amd_iommu.c 96.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49 50 51

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

52
#define LOOP_TIMEOUT	100000
53

54 55 56 57 58 59
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
60
 * 512GB Pages are not supported due to a hardware bug
61
 */
J
Joerg Roedel 已提交
62
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
63

64 65
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

66 67 68 69
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

70 71 72 73
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

74 75 76
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

77 78 79 80 81 82
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

83
static const struct iommu_ops amd_iommu_ops;
84

85
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
86
int amd_iommu_max_glx_val = -1;
87

88 89
static struct dma_map_ops amd_iommu_dma_ops;

90 91 92 93 94 95
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
96
	struct list_head alias_list;      /* Link alias-groups together */
97 98 99 100 101 102 103 104 105 106 107 108 109 110
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

111 112 113
/*
 * general struct to manage commands send to an IOMMU
 */
114
struct iommu_cmd {
115 116 117
	u32 data[4];
};

118 119
struct kmem_cache *amd_iommu_irq_cache;

120
static void update_domain(struct protection_domain *domain);
121
static int __init alloc_passthrough_domain(void);
122

123 124 125 126 127 128
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

129
static struct iommu_dev_data *alloc_dev_data(u16 devid)
130 131 132 133 134 135 136 137
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

138 139
	INIT_LIST_HEAD(&dev_data->alias_list);

140
	dev_data->devid = devid;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

191 192 193 194
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

195
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
196 197
}

198 199 200 201 202
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

203 204 205 206
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
207 208
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
209 210 211 212 213 214 215 216 217 218 219 220
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

221 222 223 224 225 226 227 228 229
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

258 259 260 261 262 263 264 265 266 267 268
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

269 270
	/* No PCI device */
	if (!dev_is_pci(dev))
271 272 273 274 275 276 277 278 279 280 281 282 283 284
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

285 286 287 288
static int init_iommu_group(struct device *dev)
{
	struct iommu_group *group;

289
	group = iommu_group_get_for_dev(dev);
290

291 292
	if (IS_ERR(group))
		return PTR_ERR(group);
293

294 295
	iommu_group_put(group);
	return 0;
296 297
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;
	int ret;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

374 375
	alias = get_alias(dev);

376 377 378 379 380 381 382 383 384 385 386
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;
387 388 389

		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
390 391 392
	}

	ret = init_iommu_group(dev);
393 394
	if (ret) {
		free_dev_data(dev_data);
395
		return ret;
396
	}
397

398 399 400 401 402 403 404
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

405 406
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
407 408 409
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

410 411 412
	return 0;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

427 428
static void iommu_uninit_device(struct device *dev)
{
429 430 431 432 433
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
434 435 436
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

437 438
	iommu_group_remove_device(dev);

439 440 441
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

442
	/*
443 444
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
445
	 */
446
}
J
Joerg Roedel 已提交
447 448 449

void __init amd_iommu_uninit_devices(void)
{
450
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
451 452 453 454 455 456 457 458 459
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
460 461 462 463

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
477 478 479
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
480 481 482 483 484 485 486 487 488 489 490
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
491 492 493 494 495 496
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

497
DECLARE_STATS_COUNTER(compl_wait);
498
DECLARE_STATS_COUNTER(cnt_map_single);
499
DECLARE_STATS_COUNTER(cnt_unmap_single);
500
DECLARE_STATS_COUNTER(cnt_map_sg);
501
DECLARE_STATS_COUNTER(cnt_unmap_sg);
502
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
503
DECLARE_STATS_COUNTER(cnt_free_coherent);
504
DECLARE_STATS_COUNTER(cross_page);
505
DECLARE_STATS_COUNTER(domain_flush_single);
506
DECLARE_STATS_COUNTER(domain_flush_all);
507
DECLARE_STATS_COUNTER(alloced_io_mem);
508
DECLARE_STATS_COUNTER(total_map_requests);
509 510 511 512 513
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
533
					 &amd_iommu_unmap_flush);
534 535

	amd_iommu_stats_add(&compl_wait);
536
	amd_iommu_stats_add(&cnt_map_single);
537
	amd_iommu_stats_add(&cnt_unmap_single);
538
	amd_iommu_stats_add(&cnt_map_sg);
539
	amd_iommu_stats_add(&cnt_unmap_sg);
540
	amd_iommu_stats_add(&cnt_alloc_coherent);
541
	amd_iommu_stats_add(&cnt_free_coherent);
542
	amd_iommu_stats_add(&cross_page);
543
	amd_iommu_stats_add(&domain_flush_single);
544
	amd_iommu_stats_add(&domain_flush_all);
545
	amd_iommu_stats_add(&alloced_io_mem);
546
	amd_iommu_stats_add(&total_map_requests);
547 548 549 550
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
551 552 553 554
}

#endif

555 556 557 558 559 560
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

561 562 563 564
static void dump_dte_entry(u16 devid)
{
	int i;

565 566
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
567 568 569
			amd_iommu_dev_table[devid].data[i]);
}

570 571 572 573 574 575 576 577 578
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

579
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
580
{
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
602

603
	printk(KERN_ERR "AMD-Vi: Event logged [");
604 605 606 607 608

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
609
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610
		       address, flags);
611
		dump_dte_entry(devid);
612 613 614 615
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617 618 619 620 621
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
622
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
623 624 625 626 627
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
628
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
629 630 631 632
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
633
		dump_command(address);
634 635 636 637 638 639 640 641
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
642
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
643 644 645 646 647
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
648
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
649 650 651 652 653
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
654 655

	memset(__evt, 0, 4 * sizeof(u32));
656 657 658 659 660 661 662 663 664 665
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
666
		iommu_print_event(iommu, iommu->evt_buf + head);
667 668 669 670 671 672
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

673
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
674 675 676
{
	struct amd_iommu_fault fault;

677 678
	INC_STATS_COUNTER(pri_requests);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
720

721 722 723
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
724

725 726 727 728 729 730 731
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
732 733
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
734 735 736 737 738 739

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
740 741 742 743
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

744
irqreturn_t amd_iommu_int_thread(int irq, void *data)
745
{
746 747
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
748

749 750 751 752
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
753

754 755 756 757
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
758

759 760 761 762
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
779
	return IRQ_HANDLED;
780 781
}

782 783 784 785 786
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

787 788 789 790 791 792
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
813 814 815
{
	u8 *target;

816
	target = iommu->cmd_buf + tail;
817 818 819 820 821 822
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
823
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
824
}
825

826
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
827
{
828 829
	WARN_ON(address & 0x7ULL);

830
	memset(cmd, 0, sizeof(*cmd));
831 832 833
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
834 835 836
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

837 838 839 840 841 842 843
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
871
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
872 873 874
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

906 907 908 909 910 911 912
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

913
	cmd->data[0]  = pasid;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
932
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
933 934
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
935
	cmd->data[1] |= (pasid & 0xff) << 16;
936 937 938 939 940 941 942 943
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

944 945 946 947 948 949 950
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
951
		cmd->data[1]  = pasid;
952 953 954 955 956 957 958 959
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

960 961 962 963
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
964 965
}

966 967 968 969 970 971 972
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

973 974
/*
 * Writes the command to the IOMMUs command buffer and informs the
975
 * hardware about the new command.
976
 */
977 978 979
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
980
{
981
	u32 left, tail, head, next_tail;
982 983
	unsigned long flags;

984
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
985 986

again:
987 988
	spin_lock_irqsave(&iommu->lock, flags);

989 990 991 992
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
993

994 995 996 997
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
998

999 1000
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1001

1002 1003 1004 1005 1006 1007
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1008 1009
	}

1010 1011 1012
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1013
	iommu->need_sync = sync;
1014

1015
	spin_unlock_irqrestore(&iommu->lock, flags);
1016

1017
	return 0;
1018 1019
}

1020 1021 1022 1023 1024
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1025 1026 1027 1028
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1029
static int iommu_completion_wait(struct amd_iommu *iommu)
1030 1031
{
	struct iommu_cmd cmd;
1032
	volatile u64 sem = 0;
1033
	int ret;
1034

1035
	if (!iommu->need_sync)
1036
		return 0;
1037

1038
	build_completion_wait(&cmd, (u64)&sem);
1039

1040
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1041
	if (ret)
1042
		return ret;
1043

1044
	return wait_on_sem(&sem);
1045 1046
}

1047
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1048
{
1049
	struct iommu_cmd cmd;
1050

1051
	build_inv_dte(&cmd, devid);
1052

1053 1054
	return iommu_queue_command(iommu, &cmd);
}
1055

1056 1057 1058
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1059

1060 1061
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1062

1063 1064
	iommu_completion_wait(iommu);
}
1065

1066 1067 1068 1069 1070 1071 1072
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1073

1074 1075 1076 1077 1078 1079
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1080

1081
	iommu_completion_wait(iommu);
1082 1083
}

1084
static void iommu_flush_all(struct amd_iommu *iommu)
1085
{
1086
	struct iommu_cmd cmd;
1087

1088
	build_inv_all(&cmd);
1089

1090 1091 1092 1093
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1113 1114
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1115 1116 1117 1118
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1119
		iommu_flush_irt_all(iommu);
1120
		iommu_flush_tlb_all(iommu);
1121 1122 1123
	}
}

1124
/*
1125
 * Command send function for flushing on-device TLB
1126
 */
1127 1128
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1129 1130
{
	struct amd_iommu *iommu;
1131
	struct iommu_cmd cmd;
1132
	int qdep;
1133

1134 1135
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1136

1137
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1138 1139

	return iommu_queue_command(iommu, &cmd);
1140 1141
}

1142 1143 1144
/*
 * Command send function for invalidating a device table entry
 */
1145
static int device_flush_dte(struct iommu_dev_data *dev_data)
1146
{
1147
	struct amd_iommu *iommu;
1148
	int ret;
1149

1150
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1151

1152
	ret = iommu_flush_dte(iommu, dev_data->devid);
1153 1154 1155
	if (ret)
		return ret;

1156
	if (dev_data->ats.enabled)
1157
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1158 1159

	return ret;
1160 1161
}

1162 1163 1164 1165 1166
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1167 1168
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1169
{
1170
	struct iommu_dev_data *dev_data;
1171 1172
	struct iommu_cmd cmd;
	int ret = 0, i;
1173

1174
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1175

1176 1177 1178 1179 1180 1181 1182 1183
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1184
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1185 1186
	}

1187 1188
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1189
		if (!dev_data->ats.enabled)
1190 1191
			continue;

1192
		ret |= device_flush_iotlb(dev_data, address, size);
1193 1194
	}

1195
	WARN_ON(ret);
1196 1197
}

1198 1199
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1200
{
1201
	__domain_flush_pages(domain, address, size, 0);
1202
}
1203

1204
/* Flush the whole IO/TLB for a given protection domain */
1205
static void domain_flush_tlb(struct protection_domain *domain)
1206
{
1207
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1208 1209
}

1210
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1211
static void domain_flush_tlb_pde(struct protection_domain *domain)
1212
{
1213
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1214 1215
}

1216
static void domain_flush_complete(struct protection_domain *domain)
1217
{
1218
	int i;
1219

1220 1221 1222
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1223

1224 1225 1226 1227 1228
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1229
	}
1230 1231
}

1232

1233
/*
1234
 * This function flushes the DTEs for all devices in domain
1235
 */
1236
static void domain_flush_devices(struct protection_domain *domain)
1237
{
1238
	struct iommu_dev_data *dev_data;
1239

1240
	list_for_each_entry(dev_data, &domain->dev_list, list)
1241
		device_flush_dte(dev_data);
1242 1243
}

1244 1245 1246 1247 1248 1249 1250
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1280
		      unsigned long page_size,
1281 1282 1283
		      u64 **pte_page,
		      gfp_t gfp)
{
1284
	int level, end_lvl;
1285
	u64 *pte, *page;
1286 1287

	BUG_ON(!is_power_of_2(page_size));
1288 1289 1290 1291

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1292 1293 1294 1295
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1296 1297 1298 1299 1300 1301 1302 1303 1304

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1305 1306 1307 1308
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1326
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1327 1328 1329 1330
{
	int level;
	u64 *pte;

1331 1332 1333 1334 1335
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1336

1337 1338 1339
	while (level > 0) {

		/* Not Present */
1340 1341 1342
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1362 1363
		level -= 1;

1364
		/* Walk to the next level */
1365 1366 1367 1368 1369 1370 1371
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1372 1373 1374 1375 1376 1377 1378
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1379 1380 1381
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1382
			  int prot,
1383
			  unsigned long page_size)
1384
{
1385
	u64 __pte, *pte;
1386
	int i, count;
1387

1388
	if (!(prot & IOMMU_PROT_MASK))
1389 1390
		return -EINVAL;

1391 1392 1393 1394 1395 1396 1397 1398
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1399

1400 1401 1402 1403 1404
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1405 1406 1407 1408 1409 1410

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1411 1412
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1413

1414 1415
	update_domain(dom);

1416 1417 1418
	return 0;
}

1419 1420 1421
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1422
{
1423 1424 1425 1426 1427 1428
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
1449 1450 1451 1452

			/* Only unmap from the first pte in the page */
			if ((unmap_size - 1) & bus_addr)
				break;
1453 1454 1455 1456 1457 1458 1459 1460 1461
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1462
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1463

1464
	return unmapped;
1465 1466
}

1467 1468 1469 1470
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1485 1486 1487 1488
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1489 1490 1491 1492 1493 1494 1495 1496
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1497
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1498
				     PAGE_SIZE);
1499 1500 1501 1502 1503 1504 1505
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1506
			__set_bit(addr >> PAGE_SHIFT,
1507
				  dma_dom->aperture[0]->bitmap);
1508 1509 1510 1511 1512
	}

	return 0;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1535 1536 1537
/*
 * Inits the unity mappings required for a specific device
 */
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1555 1556 1557 1558 1559 1560 1561 1562 1563
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1564

1565
/*
1566
 * The address allocator core functions.
1567 1568 1569
 *
 * called with domain->lock held
 */
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1591 1592 1593 1594 1595
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1596
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1597 1598 1599
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1600
	struct amd_iommu *iommu;
1601
	unsigned long i, old_size;
1602

1603 1604 1605 1606
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1626
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1637
	old_size                = dma_dom->aperture_size;
1638 1639
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1652
	/* Initialize the exclusion range if necessary */
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1675
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1676 1677 1678
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1679
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1680 1681
	}

1682 1683
	update_domain(&dma_dom->domain);

1684 1685 1686
	return 0;

out_free:
1687 1688
	update_domain(&dma_dom->domain);

1689 1690 1691 1692 1693 1694 1695 1696
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1697 1698 1699 1700 1701 1702 1703
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1704
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1705 1706 1707 1708 1709 1710
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1711 1712
	next_bit >>= PAGE_SHIFT;

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1731
			dom->next_address = address + (pages << PAGE_SHIFT);
1732 1733 1734 1735 1736 1737 1738 1739 1740
			break;
		}

		next_bit = 0;
	}

	return address;
}

1741 1742
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1743
					     unsigned int pages,
1744 1745
					     unsigned long align_mask,
					     u64 dma_mask)
1746 1747 1748
{
	unsigned long address;

1749 1750 1751 1752
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1753

1754
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1755
				     dma_mask, dom->next_address);
1756

1757
	if (address == -1) {
1758
		dom->next_address = 0;
1759 1760
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1761 1762
		dom->need_flush = true;
	}
1763

1764
	if (unlikely(address == -1))
1765
		address = DMA_ERROR_CODE;
1766 1767 1768 1769 1770 1771

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1772 1773 1774 1775 1776
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1777 1778 1779 1780
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1781 1782
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1783

1784 1785
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1786 1787 1788 1789
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1790

1791
	if (address >= dom->next_address)
1792
		dom->need_flush = true;
1793 1794

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1795

A
Akinobu Mita 已提交
1796
	bitmap_clear(range->bitmap, address, pages);
1797

1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1887
static void free_pagetable(struct protection_domain *domain)
1888
{
1889
	unsigned long root = (unsigned long)domain->pt_root;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1914 1915 1916
	}
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1947 1948
static void free_gcr3_table(struct protection_domain *domain)
{
1949 1950 1951 1952 1953 1954 1955
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1956 1957 1958
	free_page((unsigned long)domain->gcr3_tbl);
}

1959 1960 1961 1962
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1963 1964
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1965 1966
	int i;

1967 1968 1969
	if (!dom)
		return;

1970 1971
	del_domain_from_list(&dom->domain);

1972
	free_pagetable(&dom->domain);
1973

1974 1975 1976 1977 1978 1979
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1980 1981 1982 1983

	kfree(dom);
}

1984 1985
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1986
 * It also initializes the page table and the address allocator data
1987 1988
 * structures required for the dma_ops interface
 */
1989
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2002
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2003
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2004
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2005
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2006 2007 2008 2009
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2010
	dma_dom->need_flush = false;
2011
	dma_dom->target_dev = 0xffff;
2012

2013 2014
	add_domain_to_list(&dma_dom->domain);

2015
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2016 2017
		goto free_dma_dom;

2018
	/*
2019 2020
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2021
	 */
2022
	dma_dom->aperture[0]->bitmap[0] = 1;
2023
	dma_dom->next_address = 0;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2043
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2044
{
2045
	u64 pte_root = 0;
2046
	u64 flags = 0;
2047

2048 2049 2050
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2051 2052 2053
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2054

2055 2056
	flags = amd_iommu_dev_table[devid].data[1];

2057 2058 2059
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2086 2087 2088 2089 2090
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2091 2092 2093 2094 2095 2096 2097 2098 2099
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2100 2101
}

2102 2103
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2104 2105
{
	struct amd_iommu *iommu;
2106
	bool ats;
2107

2108 2109
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2110 2111 2112 2113

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2114
	set_dte_entry(dev_data->devid, domain, ats);
2115 2116 2117 2118 2119 2120

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2121
	device_flush_dte(dev_data);
2122 2123
}

2124
static void do_detach(struct iommu_dev_data *dev_data)
2125 2126 2127
{
	struct amd_iommu *iommu;

2128
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2129 2130

	/* decrease reference counters */
2131 2132 2133 2134 2135 2136
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2137
	clear_dte_entry(dev_data->devid);
2138

2139
	/* Flush the DTE entry */
2140
	device_flush_dte(dev_data);
2141 2142 2143 2144 2145 2146
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2147
static int __attach_device(struct iommu_dev_data *dev_data,
2148
			   struct protection_domain *domain)
2149
{
2150
	struct iommu_dev_data *head, *entry;
2151
	int ret;
2152

2153 2154 2155
	/* lock domain */
	spin_lock(&domain->lock);

2156
	head = dev_data;
2157

2158 2159
	if (head->alias_data != NULL)
		head = head->alias_data;
2160

2161
	/* Now we have the root of the alias group, if any */
2162

2163 2164 2165
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2166

2167 2168
	/* Attach alias group root */
	do_attach(head, domain);
2169

2170 2171 2172
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2173

2174 2175 2176 2177
	ret = 0;

out_unlock:

2178 2179
	/* ready */
	spin_unlock(&domain->lock);
2180

2181
	return ret;
2182
}
2183

2184 2185 2186 2187 2188 2189 2190 2191

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2192 2193 2194 2195 2196 2197
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2198
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2199 2200 2201
	if (!pos)
		return -EINVAL;

2202 2203 2204
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2205 2206 2207 2208

	return 0;
}

2209 2210
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2211 2212 2213 2214 2215 2216 2217 2218
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2230 2231
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2232 2233 2234
	if (ret)
		goto out_err;

2235 2236 2237 2238 2239 2240
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2254
/* FIXME: Move this to PCI code */
2255
#define PCI_PRI_TLP_OFF		(1 << 15)
2256

J
Joerg Roedel 已提交
2257
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2258
{
2259
	u16 status;
2260 2261
	int pos;

2262
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2263 2264 2265
	if (!pos)
		return false;

2266
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2267

2268
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2269 2270
}

2271
/*
F
Frank Arnold 已提交
2272
 * If a device is not yet associated with a domain, this function
2273 2274
 * assigns it visible for the hardware
 */
2275 2276
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2277
{
2278
	struct pci_dev *pdev = to_pci_dev(dev);
2279
	struct iommu_dev_data *dev_data;
2280
	unsigned long flags;
2281
	int ret;
2282

2283 2284
	dev_data = get_dev_data(dev);

2285 2286 2287 2288 2289 2290 2291 2292 2293
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2294
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2295 2296
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2297 2298 2299
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2300

2301
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2302
	ret = __attach_device(dev_data, domain);
2303 2304
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2305 2306 2307 2308 2309
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2310
	domain_flush_tlb_pde(domain);
2311 2312

	return ret;
2313 2314
}

2315 2316 2317
/*
 * Removes a device from a protection domain (unlocked)
 */
2318
static void __detach_device(struct iommu_dev_data *dev_data)
2319
{
2320
	struct iommu_dev_data *head, *entry;
2321
	struct protection_domain *domain;
2322
	unsigned long flags;
2323

2324
	BUG_ON(!dev_data->domain);
2325

2326 2327 2328
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2329

2330 2331 2332
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2333

2334 2335
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2336

2337
	do_detach(head);
2338

2339
	spin_unlock_irqrestore(&domain->lock, flags);
2340 2341 2342

	/*
	 * If we run in passthrough mode the device must be assigned to the
2343 2344
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2345
	 */
2346
	if (dev_data->passthrough &&
2347
	    (dev_data->domain == NULL && domain != pt_domain))
2348
		__attach_device(dev_data, pt_domain);
2349 2350 2351 2352 2353
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2354
static void detach_device(struct device *dev)
2355
{
2356
	struct protection_domain *domain;
2357
	struct iommu_dev_data *dev_data;
2358 2359
	unsigned long flags;

2360
	dev_data = get_dev_data(dev);
2361
	domain   = dev_data->domain;
2362

2363 2364
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365
	__detach_device(dev_data);
2366
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367

2368 2369 2370
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2371
		pci_disable_ats(to_pci_dev(dev));
2372 2373

	dev_data->ats.enabled = false;
2374
}
2375

2376 2377 2378 2379 2380 2381
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2382
	struct iommu_dev_data *dev_data;
2383
	struct protection_domain *dom = NULL;
2384 2385
	unsigned long flags;

2386
	dev_data   = get_dev_data(dev);
2387

2388 2389
	if (dev_data->domain)
		return dev_data->domain;
2390

2391 2392
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2393 2394 2395 2396 2397 2398 2399 2400

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2401 2402 2403 2404

	return dom;
}

2405 2406 2407 2408
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2409 2410 2411
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2412
	struct amd_iommu *iommu;
2413
	unsigned long flags;
2414
	u16 devid;
2415

2416 2417
	if (!check_device(dev))
		return 0;
2418

2419 2420 2421
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2422 2423

	switch (action) {
2424
	case BUS_NOTIFY_UNBOUND_DRIVER:
2425 2426 2427

		domain = domain_for_device(dev);

2428 2429
		if (!domain)
			goto out;
2430
		if (dev_data->passthrough)
2431
			break;
2432
		detach_device(dev);
2433 2434
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2435 2436 2437

		iommu_init_device(dev);

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2450 2451
		domain = domain_for_device(dev);

2452 2453
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2464

2465
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2466

2467
		break;
2468 2469 2470 2471
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2482
static struct notifier_block device_nb = {
2483 2484
	.notifier_call = device_change_notifier,
};
2485

2486 2487 2488 2489 2490
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2504
static struct protection_domain *get_domain(struct device *dev)
2505
{
2506
	struct protection_domain *domain;
2507
	struct dma_ops_domain *dma_dom;
2508
	u16 devid = get_device_id(dev);
2509

2510
	if (!check_device(dev))
2511
		return ERR_PTR(-EINVAL);
2512

2513 2514 2515
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2516

2517 2518
	if (domain != NULL)
		return domain;
2519

F
Frank Arnold 已提交
2520
	/* Device not bound yet - bind it */
2521
	dma_dom = find_protection_domain(devid);
2522
	if (!dma_dom)
2523 2524
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2525
	DUMP_printk("Using protection domain %d for device %s\n",
2526
		    dma_dom->domain.id, dev_name(dev));
2527

2528
	return &dma_dom->domain;
2529 2530
}

2531 2532
static void update_device_table(struct protection_domain *domain)
{
2533
	struct iommu_dev_data *dev_data;
2534

2535 2536
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2537 2538 2539 2540 2541 2542 2543 2544
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2545 2546 2547

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2548 2549 2550 2551

	domain->updated = false;
}

2552 2553 2554 2555 2556 2557
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2558
	struct aperture_range *aperture;
2559 2560
	u64 *pte, *pte_page;

2561 2562 2563 2564 2565
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2566
	if (!pte) {
2567
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2568
				GFP_ATOMIC);
2569 2570
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2571
		pte += PM_LEVEL_INDEX(0, address);
2572

2573
	update_domain(&dom->domain);
2574 2575 2576 2577

	return pte;
}

2578 2579 2580 2581
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2582
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2593
	pte  = dma_ops_get_pte(dom, address);
2594
	if (!pte)
2595
		return DMA_ERROR_CODE;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2613 2614 2615
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2616
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2617 2618
				 unsigned long address)
{
2619
	struct aperture_range *aperture;
2620 2621 2622 2623 2624
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2625 2626 2627 2628 2629 2630 2631
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2632

2633
	pte += PM_LEVEL_INDEX(0, address);
2634 2635 2636 2637 2638 2639

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2640 2641
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2642 2643
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2644 2645
 * Must be called with the domain lock held.
 */
2646 2647 2648 2649
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2650
			       int dir,
2651 2652
			       bool align,
			       u64 dma_mask)
2653 2654
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2655
	dma_addr_t address, start, ret;
2656
	unsigned int pages;
2657
	unsigned long align_mask = 0;
2658 2659
	int i;

2660
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2661 2662
	paddr &= PAGE_MASK;

2663 2664
	INC_STATS_COUNTER(total_map_requests);

2665 2666 2667
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2668 2669 2670
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2671
retry:
2672 2673
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2674
	if (unlikely(address == DMA_ERROR_CODE)) {
2675 2676 2677 2678 2679 2680 2681
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2682
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2683 2684 2685
			goto out;

		/*
2686
		 * aperture was successfully enlarged by 128 MB, try
2687 2688 2689 2690
		 * allocation again
		 */
		goto retry;
	}
2691 2692 2693

	start = address;
	for (i = 0; i < pages; ++i) {
2694
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2695
		if (ret == DMA_ERROR_CODE)
2696 2697
			goto out_unmap;

2698 2699 2700 2701 2702
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2703 2704
	ADD_STATS_COUNTER(alloced_io_mem, size);

2705
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2706
		domain_flush_tlb(&dma_dom->domain);
2707
		dma_dom->need_flush = false;
2708
	} else if (unlikely(amd_iommu_np_cache))
2709
		domain_flush_pages(&dma_dom->domain, address, size);
2710

2711 2712
out:
	return address;
2713 2714 2715 2716 2717

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2718
		dma_ops_domain_unmap(dma_dom, start);
2719 2720 2721 2722
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2723
	return DMA_ERROR_CODE;
2724 2725
}

2726 2727 2728 2729
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2730
static void __unmap_single(struct dma_ops_domain *dma_dom,
2731 2732 2733 2734
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2735
	dma_addr_t flush_addr;
2736 2737 2738
	dma_addr_t i, start;
	unsigned int pages;

2739
	if ((dma_addr == DMA_ERROR_CODE) ||
2740
	    (dma_addr + size > dma_dom->aperture_size))
2741 2742
		return;

2743
	flush_addr = dma_addr;
2744
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2745 2746 2747 2748
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2749
		dma_ops_domain_unmap(dma_dom, start);
2750 2751 2752
		start += PAGE_SIZE;
	}

2753 2754
	SUB_STATS_COUNTER(alloced_io_mem, size);

2755
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2756

2757
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2758
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2759 2760
		dma_dom->need_flush = false;
	}
2761 2762
}

2763 2764 2765
/*
 * The exported map_single function for dma_ops.
 */
2766 2767 2768 2769
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2770 2771 2772 2773
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2774
	u64 dma_mask;
2775
	phys_addr_t paddr = page_to_phys(page) + offset;
2776

2777 2778
	INC_STATS_COUNTER(cnt_map_single);

2779 2780
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2781
		return (dma_addr_t)paddr;
2782 2783
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2784

2785 2786
	dma_mask = *dev->dma_mask;

2787
	spin_lock_irqsave(&domain->lock, flags);
2788

2789
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2790
			    dma_mask);
2791
	if (addr == DMA_ERROR_CODE)
2792 2793
		goto out;

2794
	domain_flush_complete(domain);
2795 2796 2797 2798 2799 2800 2801

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2802 2803 2804
/*
 * The exported unmap_single function for dma_ops.
 */
2805 2806
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2807 2808 2809 2810
{
	unsigned long flags;
	struct protection_domain *domain;

2811 2812
	INC_STATS_COUNTER(cnt_unmap_single);

2813 2814
	domain = get_domain(dev);
	if (IS_ERR(domain))
2815 2816
		return;

2817 2818
	spin_lock_irqsave(&domain->lock, flags);

2819
	__unmap_single(domain->priv, dma_addr, size, dir);
2820

2821
	domain_flush_complete(domain);
2822 2823 2824 2825

	spin_unlock_irqrestore(&domain->lock, flags);
}

2826 2827 2828 2829
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2830
static int map_sg(struct device *dev, struct scatterlist *sglist,
2831 2832
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2833 2834 2835 2836 2837 2838 2839
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2840
	u64 dma_mask;
2841

2842 2843
	INC_STATS_COUNTER(cnt_map_sg);

2844
	domain = get_domain(dev);
2845
	if (IS_ERR(domain))
2846
		return 0;
2847

2848
	dma_mask = *dev->dma_mask;
2849 2850 2851 2852 2853 2854

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2855
		s->dma_address = __map_single(dev, domain->priv,
2856 2857
					      paddr, s->length, dir, false,
					      dma_mask);
2858 2859 2860 2861 2862 2863 2864 2865

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2866
	domain_flush_complete(domain);
2867 2868 2869 2870 2871 2872 2873 2874

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2875
			__unmap_single(domain->priv, s->dma_address,
2876 2877 2878 2879 2880 2881 2882 2883 2884
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2885 2886 2887 2888
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2889
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2890 2891
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2892 2893 2894 2895 2896 2897
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2898 2899
	INC_STATS_COUNTER(cnt_unmap_sg);

2900 2901
	domain = get_domain(dev);
	if (IS_ERR(domain))
2902 2903
		return;

2904 2905 2906
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2907
		__unmap_single(domain->priv, s->dma_address,
2908 2909 2910 2911
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2912
	domain_flush_complete(domain);
2913 2914 2915 2916

	spin_unlock_irqrestore(&domain->lock, flags);
}

2917 2918 2919
/*
 * The exported alloc_coherent function for dma_ops.
 */
2920
static void *alloc_coherent(struct device *dev, size_t size,
2921 2922
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2923 2924 2925 2926 2927
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2928
	u64 dma_mask = dev->coherent_dma_mask;
2929

2930 2931
	INC_STATS_COUNTER(cnt_alloc_coherent);

2932 2933
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2934 2935 2936
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2937 2938
	} else if (IS_ERR(domain))
		return NULL;
2939

2940 2941 2942
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2943 2944 2945

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2946
		return NULL;
2947 2948 2949

	paddr = virt_to_phys(virt_addr);

2950 2951 2952
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2953 2954
	spin_lock_irqsave(&domain->lock, flags);

2955
	*dma_addr = __map_single(dev, domain->priv, paddr,
2956
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2957

2958
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2959
		spin_unlock_irqrestore(&domain->lock, flags);
2960
		goto out_free;
J
Jiri Slaby 已提交
2961
	}
2962

2963
	domain_flush_complete(domain);
2964 2965 2966 2967

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2968 2969 2970 2971 2972 2973

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2974 2975
}

2976 2977 2978
/*
 * The exported free_coherent function for dma_ops.
 */
2979
static void free_coherent(struct device *dev, size_t size,
2980 2981
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2982 2983 2984 2985
{
	unsigned long flags;
	struct protection_domain *domain;

2986 2987
	INC_STATS_COUNTER(cnt_free_coherent);

2988 2989
	domain = get_domain(dev);
	if (IS_ERR(domain))
2990 2991
		goto free_mem;

2992 2993
	spin_lock_irqsave(&domain->lock, flags);

2994
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2995

2996
	domain_flush_complete(domain);
2997 2998 2999 3000 3001 3002 3003

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

3004 3005 3006 3007 3008 3009
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3010
	return check_device(dev);
3011 3012
}

3013
/*
3014 3015
 * The function for pre-allocating protection domains.
 *
3016 3017 3018 3019
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3020
static void __init prealloc_protection_domains(void)
3021
{
3022
	struct iommu_dev_data *dev_data;
3023
	struct dma_ops_domain *dma_dom;
3024
	struct pci_dev *dev = NULL;
3025
	u16 devid;
3026

3027
	for_each_pci_dev(dev) {
3028 3029 3030

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3031
			continue;
3032

3033 3034 3035 3036 3037 3038
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3039
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3040 3041 3042
				dev_name(&dev->dev));
		}

3043
		/* Is there already any domain for it? */
3044
		if (domain_for_device(&dev->dev))
3045
			continue;
3046 3047 3048

		devid = get_device_id(&dev->dev);

3049
		dma_dom = dma_ops_domain_alloc();
3050 3051 3052
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3053 3054
		dma_dom->target_dev = devid;

3055
		attach_device(&dev->dev, &dma_dom->domain);
3056

3057
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3058 3059 3060
	}
}

3061
static struct dma_map_ops amd_iommu_dma_ops = {
3062 3063
	.alloc = alloc_coherent,
	.free = free_coherent,
3064 3065
	.map_page = map_page,
	.unmap_page = unmap_page,
3066 3067
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3068
	.dma_supported = amd_iommu_dma_supported,
3069 3070
};

3071 3072
static unsigned device_dma_ops_init(void)
{
3073
	struct iommu_dev_data *dev_data;
3074 3075 3076 3077 3078
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3079 3080 3081

			iommu_ignore_device(&pdev->dev);

3082 3083 3084 3085
			unhandled += 1;
			continue;
		}

3086 3087 3088 3089 3090 3091
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3092 3093 3094 3095 3096
	}

	return unhandled;
}

3097 3098 3099
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3100 3101 3102

void __init amd_iommu_init_api(void)
{
3103
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3104 3105
}

3106 3107 3108
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3109
	int ret, unhandled;
3110

3111 3112 3113 3114 3115
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3116
	for_each_iommu(iommu) {
3117
		iommu->default_dom = dma_ops_domain_alloc();
3118 3119
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3120
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3121 3122 3123 3124 3125
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3126
	/*
3127
	 * Pre-allocate the protection domains for each device.
3128
	 */
3129
	prealloc_protection_domains();
3130 3131

	iommu_detected = 1;
3132
	swiotlb = 0;
3133

3134
	/* Make the driver finally visible to the drivers */
3135 3136 3137 3138 3139
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3140

3141 3142
	amd_iommu_stats_init();

3143 3144 3145 3146 3147
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3148 3149 3150 3151
	return 0;

free_domains:

3152
	for_each_iommu(iommu) {
3153
		dma_ops_domain_free(iommu->default_dom);
3154 3155 3156 3157
	}

	return ret;
}
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3171
	struct iommu_dev_data *entry;
3172 3173 3174 3175
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3176 3177 3178 3179
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3180
	}
3181 3182 3183 3184

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3185 3186 3187 3188 3189
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3190 3191
	del_domain_from_list(domain);

3192 3193 3194 3195 3196 3197 3198
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3199 3200 3201 3202 3203
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3204
		return NULL;
3205 3206

	spin_lock_init(&domain->lock);
3207
	mutex_init(&domain->api_lock);
3208 3209
	domain->id = domain_id_alloc();
	if (!domain->id)
3210
		goto out_err;
3211
	INIT_LIST_HEAD(&domain->dev_list);
3212

3213 3214
	add_domain_to_list(domain);

3215 3216 3217 3218 3219 3220 3221 3222
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3237 3238 3239 3240 3241 3242
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3243
		goto out_free;
3244 3245

	domain->mode    = PAGE_MODE_3_LEVEL;
3246 3247 3248 3249
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3250 3251
	domain->iommu_domain = dom;

3252 3253
	dom->priv = domain;

3254 3255 3256 3257
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3258 3259 3260
	return 0;

out_free:
3261
	protection_domain_free(domain);
3262 3263 3264 3265

	return -ENOMEM;
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3278 3279
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3280

3281 3282 3283
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3284
	protection_domain_free(domain);
3285 3286 3287 3288

	dom->priv = NULL;
}

3289 3290 3291
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3292
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3293 3294 3295
	struct amd_iommu *iommu;
	u16 devid;

3296
	if (!check_device(dev))
3297 3298
		return;

3299
	devid = get_device_id(dev);
3300

3301
	if (dev_data->domain != NULL)
3302
		detach_device(dev);
3303 3304 3305 3306 3307 3308 3309 3310

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3311 3312 3313 3314
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3315
	struct iommu_dev_data *dev_data;
3316
	struct amd_iommu *iommu;
3317
	int ret;
3318

3319
	if (!check_device(dev))
3320 3321
		return -EINVAL;

3322 3323
	dev_data = dev->archdata.iommu;

3324
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3325 3326 3327
	if (!iommu)
		return -EINVAL;

3328
	if (dev_data->domain)
3329
		detach_device(dev);
3330

3331
	ret = attach_device(dev, domain);
3332 3333 3334

	iommu_completion_wait(iommu);

3335
	return ret;
3336 3337
}

3338
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3339
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3340 3341 3342 3343 3344
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3345 3346 3347
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3348 3349 3350 3351 3352
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3353
	mutex_lock(&domain->api_lock);
3354
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3355 3356
	mutex_unlock(&domain->api_lock);

3357
	return ret;
3358 3359
}

3360 3361
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3362 3363
{
	struct protection_domain *domain = dom->priv;
3364
	size_t unmap_size;
3365

3366 3367 3368
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3369
	mutex_lock(&domain->api_lock);
3370
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3371
	mutex_unlock(&domain->api_lock);
3372

3373
	domain_flush_tlb_pde(domain);
3374

3375
	return unmap_size;
3376 3377
}

3378
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3379
					  dma_addr_t iova)
3380 3381
{
	struct protection_domain *domain = dom->priv;
3382
	unsigned long offset_mask;
3383
	phys_addr_t paddr;
3384
	u64 *pte, __pte;
3385

3386 3387 3388
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3389
	pte = fetch_pte(domain, iova);
3390

3391
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3392 3393
		return 0;

3394 3395 3396 3397 3398 3399 3400
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3401 3402 3403 3404

	return paddr;
}

S
Sheng Yang 已提交
3405 3406 3407
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3408 3409 3410
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
3411 3412
	case IOMMU_CAP_INTR_REMAP:
		return irq_remapping_enabled;
3413 3414
	}

S
Sheng Yang 已提交
3415 3416 3417
	return 0;
}

3418
static const struct iommu_ops amd_iommu_ops = {
3419 3420 3421 3422
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3423 3424
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3425
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3426
	.domain_has_cap = amd_iommu_domain_has_cap,
3427
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3428 3429
};

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3442
	struct iommu_dev_data *dev_data;
3443
	struct pci_dev *dev = NULL;
3444
	int ret;
3445

3446 3447 3448
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3449

3450
	for_each_pci_dev(dev) {
3451
		if (!check_device(&dev->dev))
3452 3453
			continue;

3454 3455 3456
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3457
		attach_device(&dev->dev, pt_domain);
3458 3459
	}

J
Joerg Roedel 已提交
3460 3461
	amd_iommu_stats_init();

3462 3463 3464 3465
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3607 3608
	INC_STATS_COUNTER(invalidate_iotlb);

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3629 3630
	INC_STATS_COUNTER(invalidate_iotlb_all);

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3742 3743 3744 3745 3746 3747 3748 3749

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3750 3751
	INC_STATS_COUNTER(complete_ppr);

3752 3753 3754 3755 3756 3757 3758 3759 3760
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3908 3909 3910
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3911 3912 3913 3914 3915 3916 3917
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3918
		table = NULL;
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3936
		set_dte_irq_entry(alias, table);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3971
			struct irq_2_irte *irte_info;
3972 3973 3974 3975 3976 3977

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3978
			cfg->remapped	      = 1;
3979 3980 3981
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4057 4058 4059 4060 4061
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4062
	struct irq_2_irte *irte_info;
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4074
	irte_info = &cfg->irq_2_irte;
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4088
	cfg->remapped	      = 1;
4089 4090
	irte_info->devid      = devid;
	irte_info->index      = index;
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4124
	struct irq_2_irte *irte_info;
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
4135
	irte_info = &cfg->irq_2_irte;
4136 4137 4138 4139

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4140
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4156
	modify_irte(irte_info->devid, irte_info->index, irte);
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4168
	struct irq_2_irte *irte_info;
4169 4170 4171 4172 4173 4174
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4175
	irte_info = &cfg->irq_2_irte;
4176

4177
	free_irte(irte_info->devid, irte_info->index);
4178 4179 4180 4181

	return 0;
}

4182 4183 4184 4185
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4186
	struct irq_2_irte *irte_info;
4187 4188 4189 4190 4191 4192 4193
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

4194
	irte_info = &cfg->irq_2_irte;
4195 4196 4197 4198 4199 4200 4201 4202

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4203
	modify_irte(irte_info->devid, irte_info->index, irte);
4204 4205 4206

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4207
	msg->data       = irte_info->index;
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4232
	struct irq_2_irte *irte_info;
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4247
	irte_info	= &cfg->irq_2_irte;
4248

4249
	cfg->remapped	      = 1;
4250 4251
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4252 4253 4254 4255

	return 0;
}

4256 4257
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
4258
	struct irq_2_irte *irte_info;
4259 4260 4261 4262 4263 4264 4265
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4266
	irte_info = &cfg->irq_2_irte;
4267 4268 4269 4270 4271 4272 4273 4274
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4275
	cfg->remapped	      = 1;
4276 4277
	irte_info->devid      = devid;
	irte_info->index      = index;
4278 4279 4280 4281

	return 0;
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4297
#endif