amd_iommu.c 96.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84
static const struct iommu_ops amd_iommu_ops;
85

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93 94 95 96
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
97
	struct list_head alias_list;      /* Link alias-groups together */
98 99 100 101 102 103 104 105 106 107 108 109 110 111
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

112 113 114
/*
 * general struct to manage commands send to an IOMMU
 */
115
struct iommu_cmd {
116 117 118
	u32 data[4];
};

119 120
struct kmem_cache *amd_iommu_irq_cache;

121
static void update_domain(struct protection_domain *domain);
122
static int __init alloc_passthrough_domain(void);
123

124 125 126 127 128 129
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

130
static struct iommu_dev_data *alloc_dev_data(u16 devid)
131 132 133 134 135 136 137 138
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

139 140
	INIT_LIST_HEAD(&dev_data->alias_list);

141
	dev_data->devid = devid;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

192 193 194 195
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

196
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
197 198
}

199 200 201 202 203
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

204 205 206 207
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
208 209
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
210 211 212 213 214 215 216 217 218 219 220 221
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

222 223 224 225 226 227 228 229 230
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

259 260 261 262 263 264 265 266 267 268 269
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

270 271
	/* No PCI device */
	if (!dev_is_pci(dev))
272 273 274 275 276 277 278 279 280 281 282 283 284 285
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

286
static void init_iommu_group(struct device *dev)
287 288 289
{
	struct iommu_group *group;

290
	group = iommu_group_get_for_dev(dev);
291 292
	if (!IS_ERR(group))
		iommu_group_put(group);
293 294
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

357 358 359 360 361 362 363 364 365 366 367 368 369
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

370 371
	alias = get_alias(dev);

372 373 374 375 376 377 378 379 380 381 382 383
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

384 385
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
386
	}
387

388 389 390 391 392 393 394
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

395 396
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
397 398 399
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

400 401 402
	return 0;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

417 418
static void iommu_uninit_device(struct device *dev)
{
419 420 421 422 423
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
424 425 426
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

427 428
	iommu_group_remove_device(dev);

429 430 431
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

432
	/*
433 434
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
435
	 */
436
}
J
Joerg Roedel 已提交
437 438 439

void __init amd_iommu_uninit_devices(void)
{
440
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
441 442 443 444 445 446 447 448 449
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
450 451 452 453

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
467 468 469
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
470 471 472
			goto out_free;
	}

473 474 475 476 477 478 479 480 481
	/*
	 * Initialize IOMMU groups only after iommu_init_device() has
	 * had a chance to populate any IVRS defined aliases.
	 */
	for_each_pci_dev(pdev) {
		if (check_device(&pdev->dev))
			init_iommu_group(&pdev->dev);
	}

J
Joerg Roedel 已提交
482 483 484 485 486 487 488 489
	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
490 491 492 493 494 495
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

496
DECLARE_STATS_COUNTER(compl_wait);
497
DECLARE_STATS_COUNTER(cnt_map_single);
498
DECLARE_STATS_COUNTER(cnt_unmap_single);
499
DECLARE_STATS_COUNTER(cnt_map_sg);
500
DECLARE_STATS_COUNTER(cnt_unmap_sg);
501
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
502
DECLARE_STATS_COUNTER(cnt_free_coherent);
503
DECLARE_STATS_COUNTER(cross_page);
504
DECLARE_STATS_COUNTER(domain_flush_single);
505
DECLARE_STATS_COUNTER(domain_flush_all);
506
DECLARE_STATS_COUNTER(alloced_io_mem);
507
DECLARE_STATS_COUNTER(total_map_requests);
508 509 510 511 512
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
532
					 &amd_iommu_unmap_flush);
533 534

	amd_iommu_stats_add(&compl_wait);
535
	amd_iommu_stats_add(&cnt_map_single);
536
	amd_iommu_stats_add(&cnt_unmap_single);
537
	amd_iommu_stats_add(&cnt_map_sg);
538
	amd_iommu_stats_add(&cnt_unmap_sg);
539
	amd_iommu_stats_add(&cnt_alloc_coherent);
540
	amd_iommu_stats_add(&cnt_free_coherent);
541
	amd_iommu_stats_add(&cross_page);
542
	amd_iommu_stats_add(&domain_flush_single);
543
	amd_iommu_stats_add(&domain_flush_all);
544
	amd_iommu_stats_add(&alloced_io_mem);
545
	amd_iommu_stats_add(&total_map_requests);
546 547 548 549
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
550 551 552 553
}

#endif

554 555 556 557 558 559
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

560 561 562 563
static void dump_dte_entry(u16 devid)
{
	int i;

564 565
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
566 567 568
			amd_iommu_dev_table[devid].data[i]);
}

569 570 571 572 573 574 575 576 577
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

578
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
579
{
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
601

602
	printk(KERN_ERR "AMD-Vi: Event logged [");
603 604 605 606 607

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
608
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
609
		       address, flags);
610
		dump_dte_entry(devid);
611 612 613 614
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
615
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 617 618 619 620
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
621
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 623 624 625 626
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
627
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 629 630 631
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
632
		dump_command(address);
633 634 635 636 637 638 639 640
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
641
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
642 643 644 645 646
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
647
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 649 650 651 652
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
653 654

	memset(__evt, 0, 4 * sizeof(u32));
655 656 657 658 659 660 661 662 663 664
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
665
		iommu_print_event(iommu, iommu->evt_buf + head);
666 667 668 669 670 671
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

672
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
673 674 675
{
	struct amd_iommu_fault fault;

676 677
	INC_STATS_COUNTER(pri_requests);

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
719

720 721 722
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
723

724 725 726 727 728 729 730
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
731 732
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
733 734 735 736 737 738

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

743
irqreturn_t amd_iommu_int_thread(int irq, void *data)
744
{
745 746
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
747

748 749 750 751
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
752

753 754 755 756
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
757

758 759 760 761
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
778
	return IRQ_HANDLED;
779 780
}

781 782 783 784 785
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

786 787 788 789 790 791
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
812 813 814
{
	u8 *target;

815
	target = iommu->cmd_buf + tail;
816 817 818 819 820 821
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
822
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
823
}
824

825
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
826
{
827 828
	WARN_ON(address & 0x7ULL);

829
	memset(cmd, 0, sizeof(*cmd));
830 831 832
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
833 834 835
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

836 837 838 839 840 841 842
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

843 844 845 846
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
847
	bool s;
848 849

	pages = iommu_num_pages(address, size, PAGE_SIZE);
850
	s     = false;
851 852 853 854 855 856 857

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
858
		s = true;
859 860 861 862 863 864 865 866 867 868 869
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
870
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
871 872 873
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

874 875 876 877
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
878
	bool s;
879 880

	pages = iommu_num_pages(address, size, PAGE_SIZE);
881
	s     = false;
882 883 884 885 886 887 888

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
889
		s = true;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

905 906 907 908 909 910 911
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

912
	cmd->data[0]  = pasid;
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
931
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
932 933
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
934
	cmd->data[1] |= (pasid & 0xff) << 16;
935 936 937 938 939 940 941 942
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

943 944 945 946 947 948 949
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
950
		cmd->data[1]  = pasid;
951 952 953 954 955 956 957 958
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

959 960 961 962
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
963 964
}

965 966 967 968 969 970 971
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

972 973
/*
 * Writes the command to the IOMMUs command buffer and informs the
974
 * hardware about the new command.
975
 */
976 977 978
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
979
{
980
	u32 left, tail, head, next_tail;
981 982
	unsigned long flags;

983
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
984 985

again:
986 987
	spin_lock_irqsave(&iommu->lock, flags);

988 989 990 991
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
992

993 994 995 996
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
997

998 999
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1000

1001 1002 1003 1004 1005 1006
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1007 1008
	}

1009 1010 1011
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1012
	iommu->need_sync = sync;
1013

1014
	spin_unlock_irqrestore(&iommu->lock, flags);
1015

1016
	return 0;
1017 1018
}

1019 1020 1021 1022 1023
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1024 1025 1026 1027
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1028
static int iommu_completion_wait(struct amd_iommu *iommu)
1029 1030
{
	struct iommu_cmd cmd;
1031
	volatile u64 sem = 0;
1032
	int ret;
1033

1034
	if (!iommu->need_sync)
1035
		return 0;
1036

1037
	build_completion_wait(&cmd, (u64)&sem);
1038

1039
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1040
	if (ret)
1041
		return ret;
1042

1043
	return wait_on_sem(&sem);
1044 1045
}

1046
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1047
{
1048
	struct iommu_cmd cmd;
1049

1050
	build_inv_dte(&cmd, devid);
1051

1052 1053
	return iommu_queue_command(iommu, &cmd);
}
1054

1055 1056 1057
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1058

1059 1060
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1061

1062 1063
	iommu_completion_wait(iommu);
}
1064

1065 1066 1067 1068 1069 1070 1071
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1072

1073 1074 1075 1076 1077 1078
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1079

1080
	iommu_completion_wait(iommu);
1081 1082
}

1083
static void iommu_flush_all(struct amd_iommu *iommu)
1084
{
1085
	struct iommu_cmd cmd;
1086

1087
	build_inv_all(&cmd);
1088

1089 1090 1091 1092
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1112 1113
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1114 1115 1116 1117
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1118
		iommu_flush_irt_all(iommu);
1119
		iommu_flush_tlb_all(iommu);
1120 1121 1122
	}
}

1123
/*
1124
 * Command send function for flushing on-device TLB
1125
 */
1126 1127
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1128 1129
{
	struct amd_iommu *iommu;
1130
	struct iommu_cmd cmd;
1131
	int qdep;
1132

1133 1134
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1135

1136
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1137 1138

	return iommu_queue_command(iommu, &cmd);
1139 1140
}

1141 1142 1143
/*
 * Command send function for invalidating a device table entry
 */
1144
static int device_flush_dte(struct iommu_dev_data *dev_data)
1145
{
1146
	struct amd_iommu *iommu;
1147
	int ret;
1148

1149
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1150

1151
	ret = iommu_flush_dte(iommu, dev_data->devid);
1152 1153 1154
	if (ret)
		return ret;

1155
	if (dev_data->ats.enabled)
1156
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1157 1158

	return ret;
1159 1160
}

1161 1162 1163 1164 1165
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1166 1167
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1168
{
1169
	struct iommu_dev_data *dev_data;
1170 1171
	struct iommu_cmd cmd;
	int ret = 0, i;
1172

1173
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1174

1175 1176 1177 1178 1179 1180 1181 1182
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1183
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1184 1185
	}

1186 1187
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1188
		if (!dev_data->ats.enabled)
1189 1190
			continue;

1191
		ret |= device_flush_iotlb(dev_data, address, size);
1192 1193
	}

1194
	WARN_ON(ret);
1195 1196
}

1197 1198
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1199
{
1200
	__domain_flush_pages(domain, address, size, 0);
1201
}
1202

1203
/* Flush the whole IO/TLB for a given protection domain */
1204
static void domain_flush_tlb(struct protection_domain *domain)
1205
{
1206
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1207 1208
}

1209
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1210
static void domain_flush_tlb_pde(struct protection_domain *domain)
1211
{
1212
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1213 1214
}

1215
static void domain_flush_complete(struct protection_domain *domain)
1216
{
1217
	int i;
1218

1219 1220 1221
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1222

1223 1224 1225 1226 1227
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1228
	}
1229 1230
}

1231

1232
/*
1233
 * This function flushes the DTEs for all devices in domain
1234
 */
1235
static void domain_flush_devices(struct protection_domain *domain)
1236
{
1237
	struct iommu_dev_data *dev_data;
1238

1239
	list_for_each_entry(dev_data, &domain->dev_list, list)
1240
		device_flush_dte(dev_data);
1241 1242
}

1243 1244 1245 1246 1247 1248 1249
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1279
		      unsigned long page_size,
1280 1281 1282
		      u64 **pte_page,
		      gfp_t gfp)
{
1283
	int level, end_lvl;
1284
	u64 *pte, *page;
1285 1286

	BUG_ON(!is_power_of_2(page_size));
1287 1288 1289 1290

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1291 1292 1293 1294
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1295 1296 1297 1298 1299 1300 1301 1302 1303

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1304 1305 1306 1307
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1325 1326 1327
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1328 1329 1330 1331
{
	int level;
	u64 *pte;

1332 1333 1334
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1335 1336 1337
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1338

1339 1340 1341
	while (level > 0) {

		/* Not Present */
1342 1343 1344
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1345
		/* Large PTE */
1346 1347 1348
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1349 1350 1351 1352 1353

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1354 1355
		level -= 1;

1356
		/* Walk to the next level */
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1372 1373 1374 1375 1376
	}

	return pte;
}

1377 1378 1379 1380 1381 1382 1383
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1384 1385 1386
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1387
			  int prot,
1388
			  unsigned long page_size)
1389
{
1390
	u64 __pte, *pte;
1391
	int i, count;
1392

1393
	if (!(prot & IOMMU_PROT_MASK))
1394 1395
		return -EINVAL;

1396 1397 1398 1399 1400
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

1401 1402 1403
	if (!pte)
		return -ENOMEM;

1404 1405 1406
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1407

1408 1409 1410 1411 1412
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1413 1414 1415 1416 1417 1418

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1419 1420
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1421

1422 1423
	update_domain(dom);

1424 1425 1426
	return 0;
}

1427 1428 1429
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1430
{
1431 1432
	unsigned long long unmapped;
	unsigned long unmap_size;
1433 1434 1435 1436 1437
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1438

1439 1440
	while (unmapped < page_size) {

1441 1442 1443 1444 1445 1446
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1447 1448 1449 1450 1451 1452 1453 1454
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1455
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1456

1457
	return unmapped;
1458 1459
}

1460 1461 1462 1463
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1478 1479 1480 1481
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1482 1483 1484 1485 1486 1487 1488 1489
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1490
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1491
				     PAGE_SIZE);
1492 1493 1494 1495 1496 1497 1498
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1499
			__set_bit(addr >> PAGE_SHIFT,
1500
				  dma_dom->aperture[0]->bitmap);
1501 1502 1503 1504 1505
	}

	return 0;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1528 1529 1530
/*
 * Inits the unity mappings required for a specific device
 */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1548 1549 1550 1551 1552 1553 1554 1555 1556
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1557

1558
/*
1559
 * The address allocator core functions.
1560 1561 1562
 *
 * called with domain->lock held
 */
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1584 1585 1586 1587 1588
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1589
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1590 1591 1592
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1593
	struct amd_iommu *iommu;
1594
	unsigned long i, old_size, pte_pgsize;
1595

1596 1597 1598 1599
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1619
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1630
	old_size                = dma_dom->aperture_size;
1631 1632
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1645
	/* Initialize the exclusion range if necessary */
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1667
	     i += pte_pgsize) {
1668
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1669 1670 1671
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1672 1673
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1674 1675
	}

1676 1677
	update_domain(&dma_dom->domain);

1678 1679 1680
	return 0;

out_free:
1681 1682
	update_domain(&dma_dom->domain);

1683 1684 1685 1686 1687 1688 1689 1690
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1691 1692 1693 1694 1695 1696 1697
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1698
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1699 1700 1701 1702 1703 1704
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1705 1706
	next_bit >>= PAGE_SHIFT;

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1725
			dom->next_address = address + (pages << PAGE_SHIFT);
1726 1727 1728 1729 1730 1731 1732 1733 1734
			break;
		}

		next_bit = 0;
	}

	return address;
}

1735 1736
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1737
					     unsigned int pages,
1738 1739
					     unsigned long align_mask,
					     u64 dma_mask)
1740 1741 1742
{
	unsigned long address;

1743 1744 1745 1746
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1747

1748
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1749
				     dma_mask, dom->next_address);
1750

1751
	if (address == -1) {
1752
		dom->next_address = 0;
1753 1754
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1755 1756
		dom->need_flush = true;
	}
1757

1758
	if (unlikely(address == -1))
1759
		address = DMA_ERROR_CODE;
1760 1761 1762 1763 1764 1765

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1766 1767 1768 1769 1770
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1771 1772 1773 1774
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1775 1776
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1777

1778 1779
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1780 1781 1782 1783
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1784

1785
	if (address >= dom->next_address)
1786
		dom->need_flush = true;
1787 1788

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1789

A
Akinobu Mita 已提交
1790
	bitmap_clear(range->bitmap, address, pages);
1791

1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1881
static void free_pagetable(struct protection_domain *domain)
1882
{
1883
	unsigned long root = (unsigned long)domain->pt_root;
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1908 1909 1910
	}
}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1941 1942
static void free_gcr3_table(struct protection_domain *domain)
{
1943 1944 1945 1946 1947 1948 1949
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1950 1951 1952
	free_page((unsigned long)domain->gcr3_tbl);
}

1953 1954 1955 1956
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1957 1958
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1959 1960
	int i;

1961 1962 1963
	if (!dom)
		return;

1964 1965
	del_domain_from_list(&dom->domain);

1966
	free_pagetable(&dom->domain);
1967

1968 1969 1970 1971 1972 1973
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1974 1975 1976 1977

	kfree(dom);
}

1978 1979
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1980
 * It also initializes the page table and the address allocator data
1981 1982
 * structures required for the dma_ops interface
 */
1983
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1996
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1997
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1998
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1999
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2000 2001 2002 2003
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2004
	dma_dom->need_flush = false;
2005
	dma_dom->target_dev = 0xffff;
2006

2007 2008
	add_domain_to_list(&dma_dom->domain);

2009
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2010 2011
		goto free_dma_dom;

2012
	/*
2013 2014
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2015
	 */
2016
	dma_dom->aperture[0]->bitmap[0] = 1;
2017
	dma_dom->next_address = 0;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2028 2029 2030 2031 2032 2033 2034 2035 2036
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2037
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2038
{
2039
	u64 pte_root = 0;
2040
	u64 flags = 0;
2041

2042 2043 2044
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2045 2046 2047
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2048

2049 2050
	flags = amd_iommu_dev_table[devid].data[1];

2051 2052 2053
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2080 2081 2082 2083 2084
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2085 2086 2087 2088 2089 2090 2091 2092 2093
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2094 2095
}

2096 2097
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2098 2099
{
	struct amd_iommu *iommu;
2100
	bool ats;
2101

2102 2103
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2104 2105 2106 2107

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2108
	set_dte_entry(dev_data->devid, domain, ats);
2109 2110 2111 2112 2113 2114

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2115
	device_flush_dte(dev_data);
2116 2117
}

2118
static void do_detach(struct iommu_dev_data *dev_data)
2119 2120 2121
{
	struct amd_iommu *iommu;

2122
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2123 2124

	/* decrease reference counters */
2125 2126 2127 2128 2129 2130
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2131
	clear_dte_entry(dev_data->devid);
2132

2133
	/* Flush the DTE entry */
2134
	device_flush_dte(dev_data);
2135 2136 2137 2138 2139 2140
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2141
static int __attach_device(struct iommu_dev_data *dev_data,
2142
			   struct protection_domain *domain)
2143
{
2144
	struct iommu_dev_data *head, *entry;
2145
	int ret;
2146

2147 2148 2149
	/* lock domain */
	spin_lock(&domain->lock);

2150
	head = dev_data;
2151

2152 2153
	if (head->alias_data != NULL)
		head = head->alias_data;
2154

2155
	/* Now we have the root of the alias group, if any */
2156

2157 2158 2159
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2160

2161 2162
	/* Attach alias group root */
	do_attach(head, domain);
2163

2164 2165 2166
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2167

2168 2169 2170 2171
	ret = 0;

out_unlock:

2172 2173
	/* ready */
	spin_unlock(&domain->lock);
2174

2175
	return ret;
2176
}
2177

2178 2179 2180 2181 2182 2183 2184 2185

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2186 2187 2188 2189 2190 2191
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2192
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2193 2194 2195
	if (!pos)
		return -EINVAL;

2196 2197 2198
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2199 2200 2201 2202

	return 0;
}

2203 2204
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2205 2206 2207 2208 2209 2210 2211 2212
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2224 2225
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2226 2227 2228
	if (ret)
		goto out_err;

2229 2230 2231 2232 2233 2234
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2248
/* FIXME: Move this to PCI code */
2249
#define PCI_PRI_TLP_OFF		(1 << 15)
2250

J
Joerg Roedel 已提交
2251
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2252
{
2253
	u16 status;
2254 2255
	int pos;

2256
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2257 2258 2259
	if (!pos)
		return false;

2260
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2261

2262
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2263 2264
}

2265
/*
F
Frank Arnold 已提交
2266
 * If a device is not yet associated with a domain, this function
2267 2268
 * assigns it visible for the hardware
 */
2269 2270
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2271
{
2272
	struct pci_dev *pdev = to_pci_dev(dev);
2273
	struct iommu_dev_data *dev_data;
2274
	unsigned long flags;
2275
	int ret;
2276

2277 2278
	dev_data = get_dev_data(dev);

2279 2280 2281 2282 2283 2284 2285 2286 2287
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2288
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2289 2290
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2291 2292 2293
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2294

2295
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2296
	ret = __attach_device(dev_data, domain);
2297 2298
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2299 2300 2301 2302 2303
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2304
	domain_flush_tlb_pde(domain);
2305 2306

	return ret;
2307 2308
}

2309 2310 2311
/*
 * Removes a device from a protection domain (unlocked)
 */
2312
static void __detach_device(struct iommu_dev_data *dev_data)
2313
{
2314
	struct iommu_dev_data *head, *entry;
2315
	struct protection_domain *domain;
2316
	unsigned long flags;
2317

2318
	BUG_ON(!dev_data->domain);
2319

2320 2321 2322
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2323

2324 2325 2326
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2327

2328 2329
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2330

2331
	do_detach(head);
2332

2333
	spin_unlock_irqrestore(&domain->lock, flags);
2334 2335 2336

	/*
	 * If we run in passthrough mode the device must be assigned to the
2337 2338
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2339
	 */
2340
	if (dev_data->passthrough &&
2341
	    (dev_data->domain == NULL && domain != pt_domain))
2342
		__attach_device(dev_data, pt_domain);
2343 2344 2345 2346 2347
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2348
static void detach_device(struct device *dev)
2349
{
2350
	struct protection_domain *domain;
2351
	struct iommu_dev_data *dev_data;
2352 2353
	unsigned long flags;

2354
	dev_data = get_dev_data(dev);
2355
	domain   = dev_data->domain;
2356

2357 2358
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2359
	__detach_device(dev_data);
2360
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2361

2362 2363 2364
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2365
		pci_disable_ats(to_pci_dev(dev));
2366 2367

	dev_data->ats.enabled = false;
2368
}
2369

2370 2371 2372 2373 2374 2375
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2376
	struct iommu_dev_data *dev_data;
2377
	struct protection_domain *dom = NULL;
2378 2379
	unsigned long flags;

2380
	dev_data   = get_dev_data(dev);
2381

2382 2383
	if (dev_data->domain)
		return dev_data->domain;
2384

2385 2386
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2387 2388 2389 2390 2391 2392 2393 2394

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2395 2396 2397 2398

	return dom;
}

2399 2400 2401 2402
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2403 2404 2405
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2406
	struct amd_iommu *iommu;
2407
	unsigned long flags;
2408
	u16 devid;
2409

2410 2411
	if (!check_device(dev))
		return 0;
2412

2413 2414 2415
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2416 2417

	switch (action) {
2418
	case BUS_NOTIFY_ADD_DEVICE:
2419 2420

		iommu_init_device(dev);
2421
		init_iommu_group(dev);
2422

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2435 2436
		domain = domain_for_device(dev);

2437 2438
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2449

2450
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2451

2452
		break;
2453
	case BUS_NOTIFY_REMOVED_DEVICE:
2454 2455 2456

		iommu_uninit_device(dev);

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2467
static struct notifier_block device_nb = {
2468 2469
	.notifier_call = device_change_notifier,
};
2470

2471 2472 2473 2474 2475
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2489
static struct protection_domain *get_domain(struct device *dev)
2490
{
2491
	struct protection_domain *domain;
2492
	struct dma_ops_domain *dma_dom;
2493
	u16 devid = get_device_id(dev);
2494

2495
	if (!check_device(dev))
2496
		return ERR_PTR(-EINVAL);
2497

2498 2499 2500
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2501

2502 2503
	if (domain != NULL)
		return domain;
2504

F
Frank Arnold 已提交
2505
	/* Device not bound yet - bind it */
2506
	dma_dom = find_protection_domain(devid);
2507
	if (!dma_dom)
2508 2509
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2510
	DUMP_printk("Using protection domain %d for device %s\n",
2511
		    dma_dom->domain.id, dev_name(dev));
2512

2513
	return &dma_dom->domain;
2514 2515
}

2516 2517
static void update_device_table(struct protection_domain *domain)
{
2518
	struct iommu_dev_data *dev_data;
2519

2520 2521
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2522 2523 2524 2525 2526 2527 2528 2529
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2530 2531 2532

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2533 2534 2535 2536

	domain->updated = false;
}

2537 2538 2539 2540 2541 2542
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2543
	struct aperture_range *aperture;
2544 2545
	u64 *pte, *pte_page;

2546 2547 2548 2549 2550
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2551
	if (!pte) {
2552
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2553
				GFP_ATOMIC);
2554 2555
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2556
		pte += PM_LEVEL_INDEX(0, address);
2557

2558
	update_domain(&dom->domain);
2559 2560 2561 2562

	return pte;
}

2563 2564 2565 2566
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2567
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2578
	pte  = dma_ops_get_pte(dom, address);
2579
	if (!pte)
2580
		return DMA_ERROR_CODE;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2598 2599 2600
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2601
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2602 2603
				 unsigned long address)
{
2604
	struct aperture_range *aperture;
2605 2606 2607 2608 2609
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2610 2611 2612 2613 2614 2615 2616
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2617

2618
	pte += PM_LEVEL_INDEX(0, address);
2619 2620 2621 2622 2623 2624

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2625 2626
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2627 2628
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2629 2630
 * Must be called with the domain lock held.
 */
2631 2632 2633 2634
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2635
			       int dir,
2636 2637
			       bool align,
			       u64 dma_mask)
2638 2639
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2640
	dma_addr_t address, start, ret;
2641
	unsigned int pages;
2642
	unsigned long align_mask = 0;
2643 2644
	int i;

2645
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2646 2647
	paddr &= PAGE_MASK;

2648 2649
	INC_STATS_COUNTER(total_map_requests);

2650 2651 2652
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2653 2654 2655
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2656
retry:
2657 2658
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2659
	if (unlikely(address == DMA_ERROR_CODE)) {
2660 2661 2662 2663 2664 2665 2666
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2667
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2668 2669 2670
			goto out;

		/*
2671
		 * aperture was successfully enlarged by 128 MB, try
2672 2673 2674 2675
		 * allocation again
		 */
		goto retry;
	}
2676 2677 2678

	start = address;
	for (i = 0; i < pages; ++i) {
2679
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2680
		if (ret == DMA_ERROR_CODE)
2681 2682
			goto out_unmap;

2683 2684 2685 2686 2687
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2688 2689
	ADD_STATS_COUNTER(alloced_io_mem, size);

2690
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2691
		domain_flush_tlb(&dma_dom->domain);
2692
		dma_dom->need_flush = false;
2693
	} else if (unlikely(amd_iommu_np_cache))
2694
		domain_flush_pages(&dma_dom->domain, address, size);
2695

2696 2697
out:
	return address;
2698 2699 2700 2701 2702

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2703
		dma_ops_domain_unmap(dma_dom, start);
2704 2705 2706 2707
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2708
	return DMA_ERROR_CODE;
2709 2710
}

2711 2712 2713 2714
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2715
static void __unmap_single(struct dma_ops_domain *dma_dom,
2716 2717 2718 2719
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2720
	dma_addr_t flush_addr;
2721 2722 2723
	dma_addr_t i, start;
	unsigned int pages;

2724
	if ((dma_addr == DMA_ERROR_CODE) ||
2725
	    (dma_addr + size > dma_dom->aperture_size))
2726 2727
		return;

2728
	flush_addr = dma_addr;
2729
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2730 2731 2732 2733
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2734
		dma_ops_domain_unmap(dma_dom, start);
2735 2736 2737
		start += PAGE_SIZE;
	}

2738 2739
	SUB_STATS_COUNTER(alloced_io_mem, size);

2740
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2741

2742
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2743
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2744 2745
		dma_dom->need_flush = false;
	}
2746 2747
}

2748 2749 2750
/*
 * The exported map_single function for dma_ops.
 */
2751 2752 2753 2754
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2755 2756 2757 2758
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2759
	u64 dma_mask;
2760
	phys_addr_t paddr = page_to_phys(page) + offset;
2761

2762 2763
	INC_STATS_COUNTER(cnt_map_single);

2764 2765
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2766
		return (dma_addr_t)paddr;
2767 2768
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2769

2770 2771
	dma_mask = *dev->dma_mask;

2772
	spin_lock_irqsave(&domain->lock, flags);
2773

2774
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2775
			    dma_mask);
2776
	if (addr == DMA_ERROR_CODE)
2777 2778
		goto out;

2779
	domain_flush_complete(domain);
2780 2781 2782 2783 2784 2785 2786

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2787 2788 2789
/*
 * The exported unmap_single function for dma_ops.
 */
2790 2791
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2792 2793 2794 2795
{
	unsigned long flags;
	struct protection_domain *domain;

2796 2797
	INC_STATS_COUNTER(cnt_unmap_single);

2798 2799
	domain = get_domain(dev);
	if (IS_ERR(domain))
2800 2801
		return;

2802 2803
	spin_lock_irqsave(&domain->lock, flags);

2804
	__unmap_single(domain->priv, dma_addr, size, dir);
2805

2806
	domain_flush_complete(domain);
2807 2808 2809 2810

	spin_unlock_irqrestore(&domain->lock, flags);
}

2811 2812 2813 2814
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2815
static int map_sg(struct device *dev, struct scatterlist *sglist,
2816 2817
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2818 2819 2820 2821 2822 2823 2824
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2825
	u64 dma_mask;
2826

2827 2828
	INC_STATS_COUNTER(cnt_map_sg);

2829
	domain = get_domain(dev);
2830
	if (IS_ERR(domain))
2831
		return 0;
2832

2833
	dma_mask = *dev->dma_mask;
2834 2835 2836 2837 2838 2839

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2840
		s->dma_address = __map_single(dev, domain->priv,
2841 2842
					      paddr, s->length, dir, false,
					      dma_mask);
2843 2844 2845 2846 2847 2848 2849 2850

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2851
	domain_flush_complete(domain);
2852 2853 2854 2855 2856 2857 2858 2859

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2860
			__unmap_single(domain->priv, s->dma_address,
2861 2862 2863 2864 2865 2866 2867 2868 2869
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2870 2871 2872 2873
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2874
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2875 2876
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2877 2878 2879 2880 2881 2882
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2883 2884
	INC_STATS_COUNTER(cnt_unmap_sg);

2885 2886
	domain = get_domain(dev);
	if (IS_ERR(domain))
2887 2888
		return;

2889 2890 2891
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2892
		__unmap_single(domain->priv, s->dma_address,
2893 2894 2895 2896
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2897
	domain_flush_complete(domain);
2898 2899 2900 2901

	spin_unlock_irqrestore(&domain->lock, flags);
}

2902 2903 2904
/*
 * The exported alloc_coherent function for dma_ops.
 */
2905
static void *alloc_coherent(struct device *dev, size_t size,
2906 2907
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2908
{
2909
	u64 dma_mask = dev->coherent_dma_mask;
2910 2911 2912
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2913

2914 2915
	INC_STATS_COUNTER(cnt_alloc_coherent);

2916 2917
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2918 2919 2920
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2921 2922
	} else if (IS_ERR(domain))
		return NULL;
2923

2924
	size	  = PAGE_ALIGN(size);
2925 2926
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2927

2928 2929 2930 2931
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2932

2933 2934 2935 2936 2937
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2938

2939 2940 2941
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2942 2943
	spin_lock_irqsave(&domain->lock, flags);

2944
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2945
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2946

2947
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2948
		spin_unlock_irqrestore(&domain->lock, flags);
2949
		goto out_free;
J
Jiri Slaby 已提交
2950
	}
2951

2952
	domain_flush_complete(domain);
2953 2954 2955

	spin_unlock_irqrestore(&domain->lock, flags);

2956
	return page_address(page);
2957 2958 2959

out_free:

2960 2961
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2962 2963

	return NULL;
2964 2965
}

2966 2967 2968
/*
 * The exported free_coherent function for dma_ops.
 */
2969
static void free_coherent(struct device *dev, size_t size,
2970 2971
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2972 2973
{
	struct protection_domain *domain;
2974 2975
	unsigned long flags;
	struct page *page;
2976

2977 2978
	INC_STATS_COUNTER(cnt_free_coherent);

2979 2980 2981
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2982 2983
	domain = get_domain(dev);
	if (IS_ERR(domain))
2984 2985
		goto free_mem;

2986 2987
	spin_lock_irqsave(&domain->lock, flags);

2988
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2989

2990
	domain_flush_complete(domain);
2991 2992 2993 2994

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2995 2996
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2997 2998
}

2999 3000 3001 3002 3003 3004
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3005
	return check_device(dev);
3006 3007
}

3008
/*
3009 3010
 * The function for pre-allocating protection domains.
 *
3011 3012 3013 3014
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3015
static void __init prealloc_protection_domains(void)
3016
{
3017
	struct iommu_dev_data *dev_data;
3018
	struct dma_ops_domain *dma_dom;
3019
	struct pci_dev *dev = NULL;
3020
	u16 devid;
3021

3022
	for_each_pci_dev(dev) {
3023 3024 3025

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3026
			continue;
3027

3028 3029 3030 3031 3032 3033
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3034
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3035 3036 3037
				dev_name(&dev->dev));
		}

3038
		/* Is there already any domain for it? */
3039
		if (domain_for_device(&dev->dev))
3040
			continue;
3041 3042 3043

		devid = get_device_id(&dev->dev);

3044
		dma_dom = dma_ops_domain_alloc();
3045 3046 3047
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3048 3049
		dma_dom->target_dev = devid;

3050
		attach_device(&dev->dev, &dma_dom->domain);
3051

3052
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3053 3054 3055
	}
}

3056
static struct dma_map_ops amd_iommu_dma_ops = {
3057 3058
	.alloc = alloc_coherent,
	.free = free_coherent,
3059 3060
	.map_page = map_page,
	.unmap_page = unmap_page,
3061 3062
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3063
	.dma_supported = amd_iommu_dma_supported,
3064 3065
};

3066 3067
static unsigned device_dma_ops_init(void)
{
3068
	struct iommu_dev_data *dev_data;
3069 3070 3071 3072 3073
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3074 3075 3076

			iommu_ignore_device(&pdev->dev);

3077 3078 3079 3080
			unhandled += 1;
			continue;
		}

3081 3082 3083 3084 3085 3086
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3087 3088 3089 3090 3091
	}

	return unhandled;
}

3092 3093 3094
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3095 3096 3097

void __init amd_iommu_init_api(void)
{
3098
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3099 3100
}

3101 3102 3103
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3104
	int ret, unhandled;
3105

3106 3107 3108 3109 3110
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3111
	for_each_iommu(iommu) {
3112
		iommu->default_dom = dma_ops_domain_alloc();
3113 3114
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3115
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3116 3117 3118 3119 3120
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3121
	/*
3122
	 * Pre-allocate the protection domains for each device.
3123
	 */
3124
	prealloc_protection_domains();
3125 3126

	iommu_detected = 1;
3127
	swiotlb = 0;
3128

3129
	/* Make the driver finally visible to the drivers */
3130 3131 3132 3133 3134
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3135

3136 3137
	amd_iommu_stats_init();

3138 3139 3140 3141 3142
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3143 3144 3145 3146
	return 0;

free_domains:

3147
	for_each_iommu(iommu) {
3148
		dma_ops_domain_free(iommu->default_dom);
3149 3150 3151 3152
	}

	return ret;
}
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3166
	struct iommu_dev_data *entry;
3167 3168 3169 3170
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3171 3172 3173 3174
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3175
	}
3176 3177 3178 3179

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3180 3181 3182 3183 3184
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3185 3186
	del_domain_from_list(domain);

3187 3188 3189 3190 3191 3192 3193
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3194 3195 3196 3197 3198
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3199
		return NULL;
3200 3201

	spin_lock_init(&domain->lock);
3202
	mutex_init(&domain->api_lock);
3203 3204
	domain->id = domain_id_alloc();
	if (!domain->id)
3205
		goto out_err;
3206
	INIT_LIST_HEAD(&domain->dev_list);
3207

3208 3209
	add_domain_to_list(domain);

3210 3211 3212 3213 3214 3215 3216 3217
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3232 3233 3234 3235 3236 3237
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3238
		goto out_free;
3239 3240

	domain->mode    = PAGE_MODE_3_LEVEL;
3241 3242 3243 3244
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3245 3246
	domain->iommu_domain = dom;

3247 3248
	dom->priv = domain;

3249 3250 3251 3252
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3253 3254 3255
	return 0;

out_free:
3256
	protection_domain_free(domain);
3257 3258 3259 3260

	return -ENOMEM;
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3273 3274
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3275

3276 3277 3278
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3279
	protection_domain_free(domain);
3280 3281 3282 3283

	dom->priv = NULL;
}

3284 3285 3286
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3287
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3288 3289 3290
	struct amd_iommu *iommu;
	u16 devid;

3291
	if (!check_device(dev))
3292 3293
		return;

3294
	devid = get_device_id(dev);
3295

3296
	if (dev_data->domain != NULL)
3297
		detach_device(dev);
3298 3299 3300 3301 3302 3303 3304 3305

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3306 3307 3308 3309
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3310
	struct iommu_dev_data *dev_data;
3311
	struct amd_iommu *iommu;
3312
	int ret;
3313

3314
	if (!check_device(dev))
3315 3316
		return -EINVAL;

3317 3318
	dev_data = dev->archdata.iommu;

3319
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3320 3321 3322
	if (!iommu)
		return -EINVAL;

3323
	if (dev_data->domain)
3324
		detach_device(dev);
3325

3326
	ret = attach_device(dev, domain);
3327 3328 3329

	iommu_completion_wait(iommu);

3330
	return ret;
3331 3332
}

3333
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3334
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3335 3336 3337 3338 3339
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3340 3341 3342
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3343 3344 3345 3346 3347
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3348
	mutex_lock(&domain->api_lock);
3349
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3350 3351
	mutex_unlock(&domain->api_lock);

3352
	return ret;
3353 3354
}

3355 3356
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3357 3358
{
	struct protection_domain *domain = dom->priv;
3359
	size_t unmap_size;
3360

3361 3362 3363
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3364
	mutex_lock(&domain->api_lock);
3365
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3366
	mutex_unlock(&domain->api_lock);
3367

3368
	domain_flush_tlb_pde(domain);
3369

3370
	return unmap_size;
3371 3372
}

3373
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3374
					  dma_addr_t iova)
3375 3376
{
	struct protection_domain *domain = dom->priv;
3377
	unsigned long offset_mask, pte_pgsize;
3378
	u64 *pte, __pte;
3379

3380 3381 3382
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3383
	pte = fetch_pte(domain, iova, &pte_pgsize);
3384

3385
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3386 3387
		return 0;

3388 3389
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3390

3391
	return (__pte & ~offset_mask) | (iova & offset_mask);
3392 3393
}

3394
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3395
{
3396 3397
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3398
		return true;
3399
	case IOMMU_CAP_INTR_REMAP:
3400
		return (irq_remapping_enabled == 1);
3401 3402
	case IOMMU_CAP_NOEXEC:
		return false;
3403 3404
	}

3405
	return false;
S
Sheng Yang 已提交
3406 3407
}

3408
static const struct iommu_ops amd_iommu_ops = {
3409
	.capable = amd_iommu_capable,
3410 3411 3412 3413
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3414 3415
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3416
	.map_sg = default_iommu_map_sg,
3417
	.iova_to_phys = amd_iommu_iova_to_phys,
3418
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3419 3420
};

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3433
	struct iommu_dev_data *dev_data;
3434
	struct pci_dev *dev = NULL;
3435
	int ret;
3436

3437 3438 3439
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3440

3441
	for_each_pci_dev(dev) {
3442
		if (!check_device(&dev->dev))
3443 3444
			continue;

3445 3446 3447
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3448
		attach_device(&dev->dev, pt_domain);
3449 3450
	}

J
Joerg Roedel 已提交
3451 3452
	amd_iommu_stats_init();

3453 3454 3455 3456
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3598 3599
	INC_STATS_COUNTER(invalidate_iotlb);

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3620 3621
	INC_STATS_COUNTER(invalidate_iotlb_all);

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3733 3734 3735 3736 3737 3738 3739 3740

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3741 3742
	INC_STATS_COUNTER(complete_ppr);

3743 3744 3745 3746 3747 3748 3749 3750 3751
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3899 3900 3901
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3902 3903 3904 3905 3906 3907 3908
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3909
		table = NULL;
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3927
		set_dte_irq_entry(alias, table);
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3962
			struct irq_2_irte *irte_info;
3963 3964 3965 3966 3967 3968

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3969
			cfg->remapped	      = 1;
3970 3971 3972
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4048 4049 4050 4051 4052
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4053
	struct irq_2_irte *irte_info;
4054 4055 4056 4057 4058 4059 4060
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4061
	cfg = irq_cfg(irq);
4062 4063 4064
	if (!cfg)
		return -EINVAL;

4065
	irte_info = &cfg->irq_2_irte;
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4079
	cfg->remapped	      = 1;
4080 4081
	irte_info->devid      = devid;
	irte_info->index      = index;
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4115
	struct irq_2_irte *irte_info;
4116 4117 4118 4119 4120 4121 4122 4123
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4124
	cfg       = irqd_cfg(data);
4125
	irq       = data->irq;
4126
	irte_info = &cfg->irq_2_irte;
4127 4128 4129 4130

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4131
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4147
	modify_irte(irte_info->devid, irte_info->index, irte);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4159
	struct irq_2_irte *irte_info;
4160 4161
	struct irq_cfg *cfg;

4162
	cfg = irq_cfg(irq);
4163 4164 4165
	if (!cfg)
		return -EINVAL;

4166
	irte_info = &cfg->irq_2_irte;
4167

4168
	free_irte(irte_info->devid, irte_info->index);
4169 4170 4171 4172

	return 0;
}

4173 4174 4175 4176
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4177
	struct irq_2_irte *irte_info;
4178 4179 4180
	struct irq_cfg *cfg;
	union irte irte;

4181
	cfg = irq_cfg(irq);
4182 4183 4184
	if (!cfg)
		return;

4185
	irte_info = &cfg->irq_2_irte;
4186 4187 4188 4189 4190 4191 4192 4193

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4194
	modify_irte(irte_info->devid, irte_info->index, irte);
4195 4196 4197

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4198
	msg->data       = irte_info->index;
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4210
	cfg = irq_cfg(irq);
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4223
	struct irq_2_irte *irte_info;
4224 4225 4226 4227 4228 4229
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4230
	cfg = irq_cfg(irq);
4231 4232 4233 4234 4235 4236 4237
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4238
	irte_info	= &cfg->irq_2_irte;
4239

4240
	cfg->remapped	      = 1;
4241 4242
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4243 4244 4245 4246

	return 0;
}

4247
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4248
{
4249
	struct irq_2_irte *irte_info;
4250 4251 4252
	struct irq_cfg *cfg;
	int index, devid;

4253
	cfg = irq_cfg(irq);
4254 4255 4256
	if (!cfg)
		return -EINVAL;

4257
	irte_info = &cfg->irq_2_irte;
4258 4259 4260 4261 4262 4263 4264 4265
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4266
	cfg->remapped	      = 1;
4267 4268
	irte_info->devid      = devid;
	irte_info->index      = index;
4269 4270 4271 4272

	return 0;
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4285
	.alloc_hpet_msi		= alloc_hpet_msi,
4286
};
4287
#endif