amd_iommu.c 92.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

71 72 73
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

74 75 76 77 78 79
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

80
static const struct iommu_ops amd_iommu_ops;
81

82
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83
int amd_iommu_max_glx_val = -1;
84

85 86
static struct dma_map_ops amd_iommu_dma_ops;

87 88 89 90 91 92
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
93
	struct list_head alias_list;      /* Link alias-groups together */
94 95 96 97 98 99 100 101 102 103 104 105 106 107
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

108 109 110
/*
 * general struct to manage commands send to an IOMMU
 */
111
struct iommu_cmd {
112 113 114
	u32 data[4];
};

115 116
struct kmem_cache *amd_iommu_irq_cache;

117
static void update_domain(struct protection_domain *domain);
118
static int alloc_passthrough_domain(void);
119

120 121 122 123 124 125
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

126 127 128 129 130
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

131
static struct iommu_dev_data *alloc_dev_data(u16 devid)
132 133 134 135 136 137 138 139
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

140 141
	INIT_LIST_HEAD(&dev_data->alias_list);

142
	dev_data->devid = devid;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

193 194 195 196
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

197
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
198 199
}

200 201 202 203 204
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

205 206 207 208
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
209 210
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
211 212 213 214 215 216 217 218 219 220 221 222
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

223 224 225 226 227 228 229 230 231
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

232
/*
233 234
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
235
 */
236 237
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
238
{
239
	u64 addr;
240

241 242 243 244 245
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
246
	}
247
}
248

249 250 251 252 253 254 255 256
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
257

258 259 260 261 262 263 264
	devid = get_device_id(dev);

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
265 266
}

267 268 269 270 271 272 273 274 275 276 277
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

278 279
	/* No PCI device */
	if (!dev_is_pci(dev))
280 281 282 283 284 285 286 287 288 289 290 291 292 293
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

294
static void init_iommu_group(struct device *dev)
295
{
296 297
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
298 299
	struct iommu_group *group;

300
	group = iommu_group_get_for_dev(dev);
301 302 303 304 305 306 307 308 309 310 311 312
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

377 378 379 380 381 382 383 384 385 386 387 388 389
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

390 391
	alias = get_alias(dev);

392 393 394 395 396 397 398 399 400 401 402 403
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

404 405
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
406
	}
407

408 409 410 411 412 413 414
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

415 416
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
417 418 419
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

420 421 422
	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

437 438
static void iommu_uninit_device(struct device *dev)
{
439 440 441 442 443
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
444 445 446
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

447 448
	iommu_group_remove_device(dev);

449 450 451
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

452 453 454
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

455
	/*
456 457
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
458
	 */
459
}
J
Joerg Roedel 已提交
460

461 462 463 464 465 466
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

467
DECLARE_STATS_COUNTER(compl_wait);
468
DECLARE_STATS_COUNTER(cnt_map_single);
469
DECLARE_STATS_COUNTER(cnt_unmap_single);
470
DECLARE_STATS_COUNTER(cnt_map_sg);
471
DECLARE_STATS_COUNTER(cnt_unmap_sg);
472
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
473
DECLARE_STATS_COUNTER(cnt_free_coherent);
474
DECLARE_STATS_COUNTER(cross_page);
475
DECLARE_STATS_COUNTER(domain_flush_single);
476
DECLARE_STATS_COUNTER(domain_flush_all);
477
DECLARE_STATS_COUNTER(alloced_io_mem);
478
DECLARE_STATS_COUNTER(total_map_requests);
479 480 481 482 483
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
503
					 &amd_iommu_unmap_flush);
504 505

	amd_iommu_stats_add(&compl_wait);
506
	amd_iommu_stats_add(&cnt_map_single);
507
	amd_iommu_stats_add(&cnt_unmap_single);
508
	amd_iommu_stats_add(&cnt_map_sg);
509
	amd_iommu_stats_add(&cnt_unmap_sg);
510
	amd_iommu_stats_add(&cnt_alloc_coherent);
511
	amd_iommu_stats_add(&cnt_free_coherent);
512
	amd_iommu_stats_add(&cross_page);
513
	amd_iommu_stats_add(&domain_flush_single);
514
	amd_iommu_stats_add(&domain_flush_all);
515
	amd_iommu_stats_add(&alloced_io_mem);
516
	amd_iommu_stats_add(&total_map_requests);
517 518 519 520
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
521 522 523 524
}

#endif

525 526 527 528 529 530
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

531 532 533 534
static void dump_dte_entry(u16 devid)
{
	int i;

535 536
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
537 538 539
			amd_iommu_dev_table[devid].data[i]);
}

540 541 542 543 544 545 546 547 548
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

549
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
572

573
	printk(KERN_ERR "AMD-Vi: Event logged [");
574 575 576 577 578

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
579
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
580
		       address, flags);
581
		dump_dte_entry(devid);
582 583 584 585
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
586
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
587 588 589 590 591
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
592
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
593 594 595 596 597
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
598
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
599 600 601 602
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
603
		dump_command(address);
604 605 606 607 608 609 610 611
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
612
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
613 614 615 616 617
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
618
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619 620 621 622 623
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
624 625

	memset(__evt, 0, 4 * sizeof(u32));
626 627 628 629 630 631 632 633 634 635
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
636
		iommu_print_event(iommu, iommu->evt_buf + head);
637 638 639 640 641 642
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

643
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
644 645 646
{
	struct amd_iommu_fault fault;

647 648
	INC_STATS_COUNTER(pri_requests);

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
690

691 692 693
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
694

695 696 697 698 699 700 701
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
702 703
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
704 705 706 707 708 709

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
710 711 712 713
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

714
irqreturn_t amd_iommu_int_thread(int irq, void *data)
715
{
716 717
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
718

719 720 721 722
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
723

724 725 726 727
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
728

729 730 731 732
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
749
	return IRQ_HANDLED;
750 751
}

752 753 754 755 756
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

757 758 759 760 761 762
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
783 784 785
{
	u8 *target;

786
	target = iommu->cmd_buf + tail;
787 788 789 790 791 792
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
793
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
794
}
795

796
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
797
{
798 799
	WARN_ON(address & 0x7ULL);

800
	memset(cmd, 0, sizeof(*cmd));
801 802 803
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
804 805 806
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

807 808 809 810 811 812 813
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

814 815 816 817
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
818
	bool s;
819 820

	pages = iommu_num_pages(address, size, PAGE_SIZE);
821
	s     = false;
822 823 824 825 826 827 828

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
829
		s = true;
830 831 832 833 834 835 836 837 838 839 840
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
841
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
842 843 844
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

845 846 847 848
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
849
	bool s;
850 851

	pages = iommu_num_pages(address, size, PAGE_SIZE);
852
	s     = false;
853 854 855 856 857 858 859

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
860
		s = true;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

876 877 878 879 880 881 882
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

883
	cmd->data[0]  = pasid;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
902
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
903 904
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
905
	cmd->data[1] |= (pasid & 0xff) << 16;
906 907 908 909 910 911 912 913
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

914 915 916 917 918 919 920
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
921
		cmd->data[1]  = pasid;
922 923 924 925 926 927 928 929
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

930 931 932 933
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
934 935
}

936 937 938 939 940 941 942
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

943 944
/*
 * Writes the command to the IOMMUs command buffer and informs the
945
 * hardware about the new command.
946
 */
947 948 949
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
950
{
951
	u32 left, tail, head, next_tail;
952 953
	unsigned long flags;

954
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
955 956

again:
957 958
	spin_lock_irqsave(&iommu->lock, flags);

959 960 961 962
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
963

964 965 966 967
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
968

969 970
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
971

972 973 974 975 976 977
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
978 979
	}

980 981 982
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
983
	iommu->need_sync = sync;
984

985
	spin_unlock_irqrestore(&iommu->lock, flags);
986

987
	return 0;
988 989
}

990 991 992 993 994
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

995 996 997 998
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
999
static int iommu_completion_wait(struct amd_iommu *iommu)
1000 1001
{
	struct iommu_cmd cmd;
1002
	volatile u64 sem = 0;
1003
	int ret;
1004

1005
	if (!iommu->need_sync)
1006
		return 0;
1007

1008
	build_completion_wait(&cmd, (u64)&sem);
1009

1010
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1011
	if (ret)
1012
		return ret;
1013

1014
	return wait_on_sem(&sem);
1015 1016
}

1017
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1018
{
1019
	struct iommu_cmd cmd;
1020

1021
	build_inv_dte(&cmd, devid);
1022

1023 1024
	return iommu_queue_command(iommu, &cmd);
}
1025

1026 1027 1028
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1029

1030 1031
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1032

1033 1034
	iommu_completion_wait(iommu);
}
1035

1036 1037 1038 1039 1040 1041 1042
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1043

1044 1045 1046 1047 1048 1049
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1050

1051
	iommu_completion_wait(iommu);
1052 1053
}

1054
static void iommu_flush_all(struct amd_iommu *iommu)
1055
{
1056
	struct iommu_cmd cmd;
1057

1058
	build_inv_all(&cmd);
1059

1060 1061 1062 1063
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1083 1084
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1085 1086 1087 1088
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1089
		iommu_flush_irt_all(iommu);
1090
		iommu_flush_tlb_all(iommu);
1091 1092 1093
	}
}

1094
/*
1095
 * Command send function for flushing on-device TLB
1096
 */
1097 1098
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1099 1100
{
	struct amd_iommu *iommu;
1101
	struct iommu_cmd cmd;
1102
	int qdep;
1103

1104 1105
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1106

1107
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1108 1109

	return iommu_queue_command(iommu, &cmd);
1110 1111
}

1112 1113 1114
/*
 * Command send function for invalidating a device table entry
 */
1115
static int device_flush_dte(struct iommu_dev_data *dev_data)
1116
{
1117
	struct amd_iommu *iommu;
1118
	int ret;
1119

1120
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1121

1122
	ret = iommu_flush_dte(iommu, dev_data->devid);
1123 1124 1125
	if (ret)
		return ret;

1126
	if (dev_data->ats.enabled)
1127
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1128 1129

	return ret;
1130 1131
}

1132 1133 1134 1135 1136
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1137 1138
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1139
{
1140
	struct iommu_dev_data *dev_data;
1141 1142
	struct iommu_cmd cmd;
	int ret = 0, i;
1143

1144
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1145

1146 1147 1148 1149 1150 1151 1152 1153
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1154
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1155 1156
	}

1157 1158
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1159
		if (!dev_data->ats.enabled)
1160 1161
			continue;

1162
		ret |= device_flush_iotlb(dev_data, address, size);
1163 1164
	}

1165
	WARN_ON(ret);
1166 1167
}

1168 1169
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1170
{
1171
	__domain_flush_pages(domain, address, size, 0);
1172
}
1173

1174
/* Flush the whole IO/TLB for a given protection domain */
1175
static void domain_flush_tlb(struct protection_domain *domain)
1176
{
1177
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1178 1179
}

1180
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1181
static void domain_flush_tlb_pde(struct protection_domain *domain)
1182
{
1183
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1184 1185
}

1186
static void domain_flush_complete(struct protection_domain *domain)
1187
{
1188
	int i;
1189

1190 1191 1192
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1193

1194 1195 1196 1197 1198
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1199
	}
1200 1201
}

1202

1203
/*
1204
 * This function flushes the DTEs for all devices in domain
1205
 */
1206
static void domain_flush_devices(struct protection_domain *domain)
1207
{
1208
	struct iommu_dev_data *dev_data;
1209

1210
	list_for_each_entry(dev_data, &domain->dev_list, list)
1211
		device_flush_dte(dev_data);
1212 1213
}

1214 1215 1216 1217 1218 1219 1220
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1250
		      unsigned long page_size,
1251 1252 1253
		      u64 **pte_page,
		      gfp_t gfp)
{
1254
	int level, end_lvl;
1255
	u64 *pte, *page;
1256 1257

	BUG_ON(!is_power_of_2(page_size));
1258 1259 1260 1261

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1262 1263 1264 1265
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1266 1267 1268 1269 1270 1271 1272 1273 1274

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1275 1276 1277 1278
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1296 1297 1298
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1299 1300 1301 1302
{
	int level;
	u64 *pte;

1303 1304 1305
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1306 1307 1308
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1309

1310 1311 1312
	while (level > 0) {

		/* Not Present */
1313 1314 1315
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1316
		/* Large PTE */
1317 1318 1319
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1320 1321 1322 1323 1324

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1325 1326
		level -= 1;

1327
		/* Walk to the next level */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1343 1344 1345 1346 1347
	}

	return pte;
}

1348 1349 1350 1351 1352 1353 1354
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1355 1356 1357
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1358
			  int prot,
1359
			  unsigned long page_size)
1360
{
1361
	u64 __pte, *pte;
1362
	int i, count;
1363

1364 1365 1366
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1367
	if (!(prot & IOMMU_PROT_MASK))
1368 1369
		return -EINVAL;

1370 1371
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1372

1373 1374 1375
	if (!pte)
		return -ENOMEM;

1376 1377 1378
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1379

1380
	if (count > 1) {
1381 1382 1383 1384
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1385 1386 1387 1388 1389 1390

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1391 1392
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1393

1394 1395
	update_domain(dom);

1396 1397 1398
	return 0;
}

1399 1400 1401
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1402
{
1403 1404
	unsigned long long unmapped;
	unsigned long unmap_size;
1405 1406 1407 1408 1409
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1410

1411 1412
	while (unmapped < page_size) {

1413 1414 1415 1416 1417 1418
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1419 1420 1421 1422 1423 1424 1425 1426
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1427
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1428

1429
	return unmapped;
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1441

1442
/*
1443
 * The address allocator core functions.
1444 1445 1446
 *
 * called with domain->lock held
 */
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1468 1469 1470 1471 1472
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1473
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1474 1475 1476
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1477
	struct amd_iommu *iommu;
1478
	unsigned long i, old_size, pte_pgsize;
1479

1480 1481 1482 1483
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1503
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1514
	old_size                = dma_dom->aperture_size;
1515 1516
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1529
	/* Initialize the exclusion range if necessary */
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1551
	     i += pte_pgsize) {
1552
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1553 1554 1555
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1556 1557
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1558 1559
	}

1560 1561
	update_domain(&dma_dom->domain);

1562 1563 1564
	return 0;

out_free:
1565 1566
	update_domain(&dma_dom->domain);

1567 1568 1569 1570 1571 1572 1573 1574
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1575 1576 1577 1578 1579 1580 1581
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1582
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1583 1584 1585 1586 1587 1588
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1589 1590
	next_bit >>= PAGE_SHIFT;

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1609
			dom->next_address = address + (pages << PAGE_SHIFT);
1610 1611 1612 1613 1614 1615 1616 1617 1618
			break;
		}

		next_bit = 0;
	}

	return address;
}

1619 1620
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1621
					     unsigned int pages,
1622 1623
					     unsigned long align_mask,
					     u64 dma_mask)
1624 1625 1626
{
	unsigned long address;

1627 1628 1629 1630
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1631

1632
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1633
				     dma_mask, dom->next_address);
1634

1635
	if (address == -1) {
1636
		dom->next_address = 0;
1637 1638
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1639 1640
		dom->need_flush = true;
	}
1641

1642
	if (unlikely(address == -1))
1643
		address = DMA_ERROR_CODE;
1644 1645 1646 1647 1648 1649

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1650 1651 1652 1653 1654
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1655 1656 1657 1658
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1659 1660
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1661

1662 1663
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1664 1665 1666 1667
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1668

1669
	if (address >= dom->next_address)
1670
		dom->need_flush = true;
1671 1672

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1673

A
Akinobu Mita 已提交
1674
	bitmap_clear(range->bitmap, address, pages);
1675

1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1765
static void free_pagetable(struct protection_domain *domain)
1766
{
1767
	unsigned long root = (unsigned long)domain->pt_root;
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1792 1793 1794
	}
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1825 1826
static void free_gcr3_table(struct protection_domain *domain)
{
1827 1828 1829 1830 1831 1832 1833
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1834 1835 1836
	free_page((unsigned long)domain->gcr3_tbl);
}

1837 1838 1839 1840
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1841 1842
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1843 1844
	int i;

1845 1846 1847
	if (!dom)
		return;

1848 1849
	del_domain_from_list(&dom->domain);

1850
	free_pagetable(&dom->domain);
1851

1852 1853 1854 1855 1856 1857
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1858 1859 1860 1861

	kfree(dom);
}

1862 1863
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1864
 * It also initializes the page table and the address allocator data
1865 1866
 * structures required for the dma_ops interface
 */
1867
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1880
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1881
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1882
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1883
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1884 1885 1886 1887
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1888
	dma_dom->need_flush = false;
1889
	dma_dom->target_dev = 0xffff;
1890

1891 1892
	add_domain_to_list(&dma_dom->domain);

1893
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1894 1895
		goto free_dma_dom;

1896
	/*
1897 1898
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1899
	 */
1900
	dma_dom->aperture[0]->bitmap[0] = 1;
1901
	dma_dom->next_address = 0;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1921
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1922
{
1923
	u64 pte_root = 0;
1924
	u64 flags = 0;
1925

1926 1927 1928
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1929 1930 1931
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1932

1933 1934
	flags = amd_iommu_dev_table[devid].data[1];

1935 1936 1937
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1964 1965 1966 1967 1968
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1969 1970 1971 1972 1973 1974 1975 1976 1977
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1978 1979
}

1980 1981
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1982 1983
{
	struct amd_iommu *iommu;
1984
	bool ats;
1985

1986 1987
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1988 1989 1990 1991

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1992
	set_dte_entry(dev_data->devid, domain, ats);
1993 1994 1995 1996 1997 1998

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1999
	device_flush_dte(dev_data);
2000 2001
}

2002
static void do_detach(struct iommu_dev_data *dev_data)
2003 2004 2005
{
	struct amd_iommu *iommu;

2006
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2007 2008

	/* decrease reference counters */
2009 2010 2011 2012 2013 2014
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2015
	clear_dte_entry(dev_data->devid);
2016

2017
	/* Flush the DTE entry */
2018
	device_flush_dte(dev_data);
2019 2020 2021 2022 2023 2024
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2025
static int __attach_device(struct iommu_dev_data *dev_data,
2026
			   struct protection_domain *domain)
2027
{
2028
	struct iommu_dev_data *head, *entry;
2029
	int ret;
2030

2031 2032 2033
	/* lock domain */
	spin_lock(&domain->lock);

2034
	head = dev_data;
2035

2036 2037
	if (head->alias_data != NULL)
		head = head->alias_data;
2038

2039
	/* Now we have the root of the alias group, if any */
2040

2041 2042 2043
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2044

2045 2046
	/* Attach alias group root */
	do_attach(head, domain);
2047

2048 2049 2050
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2051

2052 2053 2054 2055
	ret = 0;

out_unlock:

2056 2057
	/* ready */
	spin_unlock(&domain->lock);
2058

2059
	return ret;
2060
}
2061

2062 2063 2064 2065 2066 2067 2068 2069

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2070 2071 2072 2073 2074 2075
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2076
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2077 2078 2079
	if (!pos)
		return -EINVAL;

2080 2081 2082
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2083 2084 2085 2086

	return 0;
}

2087 2088
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2089 2090 2091 2092 2093 2094 2095 2096
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2108 2109
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2110 2111 2112
	if (ret)
		goto out_err;

2113 2114 2115 2116 2117 2118
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2132
/* FIXME: Move this to PCI code */
2133
#define PCI_PRI_TLP_OFF		(1 << 15)
2134

J
Joerg Roedel 已提交
2135
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2136
{
2137
	u16 status;
2138 2139
	int pos;

2140
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2141 2142 2143
	if (!pos)
		return false;

2144
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2145

2146
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2147 2148
}

2149
/*
F
Frank Arnold 已提交
2150
 * If a device is not yet associated with a domain, this function
2151 2152
 * assigns it visible for the hardware
 */
2153 2154
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2155
{
2156
	struct pci_dev *pdev = to_pci_dev(dev);
2157
	struct iommu_dev_data *dev_data;
2158
	unsigned long flags;
2159
	int ret;
2160

2161 2162
	dev_data = get_dev_data(dev);

2163 2164 2165 2166 2167 2168 2169 2170 2171
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2172
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2173 2174
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2175 2176 2177
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2178

2179
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2180
	ret = __attach_device(dev_data, domain);
2181 2182
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2183 2184 2185 2186 2187
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2188
	domain_flush_tlb_pde(domain);
2189 2190

	return ret;
2191 2192
}

2193 2194 2195
/*
 * Removes a device from a protection domain (unlocked)
 */
2196
static void __detach_device(struct iommu_dev_data *dev_data)
2197
{
2198
	struct iommu_dev_data *head, *entry;
2199
	struct protection_domain *domain;
2200
	unsigned long flags;
2201

2202
	BUG_ON(!dev_data->domain);
2203

2204 2205 2206
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2207

2208 2209 2210
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2211

2212 2213
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2214

2215
	do_detach(head);
2216

2217
	spin_unlock_irqrestore(&domain->lock, flags);
2218 2219 2220

	/*
	 * If we run in passthrough mode the device must be assigned to the
2221 2222
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2223
	 */
2224
	if (dev_data->passthrough &&
2225
	    (dev_data->domain == NULL && domain != pt_domain))
2226
		__attach_device(dev_data, pt_domain);
2227 2228 2229 2230 2231
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2232
static void detach_device(struct device *dev)
2233
{
2234
	struct protection_domain *domain;
2235
	struct iommu_dev_data *dev_data;
2236 2237
	unsigned long flags;

2238
	dev_data = get_dev_data(dev);
2239
	domain   = dev_data->domain;
2240

2241 2242
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2243
	__detach_device(dev_data);
2244
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2245

2246 2247 2248
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2249
		pci_disable_ats(to_pci_dev(dev));
2250 2251

	dev_data->ats.enabled = false;
2252
}
2253

2254
static int amd_iommu_add_device(struct device *dev)
2255 2256
{
	struct amd_iommu *iommu;
2257
	u16 devid;
2258
	int ret;
2259

2260
	if (!check_device(dev) || get_dev_data(dev))
2261
		return 0;
2262

2263 2264
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2265

2266 2267 2268 2269 2270 2271
	ret = iommu_init_device(dev);
	if (ret == -ENOTSUPP) {
		iommu_ignore_device(dev);
		goto out;
	}
	init_iommu_group(dev);
2272

2273
	dev->archdata.dma_ops = &amd_iommu_dma_ops;
2274

2275
out:
2276 2277 2278 2279 2280
	iommu_completion_wait(iommu);

	return 0;
}

2281
static void amd_iommu_remove_device(struct device *dev)
2282
{
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2309
static struct protection_domain *get_domain(struct device *dev)
2310
{
2311
	struct protection_domain *domain;
2312
	struct iommu_domain *io_domain;
2313

2314
	if (!check_device(dev))
2315
		return ERR_PTR(-EINVAL);
2316

2317
	io_domain = iommu_get_domain_for_dev(dev);
2318 2319
	if (!io_domain)
		return NULL;
2320

2321 2322
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2323
		return ERR_PTR(-EBUSY);
2324

2325
	return domain;
2326 2327
}

2328 2329
static void update_device_table(struct protection_domain *domain)
{
2330
	struct iommu_dev_data *dev_data;
2331

2332 2333
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2334 2335 2336 2337 2338 2339 2340 2341
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2342 2343 2344

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2345 2346 2347 2348

	domain->updated = false;
}

2349 2350 2351 2352 2353 2354
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2355
	struct aperture_range *aperture;
2356 2357
	u64 *pte, *pte_page;

2358 2359 2360 2361 2362
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2363
	if (!pte) {
2364
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2365
				GFP_ATOMIC);
2366 2367
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2368
		pte += PM_LEVEL_INDEX(0, address);
2369

2370
	update_domain(&dom->domain);
2371 2372 2373 2374

	return pte;
}

2375 2376 2377 2378
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2379
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2390
	pte  = dma_ops_get_pte(dom, address);
2391
	if (!pte)
2392
		return DMA_ERROR_CODE;
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2410 2411 2412
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2413
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2414 2415
				 unsigned long address)
{
2416
	struct aperture_range *aperture;
2417 2418 2419 2420 2421
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2422 2423 2424 2425 2426 2427 2428
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2429

2430
	pte += PM_LEVEL_INDEX(0, address);
2431 2432 2433 2434 2435 2436

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2437 2438
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2439 2440
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2441 2442
 * Must be called with the domain lock held.
 */
2443 2444 2445 2446
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2447
			       int dir,
2448 2449
			       bool align,
			       u64 dma_mask)
2450 2451
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2452
	dma_addr_t address, start, ret;
2453
	unsigned int pages;
2454
	unsigned long align_mask = 0;
2455 2456
	int i;

2457
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2458 2459
	paddr &= PAGE_MASK;

2460 2461
	INC_STATS_COUNTER(total_map_requests);

2462 2463 2464
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2465 2466 2467
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2468
retry:
2469 2470
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2471
	if (unlikely(address == DMA_ERROR_CODE)) {
2472 2473 2474 2475 2476 2477 2478
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2479
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2480 2481 2482
			goto out;

		/*
2483
		 * aperture was successfully enlarged by 128 MB, try
2484 2485 2486 2487
		 * allocation again
		 */
		goto retry;
	}
2488 2489 2490

	start = address;
	for (i = 0; i < pages; ++i) {
2491
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2492
		if (ret == DMA_ERROR_CODE)
2493 2494
			goto out_unmap;

2495 2496 2497 2498 2499
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2500 2501
	ADD_STATS_COUNTER(alloced_io_mem, size);

2502
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2503
		domain_flush_tlb(&dma_dom->domain);
2504
		dma_dom->need_flush = false;
2505
	} else if (unlikely(amd_iommu_np_cache))
2506
		domain_flush_pages(&dma_dom->domain, address, size);
2507

2508 2509
out:
	return address;
2510 2511 2512 2513 2514

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2515
		dma_ops_domain_unmap(dma_dom, start);
2516 2517 2518 2519
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2520
	return DMA_ERROR_CODE;
2521 2522
}

2523 2524 2525 2526
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2527
static void __unmap_single(struct dma_ops_domain *dma_dom,
2528 2529 2530 2531
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2532
	dma_addr_t flush_addr;
2533 2534 2535
	dma_addr_t i, start;
	unsigned int pages;

2536
	if ((dma_addr == DMA_ERROR_CODE) ||
2537
	    (dma_addr + size > dma_dom->aperture_size))
2538 2539
		return;

2540
	flush_addr = dma_addr;
2541
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2542 2543 2544 2545
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2546
		dma_ops_domain_unmap(dma_dom, start);
2547 2548 2549
		start += PAGE_SIZE;
	}

2550 2551
	SUB_STATS_COUNTER(alloced_io_mem, size);

2552
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2553

2554
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2555
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2556 2557
		dma_dom->need_flush = false;
	}
2558 2559
}

2560 2561 2562
/*
 * The exported map_single function for dma_ops.
 */
2563 2564 2565 2566
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2567 2568 2569 2570
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2571
	u64 dma_mask;
2572
	phys_addr_t paddr = page_to_phys(page) + offset;
2573

2574 2575
	INC_STATS_COUNTER(cnt_map_single);

2576 2577
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2578
		return (dma_addr_t)paddr;
2579 2580
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2581

2582 2583
	dma_mask = *dev->dma_mask;

2584
	spin_lock_irqsave(&domain->lock, flags);
2585

2586
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2587
			    dma_mask);
2588
	if (addr == DMA_ERROR_CODE)
2589 2590
		goto out;

2591
	domain_flush_complete(domain);
2592 2593 2594 2595 2596 2597 2598

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2599 2600 2601
/*
 * The exported unmap_single function for dma_ops.
 */
2602 2603
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2604 2605 2606 2607
{
	unsigned long flags;
	struct protection_domain *domain;

2608 2609
	INC_STATS_COUNTER(cnt_unmap_single);

2610 2611
	domain = get_domain(dev);
	if (IS_ERR(domain))
2612 2613
		return;

2614 2615
	spin_lock_irqsave(&domain->lock, flags);

2616
	__unmap_single(domain->priv, dma_addr, size, dir);
2617

2618
	domain_flush_complete(domain);
2619 2620 2621 2622

	spin_unlock_irqrestore(&domain->lock, flags);
}

2623 2624 2625 2626
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2627
static int map_sg(struct device *dev, struct scatterlist *sglist,
2628 2629
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2630 2631 2632 2633 2634 2635 2636
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2637
	u64 dma_mask;
2638

2639 2640
	INC_STATS_COUNTER(cnt_map_sg);

2641
	domain = get_domain(dev);
2642
	if (IS_ERR(domain))
2643
		return 0;
2644

2645
	dma_mask = *dev->dma_mask;
2646 2647 2648 2649 2650 2651

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2652
		s->dma_address = __map_single(dev, domain->priv,
2653 2654
					      paddr, s->length, dir, false,
					      dma_mask);
2655 2656 2657 2658 2659 2660 2661 2662

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2663
	domain_flush_complete(domain);
2664 2665 2666 2667 2668 2669 2670 2671

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2672
			__unmap_single(domain->priv, s->dma_address,
2673 2674 2675 2676 2677 2678 2679 2680 2681
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2682 2683 2684 2685
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2686
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2687 2688
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2689 2690 2691 2692 2693 2694
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2695 2696
	INC_STATS_COUNTER(cnt_unmap_sg);

2697 2698
	domain = get_domain(dev);
	if (IS_ERR(domain))
2699 2700
		return;

2701 2702 2703
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2704
		__unmap_single(domain->priv, s->dma_address,
2705 2706 2707 2708
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2709
	domain_flush_complete(domain);
2710 2711 2712 2713

	spin_unlock_irqrestore(&domain->lock, flags);
}

2714 2715 2716
/*
 * The exported alloc_coherent function for dma_ops.
 */
2717
static void *alloc_coherent(struct device *dev, size_t size,
2718 2719
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2720
{
2721
	u64 dma_mask = dev->coherent_dma_mask;
2722 2723 2724
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2725

2726 2727
	INC_STATS_COUNTER(cnt_alloc_coherent);

2728 2729
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2730 2731 2732
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2733 2734
	} else if (IS_ERR(domain))
		return NULL;
2735

2736
	size	  = PAGE_ALIGN(size);
2737 2738
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2739

2740 2741 2742 2743
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2744

2745 2746 2747 2748 2749
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2750

2751 2752 2753
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2754 2755
	spin_lock_irqsave(&domain->lock, flags);

2756
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2757
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2758

2759
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2760
		spin_unlock_irqrestore(&domain->lock, flags);
2761
		goto out_free;
J
Jiri Slaby 已提交
2762
	}
2763

2764
	domain_flush_complete(domain);
2765 2766 2767

	spin_unlock_irqrestore(&domain->lock, flags);

2768
	return page_address(page);
2769 2770 2771

out_free:

2772 2773
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2774 2775

	return NULL;
2776 2777
}

2778 2779 2780
/*
 * The exported free_coherent function for dma_ops.
 */
2781
static void free_coherent(struct device *dev, size_t size,
2782 2783
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2784 2785
{
	struct protection_domain *domain;
2786 2787
	unsigned long flags;
	struct page *page;
2788

2789 2790
	INC_STATS_COUNTER(cnt_free_coherent);

2791 2792 2793
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2794 2795
	domain = get_domain(dev);
	if (IS_ERR(domain))
2796 2797
		goto free_mem;

2798 2799
	spin_lock_irqsave(&domain->lock, flags);

2800
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2801

2802
	domain_flush_complete(domain);
2803 2804 2805 2806

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2807 2808
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2809 2810
}

2811 2812 2813 2814 2815 2816
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2817
	return check_device(dev);
2818 2819
}

2820
static struct dma_map_ops amd_iommu_dma_ops = {
2821 2822
	.alloc = alloc_coherent,
	.free = free_coherent,
2823 2824
	.map_page = map_page,
	.unmap_page = unmap_page,
2825 2826
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2827
	.dma_supported = amd_iommu_dma_supported,
2828 2829
};

2830 2831
static unsigned device_dma_ops_init(void)
{
2832
	struct iommu_dev_data *dev_data;
2833 2834 2835 2836 2837
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2838 2839 2840

			iommu_ignore_device(&pdev->dev);

2841 2842 2843 2844
			unhandled += 1;
			continue;
		}

2845 2846 2847 2848 2849 2850
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2851 2852 2853 2854 2855
	}

	return unhandled;
}

2856 2857 2858
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2859 2860 2861

void __init amd_iommu_init_api(void)
{
2862
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2863 2864
}

2865 2866
int __init amd_iommu_init_dma_ops(void)
{
2867
	int unhandled;
2868 2869

	iommu_detected = 1;
2870
	swiotlb = 0;
2871

2872
	/* Make the driver finally visible to the drivers */
2873 2874 2875 2876 2877
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2878

2879 2880
	amd_iommu_stats_init();

2881 2882 2883 2884 2885
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2886 2887
	return 0;
}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2901
	struct iommu_dev_data *entry;
2902 2903 2904 2905
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2906 2907 2908 2909
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2910
	}
2911 2912 2913 2914

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2915 2916 2917 2918 2919
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2920 2921
	del_domain_from_list(domain);

2922 2923 2924 2925 2926 2927 2928
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2929 2930 2931 2932 2933
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2934
		return NULL;
2935 2936

	spin_lock_init(&domain->lock);
2937
	mutex_init(&domain->api_lock);
2938 2939
	domain->id = domain_id_alloc();
	if (!domain->id)
2940
		goto out_err;
2941
	INIT_LIST_HEAD(&domain->dev_list);
2942

2943 2944
	add_domain_to_list(domain);

2945 2946 2947 2948 2949 2950 2951 2952
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2953
static int alloc_passthrough_domain(void)
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
2967 2968

static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2969
{
2970
	struct protection_domain *pdomain;
2971
	struct dma_ops_domain *dma_domain;
2972

2973 2974 2975 2976 2977
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2978

2979 2980 2981 2982 2983 2984
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2985

2986 2987 2988
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2999 3000 3001 3002 3003 3004 3005
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;

		pdomain->mode = PAGE_MODE_NONE;
		break;
3006 3007 3008
	default:
		return NULL;
	}
3009

3010
	return &pdomain->domain;
3011 3012
}

3013
static void amd_iommu_domain_free(struct iommu_domain *dom)
3014
{
3015
	struct protection_domain *domain;
3016

3017
	if (!dom)
3018 3019
		return;

3020 3021
	domain = to_pdomain(dom);

3022 3023 3024 3025 3026
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3027 3028
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3029

3030 3031 3032
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3033
	protection_domain_free(domain);
3034 3035
}

3036 3037 3038
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3039
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3040 3041 3042
	struct amd_iommu *iommu;
	u16 devid;

3043
	if (!check_device(dev))
3044 3045
		return;

3046
	devid = get_device_id(dev);
3047

3048
	if (dev_data->domain != NULL)
3049
		detach_device(dev);
3050 3051 3052 3053 3054 3055 3056 3057

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3058 3059 3060
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3061
	struct protection_domain *domain = to_pdomain(dom);
3062
	struct iommu_dev_data *dev_data;
3063
	struct amd_iommu *iommu;
3064
	int ret;
3065

3066
	if (!check_device(dev))
3067 3068
		return -EINVAL;

3069 3070
	dev_data = dev->archdata.iommu;

3071
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3072 3073 3074
	if (!iommu)
		return -EINVAL;

3075
	if (dev_data->domain)
3076
		detach_device(dev);
3077

3078
	ret = attach_device(dev, domain);
3079 3080 3081

	iommu_completion_wait(iommu);

3082
	return ret;
3083 3084
}

3085
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3086
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3087
{
3088
	struct protection_domain *domain = to_pdomain(dom);
3089 3090 3091
	int prot = 0;
	int ret;

3092 3093 3094
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3095 3096 3097 3098 3099
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3100
	mutex_lock(&domain->api_lock);
3101
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3102 3103
	mutex_unlock(&domain->api_lock);

3104
	return ret;
3105 3106
}

3107 3108
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3109
{
3110
	struct protection_domain *domain = to_pdomain(dom);
3111
	size_t unmap_size;
3112

3113 3114 3115
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3116
	mutex_lock(&domain->api_lock);
3117
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3118
	mutex_unlock(&domain->api_lock);
3119

3120
	domain_flush_tlb_pde(domain);
3121

3122
	return unmap_size;
3123 3124
}

3125
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3126
					  dma_addr_t iova)
3127
{
3128
	struct protection_domain *domain = to_pdomain(dom);
3129
	unsigned long offset_mask, pte_pgsize;
3130
	u64 *pte, __pte;
3131

3132 3133 3134
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3135
	pte = fetch_pte(domain, iova, &pte_pgsize);
3136

3137
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3138 3139
		return 0;

3140 3141
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3142

3143
	return (__pte & ~offset_mask) | (iova & offset_mask);
3144 3145
}

3146
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3147
{
3148 3149
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3150
		return true;
3151
	case IOMMU_CAP_INTR_REMAP:
3152
		return (irq_remapping_enabled == 1);
3153 3154
	case IOMMU_CAP_NOEXEC:
		return false;
3155 3156
	}

3157
	return false;
S
Sheng Yang 已提交
3158 3159
}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3201
static const struct iommu_ops amd_iommu_ops = {
3202
	.capable = amd_iommu_capable,
3203 3204
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3205 3206
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3207 3208
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3209
	.map_sg = default_iommu_map_sg,
3210
	.iova_to_phys = amd_iommu_iova_to_phys,
3211 3212
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3213 3214
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3215
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3216 3217
};

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3230
	struct iommu_dev_data *dev_data;
3231
	struct pci_dev *dev = NULL;
3232
	int ret;
3233

3234 3235 3236
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3237

3238
	for_each_pci_dev(dev) {
3239
		if (!check_device(&dev->dev))
3240 3241
			continue;

3242 3243 3244
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3245
		attach_device(&dev->dev, pt_domain);
3246 3247
	}

J
Joerg Roedel 已提交
3248 3249
	amd_iommu_stats_init();

3250 3251 3252 3253
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3267 3268 3269

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3270
	struct protection_domain *domain = to_pdomain(dom);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3288 3289 3290

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3291
	struct protection_domain *domain = to_pdomain(dom);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3395 3396
	INC_STATS_COUNTER(invalidate_iotlb);

3397 3398 3399 3400 3401 3402
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3403
	struct protection_domain *domain = to_pdomain(dom);
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3417 3418
	INC_STATS_COUNTER(invalidate_iotlb_all);

3419 3420 3421 3422 3423 3424
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3425
	struct protection_domain *domain = to_pdomain(dom);
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3505
	struct protection_domain *domain = to_pdomain(dom);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3519
	struct protection_domain *domain = to_pdomain(dom);
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3530 3531 3532 3533 3534 3535 3536 3537

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3538 3539
	INC_STATS_COUNTER(complete_ppr);

3540 3541 3542 3543 3544 3545 3546 3547 3548
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3549 3550 3551

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3552
	struct protection_domain *pdomain;
3553

3554 3555
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3556 3557 3558
		return NULL;

	/* Only return IOMMUv2 domains */
3559
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3560 3561
		return NULL;

3562
	return &pdomain->domain;
3563 3564
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3696 3697 3698
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3699 3700 3701 3702 3703 3704 3705
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3706
		table = NULL;
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3724
		set_dte_irq_entry(alias, table);
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3759
			struct irq_2_irte *irte_info;
3760 3761 3762 3763 3764 3765

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3766
			cfg->remapped	      = 1;
3767 3768 3769
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3845 3846 3847 3848 3849
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
3850
	struct irq_2_irte *irte_info;
3851 3852 3853 3854 3855 3856 3857
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

3858
	cfg = irq_cfg(irq);
3859 3860 3861
	if (!cfg)
		return -EINVAL;

3862
	irte_info = &cfg->irq_2_irte;
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
3876
	cfg->remapped	      = 1;
3877 3878
	irte_info->devid      = devid;
	irte_info->index      = index;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
3912
	struct irq_2_irte *irte_info;
3913 3914 3915 3916 3917 3918 3919 3920
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

3921
	cfg       = irqd_cfg(data);
3922
	irq       = data->irq;
3923
	irte_info = &cfg->irq_2_irte;
3924 3925 3926 3927

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

3928
	if (get_irte(irte_info->devid, irte_info->index, &irte))
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

3944
	modify_irte(irte_info->devid, irte_info->index, irte);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
3956
	struct irq_2_irte *irte_info;
3957 3958
	struct irq_cfg *cfg;

3959
	cfg = irq_cfg(irq);
3960 3961 3962
	if (!cfg)
		return -EINVAL;

3963
	irte_info = &cfg->irq_2_irte;
3964

3965
	free_irte(irte_info->devid, irte_info->index);
3966 3967 3968 3969

	return 0;
}

3970 3971 3972 3973
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
3974
	struct irq_2_irte *irte_info;
3975 3976 3977
	struct irq_cfg *cfg;
	union irte irte;

3978
	cfg = irq_cfg(irq);
3979 3980 3981
	if (!cfg)
		return;

3982
	irte_info = &cfg->irq_2_irte;
3983 3984 3985 3986 3987 3988 3989 3990

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

3991
	modify_irte(irte_info->devid, irte_info->index, irte);
3992 3993 3994

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
3995
	msg->data       = irte_info->index;
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4007
	cfg = irq_cfg(irq);
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4020
	struct irq_2_irte *irte_info;
4021 4022 4023 4024 4025 4026
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4027
	cfg = irq_cfg(irq);
4028 4029 4030 4031 4032 4033 4034
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4035
	irte_info	= &cfg->irq_2_irte;
4036

4037
	cfg->remapped	      = 1;
4038 4039
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4040 4041 4042 4043

	return 0;
}

4044
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4045
{
4046
	struct irq_2_irte *irte_info;
4047 4048 4049
	struct irq_cfg *cfg;
	int index, devid;

4050
	cfg = irq_cfg(irq);
4051 4052 4053
	if (!cfg)
		return -EINVAL;

4054
	irte_info = &cfg->irq_2_irte;
4055 4056 4057 4058 4059 4060 4061 4062
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4063
	cfg->remapped	      = 1;
4064 4065
	irte_info->devid      = devid;
	irte_info->index      = index;
4066 4067 4068 4069

	return 0;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4082
	.alloc_hpet_msi		= alloc_hpet_msi,
4083
};
4084
#endif