amd_iommu.c 93.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38
#include <linux/percpu.h>
39 40 41 42
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
43
#include <asm/msidef.h>
44
#include <asm/proto.h>
45
#include <asm/iommu.h>
46
#include <asm/gart.h>
47
#include <asm/dma.h>
48 49 50

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
51
#include "irq_remapping.h"
52 53 54

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

55
#define LOOP_TIMEOUT	100000
56

57 58 59 60 61 62
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
63
 * 512GB Pages are not supported due to a hardware bug
64
 */
J
Joerg Roedel 已提交
65
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
66

67 68
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

69 70 71 72
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

73 74 75
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

76 77 78 79
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
80
static const struct iommu_ops amd_iommu_ops;
81

82
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83
int amd_iommu_max_glx_val = -1;
84

85 86
static struct dma_map_ops amd_iommu_dma_ops;

87 88 89 90 91 92 93 94 95
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
96
	bool passthrough;		  /* Device is identity mapped */
97 98 99 100 101 102 103 104 105
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

106 107 108
/*
 * general struct to manage commands send to an IOMMU
 */
109
struct iommu_cmd {
110 111 112
	u32 data[4];
};

113 114
struct kmem_cache *amd_iommu_irq_cache;

115
static void update_domain(struct protection_domain *domain);
116
static int protection_domain_init(struct protection_domain *domain);
117
static void detach_device(struct device *dev);
118

119 120 121 122 123 124
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

125 126
	spinlock_t bitmap_lock;

127 128
	/* address allocation bitmap */
	unsigned long *bitmap;
129
	unsigned long offset;
130
	unsigned long next_bit;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

151
	/* aperture index we start searching for free addresses */
152
	u32 __percpu *next_index;
153 154 155 156 157

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

158 159 160 161 162 163
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

164 165 166 167 168
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

169
static struct iommu_dev_data *alloc_dev_data(u16 devid)
170 171 172 173 174 175 176 177
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

178
	dev_data->devid = devid;
179 180 181 182 183 184 185 186

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

218 219 220 221
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

222
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
223 224
}

225 226 227 228 229
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

230 231 232 233
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
234 235
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
236 237 238 239 240 241 242 243 244 245 246 247
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

248 249 250 251 252 253 254 255 256
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

257
/*
258 259
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
260
 */
261 262
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
263
{
264
	u64 addr;
265

266 267 268 269 270
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
271
	}
272
}
273

274 275 276 277 278 279 280 281
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
282

283
	devid = get_device_id(dev);
284

285 286 287 288 289
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
290 291
}

292 293 294 295 296 297 298 299 300 301 302
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

303 304
	/* No PCI device */
	if (!dev_is_pci(dev))
305 306 307 308 309 310 311 312 313 314 315 316 317 318
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

319
static void init_iommu_group(struct device *dev)
320
{
321 322
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
323 324
	struct iommu_group *group;

325
	group = iommu_group_get_for_dev(dev);
326 327 328 329 330 331 332 333 334 335 336 337
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
338 339 340 341 342 343 344 345 346 347 348 349 350 351
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

352 353 354 355 356 357 358
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

359 360
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
361 362 363
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

364 365 366
	return 0;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

381 382
static void iommu_uninit_device(struct device *dev)
{
383 384 385 386 387
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

388 389 390
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
391 392 393
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

394 395
	iommu_group_remove_device(dev);

396 397 398
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

399
	/*
400 401
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
402
	 */
403
}
J
Joerg Roedel 已提交
404

405 406 407 408 409 410
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

411
DECLARE_STATS_COUNTER(compl_wait);
412
DECLARE_STATS_COUNTER(cnt_map_single);
413
DECLARE_STATS_COUNTER(cnt_unmap_single);
414
DECLARE_STATS_COUNTER(cnt_map_sg);
415
DECLARE_STATS_COUNTER(cnt_unmap_sg);
416
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
417
DECLARE_STATS_COUNTER(cnt_free_coherent);
418
DECLARE_STATS_COUNTER(cross_page);
419
DECLARE_STATS_COUNTER(domain_flush_single);
420
DECLARE_STATS_COUNTER(domain_flush_all);
421
DECLARE_STATS_COUNTER(alloced_io_mem);
422
DECLARE_STATS_COUNTER(total_map_requests);
423 424 425 426 427
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
447
					 &amd_iommu_unmap_flush);
448 449

	amd_iommu_stats_add(&compl_wait);
450
	amd_iommu_stats_add(&cnt_map_single);
451
	amd_iommu_stats_add(&cnt_unmap_single);
452
	amd_iommu_stats_add(&cnt_map_sg);
453
	amd_iommu_stats_add(&cnt_unmap_sg);
454
	amd_iommu_stats_add(&cnt_alloc_coherent);
455
	amd_iommu_stats_add(&cnt_free_coherent);
456
	amd_iommu_stats_add(&cross_page);
457
	amd_iommu_stats_add(&domain_flush_single);
458
	amd_iommu_stats_add(&domain_flush_all);
459
	amd_iommu_stats_add(&alloced_io_mem);
460
	amd_iommu_stats_add(&total_map_requests);
461 462 463 464
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
465 466 467 468
}

#endif

469 470 471 472 473 474
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

475 476 477 478
static void dump_dte_entry(u16 devid)
{
	int i;

479 480
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
481 482 483
			amd_iommu_dev_table[devid].data[i]);
}

484 485 486 487 488 489 490 491 492
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

493
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
494
{
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
516

517
	printk(KERN_ERR "AMD-Vi: Event logged [");
518 519 520 521 522

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
523
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
524
		       address, flags);
525
		dump_dte_entry(devid);
526 527 528 529
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
530
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
531 532 533 534 535
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
536
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
537 538 539 540 541
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
542
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
543 544 545 546
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
547
		dump_command(address);
548 549 550 551 552 553 554 555
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
556
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
557 558 559 560 561
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
562
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
563 564 565 566 567
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
568 569

	memset(__evt, 0, 4 * sizeof(u32));
570 571 572 573 574 575 576 577 578 579
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
580
		iommu_print_event(iommu, iommu->evt_buf + head);
581
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
582 583 584 585 586
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

587
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
588 589 590
{
	struct amd_iommu_fault fault;

591 592
	INC_STATS_COUNTER(pri_requests);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
634

635 636 637
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
638

639 640 641 642 643 644 645
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
646 647
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
648 649 650 651 652 653

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
654 655 656 657
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

658
irqreturn_t amd_iommu_int_thread(int irq, void *data)
659
{
660 661
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
662

663 664 665 666
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
667

668 669 670 671
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
672

673 674 675 676
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
693
	return IRQ_HANDLED;
694 695
}

696 697 698 699 700
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

701 702 703 704 705 706
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
727 728 729
{
	u8 *target;

730
	target = iommu->cmd_buf + tail;
731
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
732 733 734 735 736

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
737
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
738
}
739

740
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
741
{
742 743
	WARN_ON(address & 0x7ULL);

744
	memset(cmd, 0, sizeof(*cmd));
745 746 747
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
748 749 750
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

751 752 753 754 755 756 757
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

758 759 760 761
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
762
	bool s;
763 764

	pages = iommu_num_pages(address, size, PAGE_SIZE);
765
	s     = false;
766 767 768 769 770 771 772

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
773
		s = true;
774 775 776 777 778 779 780 781 782 783 784
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
785
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
786 787 788
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

789 790 791 792
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
793
	bool s;
794 795

	pages = iommu_num_pages(address, size, PAGE_SIZE);
796
	s     = false;
797 798 799 800 801 802 803

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
804
		s = true;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

820 821 822 823 824 825 826
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

827
	cmd->data[0]  = pasid;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
846
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
847 848
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
849
	cmd->data[1] |= (pasid & 0xff) << 16;
850 851 852 853 854 855 856 857
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

858 859 860 861 862 863 864
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
865
		cmd->data[1]  = pasid;
866 867 868 869 870 871 872 873
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

874 875 876 877
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
878 879
}

880 881 882 883 884 885 886
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

887 888
/*
 * Writes the command to the IOMMUs command buffer and informs the
889
 * hardware about the new command.
890
 */
891 892 893
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
894
{
895
	u32 left, tail, head, next_tail;
896 897
	unsigned long flags;

898
again:
899 900
	spin_lock_irqsave(&iommu->lock, flags);

901 902
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
903 904
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
905

906 907 908 909
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
910

911 912
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
913

914 915 916 917 918 919
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
920 921
	}

922 923 924
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
925
	iommu->need_sync = sync;
926

927
	spin_unlock_irqrestore(&iommu->lock, flags);
928

929
	return 0;
930 931
}

932 933 934 935 936
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

937 938 939 940
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
941
static int iommu_completion_wait(struct amd_iommu *iommu)
942 943
{
	struct iommu_cmd cmd;
944
	volatile u64 sem = 0;
945
	int ret;
946

947
	if (!iommu->need_sync)
948
		return 0;
949

950
	build_completion_wait(&cmd, (u64)&sem);
951

952
	ret = iommu_queue_command_sync(iommu, &cmd, false);
953
	if (ret)
954
		return ret;
955

956
	return wait_on_sem(&sem);
957 958
}

959
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
960
{
961
	struct iommu_cmd cmd;
962

963
	build_inv_dte(&cmd, devid);
964

965 966
	return iommu_queue_command(iommu, &cmd);
}
967

968 969 970
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
971

972 973
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
974

975 976
	iommu_completion_wait(iommu);
}
977

978 979 980 981 982 983 984
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
985

986 987 988 989 990 991
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
992

993
	iommu_completion_wait(iommu);
994 995
}

996
static void iommu_flush_all(struct amd_iommu *iommu)
997
{
998
	struct iommu_cmd cmd;
999

1000
	build_inv_all(&cmd);
1001

1002 1003 1004 1005
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1025 1026
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1027 1028 1029 1030
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1031
		iommu_flush_irt_all(iommu);
1032
		iommu_flush_tlb_all(iommu);
1033 1034 1035
	}
}

1036
/*
1037
 * Command send function for flushing on-device TLB
1038
 */
1039 1040
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1041 1042
{
	struct amd_iommu *iommu;
1043
	struct iommu_cmd cmd;
1044
	int qdep;
1045

1046 1047
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1048

1049
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1050 1051

	return iommu_queue_command(iommu, &cmd);
1052 1053
}

1054 1055 1056
/*
 * Command send function for invalidating a device table entry
 */
1057
static int device_flush_dte(struct iommu_dev_data *dev_data)
1058
{
1059
	struct amd_iommu *iommu;
1060
	u16 alias;
1061
	int ret;
1062

1063
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1064
	alias = amd_iommu_alias_table[dev_data->devid];
1065

1066
	ret = iommu_flush_dte(iommu, dev_data->devid);
1067 1068
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1069 1070 1071
	if (ret)
		return ret;

1072
	if (dev_data->ats.enabled)
1073
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1074 1075

	return ret;
1076 1077
}

1078 1079 1080 1081 1082
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1083 1084
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1085
{
1086
	struct iommu_dev_data *dev_data;
1087 1088
	struct iommu_cmd cmd;
	int ret = 0, i;
1089

1090
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1091

1092 1093 1094 1095 1096 1097 1098 1099
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1100
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1101 1102
	}

1103 1104
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1105
		if (!dev_data->ats.enabled)
1106 1107
			continue;

1108
		ret |= device_flush_iotlb(dev_data, address, size);
1109 1110
	}

1111
	WARN_ON(ret);
1112 1113
}

1114 1115
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1116
{
1117
	__domain_flush_pages(domain, address, size, 0);
1118
}
1119

1120
/* Flush the whole IO/TLB for a given protection domain */
1121
static void domain_flush_tlb(struct protection_domain *domain)
1122
{
1123
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1124 1125
}

1126
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1127
static void domain_flush_tlb_pde(struct protection_domain *domain)
1128
{
1129
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1130 1131
}

1132
static void domain_flush_complete(struct protection_domain *domain)
1133
{
1134
	int i;
1135

1136 1137 1138
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1139

1140 1141 1142 1143 1144
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1145
	}
1146 1147
}

1148

1149
/*
1150
 * This function flushes the DTEs for all devices in domain
1151
 */
1152
static void domain_flush_devices(struct protection_domain *domain)
1153
{
1154
	struct iommu_dev_data *dev_data;
1155

1156
	list_for_each_entry(dev_data, &domain->dev_list, list)
1157
		device_flush_dte(dev_data);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1196
		      unsigned long page_size,
1197 1198 1199
		      u64 **pte_page,
		      gfp_t gfp)
{
1200
	int level, end_lvl;
1201
	u64 *pte, *page;
1202 1203

	BUG_ON(!is_power_of_2(page_size));
1204 1205 1206 1207

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1208 1209 1210 1211
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1212 1213

	while (level > end_lvl) {
1214 1215 1216 1217 1218
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1219 1220 1221
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1222 1223 1224 1225 1226 1227 1228

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1229 1230
		}

1231 1232 1233 1234
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1252 1253 1254
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1255 1256 1257 1258
{
	int level;
	u64 *pte;

1259 1260 1261
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1262 1263 1264
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1265

1266 1267 1268
	while (level > 0) {

		/* Not Present */
1269 1270 1271
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1272
		/* Large PTE */
1273 1274 1275
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1276 1277 1278 1279 1280

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1281 1282
		level -= 1;

1283
		/* Walk to the next level */
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1299 1300 1301 1302 1303
	}

	return pte;
}

1304 1305 1306 1307 1308 1309 1310
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1311 1312 1313
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1314
			  int prot,
1315
			  unsigned long page_size)
1316
{
1317
	u64 __pte, *pte;
1318
	int i, count;
1319

1320 1321 1322
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1323
	if (!(prot & IOMMU_PROT_MASK))
1324 1325
		return -EINVAL;

1326 1327
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1328

1329 1330 1331
	if (!pte)
		return -ENOMEM;

1332 1333 1334
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1335

1336
	if (count > 1) {
1337 1338 1339 1340
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1341 1342 1343 1344 1345 1346

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1347 1348
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1349

1350 1351
	update_domain(dom);

1352 1353 1354
	return 0;
}

1355 1356 1357
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1358
{
1359 1360
	unsigned long long unmapped;
	unsigned long unmap_size;
1361 1362 1363 1364 1365
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1366

1367 1368
	while (unmapped < page_size) {

1369 1370 1371 1372 1373 1374
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1375 1376 1377 1378 1379 1380 1381 1382
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1383
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1384

1385
	return unmapped;
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1397

1398
/*
1399
 * The address allocator core functions.
1400 1401 1402
 *
 * called with domain->lock held
 */
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1424 1425 1426 1427 1428
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1429
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1430 1431 1432
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1433
	unsigned long i, old_size, pte_pgsize;
1434 1435 1436
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1437

1438 1439 1440 1441
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1442 1443 1444
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1445 1446
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1447 1448
		return -ENOMEM;

1449 1450
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1451 1452
		goto out_free;

1453
	range->offset = dma_dom->aperture_size;
1454

1455
	spin_lock_init(&range->bitmap_lock);
1456

1457 1458 1459 1460 1461 1462
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1463
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1464 1465 1466 1467
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1468
			range->pte_pages[i] = pte_page;
1469 1470 1471 1472 1473

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1474 1475
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1476
	/* First take the bitmap_lock and then publish the range */
1477
	spin_lock(&range->bitmap_lock);
1478 1479 1480 1481

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1495
	/* Initialize the exclusion range if necessary */
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1517
	     i += pte_pgsize) {
1518
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1519 1520 1521
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1522 1523
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1524 1525
	}

1526 1527
	update_domain(&dma_dom->domain);

1528 1529 1530
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1531

1532 1533 1534
	return 0;

out_free:
1535 1536
	update_domain(&dma_dom->domain);

1537
	free_page((unsigned long)range->bitmap);
1538

1539
	kfree(range);
1540 1541 1542 1543

	return -ENOMEM;
}

1544 1545
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1546 1547 1548
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1549 1550
					 unsigned long align_mask,
					 bool trylock)
1551 1552 1553
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1554
	bool flush = false;
1555 1556 1557 1558 1559

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1560 1561 1562 1563 1564 1565 1566
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1567 1568
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1569
	if (address == -1) {
1570 1571 1572 1573
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1574 1575
		flush = true;
	}
1576 1577 1578 1579

	if (address != -1)
		range->next_bit = address + pages;

1580 1581
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1582 1583 1584 1585 1586
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1587 1588 1589
	return address;
}

1590 1591 1592 1593
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1594
					u64 dma_mask)
1595
{
1596
	unsigned long boundary_size, mask;
1597
	unsigned long address = -1;
1598
	bool first = true;
1599 1600 1601
	u32 start, i;

	preempt_disable();
1602

1603 1604
	mask = dma_get_seg_boundary(dev);

1605
again:
1606 1607 1608 1609 1610 1611 1612 1613
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1614 1615
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1616

1617 1618
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1619 1620 1621
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1622

1623
		range = dom->aperture[index];
1624 1625 1626

		if (!range || range->offset >= dma_mask)
			continue;
1627

1628
		address = dma_ops_aperture_alloc(dom, range, pages,
1629
						 dma_mask, boundary_size,
1630
						 align_mask, first);
1631
		if (address != -1) {
1632
			address = range->offset + (address << PAGE_SHIFT);
1633
			this_cpu_write(*dom->next_index, index);
1634 1635 1636 1637
			break;
		}
	}

1638 1639 1640 1641 1642
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1643 1644
	preempt_enable();

1645 1646 1647
	return address;
}

1648 1649
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1650
					     unsigned int pages,
1651 1652
					     unsigned long align_mask,
					     u64 dma_mask)
1653
{
1654
	unsigned long address = -1;
1655

1656 1657 1658 1659
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1660
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1661 1662
			break;
	}
1663

1664
	if (unlikely(address == -1))
1665
		address = DMA_ERROR_CODE;
1666 1667 1668 1669 1670 1671

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1672 1673 1674 1675 1676
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1677 1678 1679 1680
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1681 1682
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1683
	unsigned long flags;
1684

1685 1686
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1687 1688 1689 1690
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1691

1692
	if (amd_iommu_unmap_flush) {
1693 1694 1695
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1696 1697

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1698

1699
	spin_lock_irqsave(&range->bitmap_lock, flags);
1700 1701
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1702
	bitmap_clear(range->bitmap, address, pages);
1703
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1704

1705 1706
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1779
		/* PTE present? */				\
1780 1781 1782
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1783 1784 1785 1786 1787
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1800
static void free_pagetable(struct protection_domain *domain)
1801
{
1802
	unsigned long root = (unsigned long)domain->pt_root;
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1827 1828 1829
	}
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1860 1861
static void free_gcr3_table(struct protection_domain *domain)
{
1862 1863 1864 1865
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1866 1867
	else
		BUG_ON(domain->glx != 0);
1868

1869 1870 1871
	free_page((unsigned long)domain->gcr3_tbl);
}

1872 1873 1874 1875
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1876 1877
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1878 1879
	int i;

1880 1881 1882
	if (!dom)
		return;

1883 1884
	free_percpu(dom->next_index);

1885 1886
	del_domain_from_list(&dom->domain);

1887
	free_pagetable(&dom->domain);
1888

1889 1890 1891 1892 1893 1894
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1895 1896 1897 1898

	kfree(dom);
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

1916 1917
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1918
 * It also initializes the page table and the address allocator data
1919 1920
 * structures required for the dma_ops interface
 */
1921
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1922 1923
{
	struct dma_ops_domain *dma_dom;
1924
	int cpu;
1925 1926 1927 1928 1929

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1930
	if (protection_domain_init(&dma_dom->domain))
1931
		goto free_dma_dom;
1932

1933 1934 1935 1936
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

1937
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1938
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1939
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1940 1941 1942 1943
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1944 1945
	add_domain_to_list(&dma_dom->domain);

1946
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1947 1948
		goto free_dma_dom;

1949
	/*
1950 1951
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1952
	 */
1953
	dma_dom->aperture[0]->bitmap[0] = 1;
1954

1955 1956
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
1957 1958 1959 1960 1961 1962 1963 1964 1965

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1966 1967 1968 1969 1970 1971 1972 1973 1974
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1975
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1976
{
1977
	u64 pte_root = 0;
1978
	u64 flags = 0;
1979

1980 1981 1982
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1983 1984 1985
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1986

1987 1988
	flags = amd_iommu_dev_table[devid].data[1];

1989 1990 1991
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2018 2019 2020 2021 2022
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2023 2024 2025 2026 2027
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2028 2029
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2030 2031

	amd_iommu_apply_erratum_63(devid);
2032 2033
}

2034 2035
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2036 2037
{
	struct amd_iommu *iommu;
2038
	u16 alias;
2039
	bool ats;
2040

2041
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2042
	alias = amd_iommu_alias_table[dev_data->devid];
2043
	ats   = dev_data->ats.enabled;
2044 2045 2046 2047 2048 2049 2050 2051 2052

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2053 2054 2055
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2056
		set_dte_entry(alias, domain, ats);
2057

2058
	device_flush_dte(dev_data);
2059 2060
}

2061
static void do_detach(struct iommu_dev_data *dev_data)
2062 2063
{
	struct amd_iommu *iommu;
2064
	u16 alias;
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2075
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2076
	alias = amd_iommu_alias_table[dev_data->devid];
2077 2078

	/* decrease reference counters */
2079 2080 2081 2082 2083 2084
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2085
	clear_dte_entry(dev_data->devid);
2086 2087
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2088

2089
	/* Flush the DTE entry */
2090
	device_flush_dte(dev_data);
2091 2092 2093 2094 2095 2096
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2097
static int __attach_device(struct iommu_dev_data *dev_data,
2098
			   struct protection_domain *domain)
2099
{
2100
	int ret;
2101

2102 2103 2104 2105 2106 2107
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2108 2109 2110
	/* lock domain */
	spin_lock(&domain->lock);

2111
	ret = -EBUSY;
2112
	if (dev_data->domain != NULL)
2113
		goto out_unlock;
2114

2115
	/* Attach alias group root */
2116
	do_attach(dev_data, domain);
2117

2118 2119 2120 2121
	ret = 0;

out_unlock:

2122 2123
	/* ready */
	spin_unlock(&domain->lock);
2124

2125
	return ret;
2126
}
2127

2128 2129 2130 2131 2132 2133 2134 2135

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2136 2137 2138 2139 2140 2141
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2142
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2143 2144 2145
	if (!pos)
		return -EINVAL;

2146 2147 2148
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2149 2150 2151 2152

	return 0;
}

2153 2154
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2155 2156 2157 2158 2159 2160 2161 2162
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2174 2175
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2176 2177 2178
	if (ret)
		goto out_err;

2179 2180 2181 2182 2183 2184
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2198
/* FIXME: Move this to PCI code */
2199
#define PCI_PRI_TLP_OFF		(1 << 15)
2200

J
Joerg Roedel 已提交
2201
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2202
{
2203
	u16 status;
2204 2205
	int pos;

2206
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2207 2208 2209
	if (!pos)
		return false;

2210
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2211

2212
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2213 2214
}

2215
/*
F
Frank Arnold 已提交
2216
 * If a device is not yet associated with a domain, this function
2217 2218
 * assigns it visible for the hardware
 */
2219 2220
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2221
{
2222
	struct pci_dev *pdev = to_pci_dev(dev);
2223
	struct iommu_dev_data *dev_data;
2224
	unsigned long flags;
2225
	int ret;
2226

2227 2228
	dev_data = get_dev_data(dev);

2229
	if (domain->flags & PD_IOMMUV2_MASK) {
2230
		if (!dev_data->passthrough)
2231 2232
			return -EINVAL;

2233 2234 2235
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2236

2237 2238 2239 2240
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2241 2242
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2243 2244 2245
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2246

2247
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2248
	ret = __attach_device(dev_data, domain);
2249 2250
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2251 2252 2253 2254 2255
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2256
	domain_flush_tlb_pde(domain);
2257 2258

	return ret;
2259 2260
}

2261 2262 2263
/*
 * Removes a device from a protection domain (unlocked)
 */
2264
static void __detach_device(struct iommu_dev_data *dev_data)
2265
{
2266
	struct protection_domain *domain;
2267

2268 2269 2270 2271 2272
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2273

2274 2275
	if (WARN_ON(!dev_data->domain))
		return;
2276

2277
	domain = dev_data->domain;
2278

2279
	spin_lock(&domain->lock);
2280

2281
	do_detach(dev_data);
2282

2283
	spin_unlock(&domain->lock);
2284 2285 2286 2287 2288
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2289
static void detach_device(struct device *dev)
2290
{
2291
	struct protection_domain *domain;
2292
	struct iommu_dev_data *dev_data;
2293 2294
	unsigned long flags;

2295
	dev_data = get_dev_data(dev);
2296
	domain   = dev_data->domain;
2297

2298 2299
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2300
	__detach_device(dev_data);
2301
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2302

2303
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2304 2305
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2306
		pci_disable_ats(to_pci_dev(dev));
2307 2308

	dev_data->ats.enabled = false;
2309
}
2310

2311
static int amd_iommu_add_device(struct device *dev)
2312
{
2313
	struct iommu_dev_data *dev_data;
2314
	struct iommu_domain *domain;
2315
	struct amd_iommu *iommu;
2316
	u16 devid;
2317
	int ret;
2318

2319
	if (!check_device(dev) || get_dev_data(dev))
2320
		return 0;
2321

2322 2323
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2324

2325
	ret = iommu_init_device(dev);
2326 2327 2328 2329
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2330

2331
		iommu_ignore_device(dev);
2332
		dev->archdata.dma_ops = &nommu_dma_ops;
2333 2334 2335
		goto out;
	}
	init_iommu_group(dev);
2336

2337
	dev_data = get_dev_data(dev);
2338

2339
	BUG_ON(!dev_data);
2340

2341
	if (iommu_pass_through || dev_data->iommu_v2)
2342
		iommu_request_dm_for_dev(dev);
2343

2344 2345
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2346
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2347
		dev_data->passthrough = true;
2348
	else
2349
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2350

2351
out:
2352 2353 2354 2355 2356
	iommu_completion_wait(iommu);

	return 0;
}

2357
static void amd_iommu_remove_device(struct device *dev)
2358
{
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2385
static struct protection_domain *get_domain(struct device *dev)
2386
{
2387
	struct protection_domain *domain;
2388
	struct iommu_domain *io_domain;
2389

2390
	if (!check_device(dev))
2391
		return ERR_PTR(-EINVAL);
2392

2393
	io_domain = iommu_get_domain_for_dev(dev);
2394 2395
	if (!io_domain)
		return NULL;
2396

2397 2398
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2399
		return ERR_PTR(-EBUSY);
2400

2401
	return domain;
2402 2403
}

2404 2405
static void update_device_table(struct protection_domain *domain)
{
2406
	struct iommu_dev_data *dev_data;
2407

2408 2409
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2410 2411 2412 2413 2414 2415 2416 2417
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2418 2419 2420

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2421 2422 2423 2424

	domain->updated = false;
}

2425 2426 2427 2428 2429 2430
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2431
	struct aperture_range *aperture;
2432 2433
	u64 *pte, *pte_page;

2434 2435 2436 2437 2438
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2439
	if (!pte) {
2440
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2441
				GFP_ATOMIC);
2442 2443
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2444
		pte += PM_LEVEL_INDEX(0, address);
2445

2446
	update_domain(&dom->domain);
2447 2448 2449 2450

	return pte;
}

2451 2452 2453 2454
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2455
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2466
	pte  = dma_ops_get_pte(dom, address);
2467
	if (!pte)
2468
		return DMA_ERROR_CODE;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2479
	WARN_ON_ONCE(*pte);
2480 2481 2482 2483 2484 2485

	*pte = __pte;

	return (dma_addr_t)address;
}

2486 2487 2488
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2489
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2490 2491
				 unsigned long address)
{
2492
	struct aperture_range *aperture;
2493 2494 2495 2496 2497
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2498 2499 2500 2501 2502 2503 2504
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2505

2506
	pte += PM_LEVEL_INDEX(0, address);
2507

2508
	WARN_ON_ONCE(!*pte);
2509 2510 2511 2512

	*pte = 0ULL;
}

2513 2514
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2515 2516
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2517 2518
 * Must be called with the domain lock held.
 */
2519 2520 2521 2522
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2523
			       int dir,
2524 2525
			       bool align,
			       u64 dma_mask)
2526 2527
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2528
	dma_addr_t address, start, ret;
2529
	unsigned int pages;
2530
	unsigned long align_mask = 0;
2531 2532
	int i;

2533
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2534 2535
	paddr &= PAGE_MASK;

2536 2537
	INC_STATS_COUNTER(total_map_requests);

2538 2539 2540
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2541 2542 2543
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2544 2545
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2546

2547 2548
	if (address == DMA_ERROR_CODE)
		goto out;
2549 2550 2551

	start = address;
	for (i = 0; i < pages; ++i) {
2552
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2553
		if (ret == DMA_ERROR_CODE)
2554 2555
			goto out_unmap;

2556 2557 2558 2559 2560
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2561 2562
	ADD_STATS_COUNTER(alloced_io_mem, size);

2563
	if (unlikely(amd_iommu_np_cache)) {
2564
		domain_flush_pages(&dma_dom->domain, address, size);
2565 2566
		domain_flush_complete(&dma_dom->domain);
	}
2567

2568 2569
out:
	return address;
2570 2571 2572 2573 2574

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2575
		dma_ops_domain_unmap(dma_dom, start);
2576 2577 2578 2579
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2580
	return DMA_ERROR_CODE;
2581 2582
}

2583 2584 2585 2586
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2587
static void __unmap_single(struct dma_ops_domain *dma_dom,
2588 2589 2590 2591
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2592
	dma_addr_t flush_addr;
2593 2594 2595
	dma_addr_t i, start;
	unsigned int pages;

2596
	if ((dma_addr == DMA_ERROR_CODE) ||
2597
	    (dma_addr + size > dma_dom->aperture_size))
2598 2599
		return;

2600
	flush_addr = dma_addr;
2601
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2602 2603 2604 2605
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2606
		dma_ops_domain_unmap(dma_dom, start);
2607 2608 2609
		start += PAGE_SIZE;
	}

2610 2611 2612
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2613 2614
}

2615 2616 2617
/*
 * The exported map_single function for dma_ops.
 */
2618 2619 2620 2621
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2622
{
2623
	phys_addr_t paddr = page_to_phys(page) + offset;
2624
	struct protection_domain *domain;
2625
	u64 dma_mask;
2626

2627 2628
	INC_STATS_COUNTER(cnt_map_single);

2629 2630
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2631
		return (dma_addr_t)paddr;
2632 2633
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2634

2635 2636
	dma_mask = *dev->dma_mask;

2637
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2638
			    dma_mask);
2639 2640
}

2641 2642 2643
/*
 * The exported unmap_single function for dma_ops.
 */
2644 2645
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2646 2647 2648
{
	struct protection_domain *domain;

2649 2650
	INC_STATS_COUNTER(cnt_unmap_single);

2651 2652
	domain = get_domain(dev);
	if (IS_ERR(domain))
2653 2654
		return;

2655
	__unmap_single(domain->priv, dma_addr, size, dir);
2656 2657
}

2658 2659 2660 2661
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2662
static int map_sg(struct device *dev, struct scatterlist *sglist,
2663 2664
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2665 2666 2667 2668 2669 2670
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2671
	u64 dma_mask;
2672

2673 2674
	INC_STATS_COUNTER(cnt_map_sg);

2675
	domain = get_domain(dev);
2676
	if (IS_ERR(domain))
2677
		return 0;
2678

2679
	dma_mask = *dev->dma_mask;
2680 2681 2682 2683

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2684
		s->dma_address = __map_single(dev, domain->priv,
2685 2686
					      paddr, s->length, dir, false,
					      dma_mask);
2687 2688 2689 2690 2691 2692 2693 2694 2695

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2696

2697 2698 2699
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2700
			__unmap_single(domain->priv, s->dma_address,
2701 2702 2703 2704
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2705
	return 0;
2706 2707
}

2708 2709 2710 2711
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2712
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2713 2714
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2715 2716 2717 2718 2719
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2720 2721
	INC_STATS_COUNTER(cnt_unmap_sg);

2722 2723
	domain = get_domain(dev);
	if (IS_ERR(domain))
2724 2725
		return;

2726
	for_each_sg(sglist, s, nelems, i) {
2727
		__unmap_single(domain->priv, s->dma_address,
2728 2729 2730 2731 2732
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2733 2734 2735
/*
 * The exported alloc_coherent function for dma_ops.
 */
2736
static void *alloc_coherent(struct device *dev, size_t size,
2737 2738
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2739
{
2740
	u64 dma_mask = dev->coherent_dma_mask;
2741 2742
	struct protection_domain *domain;
	struct page *page;
2743

2744 2745
	INC_STATS_COUNTER(cnt_alloc_coherent);

2746 2747
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2748 2749 2750
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2751 2752
	} else if (IS_ERR(domain))
		return NULL;
2753

2754
	size	  = PAGE_ALIGN(size);
2755 2756
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2757
	flag     |= __GFP_ZERO;
2758

2759 2760
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2761
		if (!gfpflags_allow_blocking(flag))
2762
			return NULL;
2763

2764 2765 2766 2767 2768
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2769

2770 2771 2772
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2773
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2774
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2775

2776
	if (*dma_addr == DMA_ERROR_CODE)
2777
		goto out_free;
2778

2779
	return page_address(page);
2780 2781 2782

out_free:

2783 2784
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2785 2786

	return NULL;
2787 2788
}

2789 2790 2791
/*
 * The exported free_coherent function for dma_ops.
 */
2792
static void free_coherent(struct device *dev, size_t size,
2793 2794
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2795 2796
{
	struct protection_domain *domain;
2797
	struct page *page;
2798

2799 2800
	INC_STATS_COUNTER(cnt_free_coherent);

2801 2802 2803
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2804 2805
	domain = get_domain(dev);
	if (IS_ERR(domain))
2806 2807
		goto free_mem;

2808
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2809 2810

free_mem:
2811 2812
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2813 2814
}

2815 2816 2817 2818 2819 2820
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2821
	return check_device(dev);
2822 2823
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2852
static struct dma_map_ops amd_iommu_dma_ops = {
2853 2854 2855 2856 2857 2858 2859 2860
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2861 2862
};

2863
int __init amd_iommu_init_api(void)
2864
{
2865
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2866 2867
}

2868 2869
int __init amd_iommu_init_dma_ops(void)
{
2870
	swiotlb        = iommu_pass_through ? 1 : 0;
2871 2872
	iommu_detected = 1;

2873 2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2882 2883
	amd_iommu_stats_init();

2884 2885 2886 2887 2888
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2889 2890
	return 0;
}
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2904
	struct iommu_dev_data *entry;
2905 2906 2907 2908
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2909 2910 2911 2912
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2913
	}
2914 2915 2916 2917

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2918 2919 2920 2921 2922
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2923 2924
	del_domain_from_list(domain);

2925 2926 2927 2928 2929 2930
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2943
static struct protection_domain *protection_domain_alloc(void)
2944 2945 2946 2947 2948
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2949
		return NULL;
2950

2951
	if (protection_domain_init(domain))
2952 2953
		goto out_err;

2954 2955
	add_domain_to_list(domain);

2956 2957 2958 2959 2960 2961 2962 2963
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2964
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2965
{
2966
	struct protection_domain *pdomain;
2967
	struct dma_ops_domain *dma_domain;
2968

2969 2970 2971 2972 2973
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2974

2975 2976 2977 2978 2979 2980
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2981

2982 2983 2984
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2995 2996 2997 2998
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2999

3000 3001
		pdomain->mode = PAGE_MODE_NONE;
		break;
3002 3003 3004
	default:
		return NULL;
	}
3005

3006
	return &pdomain->domain;
3007 3008
}

3009
static void amd_iommu_domain_free(struct iommu_domain *dom)
3010
{
3011
	struct protection_domain *domain;
3012

3013
	if (!dom)
3014 3015
		return;

3016 3017
	domain = to_pdomain(dom);

3018 3019 3020 3021 3022
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3023 3024
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3025

3026 3027 3028
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3029
	protection_domain_free(domain);
3030 3031
}

3032 3033 3034
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3035
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3036 3037 3038
	struct amd_iommu *iommu;
	u16 devid;

3039
	if (!check_device(dev))
3040 3041
		return;

3042
	devid = get_device_id(dev);
3043

3044
	if (dev_data->domain != NULL)
3045
		detach_device(dev);
3046 3047 3048 3049 3050 3051 3052 3053

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3054 3055 3056
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3057
	struct protection_domain *domain = to_pdomain(dom);
3058
	struct iommu_dev_data *dev_data;
3059
	struct amd_iommu *iommu;
3060
	int ret;
3061

3062
	if (!check_device(dev))
3063 3064
		return -EINVAL;

3065 3066
	dev_data = dev->archdata.iommu;

3067
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3068 3069 3070
	if (!iommu)
		return -EINVAL;

3071
	if (dev_data->domain)
3072
		detach_device(dev);
3073

3074
	ret = attach_device(dev, domain);
3075 3076 3077

	iommu_completion_wait(iommu);

3078
	return ret;
3079 3080
}

3081
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3082
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3083
{
3084
	struct protection_domain *domain = to_pdomain(dom);
3085 3086 3087
	int prot = 0;
	int ret;

3088 3089 3090
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3091 3092 3093 3094 3095
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3096
	mutex_lock(&domain->api_lock);
3097
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3098 3099
	mutex_unlock(&domain->api_lock);

3100
	return ret;
3101 3102
}

3103 3104
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3105
{
3106
	struct protection_domain *domain = to_pdomain(dom);
3107
	size_t unmap_size;
3108

3109 3110 3111
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3112
	mutex_lock(&domain->api_lock);
3113
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3114
	mutex_unlock(&domain->api_lock);
3115

3116
	domain_flush_tlb_pde(domain);
3117

3118
	return unmap_size;
3119 3120
}

3121
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3122
					  dma_addr_t iova)
3123
{
3124
	struct protection_domain *domain = to_pdomain(dom);
3125
	unsigned long offset_mask, pte_pgsize;
3126
	u64 *pte, __pte;
3127

3128 3129 3130
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3131
	pte = fetch_pte(domain, iova, &pte_pgsize);
3132

3133
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3134 3135
		return 0;

3136 3137
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3138

3139
	return (__pte & ~offset_mask) | (iova & offset_mask);
3140 3141
}

3142
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3143
{
3144 3145
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3146
		return true;
3147
	case IOMMU_CAP_INTR_REMAP:
3148
		return (irq_remapping_enabled == 1);
3149 3150
	case IOMMU_CAP_NOEXEC:
		return false;
3151 3152
	}

3153
	return false;
S
Sheng Yang 已提交
3154 3155
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3197
static const struct iommu_ops amd_iommu_ops = {
3198
	.capable = amd_iommu_capable,
3199 3200
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3201 3202
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3203 3204
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3205
	.map_sg = default_iommu_map_sg,
3206
	.iova_to_phys = amd_iommu_iova_to_phys,
3207 3208
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3209
	.device_group = pci_device_group,
3210 3211
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3212
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3213 3214
};

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3237 3238 3239

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3240
	struct protection_domain *domain = to_pdomain(dom);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3258 3259 3260

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3261
	struct protection_domain *domain = to_pdomain(dom);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3339 3340 3341 3342 3343 3344
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3370 3371
	INC_STATS_COUNTER(invalidate_iotlb);

3372 3373 3374 3375 3376 3377
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3378
	struct protection_domain *domain = to_pdomain(dom);
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3392 3393
	INC_STATS_COUNTER(invalidate_iotlb_all);

3394 3395 3396 3397 3398 3399
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3400
	struct protection_domain *domain = to_pdomain(dom);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3480
	struct protection_domain *domain = to_pdomain(dom);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3494
	struct protection_domain *domain = to_pdomain(dom);
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3505 3506 3507 3508 3509 3510 3511 3512

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3513 3514
	INC_STATS_COUNTER(complete_ppr);

3515 3516 3517 3518 3519 3520 3521 3522 3523
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3524 3525 3526

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3527
	struct protection_domain *pdomain;
3528

3529 3530
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3531 3532 3533
		return NULL;

	/* Only return IOMMUv2 domains */
3534
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3535 3536
		return NULL;

3537
	return &pdomain->domain;
3538 3539
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3619 3620 3621 3622 3623
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3686 3687 3688
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3689 3690 3691 3692 3693 3694 3695
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3696
		table = NULL;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3714
		set_dte_irq_entry(alias, table);
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3727
static int alloc_irq_index(u16 devid, int count)
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3811
static int get_devid(struct irq_alloc_info *info)
3812
{
3813
	int devid = -1;
3814

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3830

3831 3832
	return devid;
}
3833

3834 3835 3836 3837
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3838

3839 3840
	if (!info)
		return NULL;
3841

3842 3843 3844 3845 3846 3847
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3848

3849
	return NULL;
3850 3851
}

3852
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3853
{
3854 3855
	struct amd_iommu *iommu;
	int devid;
3856

3857 3858
	if (!info)
		return NULL;
3859

3860 3861 3862 3863
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3864 3865 3866
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3867 3868 3869 3870
		break;
	default:
		break;
	}
3871

3872 3873
	return NULL;
}
3874

3875 3876 3877 3878 3879 3880
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3881 3882 3883
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3884

3885 3886 3887 3888 3889 3890 3891 3892 3893
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3894

3895 3896
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3897

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3920

3921 3922 3923 3924 3925 3926 3927
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3928

3929 3930 3931 3932
	default:
		BUG_ON(1);
		break;
	}
3933 3934
}

3935 3936
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3937
{
3938 3939 3940
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3941
	struct irq_cfg *cfg;
3942 3943
	int i, ret, devid;
	int index = -1;
3944

3945 3946 3947 3948
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3949 3950
		return -EINVAL;

3951 3952 3953 3954 3955 3956
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3957

3958 3959 3960
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3961

3962 3963 3964
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3965

3966 3967 3968 3969 3970 3971
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3972
		index = alloc_irq_index(devid, nr_irqs);
3973 3974 3975 3976 3977
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3978

3979 3980 3981 3982 3983 3984 3985
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3986

3987 3988 3989 3990 3991
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3992 3993 3994 3995 3996 3997
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3998

3999
	return 0;
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4012 4013
}

4014 4015
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4016
{
4017 4018 4019 4020
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4021

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4033

4034 4035 4036 4037 4038
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4039

4040
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4041 4042
}

4043 4044
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4045
{
4046 4047 4048
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4049

4050 4051 4052
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4053

4054 4055 4056 4057 4058
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4059
};
4060

4061 4062 4063 4064 4065 4066 4067 4068
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4069

4070 4071 4072
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4073

4074 4075 4076 4077 4078 4079 4080
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4081

4082 4083 4084 4085 4086
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4087
	send_cleanup_vector(cfg);
4088 4089

	return IRQ_SET_MASK_OK_DONE;
4090 4091
}

4092
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4093
{
4094
	struct amd_ir_data *ir_data = irq_data->chip_data;
4095

4096 4097
	*msg = ir_data->msi_entry;
}
4098

4099 4100 4101 4102 4103
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4104

4105 4106 4107 4108 4109
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4110

4111 4112
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4113 4114 4115

	return 0;
}
4116
#endif