amd_iommu.c 96.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49 50 51

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

52
#define LOOP_TIMEOUT	100000
53

54 55 56 57 58 59
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
60
 * 512GB Pages are not supported due to a hardware bug
61
 */
J
Joerg Roedel 已提交
62
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
63

64 65
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

66 67 68 69
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

70 71 72 73
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

74 75 76
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

77 78 79 80 81 82
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

83 84
static struct iommu_ops amd_iommu_ops;

85
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
86
int amd_iommu_max_glx_val = -1;
87

88 89
static struct dma_map_ops amd_iommu_dma_ops;

90 91 92
/*
 * general struct to manage commands send to an IOMMU
 */
93
struct iommu_cmd {
94 95 96
	u32 data[4];
};

97 98
struct kmem_cache *amd_iommu_irq_cache;

99
static void update_domain(struct protection_domain *domain);
100
static int __init alloc_passthrough_domain(void);
101

102 103 104 105 106 107
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

108
static struct iommu_dev_data *alloc_dev_data(u16 devid)
109 110 111 112 113 114 115 116
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

117
	dev_data->devid = devid;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

135 136 137
	if (dev_data->group)
		iommu_group_put(dev_data->group);

138 139 140
	kfree(dev_data);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

172 173 174 175 176 177 178
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

179 180 181 182 183
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

184 185 186 187
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
188 189
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
190 191 192 193 194 195 196 197 198 199 200 201
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

202 203 204 205 206 207 208 209 210
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

239 240 241 242 243 244 245 246 247 248 249 250
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
251
	if (dev->bus != &pci_bus_type)
252 253 254 255 256 257 258 259 260 261 262 263 264 265
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

266 267 268 269 270 271
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
	pci_dev_put(*from);
	*from = to;
}

272 273 274 275 276 277 278 279 280 281 282 283
static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
{
	while (!bus->self) {
		if (!pci_is_root_bus(bus))
			bus = bus->parent;
		else
			return ERR_PTR(-ENODEV);
	}

	return bus;
}

284 285
#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

286
static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
287
{
288
	struct pci_dev *dma_pdev = pdev;
289

290
	/* Account for quirked devices */
291 292
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

293 294 295 296
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
297 298 299 300 301 302 303
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

304 305 306 307 308
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
309
	while (!pci_is_root_bus(dma_pdev->bus)) {
310 311 312
		struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
		if (IS_ERR(bus))
			break;
313 314

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
315 316
			break;

317
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
318 319
	}

320 321 322
	return dma_pdev;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
{
	struct iommu_group *group = iommu_group_get(&pdev->dev);
	int ret;

	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		WARN_ON(&pdev->dev != dev);
	}

	ret = iommu_group_add_device(group, dev);
	iommu_group_put(group);
	return ret;
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354
static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
				    struct device *dev)
{
	if (!dev_data->group) {
		struct iommu_group *group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		dev_data->group = group;
	}

	return iommu_group_add_device(dev_data->group, dev);
}

355 356 357 358
static int init_iommu_group(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct iommu_group *group;
359
	struct pci_dev *dma_pdev;
360 361 362 363 364 365 366 367 368 369 370 371 372 373
	int ret;

	group = iommu_group_get(dev);
	if (group) {
		iommu_group_put(group);
		return 0;
	}

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	if (dev_data->alias_data) {
		u16 alias;
374 375 376 377
		struct pci_bus *bus;

		if (dev_data->alias_data->group)
			goto use_group;
378

379 380 381 382
		/*
		 * If the alias device exists, it's effectively just a first
		 * level quirk for finding the DMA source.
		 */
383 384
		alias = amd_iommu_alias_table[dev_data->devid];
		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
385 386 387 388
		if (dma_pdev) {
			dma_pdev = get_isolation_root(dma_pdev);
			goto use_pdev;
		}
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		/*
		 * If the alias is virtual, try to find a parent device
		 * and test whether the IOMMU group is actualy rooted above
		 * the alias.  Be careful to also test the parent device if
		 * we think the alias is the root of the group.
		 */
		bus = pci_find_bus(0, alias >> 8);
		if (!bus)
			goto use_group;

		bus = find_hosted_bus(bus);
		if (IS_ERR(bus) || !bus->self)
			goto use_group;

		dma_pdev = get_isolation_root(pci_dev_get(bus->self));
		if (dma_pdev != bus->self || (dma_pdev->multifunction &&
		    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
			goto use_pdev;

		pci_dev_put(dma_pdev);
		goto use_group;
	}
412

413 414
	dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
use_pdev:
415
	ret = use_pdev_iommu_group(dma_pdev, dev);
416
	pci_dev_put(dma_pdev);
417
	return ret;
418 419
use_group:
	return use_dev_data_iommu_group(dev_data->alias_data, dev);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;
	int ret;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	alias = amd_iommu_alias_table[dev_data->devid];
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;
	}

	ret = init_iommu_group(dev);
451 452 453
	if (ret)
		return ret;

454 455 456 457 458 459 460
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

461 462 463 464 465
	dev->archdata.iommu = dev_data;

	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

480 481
static void iommu_uninit_device(struct device *dev)
{
482 483
	iommu_group_remove_device(dev);

484 485 486 487 488
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
489
}
J
Joerg Roedel 已提交
490 491 492

void __init amd_iommu_uninit_devices(void)
{
493
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
494 495 496 497 498 499 500 501 502
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
503 504 505 506

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
520 521 522
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
523 524 525 526 527 528 529 530 531 532 533
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
534 535 536 537 538 539
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

540
DECLARE_STATS_COUNTER(compl_wait);
541
DECLARE_STATS_COUNTER(cnt_map_single);
542
DECLARE_STATS_COUNTER(cnt_unmap_single);
543
DECLARE_STATS_COUNTER(cnt_map_sg);
544
DECLARE_STATS_COUNTER(cnt_unmap_sg);
545
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
546
DECLARE_STATS_COUNTER(cnt_free_coherent);
547
DECLARE_STATS_COUNTER(cross_page);
548
DECLARE_STATS_COUNTER(domain_flush_single);
549
DECLARE_STATS_COUNTER(domain_flush_all);
550
DECLARE_STATS_COUNTER(alloced_io_mem);
551
DECLARE_STATS_COUNTER(total_map_requests);
552 553 554 555 556
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
576
					 &amd_iommu_unmap_flush);
577 578

	amd_iommu_stats_add(&compl_wait);
579
	amd_iommu_stats_add(&cnt_map_single);
580
	amd_iommu_stats_add(&cnt_unmap_single);
581
	amd_iommu_stats_add(&cnt_map_sg);
582
	amd_iommu_stats_add(&cnt_unmap_sg);
583
	amd_iommu_stats_add(&cnt_alloc_coherent);
584
	amd_iommu_stats_add(&cnt_free_coherent);
585
	amd_iommu_stats_add(&cross_page);
586
	amd_iommu_stats_add(&domain_flush_single);
587
	amd_iommu_stats_add(&domain_flush_all);
588
	amd_iommu_stats_add(&alloced_io_mem);
589
	amd_iommu_stats_add(&total_map_requests);
590 591 592 593
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
594 595 596 597
}

#endif

598 599 600 601 602 603
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

604 605 606 607
static void dump_dte_entry(u16 devid)
{
	int i;

608 609
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
610 611 612
			amd_iommu_dev_table[devid].data[i]);
}

613 614 615 616 617 618 619 620 621
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

622
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
623
{
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
645

646
	printk(KERN_ERR "AMD-Vi: Event logged [");
647 648 649 650 651 652 653

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
654
		dump_dte_entry(devid);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
676
		dump_command(address);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
697 698

	memset(__evt, 0, 4 * sizeof(u32));
699 700 701 702 703 704 705
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

706 707 708
	/* enable event interrupts again */
	writel(MMIO_STATUS_EVT_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

709 710 711 712 713 714
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
715
		iommu_print_event(iommu, iommu->evt_buf + head);
716 717 718 719 720 721 722 723
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

724
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
725 726 727
{
	struct amd_iommu_fault fault;

728 729
	INC_STATS_COUNTER(pri_requests);

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

752 753 754
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

755 756 757 758 759 760
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
777

778 779 780
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
781

782 783 784 785 786 787 788
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
789 790
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
791 792 793

		/*
		 * Release iommu->lock because ppr-handling might need to
F
Frank Arnold 已提交
794
		 * re-acquire it
795 796 797 798 799 800 801 802 803 804
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
805 806 807 808 809 810
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

811
irqreturn_t amd_iommu_int_thread(int irq, void *data)
812
{
813 814
	struct amd_iommu *iommu;

815
	for_each_iommu(iommu) {
816
		iommu_poll_events(iommu);
817 818
		iommu_poll_ppr_log(iommu);
	}
819 820

	return IRQ_HANDLED;
821 822
}

823 824 825 826 827
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

828 829 830 831 832 833
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
854 855 856
{
	u8 *target;

857
	target = iommu->cmd_buf + tail;
858 859 860 861 862 863
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
864
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
865
}
866

867
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
868
{
869 870
	WARN_ON(address & 0x7ULL);

871
	memset(cmd, 0, sizeof(*cmd));
872 873 874
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
875 876 877
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

878 879 880 881 882 883 884
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
912
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
913 914 915
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1001 1002 1003 1004
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1005 1006
}

1007 1008 1009 1010 1011 1012 1013
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1014 1015
/*
 * Writes the command to the IOMMUs command buffer and informs the
1016
 * hardware about the new command.
1017
 */
1018 1019 1020
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1021
{
1022
	u32 left, tail, head, next_tail;
1023 1024
	unsigned long flags;

1025
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1026 1027

again:
1028 1029
	spin_lock_irqsave(&iommu->lock, flags);

1030 1031 1032 1033
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
1034

1035 1036 1037 1038
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1039

1040 1041
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1042

1043 1044 1045 1046 1047 1048
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1049 1050
	}

1051 1052 1053
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1054
	iommu->need_sync = sync;
1055

1056
	spin_unlock_irqrestore(&iommu->lock, flags);
1057

1058
	return 0;
1059 1060
}

1061 1062 1063 1064 1065
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1066 1067 1068 1069
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1070
static int iommu_completion_wait(struct amd_iommu *iommu)
1071 1072
{
	struct iommu_cmd cmd;
1073
	volatile u64 sem = 0;
1074
	int ret;
1075

1076
	if (!iommu->need_sync)
1077
		return 0;
1078

1079
	build_completion_wait(&cmd, (u64)&sem);
1080

1081
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1082
	if (ret)
1083
		return ret;
1084

1085
	return wait_on_sem(&sem);
1086 1087
}

1088
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1089
{
1090
	struct iommu_cmd cmd;
1091

1092
	build_inv_dte(&cmd, devid);
1093

1094 1095
	return iommu_queue_command(iommu, &cmd);
}
1096

1097 1098 1099
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1100

1101 1102
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1103

1104 1105
	iommu_completion_wait(iommu);
}
1106

1107 1108 1109 1110 1111 1112 1113
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1114

1115 1116 1117 1118 1119 1120
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1121

1122
	iommu_completion_wait(iommu);
1123 1124
}

1125
static void iommu_flush_all(struct amd_iommu *iommu)
1126
{
1127
	struct iommu_cmd cmd;
1128

1129
	build_inv_all(&cmd);
1130

1131 1132 1133 1134
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1154 1155
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1156 1157 1158 1159
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1160
		iommu_flush_irt_all(iommu);
1161
		iommu_flush_tlb_all(iommu);
1162 1163 1164
	}
}

1165
/*
1166
 * Command send function for flushing on-device TLB
1167
 */
1168 1169
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1170 1171
{
	struct amd_iommu *iommu;
1172
	struct iommu_cmd cmd;
1173
	int qdep;
1174

1175 1176
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1177

1178
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1179 1180

	return iommu_queue_command(iommu, &cmd);
1181 1182
}

1183 1184 1185
/*
 * Command send function for invalidating a device table entry
 */
1186
static int device_flush_dte(struct iommu_dev_data *dev_data)
1187
{
1188
	struct amd_iommu *iommu;
1189
	int ret;
1190

1191
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1192

1193
	ret = iommu_flush_dte(iommu, dev_data->devid);
1194 1195 1196
	if (ret)
		return ret;

1197
	if (dev_data->ats.enabled)
1198
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1199 1200

	return ret;
1201 1202
}

1203 1204 1205 1206 1207
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1208 1209
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1210
{
1211
	struct iommu_dev_data *dev_data;
1212 1213
	struct iommu_cmd cmd;
	int ret = 0, i;
1214

1215
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1216

1217 1218 1219 1220 1221 1222 1223 1224
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1225
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1226 1227
	}

1228 1229
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1230
		if (!dev_data->ats.enabled)
1231 1232
			continue;

1233
		ret |= device_flush_iotlb(dev_data, address, size);
1234 1235
	}

1236
	WARN_ON(ret);
1237 1238
}

1239 1240
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1241
{
1242
	__domain_flush_pages(domain, address, size, 0);
1243
}
1244

1245
/* Flush the whole IO/TLB for a given protection domain */
1246
static void domain_flush_tlb(struct protection_domain *domain)
1247
{
1248
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1249 1250
}

1251
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1252
static void domain_flush_tlb_pde(struct protection_domain *domain)
1253
{
1254
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1255 1256
}

1257
static void domain_flush_complete(struct protection_domain *domain)
1258
{
1259
	int i;
1260

1261 1262 1263
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1264

1265 1266 1267 1268 1269
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1270
	}
1271 1272
}

1273

1274
/*
1275
 * This function flushes the DTEs for all devices in domain
1276
 */
1277
static void domain_flush_devices(struct protection_domain *domain)
1278
{
1279
	struct iommu_dev_data *dev_data;
1280

1281
	list_for_each_entry(dev_data, &domain->dev_list, list)
1282
		device_flush_dte(dev_data);
1283 1284
}

1285 1286 1287 1288 1289 1290 1291
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1321
		      unsigned long page_size,
1322 1323 1324
		      u64 **pte_page,
		      gfp_t gfp)
{
1325
	int level, end_lvl;
1326
	u64 *pte, *page;
1327 1328

	BUG_ON(!is_power_of_2(page_size));
1329 1330 1331 1332

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1333 1334 1335 1336
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1337 1338 1339 1340 1341 1342 1343 1344 1345

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1346 1347 1348 1349
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1367
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1368 1369 1370 1371
{
	int level;
	u64 *pte;

1372 1373 1374 1375 1376
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1377

1378 1379 1380
	while (level > 0) {

		/* Not Present */
1381 1382 1383
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1403 1404
		level -= 1;

1405
		/* Walk to the next level */
1406 1407 1408 1409 1410 1411 1412
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1413 1414 1415 1416 1417 1418 1419
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1420 1421 1422
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1423
			  int prot,
1424
			  unsigned long page_size)
1425
{
1426
	u64 __pte, *pte;
1427
	int i, count;
1428

1429
	if (!(prot & IOMMU_PROT_MASK))
1430 1431
		return -EINVAL;

1432 1433 1434 1435 1436 1437 1438 1439
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1440

1441 1442 1443 1444 1445
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1446 1447 1448 1449 1450 1451

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1452 1453
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1454

1455 1456
	update_domain(dom);

1457 1458 1459
	return 0;
}

1460 1461 1462
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1463
{
1464 1465 1466 1467 1468 1469
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1500

1501
	return unmapped;
1502 1503
}

1504 1505 1506 1507
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1522 1523 1524 1525
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1526 1527 1528 1529 1530 1531 1532 1533
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1534
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1535
				     PAGE_SIZE);
1536 1537 1538 1539 1540 1541 1542
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1543
			__set_bit(addr >> PAGE_SHIFT,
1544
				  dma_dom->aperture[0]->bitmap);
1545 1546 1547 1548 1549
	}

	return 0;
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1572 1573 1574
/*
 * Inits the unity mappings required for a specific device
 */
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1592 1593 1594 1595 1596 1597 1598 1599 1600
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1601

1602
/*
1603
 * The address allocator core functions.
1604 1605 1606
 *
 * called with domain->lock held
 */
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1628 1629 1630 1631 1632
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1633
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1634 1635 1636
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1637
	struct amd_iommu *iommu;
1638
	unsigned long i, old_size;
1639

1640 1641 1642 1643
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1663
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1674
	old_size                = dma_dom->aperture_size;
1675 1676
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1689
	/* Initialize the exclusion range if necessary */
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1712
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1713 1714 1715
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1716
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1717 1718
	}

1719 1720
	update_domain(&dma_dom->domain);

1721 1722 1723
	return 0;

out_free:
1724 1725
	update_domain(&dma_dom->domain);

1726 1727 1728 1729 1730 1731 1732 1733
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1734 1735 1736 1737 1738 1739 1740
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1741
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1742 1743 1744 1745 1746 1747
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1748 1749
	next_bit >>= PAGE_SHIFT;

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1768
			dom->next_address = address + (pages << PAGE_SHIFT);
1769 1770 1771 1772 1773 1774 1775 1776 1777
			break;
		}

		next_bit = 0;
	}

	return address;
}

1778 1779
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1780
					     unsigned int pages,
1781 1782
					     unsigned long align_mask,
					     u64 dma_mask)
1783 1784 1785
{
	unsigned long address;

1786 1787 1788 1789
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1790

1791
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1792
				     dma_mask, dom->next_address);
1793

1794
	if (address == -1) {
1795
		dom->next_address = 0;
1796 1797
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1798 1799
		dom->need_flush = true;
	}
1800

1801
	if (unlikely(address == -1))
1802
		address = DMA_ERROR_CODE;
1803 1804 1805 1806 1807 1808

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1809 1810 1811 1812 1813
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1814 1815 1816 1817
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1818 1819
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1820

1821 1822
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1823 1824 1825 1826
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1827

1828
	if (address >= dom->next_address)
1829
		dom->need_flush = true;
1830 1831

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1832

A
Akinobu Mita 已提交
1833
	bitmap_clear(range->bitmap, address, pages);
1834

1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1899
static void free_pagetable(struct protection_domain *domain)
1900 1901 1902 1903
{
	int i, j;
	u64 *p1, *p2, *p3;

1904
	p1 = domain->pt_root;
1905 1906 1907 1908 1909 1910 1911 1912 1913

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1914
		for (j = 0; j < 512; ++j) {
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1925 1926

	domain->pt_root = NULL;
1927 1928
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1959 1960
static void free_gcr3_table(struct protection_domain *domain)
{
1961 1962 1963 1964 1965 1966 1967
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1968 1969 1970
	free_page((unsigned long)domain->gcr3_tbl);
}

1971 1972 1973 1974
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1975 1976
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1977 1978
	int i;

1979 1980 1981
	if (!dom)
		return;

1982 1983
	del_domain_from_list(&dom->domain);

1984
	free_pagetable(&dom->domain);
1985

1986 1987 1988 1989 1990 1991
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1992 1993 1994 1995

	kfree(dom);
}

1996 1997
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1998
 * It also initializes the page table and the address allocator data
1999 2000
 * structures required for the dma_ops interface
 */
2001
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2014
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2015
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2016
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2017
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2018 2019 2020 2021
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2022
	dma_dom->need_flush = false;
2023
	dma_dom->target_dev = 0xffff;
2024

2025 2026
	add_domain_to_list(&dma_dom->domain);

2027
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2028 2029
		goto free_dma_dom;

2030
	/*
2031 2032
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2033
	 */
2034
	dma_dom->aperture[0]->bitmap[0] = 1;
2035
	dma_dom->next_address = 0;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2055
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2056
{
2057
	u64 pte_root = 0;
2058
	u64 flags = 0;
2059

2060 2061 2062
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2063 2064 2065
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2066

2067 2068
	flags = amd_iommu_dev_table[devid].data[1];

2069 2070 2071
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2098 2099 2100 2101 2102
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2103 2104 2105 2106 2107 2108 2109 2110 2111
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2112 2113
}

2114 2115
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2116 2117
{
	struct amd_iommu *iommu;
2118
	bool ats;
2119

2120 2121
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2122 2123 2124 2125

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2126
	set_dte_entry(dev_data->devid, domain, ats);
2127 2128 2129 2130 2131 2132

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2133
	device_flush_dte(dev_data);
2134 2135
}

2136
static void do_detach(struct iommu_dev_data *dev_data)
2137 2138 2139
{
	struct amd_iommu *iommu;

2140
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2141 2142

	/* decrease reference counters */
2143 2144 2145 2146 2147 2148
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2149
	clear_dte_entry(dev_data->devid);
2150

2151
	/* Flush the DTE entry */
2152
	device_flush_dte(dev_data);
2153 2154 2155 2156 2157 2158
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2159
static int __attach_device(struct iommu_dev_data *dev_data,
2160
			   struct protection_domain *domain)
2161
{
2162
	int ret;
2163

2164 2165 2166
	/* lock domain */
	spin_lock(&domain->lock);

2167 2168
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2169

2170 2171 2172 2173 2174
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2175

2176 2177 2178
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2179

2180
		/* Do real assignment */
2181
		if (alias_data->domain == NULL)
2182
			do_attach(alias_data, domain);
2183 2184

		atomic_inc(&alias_data->bind);
2185
	}
2186

2187
	if (dev_data->domain == NULL)
2188
		do_attach(dev_data, domain);
2189

2190 2191
	atomic_inc(&dev_data->bind);

2192 2193 2194 2195
	ret = 0;

out_unlock:

2196 2197
	/* ready */
	spin_unlock(&domain->lock);
2198

2199
	return ret;
2200
}
2201

2202 2203 2204 2205 2206 2207 2208 2209

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2210 2211 2212 2213 2214 2215
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2216
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2217 2218 2219
	if (!pos)
		return -EINVAL;

2220 2221 2222
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2223 2224 2225 2226

	return 0;
}

2227 2228
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2229 2230 2231 2232 2233 2234 2235 2236
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2248 2249
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2250 2251 2252
	if (ret)
		goto out_err;

2253 2254 2255 2256 2257 2258
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2272
/* FIXME: Move this to PCI code */
2273
#define PCI_PRI_TLP_OFF		(1 << 15)
2274

J
Joerg Roedel 已提交
2275
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2276
{
2277
	u16 status;
2278 2279
	int pos;

2280
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2281 2282 2283
	if (!pos)
		return false;

2284
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2285

2286
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2287 2288
}

2289
/*
F
Frank Arnold 已提交
2290
 * If a device is not yet associated with a domain, this function
2291 2292
 * assigns it visible for the hardware
 */
2293 2294
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2295
{
2296
	struct pci_dev *pdev = to_pci_dev(dev);
2297
	struct iommu_dev_data *dev_data;
2298
	unsigned long flags;
2299
	int ret;
2300

2301 2302
	dev_data = get_dev_data(dev);

2303 2304 2305 2306 2307 2308 2309 2310 2311
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2312
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2313 2314
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2315 2316 2317
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2318

2319
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2320
	ret = __attach_device(dev_data, domain);
2321 2322
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2323 2324 2325 2326 2327
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2328
	domain_flush_tlb_pde(domain);
2329 2330

	return ret;
2331 2332
}

2333 2334 2335
/*
 * Removes a device from a protection domain (unlocked)
 */
2336
static void __detach_device(struct iommu_dev_data *dev_data)
2337
{
2338
	struct protection_domain *domain;
2339
	unsigned long flags;
2340

2341
	BUG_ON(!dev_data->domain);
2342

2343 2344 2345
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2346

2347 2348 2349
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2350
		if (atomic_dec_and_test(&alias_data->bind))
2351
			do_detach(alias_data);
2352 2353
	}

2354
	if (atomic_dec_and_test(&dev_data->bind))
2355
		do_detach(dev_data);
2356

2357
	spin_unlock_irqrestore(&domain->lock, flags);
2358 2359 2360

	/*
	 * If we run in passthrough mode the device must be assigned to the
2361 2362
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2363
	 */
2364
	if (dev_data->passthrough &&
2365
	    (dev_data->domain == NULL && domain != pt_domain))
2366
		__attach_device(dev_data, pt_domain);
2367 2368 2369 2370 2371
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2372
static void detach_device(struct device *dev)
2373
{
2374
	struct protection_domain *domain;
2375
	struct iommu_dev_data *dev_data;
2376 2377
	unsigned long flags;

2378
	dev_data = get_dev_data(dev);
2379
	domain   = dev_data->domain;
2380

2381 2382
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2383
	__detach_device(dev_data);
2384
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2385

2386 2387 2388
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2389
		pci_disable_ats(to_pci_dev(dev));
2390 2391

	dev_data->ats.enabled = false;
2392
}
2393

2394 2395 2396 2397 2398 2399
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2400
	struct iommu_dev_data *dev_data;
2401
	struct protection_domain *dom = NULL;
2402 2403
	unsigned long flags;

2404
	dev_data   = get_dev_data(dev);
2405

2406 2407
	if (dev_data->domain)
		return dev_data->domain;
2408

2409 2410
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2411 2412 2413 2414 2415 2416 2417 2418

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2419 2420 2421 2422

	return dom;
}

2423 2424 2425 2426
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2427 2428 2429
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2430
	struct amd_iommu *iommu;
2431
	unsigned long flags;
2432
	u16 devid;
2433

2434 2435
	if (!check_device(dev))
		return 0;
2436

2437 2438 2439
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2440 2441

	switch (action) {
2442
	case BUS_NOTIFY_UNBOUND_DRIVER:
2443 2444 2445

		domain = domain_for_device(dev);

2446 2447
		if (!domain)
			goto out;
2448
		if (dev_data->passthrough)
2449
			break;
2450
		detach_device(dev);
2451 2452
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2453 2454 2455

		iommu_init_device(dev);

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2468 2469
		domain = domain_for_device(dev);

2470 2471
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2482

2483
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2484

2485
		break;
2486 2487 2488 2489
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2500
static struct notifier_block device_nb = {
2501 2502
	.notifier_call = device_change_notifier,
};
2503

2504 2505 2506 2507 2508
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2522
static struct protection_domain *get_domain(struct device *dev)
2523
{
2524
	struct protection_domain *domain;
2525
	struct dma_ops_domain *dma_dom;
2526
	u16 devid = get_device_id(dev);
2527

2528
	if (!check_device(dev))
2529
		return ERR_PTR(-EINVAL);
2530

2531 2532 2533
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2534

2535 2536
	if (domain != NULL)
		return domain;
2537

F
Frank Arnold 已提交
2538
	/* Device not bound yet - bind it */
2539
	dma_dom = find_protection_domain(devid);
2540
	if (!dma_dom)
2541 2542
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2543
	DUMP_printk("Using protection domain %d for device %s\n",
2544
		    dma_dom->domain.id, dev_name(dev));
2545

2546
	return &dma_dom->domain;
2547 2548
}

2549 2550
static void update_device_table(struct protection_domain *domain)
{
2551
	struct iommu_dev_data *dev_data;
2552

2553 2554
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2555 2556 2557 2558 2559 2560 2561 2562
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2563 2564 2565

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2566 2567 2568 2569

	domain->updated = false;
}

2570 2571 2572 2573 2574 2575
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2576
	struct aperture_range *aperture;
2577 2578
	u64 *pte, *pte_page;

2579 2580 2581 2582 2583
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2584
	if (!pte) {
2585
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2586
				GFP_ATOMIC);
2587 2588
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2589
		pte += PM_LEVEL_INDEX(0, address);
2590

2591
	update_domain(&dom->domain);
2592 2593 2594 2595

	return pte;
}

2596 2597 2598 2599
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2600
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2611
	pte  = dma_ops_get_pte(dom, address);
2612
	if (!pte)
2613
		return DMA_ERROR_CODE;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2631 2632 2633
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2634
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2635 2636
				 unsigned long address)
{
2637
	struct aperture_range *aperture;
2638 2639 2640 2641 2642
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2643 2644 2645 2646 2647 2648 2649
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2650

2651
	pte += PM_LEVEL_INDEX(0, address);
2652 2653 2654 2655 2656 2657

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2658 2659
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2660 2661
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2662 2663
 * Must be called with the domain lock held.
 */
2664 2665 2666 2667
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2668
			       int dir,
2669 2670
			       bool align,
			       u64 dma_mask)
2671 2672
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2673
	dma_addr_t address, start, ret;
2674
	unsigned int pages;
2675
	unsigned long align_mask = 0;
2676 2677
	int i;

2678
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2679 2680
	paddr &= PAGE_MASK;

2681 2682
	INC_STATS_COUNTER(total_map_requests);

2683 2684 2685
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2686 2687 2688
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2689
retry:
2690 2691
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2692
	if (unlikely(address == DMA_ERROR_CODE)) {
2693 2694 2695 2696 2697 2698 2699
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2700
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2701 2702 2703
			goto out;

		/*
2704
		 * aperture was successfully enlarged by 128 MB, try
2705 2706 2707 2708
		 * allocation again
		 */
		goto retry;
	}
2709 2710 2711

	start = address;
	for (i = 0; i < pages; ++i) {
2712
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2713
		if (ret == DMA_ERROR_CODE)
2714 2715
			goto out_unmap;

2716 2717 2718 2719 2720
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2721 2722
	ADD_STATS_COUNTER(alloced_io_mem, size);

2723
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2724
		domain_flush_tlb(&dma_dom->domain);
2725
		dma_dom->need_flush = false;
2726
	} else if (unlikely(amd_iommu_np_cache))
2727
		domain_flush_pages(&dma_dom->domain, address, size);
2728

2729 2730
out:
	return address;
2731 2732 2733 2734 2735

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2736
		dma_ops_domain_unmap(dma_dom, start);
2737 2738 2739 2740
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2741
	return DMA_ERROR_CODE;
2742 2743
}

2744 2745 2746 2747
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2748
static void __unmap_single(struct dma_ops_domain *dma_dom,
2749 2750 2751 2752
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2753
	dma_addr_t flush_addr;
2754 2755 2756
	dma_addr_t i, start;
	unsigned int pages;

2757
	if ((dma_addr == DMA_ERROR_CODE) ||
2758
	    (dma_addr + size > dma_dom->aperture_size))
2759 2760
		return;

2761
	flush_addr = dma_addr;
2762
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2763 2764 2765 2766
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2767
		dma_ops_domain_unmap(dma_dom, start);
2768 2769 2770
		start += PAGE_SIZE;
	}

2771 2772
	SUB_STATS_COUNTER(alloced_io_mem, size);

2773
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2774

2775
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2776
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2777 2778
		dma_dom->need_flush = false;
	}
2779 2780
}

2781 2782 2783
/*
 * The exported map_single function for dma_ops.
 */
2784 2785 2786 2787
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2788 2789 2790 2791
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2792
	u64 dma_mask;
2793
	phys_addr_t paddr = page_to_phys(page) + offset;
2794

2795 2796
	INC_STATS_COUNTER(cnt_map_single);

2797 2798
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2799
		return (dma_addr_t)paddr;
2800 2801
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2802

2803 2804
	dma_mask = *dev->dma_mask;

2805
	spin_lock_irqsave(&domain->lock, flags);
2806

2807
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2808
			    dma_mask);
2809
	if (addr == DMA_ERROR_CODE)
2810 2811
		goto out;

2812
	domain_flush_complete(domain);
2813 2814 2815 2816 2817 2818 2819

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2820 2821 2822
/*
 * The exported unmap_single function for dma_ops.
 */
2823 2824
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2825 2826 2827 2828
{
	unsigned long flags;
	struct protection_domain *domain;

2829 2830
	INC_STATS_COUNTER(cnt_unmap_single);

2831 2832
	domain = get_domain(dev);
	if (IS_ERR(domain))
2833 2834
		return;

2835 2836
	spin_lock_irqsave(&domain->lock, flags);

2837
	__unmap_single(domain->priv, dma_addr, size, dir);
2838

2839
	domain_flush_complete(domain);
2840 2841 2842 2843

	spin_unlock_irqrestore(&domain->lock, flags);
}

2844 2845 2846 2847
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2862 2863 2864 2865
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2866
static int map_sg(struct device *dev, struct scatterlist *sglist,
2867 2868
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2869 2870 2871 2872 2873 2874 2875
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2876
	u64 dma_mask;
2877

2878 2879
	INC_STATS_COUNTER(cnt_map_sg);

2880 2881
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2882
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2883 2884
	else if (IS_ERR(domain))
		return 0;
2885

2886
	dma_mask = *dev->dma_mask;
2887 2888 2889 2890 2891 2892

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2893
		s->dma_address = __map_single(dev, domain->priv,
2894 2895
					      paddr, s->length, dir, false,
					      dma_mask);
2896 2897 2898 2899 2900 2901 2902 2903

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2904
	domain_flush_complete(domain);
2905 2906 2907 2908 2909 2910 2911 2912

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2913
			__unmap_single(domain->priv, s->dma_address,
2914 2915 2916 2917 2918 2919 2920 2921 2922
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2923 2924 2925 2926
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2927
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2928 2929
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2930 2931 2932 2933 2934 2935
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2936 2937
	INC_STATS_COUNTER(cnt_unmap_sg);

2938 2939
	domain = get_domain(dev);
	if (IS_ERR(domain))
2940 2941
		return;

2942 2943 2944
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2945
		__unmap_single(domain->priv, s->dma_address,
2946 2947 2948 2949
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2950
	domain_flush_complete(domain);
2951 2952 2953 2954

	spin_unlock_irqrestore(&domain->lock, flags);
}

2955 2956 2957
/*
 * The exported alloc_coherent function for dma_ops.
 */
2958
static void *alloc_coherent(struct device *dev, size_t size,
2959 2960
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2961 2962 2963 2964 2965
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2966
	u64 dma_mask = dev->coherent_dma_mask;
2967

2968 2969
	INC_STATS_COUNTER(cnt_alloc_coherent);

2970 2971
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2972 2973 2974
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2975 2976
	} else if (IS_ERR(domain))
		return NULL;
2977

2978 2979 2980
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2981 2982 2983

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2984
		return NULL;
2985 2986 2987

	paddr = virt_to_phys(virt_addr);

2988 2989 2990
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2991 2992
	spin_lock_irqsave(&domain->lock, flags);

2993
	*dma_addr = __map_single(dev, domain->priv, paddr,
2994
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2995

2996
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2997
		spin_unlock_irqrestore(&domain->lock, flags);
2998
		goto out_free;
J
Jiri Slaby 已提交
2999
	}
3000

3001
	domain_flush_complete(domain);
3002 3003 3004 3005

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
3006 3007 3008 3009 3010 3011

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
3012 3013
}

3014 3015 3016
/*
 * The exported free_coherent function for dma_ops.
 */
3017
static void free_coherent(struct device *dev, size_t size,
3018 3019
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
3020 3021 3022 3023
{
	unsigned long flags;
	struct protection_domain *domain;

3024 3025
	INC_STATS_COUNTER(cnt_free_coherent);

3026 3027
	domain = get_domain(dev);
	if (IS_ERR(domain))
3028 3029
		goto free_mem;

3030 3031
	spin_lock_irqsave(&domain->lock, flags);

3032
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3033

3034
	domain_flush_complete(domain);
3035 3036 3037 3038 3039 3040 3041

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

3042 3043 3044 3045 3046 3047
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3048
	return check_device(dev);
3049 3050
}

3051
/*
3052 3053
 * The function for pre-allocating protection domains.
 *
3054 3055 3056 3057
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3058
static void __init prealloc_protection_domains(void)
3059
{
3060
	struct iommu_dev_data *dev_data;
3061
	struct dma_ops_domain *dma_dom;
3062
	struct pci_dev *dev = NULL;
3063
	u16 devid;
3064

3065
	for_each_pci_dev(dev) {
3066 3067 3068

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3069
			continue;
3070

3071 3072 3073 3074 3075 3076
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3077
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3078 3079 3080
				dev_name(&dev->dev));
		}

3081
		/* Is there already any domain for it? */
3082
		if (domain_for_device(&dev->dev))
3083
			continue;
3084 3085 3086

		devid = get_device_id(&dev->dev);

3087
		dma_dom = dma_ops_domain_alloc();
3088 3089 3090
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3091 3092
		dma_dom->target_dev = devid;

3093
		attach_device(&dev->dev, &dma_dom->domain);
3094

3095
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3096 3097 3098
	}
}

3099
static struct dma_map_ops amd_iommu_dma_ops = {
3100 3101
	.alloc = alloc_coherent,
	.free = free_coherent,
3102 3103
	.map_page = map_page,
	.unmap_page = unmap_page,
3104 3105
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3106
	.dma_supported = amd_iommu_dma_supported,
3107 3108
};

3109 3110
static unsigned device_dma_ops_init(void)
{
3111
	struct iommu_dev_data *dev_data;
3112 3113 3114 3115 3116
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3117 3118 3119

			iommu_ignore_device(&pdev->dev);

3120 3121 3122 3123
			unhandled += 1;
			continue;
		}

3124 3125 3126 3127 3128 3129
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3130 3131 3132 3133 3134
	}

	return unhandled;
}

3135 3136 3137
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3138 3139 3140

void __init amd_iommu_init_api(void)
{
3141
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3142 3143
}

3144 3145 3146
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3147
	int ret, unhandled;
3148

3149 3150 3151 3152 3153
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3154
	for_each_iommu(iommu) {
3155
		iommu->default_dom = dma_ops_domain_alloc();
3156 3157
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3158
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3159 3160 3161 3162 3163
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3164
	/*
3165
	 * Pre-allocate the protection domains for each device.
3166
	 */
3167
	prealloc_protection_domains();
3168 3169

	iommu_detected = 1;
3170
	swiotlb = 0;
3171

3172
	/* Make the driver finally visible to the drivers */
3173 3174 3175 3176 3177
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3178

3179 3180
	amd_iommu_stats_init();

3181 3182 3183 3184 3185
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3186 3187 3188 3189
	return 0;

free_domains:

3190
	for_each_iommu(iommu) {
3191
		dma_ops_domain_free(iommu->default_dom);
3192 3193 3194 3195
	}

	return ret;
}
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3209
	struct iommu_dev_data *dev_data, *next;
3210 3211 3212 3213
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3214
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3215
		__detach_device(dev_data);
3216 3217
		atomic_set(&dev_data->bind, 0);
	}
3218 3219 3220 3221

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3222 3223 3224 3225 3226
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3227 3228
	del_domain_from_list(domain);

3229 3230 3231 3232 3233 3234 3235
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3236 3237 3238 3239 3240
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3241
		return NULL;
3242 3243

	spin_lock_init(&domain->lock);
3244
	mutex_init(&domain->api_lock);
3245 3246
	domain->id = domain_id_alloc();
	if (!domain->id)
3247
		goto out_err;
3248
	INIT_LIST_HEAD(&domain->dev_list);
3249

3250 3251
	add_domain_to_list(domain);

3252 3253 3254 3255 3256 3257 3258 3259
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3274 3275 3276 3277 3278 3279
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3280
		goto out_free;
3281 3282

	domain->mode    = PAGE_MODE_3_LEVEL;
3283 3284 3285 3286
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3287 3288
	domain->iommu_domain = dom;

3289 3290
	dom->priv = domain;

3291 3292 3293 3294
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3295 3296 3297
	return 0;

out_free:
3298
	protection_domain_free(domain);
3299 3300 3301 3302

	return -ENOMEM;
}

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3315 3316
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3317

3318 3319 3320
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3321
	protection_domain_free(domain);
3322 3323 3324 3325

	dom->priv = NULL;
}

3326 3327 3328
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3329
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3330 3331 3332
	struct amd_iommu *iommu;
	u16 devid;

3333
	if (!check_device(dev))
3334 3335
		return;

3336
	devid = get_device_id(dev);
3337

3338
	if (dev_data->domain != NULL)
3339
		detach_device(dev);
3340 3341 3342 3343 3344 3345 3346 3347

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3348 3349 3350 3351
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3352
	struct iommu_dev_data *dev_data;
3353
	struct amd_iommu *iommu;
3354
	int ret;
3355

3356
	if (!check_device(dev))
3357 3358
		return -EINVAL;

3359 3360
	dev_data = dev->archdata.iommu;

3361
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3362 3363 3364
	if (!iommu)
		return -EINVAL;

3365
	if (dev_data->domain)
3366
		detach_device(dev);
3367

3368
	ret = attach_device(dev, domain);
3369 3370 3371

	iommu_completion_wait(iommu);

3372
	return ret;
3373 3374
}

3375
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3376
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3377 3378 3379 3380 3381
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3382 3383 3384
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3385 3386 3387 3388 3389
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3390
	mutex_lock(&domain->api_lock);
3391
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3392 3393
	mutex_unlock(&domain->api_lock);

3394
	return ret;
3395 3396
}

3397 3398
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3399 3400
{
	struct protection_domain *domain = dom->priv;
3401
	size_t unmap_size;
3402

3403 3404 3405
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3406
	mutex_lock(&domain->api_lock);
3407
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3408
	mutex_unlock(&domain->api_lock);
3409

3410
	domain_flush_tlb_pde(domain);
3411

3412
	return unmap_size;
3413 3414
}

3415 3416 3417 3418
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3419
	unsigned long offset_mask;
3420
	phys_addr_t paddr;
3421
	u64 *pte, __pte;
3422

3423 3424 3425
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3426
	pte = fetch_pte(domain, iova);
3427

3428
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3429 3430
		return 0;

3431 3432 3433 3434 3435 3436 3437
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3438 3439 3440 3441

	return paddr;
}

S
Sheng Yang 已提交
3442 3443 3444
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3445 3446 3447
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
3448 3449
	case IOMMU_CAP_INTR_REMAP:
		return irq_remapping_enabled;
3450 3451
	}

S
Sheng Yang 已提交
3452 3453 3454
	return 0;
}

3455 3456 3457 3458 3459
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3460 3461
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3462
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3463
	.domain_has_cap = amd_iommu_domain_has_cap,
3464
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3465 3466
};

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3479
	struct iommu_dev_data *dev_data;
3480
	struct pci_dev *dev = NULL;
3481
	struct amd_iommu *iommu;
3482
	u16 devid;
3483
	int ret;
3484

3485 3486 3487
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3488

3489
	for_each_pci_dev(dev) {
3490
		if (!check_device(&dev->dev))
3491 3492
			continue;

3493 3494 3495
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3496 3497
		devid = get_device_id(&dev->dev);

3498
		iommu = amd_iommu_rlookup_table[devid];
3499 3500 3501
		if (!iommu)
			continue;

3502
		attach_device(&dev->dev, pt_domain);
3503 3504
	}

J
Joerg Roedel 已提交
3505 3506
	amd_iommu_stats_init();

3507 3508 3509 3510
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3652 3653
	INC_STATS_COUNTER(invalidate_iotlb);

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3674 3675
	INC_STATS_COUNTER(invalidate_iotlb_all);

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3787 3788 3789 3790 3791 3792 3793 3794

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3795 3796
	INC_STATS_COUNTER(complete_ppr);

3797 3798 3799 3800 3801 3802 3803 3804 3805
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3960
		table = NULL;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			struct irq_2_iommu *irte_info;

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

4020
			cfg->remapped	      = 1;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
			irte_info             = &cfg->irq_2_iommu;
			irte_info->sub_handle = devid;
			irte_info->irte_index = index;

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4130
	cfg->remapped	      = 1;
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	irte_info->sub_handle = devid;
	irte_info->irte_index = index;

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
	struct irq_2_iommu *irte_info;
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
	irte_info = &cfg->irq_2_iommu;

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

	if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;

	free_irte(irte_info->sub_handle, irte_info->irte_index);

	return 0;
}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

	irte_info = &cfg->irq_2_iommu;

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
	msg->data       = irte_info->irte_index;
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
	irte_info	= &cfg->irq_2_iommu;

4291
	cfg->remapped	      = 1;
4292 4293 4294 4295 4296 4297
	irte_info->sub_handle = devid;
	irte_info->irte_index = index + offset;

	return 0;
}

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4317
	cfg->remapped	      = 1;
4318 4319 4320 4321 4322 4323
	irte_info->sub_handle = devid;
	irte_info->irte_index = index;

	return 0;
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4339
#endif