amd_iommu.c 91.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
95
	bool passthrough;		  /* Device is identity mapped */
96 97 98 99 100 101 102 103 104
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116

117 118 119 120 121 122
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

123 124 125 126 127
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

128
static struct iommu_dev_data *alloc_dev_data(u16 devid)
129 130 131 132 133 134 135 136
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

137
	dev_data->devid = devid;
138 139 140 141 142 143 144 145

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

177 178 179 180
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

181
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
182 183
}

184 185 186 187 188
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

189 190 191 192
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
193 194
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
195 196 197 198 199 200 201 202 203 204 205 206
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

207 208 209 210 211 212 213 214 215
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

216
/*
217 218
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
219
 */
220 221
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
222
{
223
	u64 addr;
224

225 226 227 228 229
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
230
	}
231
}
232

233 234 235 236 237 238 239 240
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
241

242
	devid = get_device_id(dev);
243

244 245 246 247 248
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
249 250
}

251 252 253 254 255 256 257 258 259 260 261
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

262 263
	/* No PCI device */
	if (!dev_is_pci(dev))
264 265 266 267 268 269 270 271 272 273 274 275 276 277
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

278
static void init_iommu_group(struct device *dev)
279
{
280 281
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
282 283
	struct iommu_group *group;

284
	group = iommu_group_get_for_dev(dev);
285 286 287 288 289 290 291 292 293 294 295 296
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

311 312 313 314 315 316 317
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

318 319
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
320 321 322
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

323 324 325
	return 0;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

340 341
static void iommu_uninit_device(struct device *dev)
{
342 343 344 345 346
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
347 348 349
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

350 351
	iommu_group_remove_device(dev);

352 353 354
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

355
	/*
356 357
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
358
	 */
359
}
J
Joerg Roedel 已提交
360

361 362 363 364 365 366
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

367
DECLARE_STATS_COUNTER(compl_wait);
368
DECLARE_STATS_COUNTER(cnt_map_single);
369
DECLARE_STATS_COUNTER(cnt_unmap_single);
370
DECLARE_STATS_COUNTER(cnt_map_sg);
371
DECLARE_STATS_COUNTER(cnt_unmap_sg);
372
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
373
DECLARE_STATS_COUNTER(cnt_free_coherent);
374
DECLARE_STATS_COUNTER(cross_page);
375
DECLARE_STATS_COUNTER(domain_flush_single);
376
DECLARE_STATS_COUNTER(domain_flush_all);
377
DECLARE_STATS_COUNTER(alloced_io_mem);
378
DECLARE_STATS_COUNTER(total_map_requests);
379 380 381 382 383
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
403
					 &amd_iommu_unmap_flush);
404 405

	amd_iommu_stats_add(&compl_wait);
406
	amd_iommu_stats_add(&cnt_map_single);
407
	amd_iommu_stats_add(&cnt_unmap_single);
408
	amd_iommu_stats_add(&cnt_map_sg);
409
	amd_iommu_stats_add(&cnt_unmap_sg);
410
	amd_iommu_stats_add(&cnt_alloc_coherent);
411
	amd_iommu_stats_add(&cnt_free_coherent);
412
	amd_iommu_stats_add(&cross_page);
413
	amd_iommu_stats_add(&domain_flush_single);
414
	amd_iommu_stats_add(&domain_flush_all);
415
	amd_iommu_stats_add(&alloced_io_mem);
416
	amd_iommu_stats_add(&total_map_requests);
417 418 419 420
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
421 422 423 424
}

#endif

425 426 427 428 429 430
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

431 432 433 434
static void dump_dte_entry(u16 devid)
{
	int i;

435 436
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
437 438 439
			amd_iommu_dev_table[devid].data[i]);
}

440 441 442 443 444 445 446 447 448
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

449
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
450
{
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
472

473
	printk(KERN_ERR "AMD-Vi: Event logged [");
474 475 476 477 478

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
479
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
480
		       address, flags);
481
		dump_dte_entry(devid);
482 483 484 485
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
486
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
487 488 489 490 491
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
492
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
493 494 495 496 497
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
498
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
499 500 501 502
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
503
		dump_command(address);
504 505 506 507 508 509 510 511
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
512
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
513 514 515 516 517
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
518
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
519 520 521 522 523
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
524 525

	memset(__evt, 0, 4 * sizeof(u32));
526 527 528 529 530 531 532 533 534 535
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
536
		iommu_print_event(iommu, iommu->evt_buf + head);
537 538 539 540 541 542
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

543
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
544 545 546
{
	struct amd_iommu_fault fault;

547 548
	INC_STATS_COUNTER(pri_requests);

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
590

591 592 593
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
594

595 596 597 598 599 600 601
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
602 603
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
604 605 606 607 608 609

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
610 611 612 613
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

614
irqreturn_t amd_iommu_int_thread(int irq, void *data)
615
{
616 617
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
618

619 620 621 622
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
623

624 625 626 627
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
628

629 630 631 632
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
649
	return IRQ_HANDLED;
650 651
}

652 653 654 655 656
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

657 658 659 660 661 662
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
683 684 685
{
	u8 *target;

686
	target = iommu->cmd_buf + tail;
687 688 689 690 691 692
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
693
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
694
}
695

696
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
697
{
698 699
	WARN_ON(address & 0x7ULL);

700
	memset(cmd, 0, sizeof(*cmd));
701 702 703
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
704 705 706
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

707 708 709 710 711 712 713
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

714 715 716 717
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
718
	bool s;
719 720

	pages = iommu_num_pages(address, size, PAGE_SIZE);
721
	s     = false;
722 723 724 725 726 727 728

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
729
		s = true;
730 731 732 733 734 735 736 737 738 739 740
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
741
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
742 743 744
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

745 746 747 748
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
749
	bool s;
750 751

	pages = iommu_num_pages(address, size, PAGE_SIZE);
752
	s     = false;
753 754 755 756 757 758 759

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
760
		s = true;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

776 777 778 779 780 781 782
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

783
	cmd->data[0]  = pasid;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
802
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
803 804
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
805
	cmd->data[1] |= (pasid & 0xff) << 16;
806 807 808 809 810 811 812 813
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

814 815 816 817 818 819 820
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
821
		cmd->data[1]  = pasid;
822 823 824 825 826 827 828 829
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

830 831 832 833
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
834 835
}

836 837 838 839 840 841 842
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

843 844
/*
 * Writes the command to the IOMMUs command buffer and informs the
845
 * hardware about the new command.
846
 */
847 848 849
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
850
{
851
	u32 left, tail, head, next_tail;
852 853
	unsigned long flags;

854
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
855 856

again:
857 858
	spin_lock_irqsave(&iommu->lock, flags);

859 860 861 862
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
863

864 865 866 867
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
868

869 870
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
871

872 873 874 875 876 877
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
878 879
	}

880 881 882
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
883
	iommu->need_sync = sync;
884

885
	spin_unlock_irqrestore(&iommu->lock, flags);
886

887
	return 0;
888 889
}

890 891 892 893 894
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

895 896 897 898
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
899
static int iommu_completion_wait(struct amd_iommu *iommu)
900 901
{
	struct iommu_cmd cmd;
902
	volatile u64 sem = 0;
903
	int ret;
904

905
	if (!iommu->need_sync)
906
		return 0;
907

908
	build_completion_wait(&cmd, (u64)&sem);
909

910
	ret = iommu_queue_command_sync(iommu, &cmd, false);
911
	if (ret)
912
		return ret;
913

914
	return wait_on_sem(&sem);
915 916
}

917
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
918
{
919
	struct iommu_cmd cmd;
920

921
	build_inv_dte(&cmd, devid);
922

923 924
	return iommu_queue_command(iommu, &cmd);
}
925

926 927 928
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
929

930 931
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
932

933 934
	iommu_completion_wait(iommu);
}
935

936 937 938 939 940 941 942
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
943

944 945 946 947 948 949
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
950

951
	iommu_completion_wait(iommu);
952 953
}

954
static void iommu_flush_all(struct amd_iommu *iommu)
955
{
956
	struct iommu_cmd cmd;
957

958
	build_inv_all(&cmd);
959

960 961 962 963
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

983 984
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
985 986 987 988
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
989
		iommu_flush_irt_all(iommu);
990
		iommu_flush_tlb_all(iommu);
991 992 993
	}
}

994
/*
995
 * Command send function for flushing on-device TLB
996
 */
997 998
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
999 1000
{
	struct amd_iommu *iommu;
1001
	struct iommu_cmd cmd;
1002
	int qdep;
1003

1004 1005
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1006

1007
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1008 1009

	return iommu_queue_command(iommu, &cmd);
1010 1011
}

1012 1013 1014
/*
 * Command send function for invalidating a device table entry
 */
1015
static int device_flush_dte(struct iommu_dev_data *dev_data)
1016
{
1017
	struct amd_iommu *iommu;
1018
	u16 alias;
1019
	int ret;
1020

1021
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1022
	alias = amd_iommu_alias_table[dev_data->devid];
1023

1024
	ret = iommu_flush_dte(iommu, dev_data->devid);
1025 1026
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1027 1028 1029
	if (ret)
		return ret;

1030
	if (dev_data->ats.enabled)
1031
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1032 1033

	return ret;
1034 1035
}

1036 1037 1038 1039 1040
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1041 1042
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1043
{
1044
	struct iommu_dev_data *dev_data;
1045 1046
	struct iommu_cmd cmd;
	int ret = 0, i;
1047

1048
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1049

1050 1051 1052 1053 1054 1055 1056 1057
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1058
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1059 1060
	}

1061 1062
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1063
		if (!dev_data->ats.enabled)
1064 1065
			continue;

1066
		ret |= device_flush_iotlb(dev_data, address, size);
1067 1068
	}

1069
	WARN_ON(ret);
1070 1071
}

1072 1073
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1074
{
1075
	__domain_flush_pages(domain, address, size, 0);
1076
}
1077

1078
/* Flush the whole IO/TLB for a given protection domain */
1079
static void domain_flush_tlb(struct protection_domain *domain)
1080
{
1081
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1082 1083
}

1084
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1085
static void domain_flush_tlb_pde(struct protection_domain *domain)
1086
{
1087
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1088 1089
}

1090
static void domain_flush_complete(struct protection_domain *domain)
1091
{
1092
	int i;
1093

1094 1095 1096
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1097

1098 1099 1100 1101 1102
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1103
	}
1104 1105
}

1106

1107
/*
1108
 * This function flushes the DTEs for all devices in domain
1109
 */
1110
static void domain_flush_devices(struct protection_domain *domain)
1111
{
1112
	struct iommu_dev_data *dev_data;
1113

1114
	list_for_each_entry(dev_data, &domain->dev_list, list)
1115
		device_flush_dte(dev_data);
1116 1117
}

1118 1119 1120 1121 1122 1123 1124
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1154
		      unsigned long page_size,
1155 1156 1157
		      u64 **pte_page,
		      gfp_t gfp)
{
1158
	int level, end_lvl;
1159
	u64 *pte, *page;
1160 1161

	BUG_ON(!is_power_of_2(page_size));
1162 1163 1164 1165

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1166 1167 1168 1169
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1170 1171 1172 1173 1174 1175 1176 1177 1178

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1179 1180 1181 1182
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1200 1201 1202
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1203 1204 1205 1206
{
	int level;
	u64 *pte;

1207 1208 1209
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1210 1211 1212
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1213

1214 1215 1216
	while (level > 0) {

		/* Not Present */
1217 1218 1219
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1220
		/* Large PTE */
1221 1222 1223
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1224 1225 1226 1227 1228

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1229 1230
		level -= 1;

1231
		/* Walk to the next level */
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1247 1248 1249 1250 1251
	}

	return pte;
}

1252 1253 1254 1255 1256 1257 1258
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1259 1260 1261
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1262
			  int prot,
1263
			  unsigned long page_size)
1264
{
1265
	u64 __pte, *pte;
1266
	int i, count;
1267

1268 1269 1270
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1271
	if (!(prot & IOMMU_PROT_MASK))
1272 1273
		return -EINVAL;

1274 1275
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1276

1277 1278 1279
	if (!pte)
		return -ENOMEM;

1280 1281 1282
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1283

1284
	if (count > 1) {
1285 1286 1287 1288
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1289 1290 1291 1292 1293 1294

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1295 1296
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1297

1298 1299
	update_domain(dom);

1300 1301 1302
	return 0;
}

1303 1304 1305
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1306
{
1307 1308
	unsigned long long unmapped;
	unsigned long unmap_size;
1309 1310 1311 1312 1313
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1314

1315 1316
	while (unmapped < page_size) {

1317 1318 1319 1320 1321 1322
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1323 1324 1325 1326 1327 1328 1329 1330
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1331
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1332

1333
	return unmapped;
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1345

1346
/*
1347
 * The address allocator core functions.
1348 1349 1350
 *
 * called with domain->lock held
 */
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1372 1373 1374 1375 1376
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1377
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1378 1379 1380
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1381
	struct amd_iommu *iommu;
1382
	unsigned long i, old_size, pte_pgsize;
1383

1384 1385 1386 1387
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1407
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1418
	old_size                = dma_dom->aperture_size;
1419 1420
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1433
	/* Initialize the exclusion range if necessary */
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1455
	     i += pte_pgsize) {
1456
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1457 1458 1459
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1460 1461
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1462 1463
	}

1464 1465
	update_domain(&dma_dom->domain);

1466 1467 1468
	return 0;

out_free:
1469 1470
	update_domain(&dma_dom->domain);

1471 1472 1473 1474 1475 1476 1477 1478
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1479 1480 1481 1482 1483 1484 1485
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1486
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1487 1488
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
1489
	unsigned long boundary_size, mask;
1490 1491 1492
	unsigned long address = -1;
	unsigned long limit;

1493 1494
	next_bit >>= PAGE_SHIFT;

1495 1496 1497 1498
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1515
			dom->next_address = address + (pages << PAGE_SHIFT);
1516 1517 1518 1519 1520 1521 1522 1523 1524
			break;
		}

		next_bit = 0;
	}

	return address;
}

1525 1526
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1527
					     unsigned int pages,
1528 1529
					     unsigned long align_mask,
					     u64 dma_mask)
1530 1531 1532
{
	unsigned long address;

1533 1534 1535 1536
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1537

1538
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1539
				     dma_mask, dom->next_address);
1540

1541
	if (address == -1) {
1542
		dom->next_address = 0;
1543 1544
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1545 1546
		dom->need_flush = true;
	}
1547

1548
	if (unlikely(address == -1))
1549
		address = DMA_ERROR_CODE;
1550 1551 1552 1553 1554 1555

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1556 1557 1558 1559 1560
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1561 1562 1563 1564
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1565 1566
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1567

1568 1569
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1570 1571 1572 1573
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1574

1575
	if (address >= dom->next_address)
1576
		dom->need_flush = true;
1577 1578

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1579

A
Akinobu Mita 已提交
1580
	bitmap_clear(range->bitmap, address, pages);
1581

1582 1583
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1656
		/* PTE present? */				\
1657 1658 1659
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1660 1661 1662 1663 1664
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1677
static void free_pagetable(struct protection_domain *domain)
1678
{
1679
	unsigned long root = (unsigned long)domain->pt_root;
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1704 1705 1706
	}
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1737 1738
static void free_gcr3_table(struct protection_domain *domain)
{
1739 1740 1741 1742
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1743 1744
	else
		BUG_ON(domain->glx != 0);
1745

1746 1747 1748
	free_page((unsigned long)domain->gcr3_tbl);
}

1749 1750 1751 1752
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1753 1754
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1755 1756
	int i;

1757 1758 1759
	if (!dom)
		return;

1760 1761
	del_domain_from_list(&dom->domain);

1762
	free_pagetable(&dom->domain);
1763

1764 1765 1766 1767 1768 1769
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1770 1771 1772 1773

	kfree(dom);
}

1774 1775
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1776
 * It also initializes the page table and the address allocator data
1777 1778
 * structures required for the dma_ops interface
 */
1779
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1780 1781 1782 1783 1784 1785 1786
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1787
	if (protection_domain_init(&dma_dom->domain))
1788
		goto free_dma_dom;
1789

1790
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1791
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1792
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1793 1794 1795 1796
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1797 1798
	dma_dom->need_flush = false;

1799 1800
	add_domain_to_list(&dma_dom->domain);

1801
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1802 1803
		goto free_dma_dom;

1804
	/*
1805 1806
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1807
	 */
1808
	dma_dom->aperture[0]->bitmap[0] = 1;
1809
	dma_dom->next_address = 0;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1829
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1830
{
1831
	u64 pte_root = 0;
1832
	u64 flags = 0;
1833

1834 1835 1836
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1837 1838 1839
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1840

1841 1842
	flags = amd_iommu_dev_table[devid].data[1];

1843 1844 1845
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1872 1873 1874 1875 1876
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1877 1878 1879 1880 1881 1882 1883 1884 1885
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1886 1887
}

1888 1889
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1890 1891
{
	struct amd_iommu *iommu;
1892
	u16 alias;
1893
	bool ats;
1894

1895
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1896
	alias = amd_iommu_alias_table[dev_data->devid];
1897
	ats   = dev_data->ats.enabled;
1898 1899 1900 1901 1902 1903 1904 1905 1906

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1907 1908 1909 1910 1911
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
		set_dte_entry(dev_data->devid, domain, ats);

1912
	device_flush_dte(dev_data);
1913 1914
}

1915
static void do_detach(struct iommu_dev_data *dev_data)
1916 1917
{
	struct amd_iommu *iommu;
1918
	u16 alias;
1919

1920
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1921
	alias = amd_iommu_alias_table[dev_data->devid];
1922 1923

	/* decrease reference counters */
1924 1925 1926 1927 1928 1929
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1930
	clear_dte_entry(dev_data->devid);
1931 1932
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1933

1934
	/* Flush the DTE entry */
1935
	device_flush_dte(dev_data);
1936 1937 1938 1939 1940 1941
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1942
static int __attach_device(struct iommu_dev_data *dev_data,
1943
			   struct protection_domain *domain)
1944
{
1945
	int ret;
1946

1947 1948 1949 1950 1951 1952
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1953 1954 1955
	/* lock domain */
	spin_lock(&domain->lock);

1956
	ret = -EBUSY;
1957
	if (dev_data->domain != NULL)
1958
		goto out_unlock;
1959

1960
	/* Attach alias group root */
1961
	do_attach(dev_data, domain);
1962

1963 1964 1965 1966
	ret = 0;

out_unlock:

1967 1968
	/* ready */
	spin_unlock(&domain->lock);
1969

1970
	return ret;
1971
}
1972

1973 1974 1975 1976 1977 1978 1979 1980

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1981 1982 1983 1984 1985 1986
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1987
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1988 1989 1990
	if (!pos)
		return -EINVAL;

1991 1992 1993
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1994 1995 1996 1997

	return 0;
}

1998 1999
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2000 2001 2002 2003 2004 2005 2006 2007
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2019 2020
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2021 2022 2023
	if (ret)
		goto out_err;

2024 2025 2026 2027 2028 2029
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2043
/* FIXME: Move this to PCI code */
2044
#define PCI_PRI_TLP_OFF		(1 << 15)
2045

J
Joerg Roedel 已提交
2046
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2047
{
2048
	u16 status;
2049 2050
	int pos;

2051
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2052 2053 2054
	if (!pos)
		return false;

2055
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2056

2057
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2058 2059
}

2060
/*
F
Frank Arnold 已提交
2061
 * If a device is not yet associated with a domain, this function
2062 2063
 * assigns it visible for the hardware
 */
2064 2065
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2066
{
2067
	struct pci_dev *pdev = to_pci_dev(dev);
2068
	struct iommu_dev_data *dev_data;
2069
	unsigned long flags;
2070
	int ret;
2071

2072 2073
	dev_data = get_dev_data(dev);

2074
	if (domain->flags & PD_IOMMUV2_MASK) {
2075
		if (!dev_data->passthrough)
2076 2077
			return -EINVAL;

2078 2079 2080
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2081

2082 2083 2084 2085
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2086 2087
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2088 2089 2090
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2091

2092
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2093
	ret = __attach_device(dev_data, domain);
2094 2095
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2096 2097 2098 2099 2100
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2101
	domain_flush_tlb_pde(domain);
2102 2103

	return ret;
2104 2105
}

2106 2107 2108
/*
 * Removes a device from a protection domain (unlocked)
 */
2109
static void __detach_device(struct iommu_dev_data *dev_data)
2110
{
2111
	struct protection_domain *domain;
2112

2113 2114 2115 2116 2117 2118
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2119 2120
	if (WARN_ON(!dev_data->domain))
		return;
2121

2122 2123
	domain = dev_data->domain;

2124
	spin_lock(&domain->lock);
2125

2126
	do_detach(dev_data);
2127

2128
	spin_unlock(&domain->lock);
2129 2130 2131 2132 2133
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2134
static void detach_device(struct device *dev)
2135
{
2136
	struct protection_domain *domain;
2137
	struct iommu_dev_data *dev_data;
2138 2139
	unsigned long flags;

2140
	dev_data = get_dev_data(dev);
2141
	domain   = dev_data->domain;
2142

2143 2144
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2145
	__detach_device(dev_data);
2146
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2147

2148
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2149 2150
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2151
		pci_disable_ats(to_pci_dev(dev));
2152 2153

	dev_data->ats.enabled = false;
2154
}
2155

2156
static int amd_iommu_add_device(struct device *dev)
2157
{
2158
	struct iommu_dev_data *dev_data;
2159
	struct iommu_domain *domain;
2160
	struct amd_iommu *iommu;
2161
	u16 devid;
2162
	int ret;
2163

2164
	if (!check_device(dev) || get_dev_data(dev))
2165
		return 0;
2166

2167 2168
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2169

2170
	ret = iommu_init_device(dev);
2171 2172 2173 2174
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2175

2176
		iommu_ignore_device(dev);
2177
		dev->archdata.dma_ops = &nommu_dma_ops;
2178 2179 2180
		goto out;
	}
	init_iommu_group(dev);
2181

2182
	dev_data = get_dev_data(dev);
2183

2184
	BUG_ON(!dev_data);
2185

2186
	if (iommu_pass_through || dev_data->iommu_v2)
2187
		iommu_request_dm_for_dev(dev);
2188

2189 2190
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2191
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2192
		dev_data->passthrough = true;
2193
	else
2194
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2195

2196
out:
2197 2198 2199 2200 2201
	iommu_completion_wait(iommu);

	return 0;
}

2202
static void amd_iommu_remove_device(struct device *dev)
2203
{
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2215 2216
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2230
static struct protection_domain *get_domain(struct device *dev)
2231
{
2232
	struct protection_domain *domain;
2233
	struct iommu_domain *io_domain;
2234

2235
	if (!check_device(dev))
2236
		return ERR_PTR(-EINVAL);
2237

2238
	io_domain = iommu_get_domain_for_dev(dev);
2239 2240
	if (!io_domain)
		return NULL;
2241

2242 2243
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2244
		return ERR_PTR(-EBUSY);
2245

2246
	return domain;
2247 2248
}

2249 2250
static void update_device_table(struct protection_domain *domain)
{
2251
	struct iommu_dev_data *dev_data;
2252

2253 2254
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2255 2256 2257 2258 2259 2260 2261 2262
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2263 2264 2265

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2266 2267 2268 2269

	domain->updated = false;
}

2270 2271 2272 2273 2274 2275
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2276
	struct aperture_range *aperture;
2277 2278
	u64 *pte, *pte_page;

2279 2280 2281 2282 2283
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2284
	if (!pte) {
2285
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2286
				GFP_ATOMIC);
2287 2288
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2289
		pte += PM_LEVEL_INDEX(0, address);
2290

2291
	update_domain(&dom->domain);
2292 2293 2294 2295

	return pte;
}

2296 2297 2298 2299
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2300
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2311
	pte  = dma_ops_get_pte(dom, address);
2312
	if (!pte)
2313
		return DMA_ERROR_CODE;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2331 2332 2333
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2334
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2335 2336
				 unsigned long address)
{
2337
	struct aperture_range *aperture;
2338 2339 2340 2341 2342
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2343 2344 2345 2346 2347 2348 2349
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2350

2351
	pte += PM_LEVEL_INDEX(0, address);
2352 2353 2354 2355 2356 2357

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2358 2359
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2360 2361
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2362 2363
 * Must be called with the domain lock held.
 */
2364 2365 2366 2367
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2368
			       int dir,
2369 2370
			       bool align,
			       u64 dma_mask)
2371 2372
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2373
	dma_addr_t address, start, ret;
2374
	unsigned int pages;
2375
	unsigned long align_mask = 0;
2376 2377
	int i;

2378
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2379 2380
	paddr &= PAGE_MASK;

2381 2382
	INC_STATS_COUNTER(total_map_requests);

2383 2384 2385
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2386 2387 2388
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2389
retry:
2390 2391
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2392
	if (unlikely(address == DMA_ERROR_CODE)) {
2393 2394 2395 2396 2397 2398 2399
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2400
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2401 2402 2403
			goto out;

		/*
2404
		 * aperture was successfully enlarged by 128 MB, try
2405 2406 2407 2408
		 * allocation again
		 */
		goto retry;
	}
2409 2410 2411

	start = address;
	for (i = 0; i < pages; ++i) {
2412
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2413
		if (ret == DMA_ERROR_CODE)
2414 2415
			goto out_unmap;

2416 2417 2418 2419 2420
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2421 2422
	ADD_STATS_COUNTER(alloced_io_mem, size);

2423
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2424
		domain_flush_tlb(&dma_dom->domain);
2425
		dma_dom->need_flush = false;
2426
	} else if (unlikely(amd_iommu_np_cache))
2427
		domain_flush_pages(&dma_dom->domain, address, size);
2428

2429 2430
out:
	return address;
2431 2432 2433 2434 2435

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2436
		dma_ops_domain_unmap(dma_dom, start);
2437 2438 2439 2440
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2441
	return DMA_ERROR_CODE;
2442 2443
}

2444 2445 2446 2447
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2448
static void __unmap_single(struct dma_ops_domain *dma_dom,
2449 2450 2451 2452
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2453
	dma_addr_t flush_addr;
2454 2455 2456
	dma_addr_t i, start;
	unsigned int pages;

2457
	if ((dma_addr == DMA_ERROR_CODE) ||
2458
	    (dma_addr + size > dma_dom->aperture_size))
2459 2460
		return;

2461
	flush_addr = dma_addr;
2462
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2463 2464 2465 2466
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2467
		dma_ops_domain_unmap(dma_dom, start);
2468 2469 2470
		start += PAGE_SIZE;
	}

2471 2472
	SUB_STATS_COUNTER(alloced_io_mem, size);

2473
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2474

2475
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2476
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2477 2478
		dma_dom->need_flush = false;
	}
2479 2480
}

2481 2482 2483
/*
 * The exported map_single function for dma_ops.
 */
2484 2485 2486 2487
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2488 2489 2490 2491
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2492
	u64 dma_mask;
2493
	phys_addr_t paddr = page_to_phys(page) + offset;
2494

2495 2496
	INC_STATS_COUNTER(cnt_map_single);

2497 2498
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2499
		return (dma_addr_t)paddr;
2500 2501
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2502

2503 2504
	dma_mask = *dev->dma_mask;

2505
	spin_lock_irqsave(&domain->lock, flags);
2506

2507
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2508
			    dma_mask);
2509
	if (addr == DMA_ERROR_CODE)
2510 2511
		goto out;

2512
	domain_flush_complete(domain);
2513 2514 2515 2516 2517 2518 2519

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2520 2521 2522
/*
 * The exported unmap_single function for dma_ops.
 */
2523 2524
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2525 2526 2527 2528
{
	unsigned long flags;
	struct protection_domain *domain;

2529 2530
	INC_STATS_COUNTER(cnt_unmap_single);

2531 2532
	domain = get_domain(dev);
	if (IS_ERR(domain))
2533 2534
		return;

2535 2536
	spin_lock_irqsave(&domain->lock, flags);

2537
	__unmap_single(domain->priv, dma_addr, size, dir);
2538

2539
	domain_flush_complete(domain);
2540 2541 2542 2543

	spin_unlock_irqrestore(&domain->lock, flags);
}

2544 2545 2546 2547
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2548
static int map_sg(struct device *dev, struct scatterlist *sglist,
2549 2550
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2551 2552 2553 2554 2555 2556 2557
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2558
	u64 dma_mask;
2559

2560 2561
	INC_STATS_COUNTER(cnt_map_sg);

2562
	domain = get_domain(dev);
2563
	if (IS_ERR(domain))
2564
		return 0;
2565

2566
	dma_mask = *dev->dma_mask;
2567 2568 2569 2570 2571 2572

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2573
		s->dma_address = __map_single(dev, domain->priv,
2574 2575
					      paddr, s->length, dir, false,
					      dma_mask);
2576 2577 2578 2579 2580 2581 2582 2583

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2584
	domain_flush_complete(domain);
2585 2586 2587 2588 2589 2590 2591 2592

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2593
			__unmap_single(domain->priv, s->dma_address,
2594 2595 2596 2597 2598 2599 2600 2601 2602
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2603 2604 2605 2606
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2607
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2608 2609
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2610 2611 2612 2613 2614 2615
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2616 2617
	INC_STATS_COUNTER(cnt_unmap_sg);

2618 2619
	domain = get_domain(dev);
	if (IS_ERR(domain))
2620 2621
		return;

2622 2623 2624
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2625
		__unmap_single(domain->priv, s->dma_address,
2626 2627 2628 2629
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2630
	domain_flush_complete(domain);
2631 2632 2633 2634

	spin_unlock_irqrestore(&domain->lock, flags);
}

2635 2636 2637
/*
 * The exported alloc_coherent function for dma_ops.
 */
2638
static void *alloc_coherent(struct device *dev, size_t size,
2639 2640
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2641
{
2642
	u64 dma_mask = dev->coherent_dma_mask;
2643 2644 2645
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2646

2647 2648
	INC_STATS_COUNTER(cnt_alloc_coherent);

2649 2650
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2651 2652 2653
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2654 2655
	} else if (IS_ERR(domain))
		return NULL;
2656

2657
	size	  = PAGE_ALIGN(size);
2658 2659
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2660
	flag     |= __GFP_ZERO;
2661

2662 2663 2664 2665
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2666

2667 2668 2669 2670 2671
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2672

2673 2674 2675
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2676 2677
	spin_lock_irqsave(&domain->lock, flags);

2678
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2679
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2680

2681
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2682
		spin_unlock_irqrestore(&domain->lock, flags);
2683
		goto out_free;
J
Jiri Slaby 已提交
2684
	}
2685

2686
	domain_flush_complete(domain);
2687 2688 2689

	spin_unlock_irqrestore(&domain->lock, flags);

2690
	return page_address(page);
2691 2692 2693

out_free:

2694 2695
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2696 2697

	return NULL;
2698 2699
}

2700 2701 2702
/*
 * The exported free_coherent function for dma_ops.
 */
2703
static void free_coherent(struct device *dev, size_t size,
2704 2705
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2706 2707
{
	struct protection_domain *domain;
2708 2709
	unsigned long flags;
	struct page *page;
2710

2711 2712
	INC_STATS_COUNTER(cnt_free_coherent);

2713 2714 2715
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2716 2717
	domain = get_domain(dev);
	if (IS_ERR(domain))
2718 2719
		goto free_mem;

2720 2721
	spin_lock_irqsave(&domain->lock, flags);

2722
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2723

2724
	domain_flush_complete(domain);
2725 2726 2727 2728

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2729 2730
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2731 2732
}

2733 2734 2735 2736 2737 2738
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2739
	return check_device(dev);
2740 2741
}

2742
static struct dma_map_ops amd_iommu_dma_ops = {
2743 2744
	.alloc = alloc_coherent,
	.free = free_coherent,
2745 2746
	.map_page = map_page,
	.unmap_page = unmap_page,
2747 2748
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2749
	.dma_supported = amd_iommu_dma_supported,
2750 2751
};

2752
int __init amd_iommu_init_api(void)
2753
{
2754
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2755 2756
}

2757 2758
int __init amd_iommu_init_dma_ops(void)
{
2759
	swiotlb        = iommu_pass_through ? 1 : 0;
2760 2761
	iommu_detected = 1;

2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2771 2772
	amd_iommu_stats_init();

2773 2774 2775 2776 2777
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2778 2779
	return 0;
}
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2793
	struct iommu_dev_data *entry;
2794 2795 2796 2797
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2798 2799 2800 2801
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2802
	}
2803 2804 2805 2806

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2807 2808 2809 2810 2811
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2812 2813
	del_domain_from_list(domain);

2814 2815 2816 2817 2818 2819
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2832
static struct protection_domain *protection_domain_alloc(void)
2833 2834 2835 2836 2837
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2838
		return NULL;
2839

2840
	if (protection_domain_init(domain))
2841 2842
		goto out_err;

2843 2844
	add_domain_to_list(domain);

2845 2846 2847 2848 2849 2850 2851 2852
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2853
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2854
{
2855
	struct protection_domain *pdomain;
2856
	struct dma_ops_domain *dma_domain;
2857

2858 2859 2860 2861 2862
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2863

2864 2865 2866 2867 2868 2869
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2870

2871 2872 2873
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2884 2885 2886 2887
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2888

2889 2890
		pdomain->mode = PAGE_MODE_NONE;
		break;
2891 2892 2893
	default:
		return NULL;
	}
2894

2895
	return &pdomain->domain;
2896 2897
}

2898
static void amd_iommu_domain_free(struct iommu_domain *dom)
2899
{
2900
	struct protection_domain *domain;
2901

2902
	if (!dom)
2903 2904
		return;

2905 2906
	domain = to_pdomain(dom);

2907 2908 2909 2910 2911
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2912 2913
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2914

2915 2916 2917
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2918
	protection_domain_free(domain);
2919 2920
}

2921 2922 2923
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2924
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2925 2926 2927
	struct amd_iommu *iommu;
	u16 devid;

2928
	if (!check_device(dev))
2929 2930
		return;

2931
	devid = get_device_id(dev);
2932

2933
	if (dev_data->domain != NULL)
2934
		detach_device(dev);
2935 2936 2937 2938 2939 2940 2941 2942

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2943 2944 2945
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2946
	struct protection_domain *domain = to_pdomain(dom);
2947
	struct iommu_dev_data *dev_data;
2948
	struct amd_iommu *iommu;
2949
	int ret;
2950

2951
	if (!check_device(dev))
2952 2953
		return -EINVAL;

2954 2955
	dev_data = dev->archdata.iommu;

2956
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2957 2958 2959
	if (!iommu)
		return -EINVAL;

2960
	if (dev_data->domain)
2961
		detach_device(dev);
2962

2963
	ret = attach_device(dev, domain);
2964 2965 2966

	iommu_completion_wait(iommu);

2967
	return ret;
2968 2969
}

2970
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2971
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2972
{
2973
	struct protection_domain *domain = to_pdomain(dom);
2974 2975 2976
	int prot = 0;
	int ret;

2977 2978 2979
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2980 2981 2982 2983 2984
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2985
	mutex_lock(&domain->api_lock);
2986
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2987 2988
	mutex_unlock(&domain->api_lock);

2989
	return ret;
2990 2991
}

2992 2993
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
2994
{
2995
	struct protection_domain *domain = to_pdomain(dom);
2996
	size_t unmap_size;
2997

2998 2999 3000
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3001
	mutex_lock(&domain->api_lock);
3002
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3003
	mutex_unlock(&domain->api_lock);
3004

3005
	domain_flush_tlb_pde(domain);
3006

3007
	return unmap_size;
3008 3009
}

3010
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3011
					  dma_addr_t iova)
3012
{
3013
	struct protection_domain *domain = to_pdomain(dom);
3014
	unsigned long offset_mask, pte_pgsize;
3015
	u64 *pte, __pte;
3016

3017 3018 3019
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3020
	pte = fetch_pte(domain, iova, &pte_pgsize);
3021

3022
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3023 3024
		return 0;

3025 3026
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3027

3028
	return (__pte & ~offset_mask) | (iova & offset_mask);
3029 3030
}

3031
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3032
{
3033 3034
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3035
		return true;
3036
	case IOMMU_CAP_INTR_REMAP:
3037
		return (irq_remapping_enabled == 1);
3038 3039
	case IOMMU_CAP_NOEXEC:
		return false;
3040 3041
	}

3042
	return false;
S
Sheng Yang 已提交
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3086
static const struct iommu_ops amd_iommu_ops = {
3087
	.capable = amd_iommu_capable,
3088 3089
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3090 3091
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3092 3093
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3094
	.map_sg = default_iommu_map_sg,
3095
	.iova_to_phys = amd_iommu_iova_to_phys,
3096 3097
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3098 3099
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3100
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3101 3102
};

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3125 3126 3127

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3128
	struct protection_domain *domain = to_pdomain(dom);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3146 3147 3148

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3149
	struct protection_domain *domain = to_pdomain(dom);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3227 3228 3229 3230 3231 3232
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3258 3259
	INC_STATS_COUNTER(invalidate_iotlb);

3260 3261 3262 3263 3264 3265
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3266
	struct protection_domain *domain = to_pdomain(dom);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3280 3281
	INC_STATS_COUNTER(invalidate_iotlb_all);

3282 3283 3284 3285 3286 3287
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3288
	struct protection_domain *domain = to_pdomain(dom);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3368
	struct protection_domain *domain = to_pdomain(dom);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3382
	struct protection_domain *domain = to_pdomain(dom);
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3393 3394 3395 3396 3397 3398 3399 3400

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3401 3402
	INC_STATS_COUNTER(complete_ppr);

3403 3404 3405 3406 3407 3408 3409 3410 3411
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3412 3413 3414

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3415
	struct protection_domain *pdomain;
3416

3417 3418
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3419 3420 3421
		return NULL;

	/* Only return IOMMUv2 domains */
3422
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3423 3424
		return NULL;

3425
	return &pdomain->domain;
3426 3427
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3507 3508 3509 3510 3511
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3574 3575 3576
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3577 3578 3579 3580 3581 3582 3583
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3584
		table = NULL;
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3602
		set_dte_irq_entry(alias, table);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3615
static int alloc_irq_index(u16 devid, int count)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3699
static int get_devid(struct irq_alloc_info *info)
3700
{
3701
	int devid = -1;
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3718

3719 3720
	return devid;
}
3721

3722 3723 3724 3725
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3726

3727 3728
	if (!info)
		return NULL;
3729

3730 3731 3732 3733 3734 3735
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3736

3737
	return NULL;
3738 3739
}

3740
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3741
{
3742 3743
	struct amd_iommu *iommu;
	int devid;
3744

3745 3746
	if (!info)
		return NULL;
3747

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3761

3762 3763
	return NULL;
}
3764

3765 3766 3767 3768 3769 3770
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3771 3772 3773
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3774

3775 3776 3777 3778 3779 3780 3781 3782 3783
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3784

3785 3786
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3787

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3810

3811 3812 3813 3814 3815 3816 3817
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3818

3819 3820 3821 3822
	default:
		BUG_ON(1);
		break;
	}
3823 3824
}

3825 3826
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3827
{
3828 3829 3830
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3831
	struct irq_cfg *cfg;
3832 3833
	int i, ret, devid;
	int index = -1;
3834

3835 3836 3837 3838
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3839 3840
		return -EINVAL;

3841 3842 3843 3844 3845 3846
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3847

3848 3849 3850
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3851

3852 3853 3854
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3855

3856 3857 3858 3859 3860 3861
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3862
		index = alloc_irq_index(devid, nr_irqs);
3863 3864 3865 3866 3867
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3868

3869 3870 3871 3872 3873 3874 3875
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3876

3877 3878 3879 3880 3881
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3882 3883 3884 3885 3886 3887
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3888

3889
	return 0;
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3902 3903
}

3904 3905
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3906
{
3907 3908 3909 3910
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3923

3924 3925 3926 3927 3928
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3929

3930
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3931 3932
}

3933 3934
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3935
{
3936 3937 3938
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3939

3940 3941 3942
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
3943

3944 3945 3946 3947 3948
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
3949
};
3950

3951 3952 3953 3954 3955 3956 3957 3958
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
3959

3960 3961 3962
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
3963

3964 3965 3966 3967 3968 3969 3970
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
3971

3972 3973 3974 3975 3976
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
3977
	send_cleanup_vector(cfg);
3978 3979

	return IRQ_SET_MASK_OK_DONE;
3980 3981
}

3982
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3983
{
3984
	struct amd_ir_data *ir_data = irq_data->chip_data;
3985

3986 3987
	*msg = ir_data->msi_entry;
}
3988

3989 3990 3991 3992 3993
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
3994

3995 3996 3997 3998 3999
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4000

4001 4002
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4003 4004 4005

	return 0;
}
4006
#endif