
590 591 592
			amd_iommu_dev_table[devid].data[i]);
}

593 594 595 596 597 598 599 600 601
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

602
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
603
{
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
625

626
	printk(KERN_ERR "AMD-Vi: Event logged [");
627 628 629 630 631

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
632
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
633
		       address, flags);
634
		dump_dte_entry(devid);
635 636 637 638
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
639
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
640 641 642 643 644
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
645
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
646 647 648 649 650
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
651
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
652 653 654 655
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
656
		dump_command(address);
657 658 659 660 661 662 663 664
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
665
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
666 667 668 669 670
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
671
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
672 673 674 675 676
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
677 678

	memset(__evt, 0, 4 * sizeof(u32));
679 680 681 682 683 684 685 686 687 688
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
689
		iommu_print_event(iommu, iommu->evt_buf + head);
690
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
691 692 693 694 695
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

696
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
741

742 743 744
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
745

746 747 748 749 750 751 752
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
753 754
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
755 756 757 758 759 760

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
761 762 763 764
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

765
irqreturn_t amd_iommu_int_thread(int irq, void *data)
766
{
767 768
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
769

770 771 772 773
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
774

775 776 777 778
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
779

780 781 782 783
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
800
	return IRQ_HANDLED;
801 802
}

803 804 805 806 807
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

808 809 810 811 812 813
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
834 835 836
{
	u8 *target;

837
	target = iommu->cmd_buf + tail;
838
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
839 840 841 842 843

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
844
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
845
}
846

847
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
848
{
849 850
	WARN_ON(address & 0x7ULL);

851
	memset(cmd, 0, sizeof(*cmd));
852 853 854
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
855 856 857
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

858 859 860 861 862 863 864
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

865 866 867 868
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
869
	bool s;
870 871

	pages = iommu_num_pages(address, size, PAGE_SIZE);
872
	s     = false;
873 874 875 876 877 878 879

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
880
		s = true;
881 882 883 884 885 886 887 888 889 890 891
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
892
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
893 894 895
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

896 897 898 899
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
900
	bool s;
901 902

	pages = iommu_num_pages(address, size, PAGE_SIZE);
903
	s     = false;
904 905 906 907 908 909 910

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
911
		s = true;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

927 928 929 930 931 932 933
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

934
	cmd->data[0]  = pasid;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
953
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
954 955
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
956
	cmd->data[1] |= (pasid & 0xff) << 16;
957 958 959 960 961 962 963 964
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

965 966 967 968 969 970 971
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
972
		cmd->data[1]  = pasid;
973 974 975 976 977 978 979 980
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

981 982 983 984
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
985 986
}

987 988 989 990 991 992 993
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

994 995
/*
 * Writes the command to the IOMMUs command buffer and informs the
996
 * hardware about the new command.
997
 */
998 999 1000
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1001
{
1002
	u32 left, tail, head, next_tail;
1003 1004
	unsigned long flags;

1005
again:
1006 1007
	spin_lock_irqsave(&iommu->lock, flags);

1008 1009
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1010 1011
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1012

1013 1014 1015 1016
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1017

1018 1019
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1020

1021 1022 1023 1024 1025 1026
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1027 1028
	}

1029 1030 1031
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1032
	iommu->need_sync = sync;
1033

1034
	spin_unlock_irqrestore(&iommu->lock, flags);
1035

1036
	return 0;
1037 1038
}

1039 1040 1041 1042 1043
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1044 1045 1046 1047
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1048
static int iommu_completion_wait(struct amd_iommu *iommu)
1049 1050
{
	struct iommu_cmd cmd;
1051
	volatile u64 sem = 0;
1052
	int ret;
1053

1054
	if (!iommu->need_sync)
1055
		return 0;
1056

1057
	build_completion_wait(&cmd, (u64)&sem);
1058

1059
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1060
	if (ret)
1061
		return ret;
1062

1063
	return wait_on_sem(&sem);
1064 1065
}

1066
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1067
{
1068
	struct iommu_cmd cmd;
1069

1070
	build_inv_dte(&cmd, devid);
1071

1072 1073
	return iommu_queue_command(iommu, &cmd);
}
1074

1075 1076 1077
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1078

1079 1080
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1081

1082 1083
	iommu_completion_wait(iommu);
}
1084

1085 1086 1087 1088 1089 1090 1091
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1092

1093 1094 1095 1096 1097 1098
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1099

1100
	iommu_completion_wait(iommu);
1101 1102
}

1103
static void iommu_flush_all(struct amd_iommu *iommu)
1104
{
1105
	struct iommu_cmd cmd;
1106

1107
	build_inv_all(&cmd);
1108

1109 1110 1111 1112
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1132 1133
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1134 1135 1136 1137
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1138
		iommu_flush_irt_all(iommu);
1139
		iommu_flush_tlb_all(iommu);
1140 1141 1142
	}
}

1143
/*
1144
 * Command send function for flushing on-device TLB
1145
 */
1146 1147
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1148 1149
{
	struct amd_iommu *iommu;
1150
	struct iommu_cmd cmd;
1151
	int qdep;
1152

1153 1154
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1155

1156
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1157 1158

	return iommu_queue_command(iommu, &cmd);
1159 1160
}

1161 1162 1163
/*
 * Command send function for invalidating a device table entry
 */
1164
static int device_flush_dte(struct iommu_dev_data *dev_data)
1165
{
1166
	struct amd_iommu *iommu;
1167
	u16 alias;
1168
	int ret;
1169

1170
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1171
	alias = dev_data->alias;
1172

1173
	ret = iommu_flush_dte(iommu, dev_data->devid);
1174 1175
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1176 1177 1178
	if (ret)
		return ret;

1179
	if (dev_data->ats.enabled)
1180
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1181 1182

	return ret;
1183 1184
}

1185 1186 1187 1188 1189
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1190 1191
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1192
{
1193
	struct iommu_dev_data *dev_data;
1194 1195
	struct iommu_cmd cmd;
	int ret = 0, i;
1196

1197
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1198

1199 1200 1201 1202 1203 1204 1205 1206
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1207
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1208 1209
	}

1210 1211
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1212
		if (!dev_data->ats.enabled)
1213 1214
			continue;

1215
		ret |= device_flush_iotlb(dev_data, address, size);
1216 1217
	}

1218
	WARN_ON(ret);
1219 1220
}

1221 1222
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1223
{
1224
	__domain_flush_pages(domain, address, size, 0);
1225
}
1226

1227
/* Flush the whole IO/TLB for a given protection domain */
1228
static void domain_flush_tlb(struct protection_domain *domain)
1229
{
1230
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1231 1232
}

1233
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1234
static void domain_flush_tlb_pde(struct protection_domain *domain)
1235
{
1236
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1237 1238
}

1239
static void domain_flush_complete(struct protection_domain *domain)
1240
{
1241
	int i;
1242

1243 1244 1245
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1246

1247 1248 1249 1250 1251
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1252
	}
1253 1254
}

1255

1256
/*
1257
 * This function flushes the DTEs for all devices in domain
1258
 */
1259
static void domain_flush_devices(struct protection_domain *domain)
1260
{
1261
	struct iommu_dev_data *dev_data;
1262

1263
	list_for_each_entry(dev_data, &domain->dev_list, list)
1264
		device_flush_dte(dev_data);
1265 1266
}

1267 1268 1269 1270 1271 1272 1273
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1303
		      unsigned long page_size,
1304 1305 1306
		      u64 **pte_page,
		      gfp_t gfp)
{
1307
	int level, end_lvl;
1308
	u64 *pte, *page;
1309 1310

	BUG_ON(!is_power_of_2(page_size));
1311 1312 1313 1314

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1315 1316 1317 1318
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1319 1320

	while (level > end_lvl) {
1321 1322 1323 1324 1325
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1326 1327 1328
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1329 1330 1331 1332 1333 1334 1335

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1336 1337
		}

1338 1339 1340 1341
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1359 1360 1361
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1362 1363 1364 1365
{
	int level;
	u64 *pte;

1366 1367 1368
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1369 1370 1371
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1372

1373 1374 1375
	while (level > 0) {

		/* Not Present */
1376 1377 1378
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1379
		/* Large PTE */
1380 1381 1382
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1383 1384 1385 1386 1387

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1388 1389
		level -= 1;

1390
		/* Walk to the next level */
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1406 1407 1408 1409 1410
	}

	return pte;
}

1411 1412 1413 1414 1415 1416 1417
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1418 1419 1420
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1421
			  int prot,
1422
			  unsigned long page_size)
1423
{
1424
	u64 __pte, *pte;
1425
	int i, count;
1426

1427 1428 1429
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1430
	if (!(prot & IOMMU_PROT_MASK))
1431 1432
		return -EINVAL;

1433 1434
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1435

1436 1437 1438
	if (!pte)
		return -ENOMEM;

1439 1440 1441
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1442

1443
	if (count > 1) {
1444 1445 1446 1447
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1448 1449 1450 1451 1452 1453

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1454 1455
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1456

1457 1458
	update_domain(dom);

1459 1460 1461
	return 0;
}

1462 1463 1464
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1465
{
1466 1467
	unsigned long long unmapped;
	unsigned long unmap_size;
1468 1469 1470 1471 1472
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1473

1474 1475
	while (unmapped < page_size) {

1476 1477 1478 1479 1480 1481
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1482 1483 1484 1485 1486 1487 1488 1489
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1490
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1491

1492
	return unmapped;
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1504

1505
/*
1506
 * The address allocator core functions.
1507 1508 1509
 *
 * called with domain->lock held
 */
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1531 1532 1533 1534 1535
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1536
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1537 1538 1539
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1540
	unsigned long i, old_size, pte_pgsize;
1541 1542 1543
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1544

1545 1546 1547 1548
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1549 1550 1551
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1552 1553
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1554 1555
		return -ENOMEM;

1556 1557
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1558 1559
		goto out_free;

1560
	range->offset = dma_dom->aperture_size;
1561

1562
	spin_lock_init(&range->bitmap_lock);
1563

1564 1565 1566 1567 1568 1569
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1570
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1571 1572 1573 1574
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1575
			range->pte_pages[i] = pte_page;
1576 1577 1578 1579 1580

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1581 1582
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1583
	/* First take the bitmap_lock and then publish the range */
1584
	spin_lock(&range->bitmap_lock);
1585 1586 1587 1588

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1602
	/* Initialize the exclusion range if necessary */
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1624
	     i += pte_pgsize) {
1625
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1626 1627 1628
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1629 1630
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1631 1632
	}

1633 1634
	update_domain(&dma_dom->domain);

1635 1636 1637
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1638

1639 1640 1641
	return 0;

out_free:
1642 1643
	update_domain(&dma_dom->domain);

1644
	free_page((unsigned long)range->bitmap);
1645

1646
	kfree(range);
1647 1648 1649 1650

	return -ENOMEM;
}

1651 1652
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1653 1654 1655
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1656 1657
					 unsigned long align_mask,
					 bool trylock)
1658 1659 1660
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1661
	bool flush = false;
1662 1663 1664 1665 1666

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1667 1668 1669 1670 1671 1672 1673
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1674 1675
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1676
	if (address == -1) {
1677 1678 1679 1680
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1681 1682
		flush = true;
	}
1683 1684 1685 1686

	if (address != -1)
		range->next_bit = address + pages;

1687 1688
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1689 1690 1691 1692 1693
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1694 1695 1696
	return address;
}

1697 1698 1699 1700
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1701
					u64 dma_mask)
1702
{
1703
	unsigned long boundary_size, mask;
1704
	unsigned long address = -1;
1705
	bool first = true;
1706 1707 1708
	u32 start, i;

	preempt_disable();
1709

1710 1711
	mask = dma_get_seg_boundary(dev);

1712
again:
1713 1714 1715 1716 1717 1718 1719 1720
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1721 1722
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1723

1724 1725
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1726 1727 1728
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1729

1730
		range = dom->aperture[index];
1731 1732 1733

		if (!range || range->offset >= dma_mask)
			continue;
1734

1735
		address = dma_ops_aperture_alloc(dom, range, pages,
1736
						 dma_mask, boundary_size,
1737
						 align_mask, first);
1738
		if (address != -1) {
1739
			address = range->offset + (address << PAGE_SHIFT);
1740
			this_cpu_write(*dom->next_index, index);
1741 1742 1743 1744
			break;
		}
	}

1745 1746 1747 1748 1749
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1750 1751
	preempt_enable();

1752 1753 1754
	return address;
}

1755 1756
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1757
					     unsigned int pages,
1758 1759
					     unsigned long align_mask,
					     u64 dma_mask)
1760
{
1761
	unsigned long address = -1;
1762

1763 1764 1765 1766
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1767
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1768 1769
			break;
	}
1770

1771
	if (unlikely(address == -1))
1772
		address = DMA_ERROR_CODE;
1773 1774 1775 1776 1777 1778

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1779 1780 1781 1782 1783
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1784 1785 1786 1787
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1788 1789
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1790
	unsigned long flags;
1791

1792 1793
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1794 1795 1796 1797
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1798

1799
	if (amd_iommu_unmap_flush) {
1800 1801 1802
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1803 1804

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1805

1806
	spin_lock_irqsave(&range->bitmap_lock, flags);
1807 1808
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1809
	bitmap_clear(range->bitmap, address, pages);
1810
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1811

1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1886
		/* PTE present? */				\
1887 1888 1889
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1890 1891 1892 1893 1894
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1907
static void free_pagetable(struct protection_domain *domain)
1908
{
1909
	unsigned long root = (unsigned long)domain->pt_root;
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1934 1935 1936
	}
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1967 1968
static void free_gcr3_table(struct protection_domain *domain)
{
1969 1970 1971 1972
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1973 1974
	else
		BUG_ON(domain->glx != 0);
1975

1976 1977 1978
	free_page((unsigned long)domain->gcr3_tbl);
}

1979 1980 1981 1982
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1983 1984
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1985 1986
	int i;

1987 1988 1989
	if (!dom)
		return;

1990 1991
	put_iova_domain(&dom->iovad);

1992 1993
	free_percpu(dom->next_index);

1994 1995
	del_domain_from_list(&dom->domain);

1996
	free_pagetable(&dom->domain);
1997

1998 1999 2000 2001 2002 2003
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
2004 2005 2006 2007

	kfree(dom);
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

2025 2026
/*
 * Allocates a new protection domain usable for the dma_ops functions.
2027
 * It also initializes the page table and the address allocator data
2028 2029
 * structures required for the dma_ops interface
 */
2030
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2031 2032
{
	struct dma_ops_domain *dma_dom;
2033
	int cpu;
2034 2035 2036 2037 2038

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

2039
	if (protection_domain_init(&dma_dom->domain))
2040
		goto free_dma_dom;
2041

2042 2043 2044 2045
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

2046
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2047
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2048
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2049 2050 2051 2052
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2053 2054
	add_domain_to_list(&dma_dom->domain);

2055
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2056 2057
		goto free_dma_dom;

2058
	/*
2059 2060
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2061
	 */
2062
	dma_dom->aperture[0]->bitmap[0] = 1;
2063

2064 2065
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2066

2067 2068 2069
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

2070 2071 2072
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

2073 2074 2075 2076 2077 2078 2079 2080
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2081 2082 2083 2084 2085 2086 2087 2088 2089
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2090
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2091
{
2092
	u64 pte_root = 0;
2093
	u64 flags = 0;
2094

2095 2096 2097
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2098 2099 2100
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2101

2102 2103
	flags = amd_iommu_dev_table[devid].data[1];

2104 2105 2106
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2133 2134 2135 2136 2137
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2138 2139 2140 2141 2142
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2143 2144
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2145 2146

	amd_iommu_apply_erratum_63(devid);
2147 2148
}

2149 2150
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2151 2152
{
	struct amd_iommu *iommu;
2153
	u16 alias;
2154
	bool ats;
2155

2156
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2157
	alias = dev_data->alias;
2158
	ats   = dev_data->ats.enabled;
2159 2160 2161 2162 2163 2164 2165 2166 2167

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2168 2169 2170
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2171
		set_dte_entry(alias, domain, ats);
2172

2173
	device_flush_dte(dev_data);
2174 2175
}

2176
static void do_detach(struct iommu_dev_data *dev_data)
2177 2178
{
	struct amd_iommu *iommu;
2179
	u16 alias;
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2190
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2191
	alias = dev_data->alias;
2192 2193

	/* decrease reference counters */
2194 2195 2196 2197 2198 2199
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2200
	clear_dte_entry(dev_data->devid);
2201 2202
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2203

2204
	/* Flush the DTE entry */
2205
	device_flush_dte(dev_data);
2206 2207 2208 2209 2210 2211
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2212
static int __attach_device(struct iommu_dev_data *dev_data,
2213
			   struct protection_domain *domain)
2214
{
2215
	int ret;
2216

2217 2218 2219 2220 2221 2222
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2223 2224 2225
	/* lock domain */
	spin_lock(&domain->lock);

2226
	ret = -EBUSY;
2227
	if (dev_data->domain != NULL)
2228
		goto out_unlock;
2229

2230
	/* Attach alias group root */
2231
	do_attach(dev_data, domain);
2232

2233 2234 2235 2236
	ret = 0;

out_unlock:

2237 2238
	/* ready */
	spin_unlock(&domain->lock);
2239

2240
	return ret;
2241
}
2242

2243 2244 2245 2246 2247 2248 2249 2250

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2251 2252 2253 2254 2255 2256
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2257
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2258 2259 2260
	if (!pos)
		return -EINVAL;

2261 2262 2263
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2264 2265 2266 2267

	return 0;
}

2268 2269
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2270 2271 2272 2273 2274 2275 2276 2277
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2289 2290
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2291 2292 2293
	if (ret)
		goto out_err;

2294 2295 2296 2297 2298 2299
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2313
/* FIXME: Move this to PCI code */
2314
#define PCI_PRI_TLP_OFF		(1 << 15)
2315

J
Joerg Roedel 已提交
2316
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2317
{
2318
	u16 status;
2319 2320
	int pos;

2321
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2322 2323 2324
	if (!pos)
		return false;

2325
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2326

2327
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2328 2329
}

2330
/*
F
Frank Arnold 已提交
2331
 * If a device is not yet associated with a domain, this function
2332 2333
 * assigns it visible for the hardware
 */
2334 2335
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2336
{
2337
	struct pci_dev *pdev;
2338
	struct iommu_dev_data *dev_data;
2339
	unsigned long flags;
2340
	int ret;
2341

2342 2343
	dev_data = get_dev_data(dev);

2344 2345 2346 2347
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2348
	if (domain->flags & PD_IOMMUV2_MASK) {
2349
		if (!dev_data->passthrough)
2350 2351
			return -EINVAL;

2352 2353 2354
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2355

2356 2357 2358 2359
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2360 2361
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2362 2363 2364
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2365

2366
skip_ats_check:
2367
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2368
	ret = __attach_device(dev_data, domain);
2369 2370
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2371 2372 2373 2374 2375
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2376
	domain_flush_tlb_pde(domain);
2377 2378

	return ret;
2379 2380
}

2381 2382 2383
/*
 * Removes a device from a protection domain (unlocked)
 */
2384
static void __detach_device(struct iommu_dev_data *dev_data)
2385
{
2386
	struct protection_domain *domain;
2387

2388 2389 2390 2391 2392
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2393

2394 2395
	if (WARN_ON(!dev_data->domain))
		return;
2396

2397
	domain = dev_data->domain;
2398

2399
	spin_lock(&domain->lock);
2400

2401
	do_detach(dev_data);
2402

2403
	spin_unlock(&domain->lock);
2404 2405 2406 2407 2408
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2409
static void detach_device(struct device *dev)
2410
{
2411
	struct protection_domain *domain;
2412
	struct iommu_dev_data *dev_data;
2413 2414
	unsigned long flags;

2415
	dev_data = get_dev_data(dev);
2416
	domain   = dev_data->domain;
2417

2418 2419
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2420
	__detach_device(dev_data);
2421
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2422

2423 2424 2425
	if (!dev_is_pci(dev))
		return;

2426
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2427 2428
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2429
		pci_disable_ats(to_pci_dev(dev));
2430 2431

	dev_data->ats.enabled = false;
2432
}
2433

2434
static int amd_iommu_add_device(struct device *dev)
2435
{
2436
	struct iommu_dev_data *dev_data;
2437
	struct iommu_domain *domain;
2438
	struct amd_iommu *iommu;
2439
	int ret, devid;
2440

2441
	if (!check_device(dev) || get_dev_data(dev))
2442
		return 0;
2443

2444
	devid = get_device_id(dev);
2445
	if (devid < 0)
2446 2447
		return devid;

2448
	iommu = amd_iommu_rlookup_table[devid];
2449

2450
	ret = iommu_init_device(dev);
2451 2452 2453 2454
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2455

2456
		iommu_ignore_device(dev);
2457
		dev->archdata.dma_ops = &nommu_dma_ops;
2458 2459 2460
		goto out;
	}
	init_iommu_group(dev);
2461

2462
	dev_data = get_dev_data(dev);
2463

2464
	BUG_ON(!dev_data);
2465

2466
	if (iommu_pass_through || dev_data->iommu_v2)
2467
		iommu_request_dm_for_dev(dev);
2468

2469 2470
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2471
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2472
		dev_data->passthrough = true;
2473
	else
2474
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2475

2476
out:
2477 2478 2479 2480 2481
	iommu_completion_wait(iommu);

	return 0;
}

2482
static void amd_iommu_remove_device(struct device *dev)
2483
{
2484
	struct amd_iommu *iommu;
2485
	int devid;
2486 2487 2488 2489 2490

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2491
	if (devid < 0)
2492 2493
		return;

2494 2495 2496 2497
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2498 2499
}

2500 2501 2502 2503 2504 2505 2506 2507
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2521
static struct protection_domain *get_domain(struct device *dev)
2522
{
2523
	struct protection_domain *domain;
2524
	struct iommu_domain *io_domain;
2525

2526
	if (!check_device(dev))
2527
		return ERR_PTR(-EINVAL);
2528

2529
	io_domain = iommu_get_domain_for_dev(dev);
2530 2531
	if (!io_domain)
		return NULL;
2532

2533 2534
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2535
		return ERR_PTR(-EBUSY);
2536

2537
	return domain;
2538 2539
}

2540 2541
static void update_device_table(struct protection_domain *domain)
{
2542
	struct iommu_dev_data *dev_data;
2543

2544 2545
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2546 2547 2548 2549 2550 2551 2552 2553
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2554 2555 2556

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2557 2558 2559 2560

	domain->updated = false;
}

2561 2562 2563 2564 2565 2566
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2567
	struct aperture_range *aperture;
2568 2569
	u64 *pte, *pte_page;

2570 2571 2572 2573 2574
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2575
	if (!pte) {
2576
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2577
				GFP_ATOMIC);
2578 2579
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2580
		pte += PM_LEVEL_INDEX(0, address);
2581

2582
	update_domain(&dom->domain);
2583 2584 2585 2586

	return pte;
}

2587 2588 2589 2590
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2591
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2602
	pte  = dma_ops_get_pte(dom, address);
2603
	if (!pte)
2604
		return DMA_ERROR_CODE;
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2615
	WARN_ON_ONCE(*pte);
2616 2617 2618 2619 2620 2621

	*pte = __pte;

	return (dma_addr_t)address;
}

2622 2623 2624
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2625
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2626 2627
				 unsigned long address)
{
2628
	struct aperture_range *aperture;
2629 2630 2631 2632 2633
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2634 2635 2636 2637 2638 2639 2640
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2641

2642
	pte += PM_LEVEL_INDEX(0, address);
2643

2644
	WARN_ON_ONCE(!*pte);
2645 2646 2647 2648

	*pte = 0ULL;
}

2649 2650
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2651 2652
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2653 2654
 * Must be called with the domain lock held.
 */
2655 2656 2657 2658
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2659
			       int dir,
2660 2661
			       bool align,
			       u64 dma_mask)
2662 2663
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2664
	dma_addr_t address, start, ret;
2665
	unsigned int pages;
2666
	unsigned long align_mask = 0;
2667 2668
	int i;

2669
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2670 2671
	paddr &= PAGE_MASK;

2672 2673 2674
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2675 2676
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2677

2678 2679
	if (address == DMA_ERROR_CODE)
		goto out;
2680 2681 2682

	start = address;
	for (i = 0; i < pages; ++i) {
2683
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2684
		if (ret == DMA_ERROR_CODE)
2685 2686
			goto out_unmap;

2687 2688 2689 2690 2691
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2692
	if (unlikely(amd_iommu_np_cache)) {
2693
		domain_flush_pages(&dma_dom->domain, address, size);
2694 2695
		domain_flush_complete(&dma_dom->domain);
	}
2696

2697 2698
out:
	return address;
2699 2700 2701 2702 2703

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2704
		dma_ops_domain_unmap(dma_dom, start);
2705 2706 2707 2708
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2709
	return DMA_ERROR_CODE;
2710 2711
}

2712 2713 2714 2715
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2716
static void __unmap_single(struct dma_ops_domain *dma_dom,
2717 2718 2719 2720
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2721
	dma_addr_t flush_addr;
2722 2723 2724
	dma_addr_t i, start;
	unsigned int pages;

2725
	if ((dma_addr == DMA_ERROR_CODE) ||
2726
	    (dma_addr + size > dma_dom->aperture_size))
2727 2728
		return;

2729
	flush_addr = dma_addr;
2730
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2731 2732 2733 2734
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2735
		dma_ops_domain_unmap(dma_dom, start);
2736 2737 2738
		start += PAGE_SIZE;
	}

2739
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2740 2741
}

2742 2743 2744
/*
 * The exported map_single function for dma_ops.
 */
2745 2746 2747 2748
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2749
{
2750
	phys_addr_t paddr = page_to_phys(page) + offset;
2751
	struct protection_domain *domain;
2752
	u64 dma_mask;
2753

2754 2755
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2756
		return (dma_addr_t)paddr;
2757 2758
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2759

2760 2761
	dma_mask = *dev->dma_mask;

2762
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2763
			    dma_mask);
2764 2765
}

2766 2767 2768
/*
 * The exported unmap_single function for dma_ops.
 */
2769 2770
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2771 2772 2773
{
	struct protection_domain *domain;

2774 2775
	domain = get_domain(dev);
	if (IS_ERR(domain))
2776 2777
		return;

2778
	__unmap_single(domain->priv, dma_addr, size, dir);
2779 2780
}

2781 2782 2783 2784
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2785
static int map_sg(struct device *dev, struct scatterlist *sglist,
2786 2787
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2788 2789 2790 2791 2792 2793
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2794
	u64 dma_mask;
2795

2796
	domain = get_domain(dev);
2797
	if (IS_ERR(domain))
2798
		return 0;
2799

2800
	dma_mask = *dev->dma_mask;
2801 2802 2803 2804

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2805
		s->dma_address = __map_single(dev, domain->priv,
2806 2807
					      paddr, s->length, dir, false,
					      dma_mask);
2808 2809 2810 2811 2812 2813 2814 2815 2816

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2817

2818 2819 2820
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2821
			__unmap_single(domain->priv, s->dma_address,
2822 2823 2824 2825
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2826
	return 0;
2827 2828
}

2829 2830 2831 2832
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2833
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2834 2835
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2836 2837 2838 2839 2840
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2841 2842
	domain = get_domain(dev);
	if (IS_ERR(domain))
2843 2844
		return;

2845
	for_each_sg(sglist, s, nelems, i) {
2846
		__unmap_single(domain->priv, s->dma_address,
2847 2848 2849 2850 2851
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2852 2853 2854
/*
 * The exported alloc_coherent function for dma_ops.
 */
2855
static void *alloc_coherent(struct device *dev, size_t size,
2856 2857
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2858
{
2859
	u64 dma_mask = dev->coherent_dma_mask;
2860 2861
	struct protection_domain *domain;
	struct page *page;
2862

2863 2864
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2865 2866 2867
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2868 2869
	} else if (IS_ERR(domain))
		return NULL;
2870

2871
	size	  = PAGE_ALIGN(size);
2872 2873
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2874
	flag     |= __GFP_ZERO;
2875

2876 2877
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2878
		if (!gfpflags_allow_blocking(flag))
2879
			return NULL;
2880

2881 2882 2883 2884 2885
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2886

2887 2888 2889
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2890
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2891
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2892

2893
	if (*dma_addr == DMA_ERROR_CODE)
2894
		goto out_free;
2895

2896
	return page_address(page);
2897 2898 2899

out_free:

2900 2901
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2902 2903

	return NULL;
2904 2905
}

2906 2907 2908
/*
 * The exported free_coherent function for dma_ops.
 */
2909
static void free_coherent(struct device *dev, size_t size,
2910 2911
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2912 2913
{
	struct protection_domain *domain;
2914
	struct page *page;
2915

2916 2917 2918
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2919 2920
	domain = get_domain(dev);
	if (IS_ERR(domain))
2921 2922
		goto free_mem;

2923
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2924 2925

free_mem:
2926 2927
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2928 2929
}

2930 2931 2932 2933 2934 2935
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2936
	return check_device(dev);
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2967
static struct dma_map_ops amd_iommu_dma_ops = {
2968 2969 2970 2971 2972 2973 2974 2975
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2976 2977
};

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

3031
int __init amd_iommu_init_api(void)
3032
{
3033 3034 3035 3036 3037
	int ret, err = 0;

	ret = iova_cache_get();
	if (ret)
		return ret;
3038

3039 3040 3041 3042
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

3043 3044 3045 3046 3047 3048 3049 3050
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
3051 3052 3053
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
3054
	return 0;
3055 3056
}

3057 3058
int __init amd_iommu_init_dma_ops(void)
{
3059
	swiotlb        = iommu_pass_through ? 1 : 0;
3060 3061
	iommu_detected = 1;

3062 3063 3064 3065 3066 3067 3068 3069 3070
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

3071 3072 3073 3074 3075
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3076 3077
	return 0;
}
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3091
	struct iommu_dev_data *entry;
3092 3093 3094 3095
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3096 3097 3098 3099
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3100
	}
3101 3102 3103 3104

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3105 3106 3107 3108 3109
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3110 3111
	del_domain_from_list(domain);

3112 3113 3114 3115 3116 3117
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3130
static struct protection_domain *protection_domain_alloc(void)
3131 3132 3133 3134 3135
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3136
		return NULL;
3137

3138
	if (protection_domain_init(domain))
3139 3140
		goto out_err;

3141 3142
	add_domain_to_list(domain);

3143 3144 3145 3146 3147 3148 3149 3150
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3151
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3152
{
3153
	struct protection_domain *pdomain;
3154
	struct dma_ops_domain *dma_domain;
3155

3156 3157 3158 3159 3160
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3161

3162 3163 3164 3165 3166 3167
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3168

3169 3170 3171
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3182 3183 3184 3185
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3186

3187 3188
		pdomain->mode = PAGE_MODE_NONE;
		break;
3189 3190 3191
	default:
		return NULL;
	}
3192

3193
	return &pdomain->domain;
3194 3195
}

3196
static void amd_iommu_domain_free(struct iommu_domain *dom)
3197
{
3198
	struct protection_domain *domain;
3199

3200
	if (!dom)
3201 3202
		return;

3203 3204
	domain = to_pdomain(dom);

3205 3206 3207 3208 3209
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3210 3211
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3212

3213 3214 3215
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3216
	protection_domain_free(domain);
3217 3218
}

3219 3220 3221
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3222
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3223
	struct amd_iommu *iommu;
3224
	int devid;
3225

3226
	if (!check_device(dev))
3227 3228
		return;

3229
	devid = get_device_id(dev);
3230
	if (devid < 0)
3231
		return;
3232

3233
	if (dev_data->domain != NULL)
3234
		detach_device(dev);
3235 3236 3237 3238 3239 3240 3241 3242

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3243 3244 3245
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3246
	struct protection_domain *domain = to_pdomain(dom);
3247
	struct iommu_dev_data *dev_data;
3248
	struct amd_iommu *iommu;
3249
	int ret;
3250

3251
	if (!check_device(dev))
3252 3253
		return -EINVAL;

3254 3255
	dev_data = dev->archdata.iommu;

3256
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3257 3258 3259
	if (!iommu)
		return -EINVAL;

3260
	if (dev_data->domain)
3261
		detach_device(dev);
3262

3263
	ret = attach_device(dev, domain);
3264 3265 3266

	iommu_completion_wait(iommu);

3267
	return ret;
3268 3269
}

3270
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3271
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3272
{
3273
	struct protection_domain *domain = to_pdomain(dom);
3274 3275 3276
	int prot = 0;
	int ret;

3277 3278 3279
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3280 3281 3282 3283 3284
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3285
	mutex_lock(&domain->api_lock);
3286
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3287 3288
	mutex_unlock(&domain->api_lock);

3289
	return ret;
3290 3291
}

3292 3293
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3294
{
3295
	struct protection_domain *domain = to_pdomain(dom);
3296
	size_t unmap_size;
3297

3298 3299 3300
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3301
	mutex_lock(&domain->api_lock);
3302
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3303
	mutex_unlock(&domain->api_lock);
3304

3305
	domain_flush_tlb_pde(domain);
3306

3307
	return unmap_size;
3308 3309
}

3310
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3311
					  dma_addr_t iova)
3312
{
3313
	struct protection_domain *domain = to_pdomain(dom);
3314
	unsigned long offset_mask, pte_pgsize;
3315
	u64 *pte, __pte;
3316

3317 3318 3319
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3320
	pte = fetch_pte(domain, iova, &pte_pgsize);
3321

3322
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3323 3324
		return 0;

3325 3326
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3327

3328
	return (__pte & ~offset_mask) | (iova & offset_mask);
3329 3330
}

3331
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3332
{
3333 3334
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3335
		return true;
3336
	case IOMMU_CAP_INTR_REMAP:
3337
		return (irq_remapping_enabled == 1);
3338 3339
	case IOMMU_CAP_NOEXEC:
		return false;
3340 3341
	}

3342
	return false;
S
Sheng Yang 已提交
3343 3344
}

3345 3346 3347 3348
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3349
	int devid;
3350 3351

	devid = get_device_id(dev);
3352
	if (devid < 0)
3353
		return;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
	struct protection_domain *pdomain = to_pdomain(domain);
	struct dma_ops_domain *dma_dom = pdomain->priv;
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3402
static const struct iommu_ops amd_iommu_ops = {
3403
	.capable = amd_iommu_capable,
3404 3405
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3406 3407
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3408 3409
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3410
	.map_sg = default_iommu_map_sg,
3411
	.iova_to_phys = amd_iommu_iova_to_phys,
3412 3413
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3414
	.device_group = amd_iommu_device_group,
3415 3416
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3417
	.apply_dm_region = amd_iommu_apply_dm_region,
3418
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3419 3420
};

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3443 3444 3445

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3446
	struct protection_domain *domain = to_pdomain(dom);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3464 3465 3466

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3467
	struct protection_domain *domain = to_pdomain(dom);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3545 3546 3547 3548 3549 3550
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3582
	struct protection_domain *domain = to_pdomain(dom);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3602
	struct protection_domain *domain = to_pdomain(dom);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3682
	struct protection_domain *domain = to_pdomain(dom);
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3696
	struct protection_domain *domain = to_pdomain(dom);
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3724 3725 3726

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3727
	struct protection_domain *pdomain;
3728

3729 3730
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3731 3732 3733
		return NULL;

	/* Only return IOMMUv2 domains */
3734
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3735 3736
		return NULL;

3737
	return &pdomain->domain;
3738 3739
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3819 3820 3821 3822 3823
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3886 3887 3888
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3889 3890 3891 3892 3893 3894 3895
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3896
		table = NULL;
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3914
		set_dte_irq_entry(alias, table);
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3927
static int alloc_irq_index(u16 devid, int count)
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4011
static int get_devid(struct irq_alloc_info *info)
4012
{
4013
	int devid = -1;
4014

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4030

4031 4032
	return devid;
}
4033

4034 4035 4036 4037
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4038

4039 4040
	if (!info)
		return NULL;
4041

4042 4043 4044 4045 4046 4047
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4048

4049
	return NULL;
4050 4051
}

4052
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4053
{
4054 4055
	struct amd_iommu *iommu;
	int devid;
4056

4057 4058
	if (!info)
		return NULL;
4059

4060 4061 4062 4063
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4064
		if (devid < 0)
4065 4066
			return NULL;

4067 4068 4069
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4070 4071 4072 4073
		break;
	default:
		break;
	}
4074

4075 4076
	return NULL;
}
4077

4078 4079 4080 4081 4082 4083
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4084 4085 4086
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4087

4088 4089 4090 4091 4092 4093 4094 4095 4096
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
4097

4098 4099
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4123

4124 4125 4126 4127 4128 4129 4130
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4131

4132 4133 4134 4135
	default:
		BUG_ON(1);
		break;
	}
4136 4137
}

4138 4139
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4140
{
4141 4142 4143
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
4144
	struct irq_cfg *cfg;
4145 4146
	int i, ret, devid;
	int index = -1;
4147

4148 4149 4150 4151
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4152 4153
		return -EINVAL;

4154 4155 4156 4157 4158 4159
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4160

4161 4162 4163
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4164

4165 4166 4167
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4168

4169 4170 4171 4172 4173 4174
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4175
		index = alloc_irq_index(devid, nr_irqs);
4176 4177 4178 4179 4180
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
4181

4182 4183 4184 4185 4186 4187 4188
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4189

4190 4191 4192 4193 4194
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4195 4196 4197 4198 4199 4200
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4201

4202
	return 0;
4203

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4215 4216
}

4217 4218
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4219
{
4220 4221 4222 4223
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4224

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4236

4237 4238 4239 4240 4241
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4242

4243
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4244 4245
}

4246 4247
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4248
{
4249 4250 4251
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4252

4253 4254 4255
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4256

4257 4258 4259 4260 4261
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4262
};
4263

4264 4265 4266 4267 4268 4269 4270 4271
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4272

4273 4274 4275
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4276

4277 4278 4279 4280 4281 4282 4283
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4284

4285 4286 4287 4288 4289
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4290
	send_cleanup_vector(cfg);
4291 4292

	return IRQ_SET_MASK_OK_DONE;
4293 4294
}

4295
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4296
{
4297
	struct amd_ir_data *ir_data = irq_data->chip_data;
4298

4299 4300
	*msg = ir_data->msi_entry;
}
4301

4302 4303 4304 4305 4306
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4307

4308 4309 4310 4311 4312
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4313

4314 4315
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4316 4317 4318

	return 0;
}
4319
#endif