amd_iommu.c 94.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38
#include <linux/percpu.h>
39 40 41 42
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
43
#include <asm/msidef.h>
44
#include <asm/proto.h>
45
#include <asm/iommu.h>
46
#include <asm/gart.h>
47
#include <asm/dma.h>
48 49 50

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
51
#include "irq_remapping.h"
52 53 54

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

55
#define LOOP_TIMEOUT	100000
56

57 58 59 60 61 62
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
63
 * 512GB Pages are not supported due to a hardware bug
64
 */
J
Joerg Roedel 已提交
65
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
66

67 68
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

69 70 71 72
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
75
LIST_HEAD(acpihid_map);
76

77 78 79 80
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
81
static const struct iommu_ops amd_iommu_ops;
82

83
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84
int amd_iommu_max_glx_val = -1;
85

86 87
static struct dma_map_ops amd_iommu_dma_ops;

88 89 90 91 92 93 94 95 96
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
97
	bool passthrough;		  /* Device is identity mapped */
98 99 100 101 102 103 104 105 106
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

107 108 109
/*
 * general struct to manage commands send to an IOMMU
 */
110
struct iommu_cmd {
111 112 113
	u32 data[4];
};

114 115
struct kmem_cache *amd_iommu_irq_cache;

116
static void update_domain(struct protection_domain *domain);
117
static int protection_domain_init(struct protection_domain *domain);
118
static void detach_device(struct device *dev);
119

120 121 122 123 124 125
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

126 127
	spinlock_t bitmap_lock;

128 129
	/* address allocation bitmap */
	unsigned long *bitmap;
130
	unsigned long offset;
131
	unsigned long next_bit;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

152
	/* aperture index we start searching for free addresses */
153
	u32 __percpu *next_index;
154 155 156 157 158

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

159 160 161 162 163 164
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

165 166 167 168 169
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

170
static struct iommu_dev_data *alloc_dev_data(u16 devid)
171 172 173 174 175 176 177 178
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

179
	dev_data->devid = devid;
180 181 182 183 184 185 186 187

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

219 220 221 222
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

223
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
224 225
}

226 227 228 229 230
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

231 232 233 234
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
235 236
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
237 238 239 240 241 242 243 244 245 246 247 248
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

249 250 251 252 253 254 255 256 257
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

258
/*
259 260
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
261
 */
262 263
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
264
{
265
	u64 addr;
266

267 268 269 270 271
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
272
	}
273
}
274

275 276 277 278 279 280 281
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
282
	int devid;
283

284
	devid = get_device_id(dev);
285 286
	if (IS_ERR_VALUE(devid))
		return;
287

288 289 290 291 292
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
293 294
}

295 296 297 298 299 300
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
301
	int devid;
302 303 304 305

	if (!dev || !dev->dma_mask)
		return false;

306 307
	/* No PCI device */
	if (!dev_is_pci(dev))
308 309 310
		return false;

	devid = get_device_id(dev);
311 312
	if (IS_ERR_VALUE(devid))
		return false;
313 314 315 316 317 318 319 320 321 322 323

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

324
static void init_iommu_group(struct device *dev)
325
{
326 327
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
328 329
	struct iommu_group *group;

330
	group = iommu_group_get_for_dev(dev);
331 332 333 334 335 336 337 338 339 340 341 342
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
343 344 345 346 347 348
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
349
	int devid;
350 351 352 353

	if (dev->archdata.iommu)
		return 0;

354 355 356 357 358
	devid = get_device_id(dev);
	if (IS_ERR_VALUE(devid))
		return devid;

	dev_data = find_dev_data(devid);
359 360 361
	if (!dev_data)
		return -ENOMEM;

362 363 364 365 366 367 368
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

369 370
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
371 372 373
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

374 375 376
	return 0;
}

377 378
static void iommu_ignore_device(struct device *dev)
{
379 380
	u16 alias;
	int devid;
381 382

	devid = get_device_id(dev);
383 384 385
	if (IS_ERR_VALUE(devid))
		return;

386 387 388 389 390 391 392 393 394
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

395 396
static void iommu_uninit_device(struct device *dev)
{
397 398 399 400 401 402
	int devid;
	struct iommu_dev_data *dev_data;

	devid = get_device_id(dev);
	if (IS_ERR_VALUE(devid))
		return;
403

404
	dev_data = search_dev_data(devid);
405 406 407
	if (!dev_data)
		return;

408 409 410
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
411 412 413
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

414 415
	iommu_group_remove_device(dev);

416 417 418
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

419
	/*
420 421
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
422
	 */
423
}
J
Joerg Roedel 已提交
424

425 426 427 428 429 430
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

431
DECLARE_STATS_COUNTER(compl_wait);
432
DECLARE_STATS_COUNTER(cnt_map_single);
433
DECLARE_STATS_COUNTER(cnt_unmap_single);
434
DECLARE_STATS_COUNTER(cnt_map_sg);
435
DECLARE_STATS_COUNTER(cnt_unmap_sg);
436
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
437
DECLARE_STATS_COUNTER(cnt_free_coherent);
438
DECLARE_STATS_COUNTER(cross_page);
439
DECLARE_STATS_COUNTER(domain_flush_single);
440
DECLARE_STATS_COUNTER(domain_flush_all);
441
DECLARE_STATS_COUNTER(alloced_io_mem);
442
DECLARE_STATS_COUNTER(total_map_requests);
443 444 445 446 447
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
467
					 &amd_iommu_unmap_flush);
468 469

	amd_iommu_stats_add(&compl_wait);
470
	amd_iommu_stats_add(&cnt_map_single);
471
	amd_iommu_stats_add(&cnt_unmap_single);
472
	amd_iommu_stats_add(&cnt_map_sg);
473
	amd_iommu_stats_add(&cnt_unmap_sg);
474
	amd_iommu_stats_add(&cnt_alloc_coherent);
475
	amd_iommu_stats_add(&cnt_free_coherent);
476
	amd_iommu_stats_add(&cross_page);
477
	amd_iommu_stats_add(&domain_flush_single);
478
	amd_iommu_stats_add(&domain_flush_all);
479
	amd_iommu_stats_add(&alloced_io_mem);
480
	amd_iommu_stats_add(&total_map_requests);
481 482 483 484
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
485 486 487 488
}

#endif

489 490 491 492 493 494
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

495 496 497 498
static void dump_dte_entry(u16 devid)
{
	int i;

499 500
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
501 502 503
			amd_iommu_dev_table[devid].data[i]);
}

504 505 506 507 508 509 510 511 512
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

513
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
514
{
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
536

537
	printk(KERN_ERR "AMD-Vi: Event logged [");
538 539 540 541 542

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
543
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
544
		       address, flags);
545
		dump_dte_entry(devid);
546 547 548 549
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
550
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
551 552 553 554 555
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
556
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
557 558 559 560 561
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
562
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
563 564 565 566
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
567
		dump_command(address);
568 569 570 571 572 573 574 575
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
576
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
577 578 579 580 581
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
582
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
583 584 585 586 587
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
588 589

	memset(__evt, 0, 4 * sizeof(u32));
590 591 592 593 594 595 596 597 598 599
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
600
		iommu_print_event(iommu, iommu->evt_buf + head);
601
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
602 603 604 605 606
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

607
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
608 609 610
{
	struct amd_iommu_fault fault;

611 612
	INC_STATS_COUNTER(pri_requests);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
654

655 656 657
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
658

659 660 661 662 663 664 665
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
666 667
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
668 669 670 671 672 673

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
674 675 676 677
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

678
irqreturn_t amd_iommu_int_thread(int irq, void *data)
679
{
680 681
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
682

683 684 685 686
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
687

688 689 690 691
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
692

693 694 695 696
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
713
	return IRQ_HANDLED;
714 715
}

716 717 718 719 720
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

721 722 723 724 725 726
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
747 748 749
{
	u8 *target;

750
	target = iommu->cmd_buf + tail;
751
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
752 753 754 755 756

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
757
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
758
}
759

760
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
761
{
762 763
	WARN_ON(address & 0x7ULL);

764
	memset(cmd, 0, sizeof(*cmd));
765 766 767
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
768 769 770
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

771 772 773 774 775 776 777
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

778 779 780 781
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
782
	bool s;
783 784

	pages = iommu_num_pages(address, size, PAGE_SIZE);
785
	s     = false;
786 787 788 789 790 791 792

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
793
		s = true;
794 795 796 797 798 799 800 801 802 803 804
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
805
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
806 807 808
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

809 810 811 812
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
813
	bool s;
814 815

	pages = iommu_num_pages(address, size, PAGE_SIZE);
816
	s     = false;
817 818 819 820 821 822 823

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
824
		s = true;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

840 841 842 843 844 845 846
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

847
	cmd->data[0]  = pasid;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
866
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
867 868
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
869
	cmd->data[1] |= (pasid & 0xff) << 16;
870 871 872 873 874 875 876 877
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

878 879 880 881 882 883 884
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
885
		cmd->data[1]  = pasid;
886 887 888 889 890 891 892 893
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

894 895 896 897
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
898 899
}

900 901 902 903 904 905 906
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

907 908
/*
 * Writes the command to the IOMMUs command buffer and informs the
909
 * hardware about the new command.
910
 */
911 912 913
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
914
{
915
	u32 left, tail, head, next_tail;
916 917
	unsigned long flags;

918
again:
919 920
	spin_lock_irqsave(&iommu->lock, flags);

921 922
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
923 924
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
925

926 927 928 929
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
930

931 932
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
933

934 935 936 937 938 939
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
940 941
	}

942 943 944
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
945
	iommu->need_sync = sync;
946

947
	spin_unlock_irqrestore(&iommu->lock, flags);
948

949
	return 0;
950 951
}

952 953 954 955 956
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

957 958 959 960
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
961
static int iommu_completion_wait(struct amd_iommu *iommu)
962 963
{
	struct iommu_cmd cmd;
964
	volatile u64 sem = 0;
965
	int ret;
966

967
	if (!iommu->need_sync)
968
		return 0;
969

970
	build_completion_wait(&cmd, (u64)&sem);
971

972
	ret = iommu_queue_command_sync(iommu, &cmd, false);
973
	if (ret)
974
		return ret;
975

976
	return wait_on_sem(&sem);
977 978
}

979
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
980
{
981
	struct iommu_cmd cmd;
982

983
	build_inv_dte(&cmd, devid);
984

985 986
	return iommu_queue_command(iommu, &cmd);
}
987

988 989 990
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
991

992 993
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
994

995 996
	iommu_completion_wait(iommu);
}
997

998 999 1000 1001 1002 1003 1004
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1005

1006 1007 1008 1009 1010 1011
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1012

1013
	iommu_completion_wait(iommu);
1014 1015
}

1016
static void iommu_flush_all(struct amd_iommu *iommu)
1017
{
1018
	struct iommu_cmd cmd;
1019

1020
	build_inv_all(&cmd);
1021

1022 1023 1024 1025
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1045 1046
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1047 1048 1049 1050
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1051
		iommu_flush_irt_all(iommu);
1052
		iommu_flush_tlb_all(iommu);
1053 1054 1055
	}
}

1056
/*
1057
 * Command send function for flushing on-device TLB
1058
 */
1059 1060
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1061 1062
{
	struct amd_iommu *iommu;
1063
	struct iommu_cmd cmd;
1064
	int qdep;
1065

1066 1067
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1068

1069
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1070 1071

	return iommu_queue_command(iommu, &cmd);
1072 1073
}

1074 1075 1076
/*
 * Command send function for invalidating a device table entry
 */
1077
static int device_flush_dte(struct iommu_dev_data *dev_data)
1078
{
1079
	struct amd_iommu *iommu;
1080
	u16 alias;
1081
	int ret;
1082

1083
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1084
	alias = amd_iommu_alias_table[dev_data->devid];
1085

1086
	ret = iommu_flush_dte(iommu, dev_data->devid);
1087 1088
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1089 1090 1091
	if (ret)
		return ret;

1092
	if (dev_data->ats.enabled)
1093
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1094 1095

	return ret;
1096 1097
}

1098 1099 1100 1101 1102
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1103 1104
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1105
{
1106
	struct iommu_dev_data *dev_data;
1107 1108
	struct iommu_cmd cmd;
	int ret = 0, i;
1109

1110
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1111

1112 1113 1114 1115 1116 1117 1118 1119
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1120
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1121 1122
	}

1123 1124
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1125
		if (!dev_data->ats.enabled)
1126 1127
			continue;

1128
		ret |= device_flush_iotlb(dev_data, address, size);
1129 1130
	}

1131
	WARN_ON(ret);
1132 1133
}

1134 1135
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1136
{
1137
	__domain_flush_pages(domain, address, size, 0);
1138
}
1139

1140
/* Flush the whole IO/TLB for a given protection domain */
1141
static void domain_flush_tlb(struct protection_domain *domain)
1142
{
1143
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1144 1145
}

1146
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1147
static void domain_flush_tlb_pde(struct protection_domain *domain)
1148
{
1149
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1150 1151
}

1152
static void domain_flush_complete(struct protection_domain *domain)
1153
{
1154
	int i;
1155

1156 1157 1158
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1159

1160 1161 1162 1163 1164
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1165
	}
1166 1167
}

1168

1169
/*
1170
 * This function flushes the DTEs for all devices in domain
1171
 */
1172
static void domain_flush_devices(struct protection_domain *domain)
1173
{
1174
	struct iommu_dev_data *dev_data;
1175

1176
	list_for_each_entry(dev_data, &domain->dev_list, list)
1177
		device_flush_dte(dev_data);
1178 1179
}

1180 1181 1182 1183 1184 1185 1186
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1216
		      unsigned long page_size,
1217 1218 1219
		      u64 **pte_page,
		      gfp_t gfp)
{
1220
	int level, end_lvl;
1221
	u64 *pte, *page;
1222 1223

	BUG_ON(!is_power_of_2(page_size));
1224 1225 1226 1227

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1228 1229 1230 1231
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1232 1233

	while (level > end_lvl) {
1234 1235 1236 1237 1238
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1239 1240 1241
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1242 1243 1244 1245 1246 1247 1248

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1249 1250
		}

1251 1252 1253 1254
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1272 1273 1274
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1275 1276 1277 1278
{
	int level;
	u64 *pte;

1279 1280 1281
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1282 1283 1284
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1285

1286 1287 1288
	while (level > 0) {

		/* Not Present */
1289 1290 1291
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1292
		/* Large PTE */
1293 1294 1295
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1296 1297 1298 1299 1300

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1301 1302
		level -= 1;

1303
		/* Walk to the next level */
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1319 1320 1321 1322 1323
	}

	return pte;
}

1324 1325 1326 1327 1328 1329 1330
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1331 1332 1333
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1334
			  int prot,
1335
			  unsigned long page_size)
1336
{
1337
	u64 __pte, *pte;
1338
	int i, count;
1339

1340 1341 1342
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1343
	if (!(prot & IOMMU_PROT_MASK))
1344 1345
		return -EINVAL;

1346 1347
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1348

1349 1350 1351
	if (!pte)
		return -ENOMEM;

1352 1353 1354
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1355

1356
	if (count > 1) {
1357 1358 1359 1360
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1361 1362 1363 1364 1365 1366

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1367 1368
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1369

1370 1371
	update_domain(dom);

1372 1373 1374
	return 0;
}

1375 1376 1377
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1378
{
1379 1380
	unsigned long long unmapped;
	unsigned long unmap_size;
1381 1382 1383 1384 1385
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1386

1387 1388
	while (unmapped < page_size) {

1389 1390 1391 1392 1393 1394
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1395 1396 1397 1398 1399 1400 1401 1402
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1403
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1404

1405
	return unmapped;
1406 1407
}

1408 1409 1410 1411 1412 1413 1414 1415 1416
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1417

1418
/*
1419
 * The address allocator core functions.
1420 1421 1422
 *
 * called with domain->lock held
 */
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1444 1445 1446 1447 1448
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1449
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1450 1451 1452
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1453
	unsigned long i, old_size, pte_pgsize;
1454 1455 1456
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1457

1458 1459 1460 1461
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1462 1463 1464
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1465 1466
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1467 1468
		return -ENOMEM;

1469 1470
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1471 1472
		goto out_free;

1473
	range->offset = dma_dom->aperture_size;
1474

1475
	spin_lock_init(&range->bitmap_lock);
1476

1477 1478 1479 1480 1481 1482
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1483
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1484 1485 1486 1487
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1488
			range->pte_pages[i] = pte_page;
1489 1490 1491 1492 1493

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1494 1495
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1496
	/* First take the bitmap_lock and then publish the range */
1497
	spin_lock(&range->bitmap_lock);
1498 1499 1500 1501

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1515
	/* Initialize the exclusion range if necessary */
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1537
	     i += pte_pgsize) {
1538
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1539 1540 1541
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1542 1543
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1544 1545
	}

1546 1547
	update_domain(&dma_dom->domain);

1548 1549 1550
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1551

1552 1553 1554
	return 0;

out_free:
1555 1556
	update_domain(&dma_dom->domain);

1557
	free_page((unsigned long)range->bitmap);
1558

1559
	kfree(range);
1560 1561 1562 1563

	return -ENOMEM;
}

1564 1565
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1566 1567 1568
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1569 1570
					 unsigned long align_mask,
					 bool trylock)
1571 1572 1573
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1574
	bool flush = false;
1575 1576 1577 1578 1579

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1580 1581 1582 1583 1584 1585 1586
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1587 1588
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1589
	if (address == -1) {
1590 1591 1592 1593
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1594 1595
		flush = true;
	}
1596 1597 1598 1599

	if (address != -1)
		range->next_bit = address + pages;

1600 1601
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1602 1603 1604 1605 1606
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1607 1608 1609
	return address;
}

1610 1611 1612 1613
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1614
					u64 dma_mask)
1615
{
1616
	unsigned long boundary_size, mask;
1617
	unsigned long address = -1;
1618
	bool first = true;
1619 1620 1621
	u32 start, i;

	preempt_disable();
1622

1623 1624
	mask = dma_get_seg_boundary(dev);

1625
again:
1626 1627 1628 1629 1630 1631 1632 1633
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1634 1635
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1636

1637 1638
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1639 1640 1641
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1642

1643
		range = dom->aperture[index];
1644 1645 1646

		if (!range || range->offset >= dma_mask)
			continue;
1647

1648
		address = dma_ops_aperture_alloc(dom, range, pages,
1649
						 dma_mask, boundary_size,
1650
						 align_mask, first);
1651
		if (address != -1) {
1652
			address = range->offset + (address << PAGE_SHIFT);
1653
			this_cpu_write(*dom->next_index, index);
1654 1655 1656 1657
			break;
		}
	}

1658 1659 1660 1661 1662
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1663 1664
	preempt_enable();

1665 1666 1667
	return address;
}

1668 1669
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1670
					     unsigned int pages,
1671 1672
					     unsigned long align_mask,
					     u64 dma_mask)
1673
{
1674
	unsigned long address = -1;
1675

1676 1677 1678 1679
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1680
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1681 1682
			break;
	}
1683

1684
	if (unlikely(address == -1))
1685
		address = DMA_ERROR_CODE;
1686 1687 1688 1689 1690 1691

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1692 1693 1694 1695 1696
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1697 1698 1699 1700
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1701 1702
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1703
	unsigned long flags;
1704

1705 1706
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1707 1708 1709 1710
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1711

1712
	if (amd_iommu_unmap_flush) {
1713 1714 1715
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1716 1717

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1718

1719
	spin_lock_irqsave(&range->bitmap_lock, flags);
1720 1721
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1722
	bitmap_clear(range->bitmap, address, pages);
1723
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1724

1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1799
		/* PTE present? */				\
1800 1801 1802
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1803 1804 1805 1806 1807
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1820
static void free_pagetable(struct protection_domain *domain)
1821
{
1822
	unsigned long root = (unsigned long)domain->pt_root;
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1847 1848 1849
	}
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1880 1881
static void free_gcr3_table(struct protection_domain *domain)
{
1882 1883 1884 1885
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1886 1887
	else
		BUG_ON(domain->glx != 0);
1888

1889 1890 1891
	free_page((unsigned long)domain->gcr3_tbl);
}

1892 1893 1894 1895
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1896 1897
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1898 1899
	int i;

1900 1901 1902
	if (!dom)
		return;

1903 1904
	free_percpu(dom->next_index);

1905 1906
	del_domain_from_list(&dom->domain);

1907
	free_pagetable(&dom->domain);
1908

1909 1910 1911 1912 1913 1914
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1915 1916 1917 1918

	kfree(dom);
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

1936 1937
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1938
 * It also initializes the page table and the address allocator data
1939 1940
 * structures required for the dma_ops interface
 */
1941
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1942 1943
{
	struct dma_ops_domain *dma_dom;
1944
	int cpu;
1945 1946 1947 1948 1949

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1950
	if (protection_domain_init(&dma_dom->domain))
1951
		goto free_dma_dom;
1952

1953 1954 1955 1956
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

1957
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1958
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1959
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1960 1961 1962 1963
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1964 1965
	add_domain_to_list(&dma_dom->domain);

1966
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1967 1968
		goto free_dma_dom;

1969
	/*
1970 1971
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1972
	 */
1973
	dma_dom->aperture[0]->bitmap[0] = 1;
1974

1975 1976
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
1977 1978 1979 1980 1981 1982 1983 1984 1985

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1995
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1996
{
1997
	u64 pte_root = 0;
1998
	u64 flags = 0;
1999

2000 2001 2002
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2003 2004 2005
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2006

2007 2008
	flags = amd_iommu_dev_table[devid].data[1];

2009 2010 2011
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2038 2039 2040 2041 2042
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2043 2044 2045 2046 2047
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2048 2049
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2050 2051

	amd_iommu_apply_erratum_63(devid);
2052 2053
}

2054 2055
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2056 2057
{
	struct amd_iommu *iommu;
2058
	u16 alias;
2059
	bool ats;
2060

2061
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2062
	alias = amd_iommu_alias_table[dev_data->devid];
2063
	ats   = dev_data->ats.enabled;
2064 2065 2066 2067 2068 2069 2070 2071 2072

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2073 2074 2075
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2076
		set_dte_entry(alias, domain, ats);
2077

2078
	device_flush_dte(dev_data);
2079 2080
}

2081
static void do_detach(struct iommu_dev_data *dev_data)
2082 2083
{
	struct amd_iommu *iommu;
2084
	u16 alias;
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2095
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2096
	alias = amd_iommu_alias_table[dev_data->devid];
2097 2098

	/* decrease reference counters */
2099 2100 2101 2102 2103 2104
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2105
	clear_dte_entry(dev_data->devid);
2106 2107
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2108

2109
	/* Flush the DTE entry */
2110
	device_flush_dte(dev_data);
2111 2112 2113 2114 2115 2116
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2117
static int __attach_device(struct iommu_dev_data *dev_data,
2118
			   struct protection_domain *domain)
2119
{
2120
	int ret;
2121

2122 2123 2124 2125 2126 2127
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2128 2129 2130
	/* lock domain */
	spin_lock(&domain->lock);

2131
	ret = -EBUSY;
2132
	if (dev_data->domain != NULL)
2133
		goto out_unlock;
2134

2135
	/* Attach alias group root */
2136
	do_attach(dev_data, domain);
2137

2138 2139 2140 2141
	ret = 0;

out_unlock:

2142 2143
	/* ready */
	spin_unlock(&domain->lock);
2144

2145
	return ret;
2146
}
2147

2148 2149 2150 2151 2152 2153 2154 2155

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2156 2157 2158 2159 2160 2161
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2162
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2163 2164 2165
	if (!pos)
		return -EINVAL;

2166 2167 2168
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2169 2170 2171 2172

	return 0;
}

2173 2174
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2175 2176 2177 2178 2179 2180 2181 2182
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2194 2195
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2196 2197 2198
	if (ret)
		goto out_err;

2199 2200 2201 2202 2203 2204
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2218
/* FIXME: Move this to PCI code */
2219
#define PCI_PRI_TLP_OFF		(1 << 15)
2220

J
Joerg Roedel 已提交
2221
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2222
{
2223
	u16 status;
2224 2225
	int pos;

2226
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2227 2228 2229
	if (!pos)
		return false;

2230
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2231

2232
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2233 2234
}

2235
/*
F
Frank Arnold 已提交
2236
 * If a device is not yet associated with a domain, this function
2237 2238
 * assigns it visible for the hardware
 */
2239 2240
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2241
{
2242
	struct pci_dev *pdev = to_pci_dev(dev);
2243
	struct iommu_dev_data *dev_data;
2244
	unsigned long flags;
2245
	int ret;
2246

2247 2248
	dev_data = get_dev_data(dev);

2249
	if (domain->flags & PD_IOMMUV2_MASK) {
2250
		if (!dev_data->passthrough)
2251 2252
			return -EINVAL;

2253 2254 2255
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2256

2257 2258 2259 2260
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2261 2262
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2263 2264 2265
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2266

2267
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2268
	ret = __attach_device(dev_data, domain);
2269 2270
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2271 2272 2273 2274 2275
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2276
	domain_flush_tlb_pde(domain);
2277 2278

	return ret;
2279 2280
}

2281 2282 2283
/*
 * Removes a device from a protection domain (unlocked)
 */
2284
static void __detach_device(struct iommu_dev_data *dev_data)
2285
{
2286
	struct protection_domain *domain;
2287

2288 2289 2290 2291 2292
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2293

2294 2295
	if (WARN_ON(!dev_data->domain))
		return;
2296

2297
	domain = dev_data->domain;
2298

2299
	spin_lock(&domain->lock);
2300

2301
	do_detach(dev_data);
2302

2303
	spin_unlock(&domain->lock);
2304 2305 2306 2307 2308
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2309
static void detach_device(struct device *dev)
2310
{
2311
	struct protection_domain *domain;
2312
	struct iommu_dev_data *dev_data;
2313 2314
	unsigned long flags;

2315
	dev_data = get_dev_data(dev);
2316
	domain   = dev_data->domain;
2317

2318 2319
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2320
	__detach_device(dev_data);
2321
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2322

2323
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2324 2325
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2326
		pci_disable_ats(to_pci_dev(dev));
2327 2328

	dev_data->ats.enabled = false;
2329
}
2330

2331
static int amd_iommu_add_device(struct device *dev)
2332
{
2333
	struct iommu_dev_data *dev_data;
2334
	struct iommu_domain *domain;
2335
	struct amd_iommu *iommu;
2336
	int ret, devid;
2337

2338
	if (!check_device(dev) || get_dev_data(dev))
2339
		return 0;
2340

2341
	devid = get_device_id(dev);
2342 2343 2344
	if (IS_ERR_VALUE(devid))
		return devid;

2345
	iommu = amd_iommu_rlookup_table[devid];
2346

2347
	ret = iommu_init_device(dev);
2348 2349 2350 2351
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2352

2353
		iommu_ignore_device(dev);
2354
		dev->archdata.dma_ops = &nommu_dma_ops;
2355 2356 2357
		goto out;
	}
	init_iommu_group(dev);
2358

2359
	dev_data = get_dev_data(dev);
2360

2361
	BUG_ON(!dev_data);
2362

2363
	if (iommu_pass_through || dev_data->iommu_v2)
2364
		iommu_request_dm_for_dev(dev);
2365

2366 2367
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2368
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2369
		dev_data->passthrough = true;
2370
	else
2371
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2372

2373
out:
2374 2375 2376 2377 2378
	iommu_completion_wait(iommu);

	return 0;
}

2379
static void amd_iommu_remove_device(struct device *dev)
2380
{
2381
	struct amd_iommu *iommu;
2382
	int devid;
2383 2384 2385 2386 2387

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2388 2389 2390
	if (IS_ERR_VALUE(devid))
		return;

2391 2392 2393 2394
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2410
static struct protection_domain *get_domain(struct device *dev)
2411
{
2412
	struct protection_domain *domain;
2413
	struct iommu_domain *io_domain;
2414

2415
	if (!check_device(dev))
2416
		return ERR_PTR(-EINVAL);
2417

2418
	io_domain = iommu_get_domain_for_dev(dev);
2419 2420
	if (!io_domain)
		return NULL;
2421

2422 2423
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2424
		return ERR_PTR(-EBUSY);
2425

2426
	return domain;
2427 2428
}

2429 2430
static void update_device_table(struct protection_domain *domain)
{
2431
	struct iommu_dev_data *dev_data;
2432

2433 2434
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2435 2436 2437 2438 2439 2440 2441 2442
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2443 2444 2445

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2446 2447 2448 2449

	domain->updated = false;
}

2450 2451 2452 2453 2454 2455
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2456
	struct aperture_range *aperture;
2457 2458
	u64 *pte, *pte_page;

2459 2460 2461 2462 2463
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2464
	if (!pte) {
2465
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2466
				GFP_ATOMIC);
2467 2468
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2469
		pte += PM_LEVEL_INDEX(0, address);
2470

2471
	update_domain(&dom->domain);
2472 2473 2474 2475

	return pte;
}

2476 2477 2478 2479
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2480
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2491
	pte  = dma_ops_get_pte(dom, address);
2492
	if (!pte)
2493
		return DMA_ERROR_CODE;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2504
	WARN_ON_ONCE(*pte);
2505 2506 2507 2508 2509 2510

	*pte = __pte;

	return (dma_addr_t)address;
}

2511 2512 2513
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2514
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2515 2516
				 unsigned long address)
{
2517
	struct aperture_range *aperture;
2518 2519 2520 2521 2522
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2523 2524 2525 2526 2527 2528 2529
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2530

2531
	pte += PM_LEVEL_INDEX(0, address);
2532

2533
	WARN_ON_ONCE(!*pte);
2534 2535 2536 2537

	*pte = 0ULL;
}

2538 2539
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2540 2541
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2542 2543
 * Must be called with the domain lock held.
 */
2544 2545 2546 2547
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2548
			       int dir,
2549 2550
			       bool align,
			       u64 dma_mask)
2551 2552
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2553
	dma_addr_t address, start, ret;
2554
	unsigned int pages;
2555
	unsigned long align_mask = 0;
2556 2557
	int i;

2558
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2559 2560
	paddr &= PAGE_MASK;

2561 2562
	INC_STATS_COUNTER(total_map_requests);

2563 2564 2565
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2566 2567 2568
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2569 2570
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2571

2572 2573
	if (address == DMA_ERROR_CODE)
		goto out;
2574 2575 2576

	start = address;
	for (i = 0; i < pages; ++i) {
2577
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2578
		if (ret == DMA_ERROR_CODE)
2579 2580
			goto out_unmap;

2581 2582 2583 2584 2585
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2586 2587
	ADD_STATS_COUNTER(alloced_io_mem, size);

2588
	if (unlikely(amd_iommu_np_cache)) {
2589
		domain_flush_pages(&dma_dom->domain, address, size);
2590 2591
		domain_flush_complete(&dma_dom->domain);
	}
2592

2593 2594
out:
	return address;
2595 2596 2597 2598 2599

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2600
		dma_ops_domain_unmap(dma_dom, start);
2601 2602 2603 2604
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2605
	return DMA_ERROR_CODE;
2606 2607
}

2608 2609 2610 2611
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2612
static void __unmap_single(struct dma_ops_domain *dma_dom,
2613 2614 2615 2616
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2617
	dma_addr_t flush_addr;
2618 2619 2620
	dma_addr_t i, start;
	unsigned int pages;

2621
	if ((dma_addr == DMA_ERROR_CODE) ||
2622
	    (dma_addr + size > dma_dom->aperture_size))
2623 2624
		return;

2625
	flush_addr = dma_addr;
2626
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2627 2628 2629 2630
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2631
		dma_ops_domain_unmap(dma_dom, start);
2632 2633 2634
		start += PAGE_SIZE;
	}

2635 2636 2637
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2638 2639
}

2640 2641 2642
/*
 * The exported map_single function for dma_ops.
 */
2643 2644 2645 2646
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2647
{
2648
	phys_addr_t paddr = page_to_phys(page) + offset;
2649
	struct protection_domain *domain;
2650
	u64 dma_mask;
2651

2652 2653
	INC_STATS_COUNTER(cnt_map_single);

2654 2655
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2656
		return (dma_addr_t)paddr;
2657 2658
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2659

2660 2661
	dma_mask = *dev->dma_mask;

2662
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2663
			    dma_mask);
2664 2665
}

2666 2667 2668
/*
 * The exported unmap_single function for dma_ops.
 */
2669 2670
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2671 2672 2673
{
	struct protection_domain *domain;

2674 2675
	INC_STATS_COUNTER(cnt_unmap_single);

2676 2677
	domain = get_domain(dev);
	if (IS_ERR(domain))
2678 2679
		return;

2680
	__unmap_single(domain->priv, dma_addr, size, dir);
2681 2682
}

2683 2684 2685 2686
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2687
static int map_sg(struct device *dev, struct scatterlist *sglist,
2688 2689
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2690 2691 2692 2693 2694 2695
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2696
	u64 dma_mask;
2697

2698 2699
	INC_STATS_COUNTER(cnt_map_sg);

2700
	domain = get_domain(dev);
2701
	if (IS_ERR(domain))
2702
		return 0;
2703

2704
	dma_mask = *dev->dma_mask;
2705 2706 2707 2708

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2709
		s->dma_address = __map_single(dev, domain->priv,
2710 2711
					      paddr, s->length, dir, false,
					      dma_mask);
2712 2713 2714 2715 2716 2717 2718 2719 2720

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2721

2722 2723 2724
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2725
			__unmap_single(domain->priv, s->dma_address,
2726 2727 2728 2729
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2730
	return 0;
2731 2732
}

2733 2734 2735 2736
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2737
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2738 2739
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2740 2741 2742 2743 2744
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2745 2746
	INC_STATS_COUNTER(cnt_unmap_sg);

2747 2748
	domain = get_domain(dev);
	if (IS_ERR(domain))
2749 2750
		return;

2751
	for_each_sg(sglist, s, nelems, i) {
2752
		__unmap_single(domain->priv, s->dma_address,
2753 2754 2755 2756 2757
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2758 2759 2760
/*
 * The exported alloc_coherent function for dma_ops.
 */
2761
static void *alloc_coherent(struct device *dev, size_t size,
2762 2763
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2764
{
2765
	u64 dma_mask = dev->coherent_dma_mask;
2766 2767
	struct protection_domain *domain;
	struct page *page;
2768

2769 2770
	INC_STATS_COUNTER(cnt_alloc_coherent);

2771 2772
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2773 2774 2775
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2776 2777
	} else if (IS_ERR(domain))
		return NULL;
2778

2779
	size	  = PAGE_ALIGN(size);
2780 2781
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2782
	flag     |= __GFP_ZERO;
2783

2784 2785
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2786
		if (!gfpflags_allow_blocking(flag))
2787
			return NULL;
2788

2789 2790 2791 2792 2793
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2794

2795 2796 2797
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2798
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2799
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2800

2801
	if (*dma_addr == DMA_ERROR_CODE)
2802
		goto out_free;
2803

2804
	return page_address(page);
2805 2806 2807

out_free:

2808 2809
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2810 2811

	return NULL;
2812 2813
}

2814 2815 2816
/*
 * The exported free_coherent function for dma_ops.
 */
2817
static void free_coherent(struct device *dev, size_t size,
2818 2819
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2820 2821
{
	struct protection_domain *domain;
2822
	struct page *page;
2823

2824 2825
	INC_STATS_COUNTER(cnt_free_coherent);

2826 2827 2828
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2829 2830
	domain = get_domain(dev);
	if (IS_ERR(domain))
2831 2832
		goto free_mem;

2833
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2834 2835

free_mem:
2836 2837
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2838 2839
}

2840 2841 2842 2843 2844 2845
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2846
	return check_device(dev);
2847 2848
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2877
static struct dma_map_ops amd_iommu_dma_ops = {
2878 2879 2880 2881 2882 2883 2884 2885
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2886 2887
};

2888
int __init amd_iommu_init_api(void)
2889
{
2890
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2891 2892
}

2893 2894
int __init amd_iommu_init_dma_ops(void)
{
2895
	swiotlb        = iommu_pass_through ? 1 : 0;
2896 2897
	iommu_detected = 1;

2898 2899 2900 2901 2902 2903 2904 2905 2906
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2907 2908
	amd_iommu_stats_init();

2909 2910 2911 2912 2913
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2914 2915
	return 0;
}
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2929
	struct iommu_dev_data *entry;
2930 2931 2932 2933
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2934 2935 2936 2937
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2938
	}
2939 2940 2941 2942

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2943 2944 2945 2946 2947
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2948 2949
	del_domain_from_list(domain);

2950 2951 2952 2953 2954 2955
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2968
static struct protection_domain *protection_domain_alloc(void)
2969 2970 2971 2972 2973
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2974
		return NULL;
2975

2976
	if (protection_domain_init(domain))
2977 2978
		goto out_err;

2979 2980
	add_domain_to_list(domain);

2981 2982 2983 2984 2985 2986 2987 2988
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2989
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2990
{
2991
	struct protection_domain *pdomain;
2992
	struct dma_ops_domain *dma_domain;
2993

2994 2995 2996 2997 2998
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2999

3000 3001 3002 3003 3004 3005
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3006

3007 3008 3009
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3020 3021 3022 3023
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3024

3025 3026
		pdomain->mode = PAGE_MODE_NONE;
		break;
3027 3028 3029
	default:
		return NULL;
	}
3030

3031
	return &pdomain->domain;
3032 3033
}

3034
static void amd_iommu_domain_free(struct iommu_domain *dom)
3035
{
3036
	struct protection_domain *domain;
3037

3038
	if (!dom)
3039 3040
		return;

3041 3042
	domain = to_pdomain(dom);

3043 3044 3045 3046 3047
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3048 3049
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3050

3051 3052 3053
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3054
	protection_domain_free(domain);
3055 3056
}

3057 3058 3059
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3060
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3061
	struct amd_iommu *iommu;
3062
	int devid;
3063

3064
	if (!check_device(dev))
3065 3066
		return;

3067
	devid = get_device_id(dev);
3068 3069
	if (IS_ERR_VALUE(devid))
		return;
3070

3071
	if (dev_data->domain != NULL)
3072
		detach_device(dev);
3073 3074 3075 3076 3077 3078 3079 3080

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3081 3082 3083
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3084
	struct protection_domain *domain = to_pdomain(dom);
3085
	struct iommu_dev_data *dev_data;
3086
	struct amd_iommu *iommu;
3087
	int ret;
3088

3089
	if (!check_device(dev))
3090 3091
		return -EINVAL;

3092 3093
	dev_data = dev->archdata.iommu;

3094
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3095 3096 3097
	if (!iommu)
		return -EINVAL;

3098
	if (dev_data->domain)
3099
		detach_device(dev);
3100

3101
	ret = attach_device(dev, domain);
3102 3103 3104

	iommu_completion_wait(iommu);

3105
	return ret;
3106 3107
}

3108
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3109
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3110
{
3111
	struct protection_domain *domain = to_pdomain(dom);
3112 3113 3114
	int prot = 0;
	int ret;

3115 3116 3117
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3118 3119 3120 3121 3122
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3123
	mutex_lock(&domain->api_lock);
3124
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3125 3126
	mutex_unlock(&domain->api_lock);

3127
	return ret;
3128 3129
}

3130 3131
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3132
{
3133
	struct protection_domain *domain = to_pdomain(dom);
3134
	size_t unmap_size;
3135

3136 3137 3138
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3139
	mutex_lock(&domain->api_lock);
3140
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3141
	mutex_unlock(&domain->api_lock);
3142

3143
	domain_flush_tlb_pde(domain);
3144

3145
	return unmap_size;
3146 3147
}

3148
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3149
					  dma_addr_t iova)
3150
{
3151
	struct protection_domain *domain = to_pdomain(dom);
3152
	unsigned long offset_mask, pte_pgsize;
3153
	u64 *pte, __pte;
3154

3155 3156 3157
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3158
	pte = fetch_pte(domain, iova, &pte_pgsize);
3159

3160
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3161 3162
		return 0;

3163 3164
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3165

3166
	return (__pte & ~offset_mask) | (iova & offset_mask);
3167 3168
}

3169
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3170
{
3171 3172
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3173
		return true;
3174
	case IOMMU_CAP_INTR_REMAP:
3175
		return (irq_remapping_enabled == 1);
3176 3177
	case IOMMU_CAP_NOEXEC:
		return false;
3178 3179
	}

3180
	return false;
S
Sheng Yang 已提交
3181 3182
}

3183 3184 3185 3186
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3187
	int devid;
3188 3189

	devid = get_device_id(dev);
3190 3191
	if (IS_ERR_VALUE(devid))
		return;
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3226
static const struct iommu_ops amd_iommu_ops = {
3227
	.capable = amd_iommu_capable,
3228 3229
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3230 3231
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3232 3233
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3234
	.map_sg = default_iommu_map_sg,
3235
	.iova_to_phys = amd_iommu_iova_to_phys,
3236 3237
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3238
	.device_group = pci_device_group,
3239 3240
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3241
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3242 3243
};

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3266 3267 3268

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3269
	struct protection_domain *domain = to_pdomain(dom);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3287 3288 3289

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3290
	struct protection_domain *domain = to_pdomain(dom);
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3368 3369 3370 3371 3372 3373
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3399 3400
	INC_STATS_COUNTER(invalidate_iotlb);

3401 3402 3403 3404 3405 3406
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3407
	struct protection_domain *domain = to_pdomain(dom);
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3421 3422
	INC_STATS_COUNTER(invalidate_iotlb_all);

3423 3424 3425 3426 3427 3428
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3429
	struct protection_domain *domain = to_pdomain(dom);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3509
	struct protection_domain *domain = to_pdomain(dom);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3523
	struct protection_domain *domain = to_pdomain(dom);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3534 3535 3536 3537 3538 3539 3540 3541

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3542 3543
	INC_STATS_COUNTER(complete_ppr);

3544 3545 3546 3547 3548 3549 3550 3551 3552
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3553 3554 3555

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3556
	struct protection_domain *pdomain;
3557

3558 3559
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3560 3561 3562
		return NULL;

	/* Only return IOMMUv2 domains */
3563
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3564 3565
		return NULL;

3566
	return &pdomain->domain;
3567 3568
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3648 3649 3650 3651 3652
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3715 3716 3717
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3718 3719 3720 3721 3722 3723 3724
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3725
		table = NULL;
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3743
		set_dte_irq_entry(alias, table);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3756
static int alloc_irq_index(u16 devid, int count)
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3840
static int get_devid(struct irq_alloc_info *info)
3841
{
3842
	int devid = -1;
3843

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3859

3860 3861
	return devid;
}
3862

3863 3864 3865 3866
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3867

3868 3869
	if (!info)
		return NULL;
3870

3871 3872 3873 3874 3875 3876
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3877

3878
	return NULL;
3879 3880
}

3881
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3882
{
3883 3884
	struct amd_iommu *iommu;
	int devid;
3885

3886 3887
	if (!info)
		return NULL;
3888

3889 3890 3891 3892
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3893 3894 3895
		if (IS_ERR_VALUE(devid))
			return NULL;

3896 3897 3898
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3899 3900 3901 3902
		break;
	default:
		break;
	}
3903

3904 3905
	return NULL;
}
3906

3907 3908 3909 3910 3911 3912
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3913 3914 3915
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3916

3917 3918 3919 3920 3921 3922 3923 3924 3925
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3926

3927 3928
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3929

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3952

3953 3954 3955 3956 3957 3958 3959
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3960

3961 3962 3963 3964
	default:
		BUG_ON(1);
		break;
	}
3965 3966
}

3967 3968
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3969
{
3970 3971 3972
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3973
	struct irq_cfg *cfg;
3974 3975
	int i, ret, devid;
	int index = -1;
3976

3977 3978 3979 3980
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3981 3982
		return -EINVAL;

3983 3984 3985 3986 3987 3988
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3989

3990 3991 3992
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3993

3994 3995 3996
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3997

3998 3999 4000 4001 4002 4003
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4004
		index = alloc_irq_index(devid, nr_irqs);
4005 4006 4007 4008 4009
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
4010

4011 4012 4013 4014 4015 4016 4017
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4018

4019 4020 4021 4022 4023
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4024 4025 4026 4027 4028 4029
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4030

4031
	return 0;
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4044 4045
}

4046 4047
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4048
{
4049 4050 4051 4052
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4053

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4065

4066 4067 4068 4069 4070
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4071

4072
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4073 4074
}

4075 4076
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4077
{
4078 4079 4080
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4081

4082 4083 4084
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4085

4086 4087 4088 4089 4090
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4091
};
4092

4093 4094 4095 4096 4097 4098 4099 4100
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4101

4102 4103 4104
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4105

4106 4107 4108 4109 4110 4111 4112
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4113

4114 4115 4116 4117 4118
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4119
	send_cleanup_vector(cfg);
4120 4121

	return IRQ_SET_MASK_OK_DONE;
4122 4123
}

4124
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4125
{
4126
	struct amd_ir_data *ir_data = irq_data->chip_data;
4127

4128 4129
	*msg = ir_data->msi_entry;
}
4130

4131 4132 4133 4134 4135
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4136

4137 4138 4139 4140 4141
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4142

4143 4144
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4145 4146 4147

	return 0;
}
4148
#endif