amd_iommu.c 97.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84
static const struct iommu_ops amd_iommu_ops;
85

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93 94 95 96
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
97
	struct list_head alias_list;      /* Link alias-groups together */
98 99 100 101 102 103 104 105 106 107 108 109 110 111
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

112 113 114
/*
 * general struct to manage commands send to an IOMMU
 */
115
struct iommu_cmd {
116 117 118
	u32 data[4];
};

119 120
struct kmem_cache *amd_iommu_irq_cache;

121
static void update_domain(struct protection_domain *domain);
122
static int __init alloc_passthrough_domain(void);
123

124 125 126 127 128 129
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

130
static struct iommu_dev_data *alloc_dev_data(u16 devid)
131 132 133 134 135 136 137 138
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

139 140
	INIT_LIST_HEAD(&dev_data->alias_list);

141
	dev_data->devid = devid;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

192 193 194 195
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

196
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
197 198
}

199 200 201 202 203
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

204 205 206 207
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
208 209
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
210 211 212 213 214 215 216 217 218 219 220 221
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

222 223 224 225 226 227 228 229 230
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

259 260 261 262 263 264 265 266 267 268 269
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

270 271
	/* No PCI device */
	if (!dev_is_pci(dev))
272 273 274 275 276 277 278 279 280 281 282 283 284 285
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

286
static void init_iommu_group(struct device *dev)
287 288 289
{
	struct iommu_group *group;

290
	group = iommu_group_get_for_dev(dev);
291 292
	if (!IS_ERR(group))
		iommu_group_put(group);
293 294
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

357 358 359 360 361 362 363 364 365 366 367 368 369
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

370 371
	alias = get_alias(dev);

372 373 374 375 376 377 378 379 380 381 382 383
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

384 385
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
386
	}
387

388 389 390 391 392 393 394
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

395 396
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
397 398 399
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

400 401 402
	return 0;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

417 418
static void iommu_uninit_device(struct device *dev)
{
419 420 421 422 423
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
424 425 426
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

427 428
	iommu_group_remove_device(dev);

429 430 431
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

432
	/*
433 434
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
435
	 */
436
}
J
Joerg Roedel 已提交
437 438 439

void __init amd_iommu_uninit_devices(void)
{
440
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
441 442 443 444 445 446 447 448 449
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
450 451 452 453

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
467 468 469
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
470 471 472
			goto out_free;
	}

473 474 475 476 477 478 479 480 481
	/*
	 * Initialize IOMMU groups only after iommu_init_device() has
	 * had a chance to populate any IVRS defined aliases.
	 */
	for_each_pci_dev(pdev) {
		if (check_device(&pdev->dev))
			init_iommu_group(&pdev->dev);
	}

J
Joerg Roedel 已提交
482 483 484 485 486 487 488 489
	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
490 491 492 493 494 495
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

496
DECLARE_STATS_COUNTER(compl_wait);
497
DECLARE_STATS_COUNTER(cnt_map_single);
498
DECLARE_STATS_COUNTER(cnt_unmap_single);
499
DECLARE_STATS_COUNTER(cnt_map_sg);
500
DECLARE_STATS_COUNTER(cnt_unmap_sg);
501
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
502
DECLARE_STATS_COUNTER(cnt_free_coherent);
503
DECLARE_STATS_COUNTER(cross_page);
504
DECLARE_STATS_COUNTER(domain_flush_single);
505
DECLARE_STATS_COUNTER(domain_flush_all);
506
DECLARE_STATS_COUNTER(alloced_io_mem);
507
DECLARE_STATS_COUNTER(total_map_requests);
508 509 510 511 512
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
532
					 &amd_iommu_unmap_flush);
533 534

	amd_iommu_stats_add(&compl_wait);
535
	amd_iommu_stats_add(&cnt_map_single);
536
	amd_iommu_stats_add(&cnt_unmap_single);
537
	amd_iommu_stats_add(&cnt_map_sg);
538
	amd_iommu_stats_add(&cnt_unmap_sg);
539
	amd_iommu_stats_add(&cnt_alloc_coherent);
540
	amd_iommu_stats_add(&cnt_free_coherent);
541
	amd_iommu_stats_add(&cross_page);
542
	amd_iommu_stats_add(&domain_flush_single);
543
	amd_iommu_stats_add(&domain_flush_all);
544
	amd_iommu_stats_add(&alloced_io_mem);
545
	amd_iommu_stats_add(&total_map_requests);
546 547 548 549
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
550 551 552 553
}

#endif

554 555 556 557 558 559
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

560 561 562 563
static void dump_dte_entry(u16 devid)
{
	int i;

564 565
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
566 567 568
			amd_iommu_dev_table[devid].data[i]);
}

569 570 571 572 573 574 575 576 577
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

578
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
579
{
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
601

602
	printk(KERN_ERR "AMD-Vi: Event logged [");
603 604 605 606 607

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
608
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
609
		       address, flags);
610
		dump_dte_entry(devid);
611 612 613 614
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
615
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 617 618 619 620
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
621
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 623 624 625 626
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
627
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 629 630 631
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
632
		dump_command(address);
633 634 635 636 637 638 639 640
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
641
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
642 643 644 645 646
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
647
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 649 650 651 652
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
653 654

	memset(__evt, 0, 4 * sizeof(u32));
655 656 657 658 659 660 661 662 663 664
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
665
		iommu_print_event(iommu, iommu->evt_buf + head);
666 667 668 669 670 671
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

672
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
673 674 675
{
	struct amd_iommu_fault fault;

676 677
	INC_STATS_COUNTER(pri_requests);

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
719

720 721 722
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
723

724 725 726 727 728 729 730
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
731 732
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
733 734 735 736 737 738

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

743
irqreturn_t amd_iommu_int_thread(int irq, void *data)
744
{
745 746
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
747

748 749 750 751
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
752

753 754 755 756
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
757

758 759 760 761
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
778
	return IRQ_HANDLED;
779 780
}

781 782 783 784 785
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

786 787 788 789 790 791
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
812 813 814
{
	u8 *target;

815
	target = iommu->cmd_buf + tail;
816 817 818 819 820 821
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
822
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
823
}
824

825
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
826
{
827 828
	WARN_ON(address & 0x7ULL);

829
	memset(cmd, 0, sizeof(*cmd));
830 831 832
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
833 834 835
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

836 837 838 839 840 841 842
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

843 844 845 846
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
847
	bool s;
848 849

	pages = iommu_num_pages(address, size, PAGE_SIZE);
850
	s     = false;
851 852 853 854 855 856 857

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
858
		s = true;
859 860 861 862 863 864 865 866 867 868 869
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
870
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
871 872 873
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

874 875 876 877
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
878
	bool s;
879 880

	pages = iommu_num_pages(address, size, PAGE_SIZE);
881
	s     = false;
882 883 884 885 886 887 888

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
889
		s = true;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

905 906 907 908 909 910 911
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

912
	cmd->data[0]  = pasid;
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
931
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
932 933
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
934
	cmd->data[1] |= (pasid & 0xff) << 16;
935 936 937 938 939 940 941 942
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

943 944 945 946 947 948 949
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
950
		cmd->data[1]  = pasid;
951 952 953 954 955 956 957 958
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

959 960 961 962
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
963 964
}

965 966 967 968 969 970 971
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

972 973
/*
 * Writes the command to the IOMMUs command buffer and informs the
974
 * hardware about the new command.
975
 */
976 977 978
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
979
{
980
	u32 left, tail, head, next_tail;
981 982
	unsigned long flags;

983
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
984 985

again:
986 987
	spin_lock_irqsave(&iommu->lock, flags);

988 989 990 991
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
992

993 994 995 996
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
997

998 999
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1000

1001 1002 1003 1004 1005 1006
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1007 1008
	}

1009 1010 1011
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1012
	iommu->need_sync = sync;
1013

1014
	spin_unlock_irqrestore(&iommu->lock, flags);
1015

1016
	return 0;
1017 1018
}

1019 1020 1021 1022 1023
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1024 1025 1026 1027
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1028
static int iommu_completion_wait(struct amd_iommu *iommu)
1029 1030
{
	struct iommu_cmd cmd;
1031
	volatile u64 sem = 0;
1032
	int ret;
1033

1034
	if (!iommu->need_sync)
1035
		return 0;
1036

1037
	build_completion_wait(&cmd, (u64)&sem);
1038

1039
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1040
	if (ret)
1041
		return ret;
1042

1043
	return wait_on_sem(&sem);
1044 1045
}

1046
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1047
{
1048
	struct iommu_cmd cmd;
1049

1050
	build_inv_dte(&cmd, devid);
1051

1052 1053
	return iommu_queue_command(iommu, &cmd);
}
1054

1055 1056 1057
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1058

1059 1060
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1061

1062 1063
	iommu_completion_wait(iommu);
}
1064

1065 1066 1067 1068 1069 1070 1071
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1072

1073 1074 1075 1076 1077 1078
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1079

1080
	iommu_completion_wait(iommu);
1081 1082
}

1083
static void iommu_flush_all(struct amd_iommu *iommu)
1084
{
1085
	struct iommu_cmd cmd;
1086

1087
	build_inv_all(&cmd);
1088

1089 1090 1091 1092
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1112 1113
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1114 1115 1116 1117
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1118
		iommu_flush_irt_all(iommu);
1119
		iommu_flush_tlb_all(iommu);
1120 1121 1122
	}
}

1123
/*
1124
 * Command send function for flushing on-device TLB
1125
 */
1126 1127
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1128 1129
{
	struct amd_iommu *iommu;
1130
	struct iommu_cmd cmd;
1131
	int qdep;
1132

1133 1134
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1135

1136
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1137 1138

	return iommu_queue_command(iommu, &cmd);
1139 1140
}

1141 1142 1143
/*
 * Command send function for invalidating a device table entry
 */
1144
static int device_flush_dte(struct iommu_dev_data *dev_data)
1145
{
1146
	struct amd_iommu *iommu;
1147
	int ret;
1148

1149
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1150

1151
	ret = iommu_flush_dte(iommu, dev_data->devid);
1152 1153 1154
	if (ret)
		return ret;

1155
	if (dev_data->ats.enabled)
1156
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1157 1158

	return ret;
1159 1160
}

1161 1162 1163 1164 1165
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1166 1167
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1168
{
1169
	struct iommu_dev_data *dev_data;
1170 1171
	struct iommu_cmd cmd;
	int ret = 0, i;
1172

1173
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1174

1175 1176 1177 1178 1179 1180 1181 1182
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1183
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1184 1185
	}

1186 1187
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1188
		if (!dev_data->ats.enabled)
1189 1190
			continue;

1191
		ret |= device_flush_iotlb(dev_data, address, size);
1192 1193
	}

1194
	WARN_ON(ret);
1195 1196
}

1197 1198
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1199
{
1200
	__domain_flush_pages(domain, address, size, 0);
1201
}
1202

1203
/* Flush the whole IO/TLB for a given protection domain */
1204
static void domain_flush_tlb(struct protection_domain *domain)
1205
{
1206
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1207 1208
}

1209
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1210
static void domain_flush_tlb_pde(struct protection_domain *domain)
1211
{
1212
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1213 1214
}

1215
static void domain_flush_complete(struct protection_domain *domain)
1216
{
1217
	int i;
1218

1219 1220 1221
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1222

1223 1224 1225 1226 1227
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1228
	}
1229 1230
}

1231

1232
/*
1233
 * This function flushes the DTEs for all devices in domain
1234
 */
1235
static void domain_flush_devices(struct protection_domain *domain)
1236
{
1237
	struct iommu_dev_data *dev_data;
1238

1239
	list_for_each_entry(dev_data, &domain->dev_list, list)
1240
		device_flush_dte(dev_data);
1241 1242
}

1243 1244 1245 1246 1247 1248 1249
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1279
		      unsigned long page_size,
1280 1281 1282
		      u64 **pte_page,
		      gfp_t gfp)
{
1283
	int level, end_lvl;
1284
	u64 *pte, *page;
1285 1286

	BUG_ON(!is_power_of_2(page_size));
1287 1288 1289 1290

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1291 1292 1293 1294
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1295 1296 1297 1298 1299 1300 1301 1302 1303

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1304 1305 1306 1307
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1325 1326 1327
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1328 1329 1330 1331
{
	int level;
	u64 *pte;

1332 1333 1334
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1335 1336 1337
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1338

1339 1340 1341
	while (level > 0) {

		/* Not Present */
1342 1343 1344
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1345
		/* Large PTE */
1346 1347 1348
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1349 1350 1351 1352 1353

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1354 1355
		level -= 1;

1356
		/* Walk to the next level */
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1372 1373 1374 1375 1376
	}

	return pte;
}

1377 1378 1379 1380 1381 1382 1383
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1384 1385 1386
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1387
			  int prot,
1388
			  unsigned long page_size)
1389
{
1390
	u64 __pte, *pte;
1391
	int i, count;
1392

1393
	if (!(prot & IOMMU_PROT_MASK))
1394 1395
		return -EINVAL;

1396 1397 1398 1399 1400
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

1401 1402 1403
	if (!pte)
		return -ENOMEM;

1404 1405 1406
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1407

1408 1409 1410 1411 1412
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1413 1414 1415 1416 1417 1418

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1419 1420
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1421

1422 1423
	update_domain(dom);

1424 1425 1426
	return 0;
}

1427 1428 1429
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1430
{
1431
	unsigned long long unmap_size, unmapped;
1432
	unsigned long pte_pgsize;
1433 1434 1435 1436 1437
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1438

1439 1440
	while (unmapped < page_size) {

1441
		pte = fetch_pte(dom, bus_addr, &pte_pgsize);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
1458 1459 1460 1461

			/* Only unmap from the first pte in the page */
			if ((unmap_size - 1) & bus_addr)
				break;
1462 1463 1464 1465 1466 1467 1468 1469 1470
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1471
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1472

1473
	return unmapped;
1474 1475
}

1476 1477 1478 1479
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1494 1495 1496 1497
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1498 1499 1500 1501 1502 1503 1504 1505
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1506
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1507
				     PAGE_SIZE);
1508 1509 1510 1511 1512 1513 1514
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1515
			__set_bit(addr >> PAGE_SHIFT,
1516
				  dma_dom->aperture[0]->bitmap);
1517 1518 1519 1520 1521
	}

	return 0;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1544 1545 1546
/*
 * Inits the unity mappings required for a specific device
 */
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1564 1565 1566 1567 1568 1569 1570 1571 1572
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1573

1574
/*
1575
 * The address allocator core functions.
1576 1577 1578
 *
 * called with domain->lock held
 */
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1600 1601 1602 1603 1604
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1605
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1606 1607 1608
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1609
	struct amd_iommu *iommu;
1610
	unsigned long i, old_size;
1611

1612 1613 1614 1615
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1635
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1646
	old_size                = dma_dom->aperture_size;
1647 1648
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1661
	/* Initialize the exclusion range if necessary */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1684 1685
		unsigned long pte_pgsize;
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1686 1687 1688
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1689
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1690 1691
	}

1692 1693
	update_domain(&dma_dom->domain);

1694 1695 1696
	return 0;

out_free:
1697 1698
	update_domain(&dma_dom->domain);

1699 1700 1701 1702 1703 1704 1705 1706
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1707 1708 1709 1710 1711 1712 1713
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1714
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1715 1716 1717 1718 1719 1720
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1721 1722
	next_bit >>= PAGE_SHIFT;

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1741
			dom->next_address = address + (pages << PAGE_SHIFT);
1742 1743 1744 1745 1746 1747 1748 1749 1750
			break;
		}

		next_bit = 0;
	}

	return address;
}

1751 1752
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1753
					     unsigned int pages,
1754 1755
					     unsigned long align_mask,
					     u64 dma_mask)
1756 1757 1758
{
	unsigned long address;

1759 1760 1761 1762
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1763

1764
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1765
				     dma_mask, dom->next_address);
1766

1767
	if (address == -1) {
1768
		dom->next_address = 0;
1769 1770
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1771 1772
		dom->need_flush = true;
	}
1773

1774
	if (unlikely(address == -1))
1775
		address = DMA_ERROR_CODE;
1776 1777 1778 1779 1780 1781

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1782 1783 1784 1785 1786
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1787 1788 1789 1790
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1791 1792
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1793

1794 1795
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1796 1797 1798 1799
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1800

1801
	if (address >= dom->next_address)
1802
		dom->need_flush = true;
1803 1804

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1805

A
Akinobu Mita 已提交
1806
	bitmap_clear(range->bitmap, address, pages);
1807

1808 1809
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1897
static void free_pagetable(struct protection_domain *domain)
1898
{
1899
	unsigned long root = (unsigned long)domain->pt_root;
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1924 1925 1926
	}
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1957 1958
static void free_gcr3_table(struct protection_domain *domain)
{
1959 1960 1961 1962 1963 1964 1965
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1966 1967 1968
	free_page((unsigned long)domain->gcr3_tbl);
}

1969 1970 1971 1972
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1973 1974
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1975 1976
	int i;

1977 1978 1979
	if (!dom)
		return;

1980 1981
	del_domain_from_list(&dom->domain);

1982
	free_pagetable(&dom->domain);
1983

1984 1985 1986 1987 1988 1989
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1990 1991 1992 1993

	kfree(dom);
}

1994 1995
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1996
 * It also initializes the page table and the address allocator data
1997 1998
 * structures required for the dma_ops interface
 */
1999
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2012
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2013
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2014
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2015
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2016 2017 2018 2019
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2020
	dma_dom->need_flush = false;
2021
	dma_dom->target_dev = 0xffff;
2022

2023 2024
	add_domain_to_list(&dma_dom->domain);

2025
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2026 2027
		goto free_dma_dom;

2028
	/*
2029 2030
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2031
	 */
2032
	dma_dom->aperture[0]->bitmap[0] = 1;
2033
	dma_dom->next_address = 0;
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2044 2045 2046 2047 2048 2049 2050 2051 2052
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2053
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2054
{
2055
	u64 pte_root = 0;
2056
	u64 flags = 0;
2057

2058 2059 2060
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2061 2062 2063
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2064

2065 2066
	flags = amd_iommu_dev_table[devid].data[1];

2067 2068 2069
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2096 2097 2098 2099 2100
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2101 2102 2103 2104 2105 2106 2107 2108 2109
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2110 2111
}

2112 2113
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2114 2115
{
	struct amd_iommu *iommu;
2116
	bool ats;
2117

2118 2119
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2120 2121 2122 2123

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2124
	set_dte_entry(dev_data->devid, domain, ats);
2125 2126 2127 2128 2129 2130

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2131
	device_flush_dte(dev_data);
2132 2133
}

2134
static void do_detach(struct iommu_dev_data *dev_data)
2135 2136 2137
{
	struct amd_iommu *iommu;

2138
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2139 2140

	/* decrease reference counters */
2141 2142 2143 2144 2145 2146
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2147
	clear_dte_entry(dev_data->devid);
2148

2149
	/* Flush the DTE entry */
2150
	device_flush_dte(dev_data);
2151 2152 2153 2154 2155 2156
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2157
static int __attach_device(struct iommu_dev_data *dev_data,
2158
			   struct protection_domain *domain)
2159
{
2160
	struct iommu_dev_data *head, *entry;
2161
	int ret;
2162

2163 2164 2165
	/* lock domain */
	spin_lock(&domain->lock);

2166
	head = dev_data;
2167

2168 2169
	if (head->alias_data != NULL)
		head = head->alias_data;
2170

2171
	/* Now we have the root of the alias group, if any */
2172

2173 2174 2175
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2176

2177 2178
	/* Attach alias group root */
	do_attach(head, domain);
2179

2180 2181 2182
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2183

2184 2185 2186 2187
	ret = 0;

out_unlock:

2188 2189
	/* ready */
	spin_unlock(&domain->lock);
2190

2191
	return ret;
2192
}
2193

2194 2195 2196 2197 2198 2199 2200 2201

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2202 2203 2204 2205 2206 2207
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2208
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2209 2210 2211
	if (!pos)
		return -EINVAL;

2212 2213 2214
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2215 2216 2217 2218

	return 0;
}

2219 2220
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2221 2222 2223 2224 2225 2226 2227 2228
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2240 2241
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2242 2243 2244
	if (ret)
		goto out_err;

2245 2246 2247 2248 2249 2250
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2264
/* FIXME: Move this to PCI code */
2265
#define PCI_PRI_TLP_OFF		(1 << 15)
2266

J
Joerg Roedel 已提交
2267
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2268
{
2269
	u16 status;
2270 2271
	int pos;

2272
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2273 2274 2275
	if (!pos)
		return false;

2276
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2277

2278
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2279 2280
}

2281
/*
F
Frank Arnold 已提交
2282
 * If a device is not yet associated with a domain, this function
2283 2284
 * assigns it visible for the hardware
 */
2285 2286
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2287
{
2288
	struct pci_dev *pdev = to_pci_dev(dev);
2289
	struct iommu_dev_data *dev_data;
2290
	unsigned long flags;
2291
	int ret;
2292

2293 2294
	dev_data = get_dev_data(dev);

2295 2296 2297 2298 2299 2300 2301 2302 2303
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2304
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2305 2306
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2307 2308 2309
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2310

2311
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2312
	ret = __attach_device(dev_data, domain);
2313 2314
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2315 2316 2317 2318 2319
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2320
	domain_flush_tlb_pde(domain);
2321 2322

	return ret;
2323 2324
}

2325 2326 2327
/*
 * Removes a device from a protection domain (unlocked)
 */
2328
static void __detach_device(struct iommu_dev_data *dev_data)
2329
{
2330
	struct iommu_dev_data *head, *entry;
2331
	struct protection_domain *domain;
2332
	unsigned long flags;
2333

2334
	BUG_ON(!dev_data->domain);
2335

2336 2337 2338
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2339

2340 2341 2342
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2343

2344 2345
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2346

2347
	do_detach(head);
2348

2349
	spin_unlock_irqrestore(&domain->lock, flags);
2350 2351 2352

	/*
	 * If we run in passthrough mode the device must be assigned to the
2353 2354
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2355
	 */
2356
	if (dev_data->passthrough &&
2357
	    (dev_data->domain == NULL && domain != pt_domain))
2358
		__attach_device(dev_data, pt_domain);
2359 2360 2361 2362 2363
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2364
static void detach_device(struct device *dev)
2365
{
2366
	struct protection_domain *domain;
2367
	struct iommu_dev_data *dev_data;
2368 2369
	unsigned long flags;

2370
	dev_data = get_dev_data(dev);
2371
	domain   = dev_data->domain;
2372

2373 2374
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2375
	__detach_device(dev_data);
2376
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2377

2378 2379 2380
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2381
		pci_disable_ats(to_pci_dev(dev));
2382 2383

	dev_data->ats.enabled = false;
2384
}
2385

2386 2387 2388 2389 2390 2391
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2392
	struct iommu_dev_data *dev_data;
2393
	struct protection_domain *dom = NULL;
2394 2395
	unsigned long flags;

2396
	dev_data   = get_dev_data(dev);
2397

2398 2399
	if (dev_data->domain)
		return dev_data->domain;
2400

2401 2402
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2403 2404 2405 2406 2407 2408 2409 2410

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2411 2412 2413 2414

	return dom;
}

2415 2416 2417 2418
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2419 2420 2421
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2422
	struct amd_iommu *iommu;
2423
	unsigned long flags;
2424
	u16 devid;
2425

2426 2427
	if (!check_device(dev))
		return 0;
2428

2429 2430 2431
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2432 2433

	switch (action) {
2434
	case BUS_NOTIFY_ADD_DEVICE:
2435 2436

		iommu_init_device(dev);
2437
		init_iommu_group(dev);
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2451 2452
		domain = domain_for_device(dev);

2453 2454
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2465

2466
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2467

2468
		break;
2469
	case BUS_NOTIFY_REMOVED_DEVICE:
2470 2471 2472

		iommu_uninit_device(dev);

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2483
static struct notifier_block device_nb = {
2484 2485
	.notifier_call = device_change_notifier,
};
2486

2487 2488 2489 2490 2491
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2505
static struct protection_domain *get_domain(struct device *dev)
2506
{
2507
	struct protection_domain *domain;
2508
	struct dma_ops_domain *dma_dom;
2509
	u16 devid = get_device_id(dev);
2510

2511
	if (!check_device(dev))
2512
		return ERR_PTR(-EINVAL);
2513

2514 2515 2516
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2517

2518 2519
	if (domain != NULL)
		return domain;
2520

F
Frank Arnold 已提交
2521
	/* Device not bound yet - bind it */
2522
	dma_dom = find_protection_domain(devid);
2523
	if (!dma_dom)
2524 2525
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2526
	DUMP_printk("Using protection domain %d for device %s\n",
2527
		    dma_dom->domain.id, dev_name(dev));
2528

2529
	return &dma_dom->domain;
2530 2531
}

2532 2533
static void update_device_table(struct protection_domain *domain)
{
2534
	struct iommu_dev_data *dev_data;
2535

2536 2537
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2538 2539 2540 2541 2542 2543 2544 2545
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2546 2547 2548

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2549 2550 2551 2552

	domain->updated = false;
}

2553 2554 2555 2556 2557 2558
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2559
	struct aperture_range *aperture;
2560 2561
	u64 *pte, *pte_page;

2562 2563 2564 2565 2566
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2567
	if (!pte) {
2568
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2569
				GFP_ATOMIC);
2570 2571
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2572
		pte += PM_LEVEL_INDEX(0, address);
2573

2574
	update_domain(&dom->domain);
2575 2576 2577 2578

	return pte;
}

2579 2580 2581 2582
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2583
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2594
	pte  = dma_ops_get_pte(dom, address);
2595
	if (!pte)
2596
		return DMA_ERROR_CODE;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2614 2615 2616
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2617
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2618 2619
				 unsigned long address)
{
2620
	struct aperture_range *aperture;
2621 2622 2623 2624 2625
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2626 2627 2628 2629 2630 2631 2632
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2633

2634
	pte += PM_LEVEL_INDEX(0, address);
2635 2636 2637 2638 2639 2640

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2641 2642
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2643 2644
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2645 2646
 * Must be called with the domain lock held.
 */
2647 2648 2649 2650
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2651
			       int dir,
2652 2653
			       bool align,
			       u64 dma_mask)
2654 2655
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2656
	dma_addr_t address, start, ret;
2657
	unsigned int pages;
2658
	unsigned long align_mask = 0;
2659 2660
	int i;

2661
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2662 2663
	paddr &= PAGE_MASK;

2664 2665
	INC_STATS_COUNTER(total_map_requests);

2666 2667 2668
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2669 2670 2671
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2672
retry:
2673 2674
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2675
	if (unlikely(address == DMA_ERROR_CODE)) {
2676 2677 2678 2679 2680 2681 2682
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2683
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2684 2685 2686
			goto out;

		/*
2687
		 * aperture was successfully enlarged by 128 MB, try
2688 2689 2690 2691
		 * allocation again
		 */
		goto retry;
	}
2692 2693 2694

	start = address;
	for (i = 0; i < pages; ++i) {
2695
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2696
		if (ret == DMA_ERROR_CODE)
2697 2698
			goto out_unmap;

2699 2700 2701 2702 2703
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2704 2705
	ADD_STATS_COUNTER(alloced_io_mem, size);

2706
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2707
		domain_flush_tlb(&dma_dom->domain);
2708
		dma_dom->need_flush = false;
2709
	} else if (unlikely(amd_iommu_np_cache))
2710
		domain_flush_pages(&dma_dom->domain, address, size);
2711

2712 2713
out:
	return address;
2714 2715 2716 2717 2718

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2719
		dma_ops_domain_unmap(dma_dom, start);
2720 2721 2722 2723
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2724
	return DMA_ERROR_CODE;
2725 2726
}

2727 2728 2729 2730
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2731
static void __unmap_single(struct dma_ops_domain *dma_dom,
2732 2733 2734 2735
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2736
	dma_addr_t flush_addr;
2737 2738 2739
	dma_addr_t i, start;
	unsigned int pages;

2740
	if ((dma_addr == DMA_ERROR_CODE) ||
2741
	    (dma_addr + size > dma_dom->aperture_size))
2742 2743
		return;

2744
	flush_addr = dma_addr;
2745
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2746 2747 2748 2749
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2750
		dma_ops_domain_unmap(dma_dom, start);
2751 2752 2753
		start += PAGE_SIZE;
	}

2754 2755
	SUB_STATS_COUNTER(alloced_io_mem, size);

2756
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2757

2758
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2759
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2760 2761
		dma_dom->need_flush = false;
	}
2762 2763
}

2764 2765 2766
/*
 * The exported map_single function for dma_ops.
 */
2767 2768 2769 2770
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2771 2772 2773 2774
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2775
	u64 dma_mask;
2776
	phys_addr_t paddr = page_to_phys(page) + offset;
2777

2778 2779
	INC_STATS_COUNTER(cnt_map_single);

2780 2781
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2782
		return (dma_addr_t)paddr;
2783 2784
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2785

2786 2787
	dma_mask = *dev->dma_mask;

2788
	spin_lock_irqsave(&domain->lock, flags);
2789

2790
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2791
			    dma_mask);
2792
	if (addr == DMA_ERROR_CODE)
2793 2794
		goto out;

2795
	domain_flush_complete(domain);
2796 2797 2798 2799 2800 2801 2802

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2803 2804 2805
/*
 * The exported unmap_single function for dma_ops.
 */
2806 2807
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2808 2809 2810 2811
{
	unsigned long flags;
	struct protection_domain *domain;

2812 2813
	INC_STATS_COUNTER(cnt_unmap_single);

2814 2815
	domain = get_domain(dev);
	if (IS_ERR(domain))
2816 2817
		return;

2818 2819
	spin_lock_irqsave(&domain->lock, flags);

2820
	__unmap_single(domain->priv, dma_addr, size, dir);
2821

2822
	domain_flush_complete(domain);
2823 2824 2825 2826

	spin_unlock_irqrestore(&domain->lock, flags);
}

2827 2828 2829 2830
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2831
static int map_sg(struct device *dev, struct scatterlist *sglist,
2832 2833
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2834 2835 2836 2837 2838 2839 2840
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2841
	u64 dma_mask;
2842

2843 2844
	INC_STATS_COUNTER(cnt_map_sg);

2845
	domain = get_domain(dev);
2846
	if (IS_ERR(domain))
2847
		return 0;
2848

2849
	dma_mask = *dev->dma_mask;
2850 2851 2852 2853 2854 2855

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2856
		s->dma_address = __map_single(dev, domain->priv,
2857 2858
					      paddr, s->length, dir, false,
					      dma_mask);
2859 2860 2861 2862 2863 2864 2865 2866

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2867
	domain_flush_complete(domain);
2868 2869 2870 2871 2872 2873 2874 2875

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2876
			__unmap_single(domain->priv, s->dma_address,
2877 2878 2879 2880 2881 2882 2883 2884 2885
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2886 2887 2888 2889
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2890
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2891 2892
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2893 2894 2895 2896 2897 2898
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2899 2900
	INC_STATS_COUNTER(cnt_unmap_sg);

2901 2902
	domain = get_domain(dev);
	if (IS_ERR(domain))
2903 2904
		return;

2905 2906 2907
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2908
		__unmap_single(domain->priv, s->dma_address,
2909 2910 2911 2912
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2913
	domain_flush_complete(domain);
2914 2915 2916 2917

	spin_unlock_irqrestore(&domain->lock, flags);
}

2918 2919 2920
/*
 * The exported alloc_coherent function for dma_ops.
 */
2921
static void *alloc_coherent(struct device *dev, size_t size,
2922 2923
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2924
{
2925
	u64 dma_mask = dev->coherent_dma_mask;
2926 2927 2928
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2929

2930 2931
	INC_STATS_COUNTER(cnt_alloc_coherent);

2932 2933
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2934 2935 2936
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2937 2938
	} else if (IS_ERR(domain))
		return NULL;
2939

2940
	size	  = PAGE_ALIGN(size);
2941 2942
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2943

2944 2945 2946 2947
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2948

2949 2950 2951 2952 2953
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2954

2955 2956 2957
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2958 2959
	spin_lock_irqsave(&domain->lock, flags);

2960
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2961
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2962

2963
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2964
		spin_unlock_irqrestore(&domain->lock, flags);
2965
		goto out_free;
J
Jiri Slaby 已提交
2966
	}
2967

2968
	domain_flush_complete(domain);
2969 2970 2971

	spin_unlock_irqrestore(&domain->lock, flags);

2972
	return page_address(page);
2973 2974 2975

out_free:

2976 2977
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2978 2979

	return NULL;
2980 2981
}

2982 2983 2984
/*
 * The exported free_coherent function for dma_ops.
 */
2985
static void free_coherent(struct device *dev, size_t size,
2986 2987
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2988 2989
{
	struct protection_domain *domain;
2990 2991
	unsigned long flags;
	struct page *page;
2992

2993 2994
	INC_STATS_COUNTER(cnt_free_coherent);

2995 2996 2997
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2998 2999
	domain = get_domain(dev);
	if (IS_ERR(domain))
3000 3001
		goto free_mem;

3002 3003
	spin_lock_irqsave(&domain->lock, flags);

3004
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3005

3006
	domain_flush_complete(domain);
3007 3008 3009 3010

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
3011 3012
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
3013 3014
}

3015 3016 3017 3018 3019 3020
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3021
	return check_device(dev);
3022 3023
}

3024
/*
3025 3026
 * The function for pre-allocating protection domains.
 *
3027 3028 3029 3030
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3031
static void __init prealloc_protection_domains(void)
3032
{
3033
	struct iommu_dev_data *dev_data;
3034
	struct dma_ops_domain *dma_dom;
3035
	struct pci_dev *dev = NULL;
3036
	u16 devid;
3037

3038
	for_each_pci_dev(dev) {
3039 3040 3041

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3042
			continue;
3043

3044 3045 3046 3047 3048 3049
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3050
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3051 3052 3053
				dev_name(&dev->dev));
		}

3054
		/* Is there already any domain for it? */
3055
		if (domain_for_device(&dev->dev))
3056
			continue;
3057 3058 3059

		devid = get_device_id(&dev->dev);

3060
		dma_dom = dma_ops_domain_alloc();
3061 3062 3063
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3064 3065
		dma_dom->target_dev = devid;

3066
		attach_device(&dev->dev, &dma_dom->domain);
3067

3068
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3069 3070 3071
	}
}

3072
static struct dma_map_ops amd_iommu_dma_ops = {
3073 3074
	.alloc = alloc_coherent,
	.free = free_coherent,
3075 3076
	.map_page = map_page,
	.unmap_page = unmap_page,
3077 3078
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3079
	.dma_supported = amd_iommu_dma_supported,
3080 3081
};

3082 3083
static unsigned device_dma_ops_init(void)
{
3084
	struct iommu_dev_data *dev_data;
3085 3086 3087 3088 3089
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3090 3091 3092

			iommu_ignore_device(&pdev->dev);

3093 3094 3095 3096
			unhandled += 1;
			continue;
		}

3097 3098 3099 3100 3101 3102
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3103 3104 3105 3106 3107
	}

	return unhandled;
}

3108 3109 3110
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3111 3112 3113

void __init amd_iommu_init_api(void)
{
3114
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3115 3116
}

3117 3118 3119
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3120
	int ret, unhandled;
3121

3122 3123 3124 3125 3126
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3127
	for_each_iommu(iommu) {
3128
		iommu->default_dom = dma_ops_domain_alloc();
3129 3130
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3131
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3132 3133 3134 3135 3136
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3137
	/*
3138
	 * Pre-allocate the protection domains for each device.
3139
	 */
3140
	prealloc_protection_domains();
3141 3142

	iommu_detected = 1;
3143
	swiotlb = 0;
3144

3145
	/* Make the driver finally visible to the drivers */
3146 3147 3148 3149 3150
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3151

3152 3153
	amd_iommu_stats_init();

3154 3155 3156 3157 3158
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3159 3160 3161 3162
	return 0;

free_domains:

3163
	for_each_iommu(iommu) {
3164
		dma_ops_domain_free(iommu->default_dom);
3165 3166 3167 3168
	}

	return ret;
}
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3182
	struct iommu_dev_data *entry;
3183 3184 3185 3186
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3187 3188 3189 3190
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3191
	}
3192 3193 3194 3195

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3196 3197 3198 3199 3200
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3201 3202
	del_domain_from_list(domain);

3203 3204 3205 3206 3207 3208 3209
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3210 3211 3212 3213 3214
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3215
		return NULL;
3216 3217

	spin_lock_init(&domain->lock);
3218
	mutex_init(&domain->api_lock);
3219 3220
	domain->id = domain_id_alloc();
	if (!domain->id)
3221
		goto out_err;
3222
	INIT_LIST_HEAD(&domain->dev_list);
3223

3224 3225
	add_domain_to_list(domain);

3226 3227 3228 3229 3230 3231 3232 3233
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3248 3249 3250 3251 3252 3253
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3254
		goto out_free;
3255 3256

	domain->mode    = PAGE_MODE_3_LEVEL;
3257 3258 3259 3260
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3261 3262
	domain->iommu_domain = dom;

3263 3264
	dom->priv = domain;

3265 3266 3267 3268
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3269 3270 3271
	return 0;

out_free:
3272
	protection_domain_free(domain);
3273 3274 3275 3276

	return -ENOMEM;
}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3289 3290
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3291

3292 3293 3294
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3295
	protection_domain_free(domain);
3296 3297 3298 3299

	dom->priv = NULL;
}

3300 3301 3302
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3303
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3304 3305 3306
	struct amd_iommu *iommu;
	u16 devid;

3307
	if (!check_device(dev))
3308 3309
		return;

3310
	devid = get_device_id(dev);
3311

3312
	if (dev_data->domain != NULL)
3313
		detach_device(dev);
3314 3315 3316 3317 3318 3319 3320 3321

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3322 3323 3324 3325
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3326
	struct iommu_dev_data *dev_data;
3327
	struct amd_iommu *iommu;
3328
	int ret;
3329

3330
	if (!check_device(dev))
3331 3332
		return -EINVAL;

3333 3334
	dev_data = dev->archdata.iommu;

3335
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3336 3337 3338
	if (!iommu)
		return -EINVAL;

3339
	if (dev_data->domain)
3340
		detach_device(dev);
3341

3342
	ret = attach_device(dev, domain);
3343 3344 3345

	iommu_completion_wait(iommu);

3346
	return ret;
3347 3348
}

3349
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3350
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3351 3352 3353 3354 3355
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3356 3357 3358
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3359 3360 3361 3362 3363
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3364
	mutex_lock(&domain->api_lock);
3365
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3366 3367
	mutex_unlock(&domain->api_lock);

3368
	return ret;
3369 3370
}

3371 3372
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3373 3374
{
	struct protection_domain *domain = dom->priv;
3375
	size_t unmap_size;
3376

3377 3378 3379
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3380
	mutex_lock(&domain->api_lock);
3381
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3382
	mutex_unlock(&domain->api_lock);
3383

3384
	domain_flush_tlb_pde(domain);
3385

3386
	return unmap_size;
3387 3388
}

3389
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3390
					  dma_addr_t iova)
3391 3392
{
	struct protection_domain *domain = dom->priv;
3393
	unsigned long offset_mask, pte_pgsize;
3394
	phys_addr_t paddr;
3395
	u64 *pte, __pte;
3396

3397 3398 3399
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3400
	pte = fetch_pte(domain, iova, &pte_pgsize);
3401

3402
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3403 3404
		return 0;

3405 3406 3407 3408 3409 3410 3411
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3412 3413 3414 3415

	return paddr;
}

3416
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3417
{
3418 3419
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3420
		return true;
3421
	case IOMMU_CAP_INTR_REMAP:
3422
		return (irq_remapping_enabled == 1);
3423 3424
	case IOMMU_CAP_NOEXEC:
		return false;
3425 3426
	}

3427
	return false;
S
Sheng Yang 已提交
3428 3429
}

3430
static const struct iommu_ops amd_iommu_ops = {
3431
	.capable = amd_iommu_capable,
3432 3433 3434 3435
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3436 3437
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3438
	.map_sg = default_iommu_map_sg,
3439
	.iova_to_phys = amd_iommu_iova_to_phys,
3440
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3441 3442
};

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3455
	struct iommu_dev_data *dev_data;
3456
	struct pci_dev *dev = NULL;
3457
	int ret;
3458

3459 3460 3461
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3462

3463
	for_each_pci_dev(dev) {
3464
		if (!check_device(&dev->dev))
3465 3466
			continue;

3467 3468 3469
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3470
		attach_device(&dev->dev, pt_domain);
3471 3472
	}

J
Joerg Roedel 已提交
3473 3474
	amd_iommu_stats_init();

3475 3476 3477 3478
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3620 3621
	INC_STATS_COUNTER(invalidate_iotlb);

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3642 3643
	INC_STATS_COUNTER(invalidate_iotlb_all);

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3755 3756 3757 3758 3759 3760 3761 3762

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3763 3764
	INC_STATS_COUNTER(complete_ppr);

3765 3766 3767 3768 3769 3770 3771 3772 3773
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3921 3922 3923
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3924 3925 3926 3927 3928 3929 3930
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3931
		table = NULL;
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3949
		set_dte_irq_entry(alias, table);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3984
			struct irq_2_irte *irte_info;
3985 3986 3987 3988 3989 3990

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3991
			cfg->remapped	      = 1;
3992 3993 3994
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4070 4071 4072 4073 4074
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4075
	struct irq_2_irte *irte_info;
4076 4077 4078 4079 4080 4081 4082
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4083
	cfg = irq_cfg(irq);
4084 4085 4086
	if (!cfg)
		return -EINVAL;

4087
	irte_info = &cfg->irq_2_irte;
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4101
	cfg->remapped	      = 1;
4102 4103
	irte_info->devid      = devid;
	irte_info->index      = index;
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4137
	struct irq_2_irte *irte_info;
4138 4139 4140 4141 4142 4143 4144 4145
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4146
	cfg       = irqd_cfg(data);
4147
	irq       = data->irq;
4148
	irte_info = &cfg->irq_2_irte;
4149 4150 4151 4152

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4153
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4169
	modify_irte(irte_info->devid, irte_info->index, irte);
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4181
	struct irq_2_irte *irte_info;
4182 4183
	struct irq_cfg *cfg;

4184
	cfg = irq_cfg(irq);
4185 4186 4187
	if (!cfg)
		return -EINVAL;

4188
	irte_info = &cfg->irq_2_irte;
4189

4190
	free_irte(irte_info->devid, irte_info->index);
4191 4192 4193 4194

	return 0;
}

4195 4196 4197 4198
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4199
	struct irq_2_irte *irte_info;
4200 4201 4202
	struct irq_cfg *cfg;
	union irte irte;

4203
	cfg = irq_cfg(irq);
4204 4205 4206
	if (!cfg)
		return;

4207
	irte_info = &cfg->irq_2_irte;
4208 4209 4210 4211 4212 4213 4214 4215

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4216
	modify_irte(irte_info->devid, irte_info->index, irte);
4217 4218 4219

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4220
	msg->data       = irte_info->index;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4232
	cfg = irq_cfg(irq);
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4245
	struct irq_2_irte *irte_info;
4246 4247 4248 4249 4250 4251
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4252
	cfg = irq_cfg(irq);
4253 4254 4255 4256 4257 4258 4259
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4260
	irte_info	= &cfg->irq_2_irte;
4261

4262
	cfg->remapped	      = 1;
4263 4264
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4265 4266 4267 4268

	return 0;
}

4269
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4270
{
4271
	struct irq_2_irte *irte_info;
4272 4273 4274
	struct irq_cfg *cfg;
	int index, devid;

4275
	cfg = irq_cfg(irq);
4276 4277 4278
	if (!cfg)
		return -EINVAL;

4279
	irte_info = &cfg->irq_2_irte;
4280 4281 4282 4283 4284 4285 4286 4287
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4288
	cfg->remapped	      = 1;
4289 4290
	irte_info->devid      = devid;
	irte_info->index      = index;
4291 4292 4293 4294

	return 0;
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4307
	.alloc_hpet_msi		= alloc_hpet_msi,
4308
};
4309
#endif