amd_iommu.c 84.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84 85
static struct iommu_ops amd_iommu_ops;

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93
/*
 * general struct to manage commands send to an IOMMU
 */
94
struct iommu_cmd {
95 96 97
	u32 data[4];
};

98 99
struct kmem_cache *amd_iommu_irq_cache;

100
static void update_domain(struct protection_domain *domain);
101
static int __init alloc_passthrough_domain(void);
102

103 104 105 106 107 108
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

109
static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 111 112 113 114 115 116 117
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

118
	dev_data->devid = devid;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

170 171 172 173 174 175 176
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

177 178 179 180 181
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

182 183 184 185
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
186 187
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
188 189 190 191 192 193 194 195 196 197 198 199
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

200 201 202 203 204 205 206 207 208
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

237 238 239 240 241 242 243 244 245 246 247 248
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
249
	if (dev->bus != &pci_bus_type)
250 251 252 253 254 255 256 257 258 259 260 261 262 263
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

264 265 266 267 268 269 270 271
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
	pci_dev_put(*from);
	*from = to;
}

#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

272 273
static int iommu_init_device(struct device *dev)
{
274
	struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
275
	struct iommu_dev_data *dev_data;
276
	struct iommu_group *group;
277
	u16 alias;
278
	int ret;
279 280 281 282

	if (dev->archdata.iommu)
		return 0;

283
	dev_data = find_dev_data(get_device_id(dev));
284 285 286
	if (!dev_data)
		return -ENOMEM;

287
	alias = amd_iommu_alias_table[dev_data->devid];
288
	if (alias != dev_data->devid) {
289
		struct iommu_dev_data *alias_data;
290

291 292 293 294
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
295 296 297
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
298
		dev_data->alias_data = alias_data;
299 300 301 302 303

		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
	} else
		dma_pdev = pci_dev_get(pdev);

304
	/* Account for quirked devices */
305 306
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

307 308 309 310
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
311 312 313 314 315 316 317
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

318 319 320 321 322
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
323
	while (!pci_is_root_bus(dma_pdev->bus)) {
324 325 326 327 328 329 330 331 332 333
		struct pci_bus *bus = dma_pdev->bus;

		while (!bus->self) {
			if (!pci_is_root_bus(bus))
				bus = bus->parent;
			else
				goto root_bus;
		}

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
334 335
			break;

336
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
337 338
	}

339
root_bus:
340 341 342 343 344 345
	group = iommu_group_get(&dma_pdev->dev);
	pci_dev_put(dma_pdev);
	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);
346
	}
347

348 349 350 351 352 353 354
	ret = iommu_group_add_device(group, dev);

	iommu_group_put(group);

	if (ret)
		return ret;

355 356 357 358 359 360 361
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

362 363 364 365 366
	dev->archdata.iommu = dev_data;

	return 0;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

381 382
static void iommu_uninit_device(struct device *dev)
{
383 384
	iommu_group_remove_device(dev);

385 386 387 388 389
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
390
}
J
Joerg Roedel 已提交
391 392 393

void __init amd_iommu_uninit_devices(void)
{
394
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
395 396 397 398 399 400 401 402 403
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
404 405 406 407

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
421 422 423
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
424 425 426 427 428 429 430 431 432 433 434
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
435 436 437 438 439 440
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

441
DECLARE_STATS_COUNTER(compl_wait);
442
DECLARE_STATS_COUNTER(cnt_map_single);
443
DECLARE_STATS_COUNTER(cnt_unmap_single);
444
DECLARE_STATS_COUNTER(cnt_map_sg);
445
DECLARE_STATS_COUNTER(cnt_unmap_sg);
446
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
447
DECLARE_STATS_COUNTER(cnt_free_coherent);
448
DECLARE_STATS_COUNTER(cross_page);
449
DECLARE_STATS_COUNTER(domain_flush_single);
450
DECLARE_STATS_COUNTER(domain_flush_all);
451
DECLARE_STATS_COUNTER(alloced_io_mem);
452
DECLARE_STATS_COUNTER(total_map_requests);
453 454 455 456 457
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
477
					 &amd_iommu_unmap_flush);
478 479

	amd_iommu_stats_add(&compl_wait);
480
	amd_iommu_stats_add(&cnt_map_single);
481
	amd_iommu_stats_add(&cnt_unmap_single);
482
	amd_iommu_stats_add(&cnt_map_sg);
483
	amd_iommu_stats_add(&cnt_unmap_sg);
484
	amd_iommu_stats_add(&cnt_alloc_coherent);
485
	amd_iommu_stats_add(&cnt_free_coherent);
486
	amd_iommu_stats_add(&cross_page);
487
	amd_iommu_stats_add(&domain_flush_single);
488
	amd_iommu_stats_add(&domain_flush_all);
489
	amd_iommu_stats_add(&alloced_io_mem);
490
	amd_iommu_stats_add(&total_map_requests);
491 492 493 494
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
495 496 497 498
}

#endif

499 500 501 502 503 504
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

505 506 507 508
static void dump_dte_entry(u16 devid)
{
	int i;

509 510
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
511 512 513
			amd_iommu_dev_table[devid].data[i]);
}

514 515 516 517 518 519 520 521 522
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

523
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
524
{
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
546

547
	printk(KERN_ERR "AMD-Vi: Event logged [");
548 549 550 551 552 553 554

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
555
		dump_dte_entry(devid);
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
577
		dump_command(address);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
598 599

	memset(__evt, 0, 4 * sizeof(u32));
600 601 602 603 604 605 606 607 608 609 610 611 612
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
613
		iommu_print_event(iommu, iommu->evt_buf + head);
614 615 616 617 618 619 620 621
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

622
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
623 624 625
{
	struct amd_iommu_fault fault;

626 627
	INC_STATS_COUNTER(pri_requests);

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

650 651 652
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

653 654 655 656 657 658
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
675

676 677 678
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
679

680 681 682 683 684 685 686
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
687 688
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
689 690 691 692 693 694 695 696 697 698 699 700 701 702

		/*
		 * Release iommu->lock because ppr-handling might need to
		 * re-aquire it
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 704 705 706 707 708
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

709
irqreturn_t amd_iommu_int_thread(int irq, void *data)
710
{
711 712
	struct amd_iommu *iommu;

713
	for_each_iommu(iommu) {
714
		iommu_poll_events(iommu);
715 716
		iommu_poll_ppr_log(iommu);
	}
717 718

	return IRQ_HANDLED;
719 720
}

721 722 723 724 725
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

726 727 728 729 730 731
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
752 753 754
{
	u8 *target;

755
	target = iommu->cmd_buf + tail;
756 757 758 759 760 761
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
762
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
763
}
764

765
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
766
{
767 768
	WARN_ON(address & 0x7ULL);

769
	memset(cmd, 0, sizeof(*cmd));
770 771 772
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
773 774 775
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

776 777 778 779 780 781 782
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

899 900 901 902
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
903 904
}

905 906
/*
 * Writes the command to the IOMMUs command buffer and informs the
907
 * hardware about the new command.
908
 */
909 910 911
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
912
{
913
	u32 left, tail, head, next_tail;
914 915
	unsigned long flags;

916
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
917 918

again:
919 920
	spin_lock_irqsave(&iommu->lock, flags);

921 922 923 924
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
925

926 927 928 929
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
930

931 932
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
933

934 935 936 937 938 939
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
940 941
	}

942 943 944
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
945
	iommu->need_sync = sync;
946

947
	spin_unlock_irqrestore(&iommu->lock, flags);
948

949
	return 0;
950 951
}

952 953 954 955 956
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

957 958 959 960
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
961
static int iommu_completion_wait(struct amd_iommu *iommu)
962 963
{
	struct iommu_cmd cmd;
964
	volatile u64 sem = 0;
965
	int ret;
966

967
	if (!iommu->need_sync)
968
		return 0;
969

970
	build_completion_wait(&cmd, (u64)&sem);
971

972
	ret = iommu_queue_command_sync(iommu, &cmd, false);
973
	if (ret)
974
		return ret;
975

976
	return wait_on_sem(&sem);
977 978
}

979
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
980
{
981
	struct iommu_cmd cmd;
982

983
	build_inv_dte(&cmd, devid);
984

985 986
	return iommu_queue_command(iommu, &cmd);
}
987

988 989 990
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
991

992 993
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
994

995 996
	iommu_completion_wait(iommu);
}
997

998 999 1000 1001 1002 1003 1004
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1005

1006 1007 1008 1009 1010 1011
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1012

1013
	iommu_completion_wait(iommu);
1014 1015
}

1016
static void iommu_flush_all(struct amd_iommu *iommu)
1017
{
1018
	struct iommu_cmd cmd;
1019

1020
	build_inv_all(&cmd);
1021

1022 1023 1024 1025
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1026 1027
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1028 1029 1030 1031 1032
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
1033 1034 1035
	}
}

1036
/*
1037
 * Command send function for flushing on-device TLB
1038
 */
1039 1040
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1041 1042
{
	struct amd_iommu *iommu;
1043
	struct iommu_cmd cmd;
1044
	int qdep;
1045

1046 1047
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1048

1049
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1050 1051

	return iommu_queue_command(iommu, &cmd);
1052 1053
}

1054 1055 1056
/*
 * Command send function for invalidating a device table entry
 */
1057
static int device_flush_dte(struct iommu_dev_data *dev_data)
1058
{
1059
	struct amd_iommu *iommu;
1060
	int ret;
1061

1062
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1063

1064
	ret = iommu_flush_dte(iommu, dev_data->devid);
1065 1066 1067
	if (ret)
		return ret;

1068
	if (dev_data->ats.enabled)
1069
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1070 1071

	return ret;
1072 1073
}

1074 1075 1076 1077 1078
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1079 1080
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1081
{
1082
	struct iommu_dev_data *dev_data;
1083 1084
	struct iommu_cmd cmd;
	int ret = 0, i;
1085

1086
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1087

1088 1089 1090 1091 1092 1093 1094 1095
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1096
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1097 1098
	}

1099 1100
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1101
		if (!dev_data->ats.enabled)
1102 1103
			continue;

1104
		ret |= device_flush_iotlb(dev_data, address, size);
1105 1106
	}

1107
	WARN_ON(ret);
1108 1109
}

1110 1111
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1112
{
1113
	__domain_flush_pages(domain, address, size, 0);
1114
}
1115

1116
/* Flush the whole IO/TLB for a given protection domain */
1117
static void domain_flush_tlb(struct protection_domain *domain)
1118
{
1119
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1120 1121
}

1122
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1123
static void domain_flush_tlb_pde(struct protection_domain *domain)
1124
{
1125
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1126 1127
}

1128
static void domain_flush_complete(struct protection_domain *domain)
1129
{
1130
	int i;
1131

1132 1133 1134
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1135

1136 1137 1138 1139 1140
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1141
	}
1142 1143
}

1144

1145
/*
1146
 * This function flushes the DTEs for all devices in domain
1147
 */
1148
static void domain_flush_devices(struct protection_domain *domain)
1149
{
1150
	struct iommu_dev_data *dev_data;
1151

1152
	list_for_each_entry(dev_data, &domain->dev_list, list)
1153
		device_flush_dte(dev_data);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1192
		      unsigned long page_size,
1193 1194 1195
		      u64 **pte_page,
		      gfp_t gfp)
{
1196
	int level, end_lvl;
1197
	u64 *pte, *page;
1198 1199

	BUG_ON(!is_power_of_2(page_size));
1200 1201 1202 1203

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1204 1205 1206 1207
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1208 1209 1210 1211 1212 1213 1214 1215 1216

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1217 1218 1219 1220
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1238
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1239 1240 1241 1242
{
	int level;
	u64 *pte;

1243 1244 1245 1246 1247
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1248

1249 1250 1251
	while (level > 0) {

		/* Not Present */
1252 1253 1254
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1274 1275
		level -= 1;

1276
		/* Walk to the next level */
1277 1278 1279 1280 1281 1282 1283
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1284 1285 1286 1287 1288 1289 1290
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1291 1292 1293
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1294
			  int prot,
1295
			  unsigned long page_size)
1296
{
1297
	u64 __pte, *pte;
1298
	int i, count;
1299

1300
	if (!(prot & IOMMU_PROT_MASK))
1301 1302
		return -EINVAL;

1303 1304 1305 1306 1307 1308 1309 1310
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1311

1312 1313 1314 1315 1316
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1317 1318 1319 1320 1321 1322

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1323 1324
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1325

1326 1327
	update_domain(dom);

1328 1329 1330
	return 0;
}

1331 1332 1333
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1334
{
1335 1336 1337 1338 1339 1340
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1371

1372
	return unmapped;
1373 1374
}

1375 1376 1377 1378
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1393 1394 1395 1396
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1397 1398 1399 1400 1401 1402 1403 1404
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1405
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1406
				     PAGE_SIZE);
1407 1408 1409 1410 1411 1412 1413
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1414
			__set_bit(addr >> PAGE_SHIFT,
1415
				  dma_dom->aperture[0]->bitmap);
1416 1417 1418 1419 1420
	}

	return 0;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1443 1444 1445
/*
 * Inits the unity mappings required for a specific device
 */
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1472

1473
/*
1474
 * The address allocator core functions.
1475 1476 1477
 *
 * called with domain->lock held
 */
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1499 1500 1501 1502 1503
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1504
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1505 1506 1507
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1508
	struct amd_iommu *iommu;
1509
	unsigned long i, old_size;
1510

1511 1512 1513 1514
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1534
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1545
	old_size                = dma_dom->aperture_size;
1546 1547
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1560
	/* Initialize the exclusion range if necessary */
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1583
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1584 1585 1586
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1587
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1588 1589
	}

1590 1591
	update_domain(&dma_dom->domain);

1592 1593 1594
	return 0;

out_free:
1595 1596
	update_domain(&dma_dom->domain);

1597 1598 1599 1600 1601 1602 1603 1604
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1605 1606 1607 1608 1609 1610 1611
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1612
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1613 1614 1615 1616 1617 1618
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1619 1620
	next_bit >>= PAGE_SHIFT;

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1639
			dom->next_address = address + (pages << PAGE_SHIFT);
1640 1641 1642 1643 1644 1645 1646 1647 1648
			break;
		}

		next_bit = 0;
	}

	return address;
}

1649 1650
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1651
					     unsigned int pages,
1652 1653
					     unsigned long align_mask,
					     u64 dma_mask)
1654 1655 1656
{
	unsigned long address;

1657 1658 1659 1660
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1661

1662
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1663
				     dma_mask, dom->next_address);
1664

1665
	if (address == -1) {
1666
		dom->next_address = 0;
1667 1668
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1669 1670
		dom->need_flush = true;
	}
1671

1672
	if (unlikely(address == -1))
1673
		address = DMA_ERROR_CODE;
1674 1675 1676 1677 1678 1679

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1680 1681 1682 1683 1684
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1685 1686 1687 1688
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1689 1690
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1691

1692 1693
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1694 1695 1696 1697
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1698

1699
	if (address >= dom->next_address)
1700
		dom->need_flush = true;
1701 1702

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1703

A
Akinobu Mita 已提交
1704
	bitmap_clear(range->bitmap, address, pages);
1705

1706 1707
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1770
static void free_pagetable(struct protection_domain *domain)
1771 1772 1773 1774
{
	int i, j;
	u64 *p1, *p2, *p3;

1775
	p1 = domain->pt_root;
1776 1777 1778 1779 1780 1781 1782 1783 1784

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1785
		for (j = 0; j < 512; ++j) {
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1796 1797

	domain->pt_root = NULL;
1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1830 1831
static void free_gcr3_table(struct protection_domain *domain)
{
1832 1833 1834 1835 1836 1837 1838
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1839 1840 1841
	free_page((unsigned long)domain->gcr3_tbl);
}

1842 1843 1844 1845
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1846 1847
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1848 1849
	int i;

1850 1851 1852
	if (!dom)
		return;

1853 1854
	del_domain_from_list(&dom->domain);

1855
	free_pagetable(&dom->domain);
1856

1857 1858 1859 1860 1861 1862
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1863 1864 1865 1866

	kfree(dom);
}

1867 1868
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1869
 * It also initializes the page table and the address allocator data
1870 1871
 * structures required for the dma_ops interface
 */
1872
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1885
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1886
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1887
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1888
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1889 1890 1891 1892
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1893
	dma_dom->need_flush = false;
1894
	dma_dom->target_dev = 0xffff;
1895

1896 1897
	add_domain_to_list(&dma_dom->domain);

1898
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1899 1900
		goto free_dma_dom;

1901
	/*
1902 1903
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1904
	 */
1905
	dma_dom->aperture[0]->bitmap[0] = 1;
1906
	dma_dom->next_address = 0;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1917 1918 1919 1920 1921 1922 1923 1924 1925
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1926
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1927
{
1928
	u64 pte_root = 0;
1929
	u64 flags = 0;
1930

1931 1932 1933
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1934 1935 1936
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1937

1938 1939
	flags = amd_iommu_dev_table[devid].data[1];

1940 1941 1942
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1969 1970 1971 1972 1973
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1974 1975 1976 1977 1978 1979 1980 1981 1982
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1983 1984
}

1985 1986
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1987 1988
{
	struct amd_iommu *iommu;
1989
	bool ats;
1990

1991 1992
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1993 1994 1995 1996

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1997
	set_dte_entry(dev_data->devid, domain, ats);
1998 1999 2000 2001 2002 2003

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2004
	device_flush_dte(dev_data);
2005 2006
}

2007
static void do_detach(struct iommu_dev_data *dev_data)
2008 2009 2010
{
	struct amd_iommu *iommu;

2011
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2012 2013

	/* decrease reference counters */
2014 2015 2016 2017 2018 2019
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2020
	clear_dte_entry(dev_data->devid);
2021

2022
	/* Flush the DTE entry */
2023
	device_flush_dte(dev_data);
2024 2025 2026 2027 2028 2029
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2030
static int __attach_device(struct iommu_dev_data *dev_data,
2031
			   struct protection_domain *domain)
2032
{
2033
	int ret;
2034

2035 2036 2037
	/* lock domain */
	spin_lock(&domain->lock);

2038 2039
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2040

2041 2042 2043 2044 2045
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2046

2047 2048 2049
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2050

2051
		/* Do real assignment */
2052
		if (alias_data->domain == NULL)
2053
			do_attach(alias_data, domain);
2054 2055

		atomic_inc(&alias_data->bind);
2056
	}
2057

2058
	if (dev_data->domain == NULL)
2059
		do_attach(dev_data, domain);
2060

2061 2062
	atomic_inc(&dev_data->bind);

2063 2064 2065 2066
	ret = 0;

out_unlock:

2067 2068
	/* ready */
	spin_unlock(&domain->lock);
2069

2070
	return ret;
2071
}
2072

2073 2074 2075 2076 2077 2078 2079 2080

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2081 2082 2083 2084 2085 2086
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2087
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2088 2089 2090
	if (!pos)
		return -EINVAL;

2091 2092 2093
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2094 2095 2096 2097

	return 0;
}

2098 2099
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2100 2101 2102 2103 2104 2105 2106 2107
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2119 2120
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2121 2122 2123
	if (ret)
		goto out_err;

2124 2125 2126 2127 2128 2129
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2143
/* FIXME: Move this to PCI code */
2144
#define PCI_PRI_TLP_OFF		(1 << 15)
2145

J
Joerg Roedel 已提交
2146
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2147
{
2148
	u16 status;
2149 2150
	int pos;

2151
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2152 2153 2154
	if (!pos)
		return false;

2155
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2156

2157
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2158 2159
}

2160 2161 2162 2163
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2164 2165
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2166
{
2167
	struct pci_dev *pdev = to_pci_dev(dev);
2168
	struct iommu_dev_data *dev_data;
2169
	unsigned long flags;
2170
	int ret;
2171

2172 2173
	dev_data = get_dev_data(dev);

2174 2175 2176 2177 2178 2179 2180 2181 2182
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2183
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2184 2185
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2186 2187 2188
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2189

2190
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2191
	ret = __attach_device(dev_data, domain);
2192 2193
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2194 2195 2196 2197 2198
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2199
	domain_flush_tlb_pde(domain);
2200 2201

	return ret;
2202 2203
}

2204 2205 2206
/*
 * Removes a device from a protection domain (unlocked)
 */
2207
static void __detach_device(struct iommu_dev_data *dev_data)
2208
{
2209
	struct protection_domain *domain;
2210
	unsigned long flags;
2211

2212
	BUG_ON(!dev_data->domain);
2213

2214 2215 2216
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2217

2218 2219 2220
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2221
		if (atomic_dec_and_test(&alias_data->bind))
2222
			do_detach(alias_data);
2223 2224
	}

2225
	if (atomic_dec_and_test(&dev_data->bind))
2226
		do_detach(dev_data);
2227

2228
	spin_unlock_irqrestore(&domain->lock, flags);
2229 2230 2231

	/*
	 * If we run in passthrough mode the device must be assigned to the
2232 2233
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2234
	 */
2235
	if (dev_data->passthrough &&
2236
	    (dev_data->domain == NULL && domain != pt_domain))
2237
		__attach_device(dev_data, pt_domain);
2238 2239 2240 2241 2242
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2243
static void detach_device(struct device *dev)
2244
{
2245
	struct protection_domain *domain;
2246
	struct iommu_dev_data *dev_data;
2247 2248
	unsigned long flags;

2249
	dev_data = get_dev_data(dev);
2250
	domain   = dev_data->domain;
2251

2252 2253
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2254
	__detach_device(dev_data);
2255
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2256

2257 2258 2259
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2260
		pci_disable_ats(to_pci_dev(dev));
2261 2262

	dev_data->ats.enabled = false;
2263
}
2264

2265 2266 2267 2268 2269 2270
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2271
	struct iommu_dev_data *dev_data;
2272
	struct protection_domain *dom = NULL;
2273 2274
	unsigned long flags;

2275
	dev_data   = get_dev_data(dev);
2276

2277 2278
	if (dev_data->domain)
		return dev_data->domain;
2279

2280 2281
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2282 2283 2284 2285 2286 2287 2288 2289

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2290 2291 2292 2293

	return dom;
}

2294 2295 2296 2297
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2298 2299 2300
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2301
	struct amd_iommu *iommu;
2302
	unsigned long flags;
2303
	u16 devid;
2304

2305 2306
	if (!check_device(dev))
		return 0;
2307

2308 2309 2310
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2311 2312

	switch (action) {
2313
	case BUS_NOTIFY_UNBOUND_DRIVER:
2314 2315 2316

		domain = domain_for_device(dev);

2317 2318
		if (!domain)
			goto out;
2319
		if (dev_data->passthrough)
2320
			break;
2321
		detach_device(dev);
2322 2323
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2324 2325 2326

		iommu_init_device(dev);

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2339 2340
		domain = domain_for_device(dev);

2341 2342 2343 2344
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2345
		dma_domain = dma_ops_domain_alloc();
2346 2347 2348 2349 2350 2351 2352 2353
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2354 2355
		dev_data = get_dev_data(dev);

2356
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2357

2358
		break;
2359 2360 2361 2362
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2373
static struct notifier_block device_nb = {
2374 2375
	.notifier_call = device_change_notifier,
};
2376

2377 2378 2379 2380 2381
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2395
static struct protection_domain *get_domain(struct device *dev)
2396
{
2397
	struct protection_domain *domain;
2398
	struct dma_ops_domain *dma_dom;
2399
	u16 devid = get_device_id(dev);
2400

2401
	if (!check_device(dev))
2402
		return ERR_PTR(-EINVAL);
2403

2404 2405 2406
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2407

2408 2409
	if (domain != NULL)
		return domain;
2410

2411
	/* Device not bount yet - bind it */
2412
	dma_dom = find_protection_domain(devid);
2413
	if (!dma_dom)
2414 2415
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2416
	DUMP_printk("Using protection domain %d for device %s\n",
2417
		    dma_dom->domain.id, dev_name(dev));
2418

2419
	return &dma_dom->domain;
2420 2421
}

2422 2423
static void update_device_table(struct protection_domain *domain)
{
2424
	struct iommu_dev_data *dev_data;
2425

2426 2427
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2428 2429 2430 2431 2432 2433 2434 2435
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2436 2437 2438

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2439 2440 2441 2442

	domain->updated = false;
}

2443 2444 2445 2446 2447 2448
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2449
	struct aperture_range *aperture;
2450 2451
	u64 *pte, *pte_page;

2452 2453 2454 2455 2456
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2457
	if (!pte) {
2458
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2459
				GFP_ATOMIC);
2460 2461
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2462
		pte += PM_LEVEL_INDEX(0, address);
2463

2464
	update_domain(&dom->domain);
2465 2466 2467 2468

	return pte;
}

2469 2470 2471 2472
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2473
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2484
	pte  = dma_ops_get_pte(dom, address);
2485
	if (!pte)
2486
		return DMA_ERROR_CODE;
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2504 2505 2506
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2507
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2508 2509
				 unsigned long address)
{
2510
	struct aperture_range *aperture;
2511 2512 2513 2514 2515
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2516 2517 2518 2519 2520 2521 2522
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2523

2524
	pte += PM_LEVEL_INDEX(0, address);
2525 2526 2527 2528 2529 2530

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2531 2532
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2533 2534
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2535 2536
 * Must be called with the domain lock held.
 */
2537 2538 2539 2540
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2541
			       int dir,
2542 2543
			       bool align,
			       u64 dma_mask)
2544 2545
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2546
	dma_addr_t address, start, ret;
2547
	unsigned int pages;
2548
	unsigned long align_mask = 0;
2549 2550
	int i;

2551
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2552 2553
	paddr &= PAGE_MASK;

2554 2555
	INC_STATS_COUNTER(total_map_requests);

2556 2557 2558
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2559 2560 2561
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2562
retry:
2563 2564
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2565
	if (unlikely(address == DMA_ERROR_CODE)) {
2566 2567 2568 2569 2570 2571 2572
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2573
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2574 2575 2576
			goto out;

		/*
2577
		 * aperture was successfully enlarged by 128 MB, try
2578 2579 2580 2581
		 * allocation again
		 */
		goto retry;
	}
2582 2583 2584

	start = address;
	for (i = 0; i < pages; ++i) {
2585
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2586
		if (ret == DMA_ERROR_CODE)
2587 2588
			goto out_unmap;

2589 2590 2591 2592 2593
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2594 2595
	ADD_STATS_COUNTER(alloced_io_mem, size);

2596
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2597
		domain_flush_tlb(&dma_dom->domain);
2598
		dma_dom->need_flush = false;
2599
	} else if (unlikely(amd_iommu_np_cache))
2600
		domain_flush_pages(&dma_dom->domain, address, size);
2601

2602 2603
out:
	return address;
2604 2605 2606 2607 2608

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2609
		dma_ops_domain_unmap(dma_dom, start);
2610 2611 2612 2613
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2614
	return DMA_ERROR_CODE;
2615 2616
}

2617 2618 2619 2620
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2621
static void __unmap_single(struct dma_ops_domain *dma_dom,
2622 2623 2624 2625
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2626
	dma_addr_t flush_addr;
2627 2628 2629
	dma_addr_t i, start;
	unsigned int pages;

2630
	if ((dma_addr == DMA_ERROR_CODE) ||
2631
	    (dma_addr + size > dma_dom->aperture_size))
2632 2633
		return;

2634
	flush_addr = dma_addr;
2635
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2636 2637 2638 2639
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2640
		dma_ops_domain_unmap(dma_dom, start);
2641 2642 2643
		start += PAGE_SIZE;
	}

2644 2645
	SUB_STATS_COUNTER(alloced_io_mem, size);

2646
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2647

2648
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2649
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2650 2651
		dma_dom->need_flush = false;
	}
2652 2653
}

2654 2655 2656
/*
 * The exported map_single function for dma_ops.
 */
2657 2658 2659 2660
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2661 2662 2663 2664
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2665
	u64 dma_mask;
2666
	phys_addr_t paddr = page_to_phys(page) + offset;
2667

2668 2669
	INC_STATS_COUNTER(cnt_map_single);

2670 2671
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2672
		return (dma_addr_t)paddr;
2673 2674
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2675

2676 2677
	dma_mask = *dev->dma_mask;

2678
	spin_lock_irqsave(&domain->lock, flags);
2679

2680
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2681
			    dma_mask);
2682
	if (addr == DMA_ERROR_CODE)
2683 2684
		goto out;

2685
	domain_flush_complete(domain);
2686 2687 2688 2689 2690 2691 2692

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2693 2694 2695
/*
 * The exported unmap_single function for dma_ops.
 */
2696 2697
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2698 2699 2700 2701
{
	unsigned long flags;
	struct protection_domain *domain;

2702 2703
	INC_STATS_COUNTER(cnt_unmap_single);

2704 2705
	domain = get_domain(dev);
	if (IS_ERR(domain))
2706 2707
		return;

2708 2709
	spin_lock_irqsave(&domain->lock, flags);

2710
	__unmap_single(domain->priv, dma_addr, size, dir);
2711

2712
	domain_flush_complete(domain);
2713 2714 2715 2716

	spin_unlock_irqrestore(&domain->lock, flags);
}

2717 2718 2719 2720
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2735 2736 2737 2738
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2739
static int map_sg(struct device *dev, struct scatterlist *sglist,
2740 2741
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2742 2743 2744 2745 2746 2747 2748
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2749
	u64 dma_mask;
2750

2751 2752
	INC_STATS_COUNTER(cnt_map_sg);

2753 2754
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2755
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2756 2757
	else if (IS_ERR(domain))
		return 0;
2758

2759
	dma_mask = *dev->dma_mask;
2760 2761 2762 2763 2764 2765

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2766
		s->dma_address = __map_single(dev, domain->priv,
2767 2768
					      paddr, s->length, dir, false,
					      dma_mask);
2769 2770 2771 2772 2773 2774 2775 2776

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2777
	domain_flush_complete(domain);
2778 2779 2780 2781 2782 2783 2784 2785

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2786
			__unmap_single(domain->priv, s->dma_address,
2787 2788 2789 2790 2791 2792 2793 2794 2795
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2796 2797 2798 2799
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2800
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2801 2802
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2803 2804 2805 2806 2807 2808
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2809 2810
	INC_STATS_COUNTER(cnt_unmap_sg);

2811 2812
	domain = get_domain(dev);
	if (IS_ERR(domain))
2813 2814
		return;

2815 2816 2817
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2818
		__unmap_single(domain->priv, s->dma_address,
2819 2820 2821 2822
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2823
	domain_flush_complete(domain);
2824 2825 2826 2827

	spin_unlock_irqrestore(&domain->lock, flags);
}

2828 2829 2830
/*
 * The exported alloc_coherent function for dma_ops.
 */
2831
static void *alloc_coherent(struct device *dev, size_t size,
2832 2833
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2834 2835 2836 2837 2838
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2839
	u64 dma_mask = dev->coherent_dma_mask;
2840

2841 2842
	INC_STATS_COUNTER(cnt_alloc_coherent);

2843 2844
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2845 2846 2847
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2848 2849
	} else if (IS_ERR(domain))
		return NULL;
2850

2851 2852 2853
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2854 2855 2856

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2857
		return NULL;
2858 2859 2860

	paddr = virt_to_phys(virt_addr);

2861 2862 2863
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2864 2865
	spin_lock_irqsave(&domain->lock, flags);

2866
	*dma_addr = __map_single(dev, domain->priv, paddr,
2867
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2868

2869
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2870
		spin_unlock_irqrestore(&domain->lock, flags);
2871
		goto out_free;
J
Jiri Slaby 已提交
2872
	}
2873

2874
	domain_flush_complete(domain);
2875 2876 2877 2878

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2879 2880 2881 2882 2883 2884

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2885 2886
}

2887 2888 2889
/*
 * The exported free_coherent function for dma_ops.
 */
2890
static void free_coherent(struct device *dev, size_t size,
2891 2892
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2893 2894 2895 2896
{
	unsigned long flags;
	struct protection_domain *domain;

2897 2898
	INC_STATS_COUNTER(cnt_free_coherent);

2899 2900
	domain = get_domain(dev);
	if (IS_ERR(domain))
2901 2902
		goto free_mem;

2903 2904
	spin_lock_irqsave(&domain->lock, flags);

2905
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2906

2907
	domain_flush_complete(domain);
2908 2909 2910 2911 2912 2913 2914

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2915 2916 2917 2918 2919 2920
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2921
	return check_device(dev);
2922 2923
}

2924
/*
2925 2926
 * The function for pre-allocating protection domains.
 *
2927 2928 2929 2930
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
2931
static void __init prealloc_protection_domains(void)
2932
{
2933
	struct iommu_dev_data *dev_data;
2934
	struct dma_ops_domain *dma_dom;
2935
	struct pci_dev *dev = NULL;
2936
	u16 devid;
2937

2938
	for_each_pci_dev(dev) {
2939 2940 2941

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2942
			continue;
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2954
		/* Is there already any domain for it? */
2955
		if (domain_for_device(&dev->dev))
2956
			continue;
2957 2958 2959

		devid = get_device_id(&dev->dev);

2960
		dma_dom = dma_ops_domain_alloc();
2961 2962 2963
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2964 2965
		dma_dom->target_dev = devid;

2966
		attach_device(&dev->dev, &dma_dom->domain);
2967

2968
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2969 2970 2971
	}
}

2972
static struct dma_map_ops amd_iommu_dma_ops = {
2973 2974
	.alloc = alloc_coherent,
	.free = free_coherent,
2975 2976
	.map_page = map_page,
	.unmap_page = unmap_page,
2977 2978
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2979
	.dma_supported = amd_iommu_dma_supported,
2980 2981
};

2982 2983
static unsigned device_dma_ops_init(void)
{
2984
	struct iommu_dev_data *dev_data;
2985 2986 2987 2988 2989
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2990 2991 2992

			iommu_ignore_device(&pdev->dev);

2993 2994 2995 2996
			unhandled += 1;
			continue;
		}

2997 2998 2999 3000 3001 3002
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3003 3004 3005 3006 3007
	}

	return unhandled;
}

3008 3009 3010
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3011 3012 3013

void __init amd_iommu_init_api(void)
{
3014
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3015 3016
}

3017 3018 3019
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3020
	int ret, unhandled;
3021

3022 3023 3024 3025 3026
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3027
	for_each_iommu(iommu) {
3028
		iommu->default_dom = dma_ops_domain_alloc();
3029 3030
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3031
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3032 3033 3034 3035 3036
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3037
	/*
3038
	 * Pre-allocate the protection domains for each device.
3039
	 */
3040
	prealloc_protection_domains();
3041 3042

	iommu_detected = 1;
3043
	swiotlb = 0;
3044

3045
	/* Make the driver finally visible to the drivers */
3046 3047 3048 3049 3050
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3051

3052 3053
	amd_iommu_stats_init();

3054 3055 3056 3057 3058
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3059 3060 3061 3062
	return 0;

free_domains:

3063
	for_each_iommu(iommu) {
3064 3065 3066 3067 3068 3069
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3083
	struct iommu_dev_data *dev_data, *next;
3084 3085 3086 3087
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3088
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3089
		__detach_device(dev_data);
3090 3091
		atomic_set(&dev_data->bind, 0);
	}
3092 3093 3094 3095

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3096 3097 3098 3099 3100
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3101 3102
	del_domain_from_list(domain);

3103 3104 3105 3106 3107 3108 3109
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3110 3111 3112 3113 3114
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3115
		return NULL;
3116 3117

	spin_lock_init(&domain->lock);
3118
	mutex_init(&domain->api_lock);
3119 3120
	domain->id = domain_id_alloc();
	if (!domain->id)
3121
		goto out_err;
3122
	INIT_LIST_HEAD(&domain->dev_list);
3123

3124 3125
	add_domain_to_list(domain);

3126 3127 3128 3129 3130 3131 3132 3133
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3148 3149 3150 3151 3152 3153
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3154
		goto out_free;
3155 3156

	domain->mode    = PAGE_MODE_3_LEVEL;
3157 3158 3159 3160
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3161 3162
	domain->iommu_domain = dom;

3163 3164
	dom->priv = domain;

3165 3166 3167 3168
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3169 3170 3171
	return 0;

out_free:
3172
	protection_domain_free(domain);
3173 3174 3175 3176

	return -ENOMEM;
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3189 3190
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3191

3192 3193 3194
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3195
	protection_domain_free(domain);
3196 3197 3198 3199

	dom->priv = NULL;
}

3200 3201 3202
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3203
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3204 3205 3206
	struct amd_iommu *iommu;
	u16 devid;

3207
	if (!check_device(dev))
3208 3209
		return;

3210
	devid = get_device_id(dev);
3211

3212
	if (dev_data->domain != NULL)
3213
		detach_device(dev);
3214 3215 3216 3217 3218 3219 3220 3221

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3222 3223 3224 3225
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3226
	struct iommu_dev_data *dev_data;
3227
	struct amd_iommu *iommu;
3228
	int ret;
3229

3230
	if (!check_device(dev))
3231 3232
		return -EINVAL;

3233 3234
	dev_data = dev->archdata.iommu;

3235
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3236 3237 3238
	if (!iommu)
		return -EINVAL;

3239
	if (dev_data->domain)
3240
		detach_device(dev);
3241

3242
	ret = attach_device(dev, domain);
3243 3244 3245

	iommu_completion_wait(iommu);

3246
	return ret;
3247 3248
}

3249
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3250
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3251 3252 3253 3254 3255
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3256 3257 3258
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3259 3260 3261 3262 3263
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3264
	mutex_lock(&domain->api_lock);
3265
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3266 3267
	mutex_unlock(&domain->api_lock);

3268
	return ret;
3269 3270
}

3271 3272
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3273 3274
{
	struct protection_domain *domain = dom->priv;
3275
	size_t unmap_size;
3276

3277 3278 3279
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3280
	mutex_lock(&domain->api_lock);
3281
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3282
	mutex_unlock(&domain->api_lock);
3283

3284
	domain_flush_tlb_pde(domain);
3285

3286
	return unmap_size;
3287 3288
}

3289 3290 3291 3292
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3293
	unsigned long offset_mask;
3294
	phys_addr_t paddr;
3295
	u64 *pte, __pte;
3296

3297 3298 3299
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3300
	pte = fetch_pte(domain, iova);
3301

3302
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3303 3304
		return 0;

3305 3306 3307 3308 3309 3310 3311
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3312 3313 3314 3315

	return paddr;
}

S
Sheng Yang 已提交
3316 3317 3318
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3319 3320 3321 3322 3323
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3324 3325 3326
	return 0;
}

3327 3328 3329 3330 3331
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3332 3333
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3334
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3335
	.domain_has_cap = amd_iommu_domain_has_cap,
3336
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3337 3338
};

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3351
	struct iommu_dev_data *dev_data;
3352
	struct pci_dev *dev = NULL;
3353
	struct amd_iommu *iommu;
3354
	u16 devid;
3355
	int ret;
3356

3357 3358 3359
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3360

3361
	for_each_pci_dev(dev) {
3362
		if (!check_device(&dev->dev))
3363 3364
			continue;

3365 3366 3367
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3368 3369
		devid = get_device_id(&dev->dev);

3370
		iommu = amd_iommu_rlookup_table[devid];
3371 3372 3373
		if (!iommu)
			continue;

3374
		attach_device(&dev->dev, pt_domain);
3375 3376
	}

J
Joerg Roedel 已提交
3377 3378
	amd_iommu_stats_init();

3379 3380 3381 3382
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3524 3525
	INC_STATS_COUNTER(invalidate_iotlb);

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3546 3547
	INC_STATS_COUNTER(invalidate_iotlb_all);

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3659 3660 3661 3662 3663 3664 3665 3666

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3667 3668
	INC_STATS_COUNTER(complete_ppr);

3669 3670 3671 3672 3673 3674 3675 3676 3677
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);