amd_iommu.c 86.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

DEFINE_PER_CPU(struct flush_queue, flush_queue);

108 109 110 111
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
112
static const struct iommu_ops amd_iommu_ops;
113

114
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
115
int amd_iommu_max_glx_val = -1;
116

117 118
static struct dma_map_ops amd_iommu_dma_ops;

119 120 121 122 123 124 125 126
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
127
	u16 alias;			  /* Alias Device ID */
128
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
129
	bool passthrough;		  /* Device is identity mapped */
130 131 132 133 134 135 136 137 138
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

139 140 141
/*
 * general struct to manage commands send to an IOMMU
 */
142
struct iommu_cmd {
143 144 145
	u32 data[4];
};

146 147
struct kmem_cache *amd_iommu_irq_cache;

148
static void update_domain(struct protection_domain *domain);
149
static int protection_domain_init(struct protection_domain *domain);
150
static void detach_device(struct device *dev);
151

152 153 154 155 156 157 158
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

159 160
	/* IOVA RB-Tree */
	struct iova_domain iovad;
161 162
};

163 164 165
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

166 167 168 169 170 171
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

172 173
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
174
{
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
190 191
}

192
static inline u16 get_pci_device_id(struct device *dev)
193 194 195 196 197 198
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

226 227 228 229 230
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

231
static struct iommu_dev_data *alloc_dev_data(u16 devid)
232 233 234 235 236 237 238 239
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

240
	dev_data->devid = devid;
241 242 243 244 245 246 247 248

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

268 269 270 271 272 273 274 275 276 277 278
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

279
	/* The callers make sure that get_device_id() does not fail here */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
321
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
322 323 324 325 326 327 328 329
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

330 331 332 333 334 335 336 337 338 339 340 341
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

342 343 344 345 346
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

347 348 349 350
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
351
{
352
	struct acpihid_map_entry *p, *entry = NULL;
353
	int devid;
354 355 356 357 358 359 360 361 362 363 364 365 366 367

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
368 369
}

370 371 372 373
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
374 375
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
376 377 378 379 380 381 382 383 384 385 386 387
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

388 389 390 391 392 393 394 395 396
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

397 398 399 400 401 402
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
403
	int devid;
404 405 406 407 408

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
409
	if (devid < 0)
410
		return false;
411 412 413 414 415 416 417 418 419 420 421

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

422
static void init_iommu_group(struct device *dev)
423 424 425
{
	struct iommu_group *group;

426
	group = iommu_group_get_for_dev(dev);
427 428 429 430
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
431 432 433 434 435
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
436
	int devid;
437 438 439 440

	if (dev->archdata.iommu)
		return 0;

441
	devid = get_device_id(dev);
442
	if (devid < 0)
443 444 445
		return devid;

	dev_data = find_dev_data(devid);
446 447 448
	if (!dev_data)
		return -ENOMEM;

449 450
	dev_data->alias = get_alias(dev);

451
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
452 453
		struct amd_iommu *iommu;

454
		iommu = amd_iommu_rlookup_table[dev_data->devid];
455 456 457
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

458 459
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
460 461 462
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

463 464 465
	return 0;
}

466 467
static void iommu_ignore_device(struct device *dev)
{
468 469
	u16 alias;
	int devid;
470 471

	devid = get_device_id(dev);
472
	if (devid < 0)
473 474
		return;

475
	alias = get_alias(dev);
476 477 478 479 480 481 482 483

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

484 485
static void iommu_uninit_device(struct device *dev)
{
486 487
	int devid;
	struct iommu_dev_data *dev_data;
488

489
	devid = get_device_id(dev);
490
	if (devid < 0)
491
		return;
492

493
	dev_data = search_dev_data(devid);
494 495 496
	if (!dev_data)
		return;

497 498 499
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
500 501 502
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

503 504
	iommu_group_remove_device(dev);

505 506 507
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

508
	/*
509 510
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
511
	 */
512
}
J
Joerg Roedel 已提交
513

514 515 516 517 518 519
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

520 521 522 523
static void dump_dte_entry(u16 devid)
{
	int i;

524 525
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
526 527 528
			amd_iommu_dev_table[devid].data[i]);
}

529 530 531 532 533 534 535 536 537
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

538
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
539
{
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
561

562
	printk(KERN_ERR "AMD-Vi: Event logged [");
563 564 565 566 567

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
568
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
569
		       address, flags);
570
		dump_dte_entry(devid);
571 572 573 574
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
575
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
576 577 578 579 580
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
581
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
582 583 584 585 586
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
587
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
588 589 590 591
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
592
		dump_command(address);
593 594 595 596 597 598 599 600
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
601
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
602 603 604 605 606
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
607
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 609 610 611 612
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
613 614

	memset(__evt, 0, 4 * sizeof(u32));
615 616 617 618 619 620 621 622 623 624
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
625
		iommu_print_event(iommu, iommu->evt_buf + head);
626
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
627 628 629 630 631
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

632
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
677

678 679 680
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
681

682 683 684 685 686 687 688
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
689 690
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
691 692 693 694 695 696

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
697 698 699 700
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

701
irqreturn_t amd_iommu_int_thread(int irq, void *data)
702
{
703 704
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
705

706 707 708 709
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
710

711 712 713 714
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
715

716 717 718 719
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
736
	return IRQ_HANDLED;
737 738
}

739 740 741 742 743
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

744 745 746 747 748 749
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
770 771 772
{
	u8 *target;

773
	target = iommu->cmd_buf + tail;
774
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
775 776 777 778 779

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
780
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
781
}
782

783
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
784
{
785 786
	WARN_ON(address & 0x7ULL);

787
	memset(cmd, 0, sizeof(*cmd));
788 789 790
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
791 792 793
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

794 795 796 797 798 799 800
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

801 802 803 804
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
805
	bool s;
806 807

	pages = iommu_num_pages(address, size, PAGE_SIZE);
808
	s     = false;
809 810 811 812 813 814 815

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
816
		s = true;
817 818 819 820 821 822 823 824 825 826 827
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
828
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
829 830 831
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

832 833 834 835
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
836
	bool s;
837 838

	pages = iommu_num_pages(address, size, PAGE_SIZE);
839
	s     = false;
840 841 842 843 844 845 846

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
847
		s = true;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

863 864 865 866 867 868 869
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

870
	cmd->data[0]  = pasid;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
889
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
890 891
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
892
	cmd->data[1] |= (pasid & 0xff) << 16;
893 894 895 896 897 898 899 900
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

901 902 903 904 905 906 907
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
908
		cmd->data[1]  = pasid;
909 910 911 912 913 914 915 916
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

917 918 919 920
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
921 922
}

923 924 925 926 927 928 929
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

930 931
/*
 * Writes the command to the IOMMUs command buffer and informs the
932
 * hardware about the new command.
933
 */
934 935 936
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
937
{
938
	u32 left, tail, head, next_tail;
939 940
	unsigned long flags;

941
again:
942 943
	spin_lock_irqsave(&iommu->lock, flags);

944 945
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
946 947
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
948

949 950 951 952
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
953

954 955
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
956

957 958 959 960 961 962
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
963 964
	}

965 966 967
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
968
	iommu->need_sync = sync;
969

970
	spin_unlock_irqrestore(&iommu->lock, flags);
971

972
	return 0;
973 974
}

975 976 977 978 979
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

980 981 982 983
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
984
static int iommu_completion_wait(struct amd_iommu *iommu)
985 986
{
	struct iommu_cmd cmd;
987
	volatile u64 sem = 0;
988
	int ret;
989

990
	if (!iommu->need_sync)
991
		return 0;
992

993
	build_completion_wait(&cmd, (u64)&sem);
994

995
	ret = iommu_queue_command_sync(iommu, &cmd, false);
996
	if (ret)
997
		return ret;
998

999
	return wait_on_sem(&sem);
1000 1001
}

1002
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1003
{
1004
	struct iommu_cmd cmd;
1005

1006
	build_inv_dte(&cmd, devid);
1007

1008 1009
	return iommu_queue_command(iommu, &cmd);
}
1010

1011 1012 1013
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1014

1015 1016
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1017

1018 1019
	iommu_completion_wait(iommu);
}
1020

1021 1022 1023 1024 1025 1026 1027
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1028

1029 1030 1031 1032 1033 1034
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1035

1036
	iommu_completion_wait(iommu);
1037 1038
}

1039
static void iommu_flush_all(struct amd_iommu *iommu)
1040
{
1041
	struct iommu_cmd cmd;
1042

1043
	build_inv_all(&cmd);
1044

1045 1046 1047 1048
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1068 1069
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1070 1071 1072 1073
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1074
		iommu_flush_irt_all(iommu);
1075
		iommu_flush_tlb_all(iommu);
1076 1077 1078
	}
}

1079
/*
1080
 * Command send function for flushing on-device TLB
1081
 */
1082 1083
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1084 1085
{
	struct amd_iommu *iommu;
1086
	struct iommu_cmd cmd;
1087
	int qdep;
1088

1089 1090
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1091

1092
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1093 1094

	return iommu_queue_command(iommu, &cmd);
1095 1096
}

1097 1098 1099
/*
 * Command send function for invalidating a device table entry
 */
1100
static int device_flush_dte(struct iommu_dev_data *dev_data)
1101
{
1102
	struct amd_iommu *iommu;
1103
	u16 alias;
1104
	int ret;
1105

1106
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1107
	alias = dev_data->alias;
1108

1109
	ret = iommu_flush_dte(iommu, dev_data->devid);
1110 1111
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1112 1113 1114
	if (ret)
		return ret;

1115
	if (dev_data->ats.enabled)
1116
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1117 1118

	return ret;
1119 1120
}

1121 1122 1123 1124 1125
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1126 1127
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1128
{
1129
	struct iommu_dev_data *dev_data;
1130 1131
	struct iommu_cmd cmd;
	int ret = 0, i;
1132

1133
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1134

1135 1136 1137 1138 1139 1140 1141 1142
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1143
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1144 1145
	}

1146 1147
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1148
		if (!dev_data->ats.enabled)
1149 1150
			continue;

1151
		ret |= device_flush_iotlb(dev_data, address, size);
1152 1153
	}

1154
	WARN_ON(ret);
1155 1156
}

1157 1158
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1159
{
1160
	__domain_flush_pages(domain, address, size, 0);
1161
}
1162

1163
/* Flush the whole IO/TLB for a given protection domain */
1164
static void domain_flush_tlb(struct protection_domain *domain)
1165
{
1166
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1167 1168
}

1169
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1170
static void domain_flush_tlb_pde(struct protection_domain *domain)
1171
{
1172
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1173 1174
}

1175
static void domain_flush_complete(struct protection_domain *domain)
1176
{
1177
	int i;
1178

1179 1180 1181
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1182

1183 1184 1185 1186 1187
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1188
	}
1189 1190
}

1191

1192
/*
1193
 * This function flushes the DTEs for all devices in domain
1194
 */
1195
static void domain_flush_devices(struct protection_domain *domain)
1196
{
1197
	struct iommu_dev_data *dev_data;
1198

1199
	list_for_each_entry(dev_data, &domain->dev_list, list)
1200
		device_flush_dte(dev_data);
1201 1202
}

1203 1204 1205 1206 1207 1208 1209
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1239
		      unsigned long page_size,
1240 1241 1242
		      u64 **pte_page,
		      gfp_t gfp)
{
1243
	int level, end_lvl;
1244
	u64 *pte, *page;
1245 1246

	BUG_ON(!is_power_of_2(page_size));
1247 1248 1249 1250

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1251 1252 1253 1254
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1255 1256

	while (level > end_lvl) {
1257 1258 1259 1260 1261
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1262 1263 1264
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1265 1266 1267 1268 1269 1270 1271

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1272 1273
		}

1274 1275 1276 1277
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1295 1296 1297
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1298 1299 1300 1301
{
	int level;
	u64 *pte;

1302 1303 1304
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1305 1306 1307
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1308

1309 1310 1311
	while (level > 0) {

		/* Not Present */
1312 1313 1314
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1315
		/* Large PTE */
1316 1317 1318
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1319 1320 1321 1322 1323

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1324 1325
		level -= 1;

1326
		/* Walk to the next level */
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1342 1343 1344 1345 1346
	}

	return pte;
}

1347 1348 1349 1350 1351 1352 1353
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1354 1355 1356
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1357
			  unsigned long page_size,
1358
			  int prot,
1359
			  gfp_t gfp)
1360
{
1361
	u64 __pte, *pte;
1362
	int i, count;
1363

1364 1365 1366
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1367
	if (!(prot & IOMMU_PROT_MASK))
1368 1369
		return -EINVAL;

1370
	count = PAGE_SIZE_PTE_COUNT(page_size);
1371
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1372

1373 1374 1375
	if (!pte)
		return -ENOMEM;

1376 1377 1378
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1379

1380
	if (count > 1) {
1381 1382 1383 1384
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1385 1386 1387 1388 1389 1390

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1391 1392
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1393

1394 1395
	update_domain(dom);

1396 1397 1398
	return 0;
}

1399 1400 1401
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1402
{
1403 1404
	unsigned long long unmapped;
	unsigned long unmap_size;
1405 1406 1407 1408 1409
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1410

1411 1412
	while (unmapped < page_size) {

1413 1414 1415 1416 1417 1418
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1419 1420 1421 1422 1423 1424 1425 1426
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1427
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1428

1429
	return unmapped;
1430 1431
}

1432 1433 1434
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1435
 * interface functions.
1436 1437
 *
 ****************************************************************************/
1438

1439

1440 1441 1442
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1443
{
1444
	unsigned long pfn = 0;
1445

1446
	pages = __roundup_pow_of_two(pages);
1447

1448 1449 1450
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1451

1452 1453
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1454

1455
	return (pfn << PAGE_SHIFT);
1456 1457
}

1458 1459 1460
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1461
{
1462 1463
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1464

1465
	free_iova_fast(&dma_dom->iovad, address, pages);
1466 1467
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1540
		/* PTE present? */				\
1541 1542 1543
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1544 1545 1546 1547 1548
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1561
static void free_pagetable(struct protection_domain *domain)
1562
{
1563
	unsigned long root = (unsigned long)domain->pt_root;
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1588 1589 1590
	}
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1621 1622
static void free_gcr3_table(struct protection_domain *domain)
{
1623 1624 1625 1626
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1627 1628
	else
		BUG_ON(domain->glx != 0);
1629

1630 1631 1632
	free_page((unsigned long)domain->gcr3_tbl);
}

1633 1634 1635 1636
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1637 1638 1639 1640 1641
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1642 1643
	del_domain_from_list(&dom->domain);

1644
	put_iova_domain(&dom->iovad);
1645

1646
	free_pagetable(&dom->domain);
1647 1648 1649 1650

	kfree(dom);
}

1651 1652
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1653
 * It also initializes the page table and the address allocator data
1654 1655
 * structures required for the dma_ops interface
 */
1656
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1657 1658 1659 1660 1661 1662 1663
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1664
	if (protection_domain_init(&dma_dom->domain))
1665
		goto free_dma_dom;
1666

1667
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1668
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1669
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1670 1671 1672 1673
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1674 1675 1676
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1677 1678 1679
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1680 1681
	add_domain_to_list(&dma_dom->domain);

1682 1683 1684 1685 1686 1687 1688 1689
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1690 1691 1692 1693 1694 1695 1696 1697 1698
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1699
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1700
{
1701
	u64 pte_root = 0;
1702
	u64 flags = 0;
1703

1704 1705 1706
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1707 1708 1709
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1710

1711 1712
	flags = amd_iommu_dev_table[devid].data[1];

1713 1714 1715
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1742 1743 1744 1745 1746
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1747 1748 1749 1750 1751
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1752 1753
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1754 1755

	amd_iommu_apply_erratum_63(devid);
1756 1757
}

1758 1759
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1760 1761
{
	struct amd_iommu *iommu;
1762
	u16 alias;
1763
	bool ats;
1764

1765
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1766
	alias = dev_data->alias;
1767
	ats   = dev_data->ats.enabled;
1768 1769 1770 1771 1772 1773 1774 1775 1776

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1777 1778 1779
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1780
		set_dte_entry(alias, domain, ats);
1781

1782
	device_flush_dte(dev_data);
1783 1784
}

1785
static void do_detach(struct iommu_dev_data *dev_data)
1786 1787
{
	struct amd_iommu *iommu;
1788
	u16 alias;
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1799
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1800
	alias = dev_data->alias;
1801 1802

	/* decrease reference counters */
1803 1804 1805 1806 1807 1808
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1809
	clear_dte_entry(dev_data->devid);
1810 1811
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1812

1813
	/* Flush the DTE entry */
1814
	device_flush_dte(dev_data);
1815 1816 1817 1818 1819 1820
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1821
static int __attach_device(struct iommu_dev_data *dev_data,
1822
			   struct protection_domain *domain)
1823
{
1824
	int ret;
1825

1826 1827 1828 1829 1830 1831
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1832 1833 1834
	/* lock domain */
	spin_lock(&domain->lock);

1835
	ret = -EBUSY;
1836
	if (dev_data->domain != NULL)
1837
		goto out_unlock;
1838

1839
	/* Attach alias group root */
1840
	do_attach(dev_data, domain);
1841

1842 1843 1844 1845
	ret = 0;

out_unlock:

1846 1847
	/* ready */
	spin_unlock(&domain->lock);
1848

1849
	return ret;
1850
}
1851

1852 1853 1854 1855 1856 1857 1858 1859

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1860 1861 1862 1863 1864 1865
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1866
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1867 1868 1869
	if (!pos)
		return -EINVAL;

1870 1871 1872
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1873 1874 1875 1876

	return 0;
}

1877 1878
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1879 1880 1881 1882 1883 1884 1885 1886
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1898 1899
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
1900 1901 1902
	if (ret)
		goto out_err;

1903 1904 1905 1906 1907 1908
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

1922
/* FIXME: Move this to PCI code */
1923
#define PCI_PRI_TLP_OFF		(1 << 15)
1924

J
Joerg Roedel 已提交
1925
static bool pci_pri_tlp_required(struct pci_dev *pdev)
1926
{
1927
	u16 status;
1928 1929
	int pos;

1930
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1931 1932 1933
	if (!pos)
		return false;

1934
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
1935

1936
	return (status & PCI_PRI_TLP_OFF) ? true : false;
1937 1938
}

1939
/*
F
Frank Arnold 已提交
1940
 * If a device is not yet associated with a domain, this function
1941 1942
 * assigns it visible for the hardware
 */
1943 1944
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1945
{
1946
	struct pci_dev *pdev;
1947
	struct iommu_dev_data *dev_data;
1948
	unsigned long flags;
1949
	int ret;
1950

1951 1952
	dev_data = get_dev_data(dev);

1953 1954 1955 1956
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
1957
	if (domain->flags & PD_IOMMUV2_MASK) {
1958
		if (!dev_data->passthrough)
1959 1960
			return -EINVAL;

1961 1962 1963
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
1964

1965 1966 1967 1968
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
1969 1970
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1971 1972 1973
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1974

1975
skip_ats_check:
1976
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1977
	ret = __attach_device(dev_data, domain);
1978 1979
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1980 1981 1982 1983 1984
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1985
	domain_flush_tlb_pde(domain);
1986 1987

	return ret;
1988 1989
}

1990 1991 1992
/*
 * Removes a device from a protection domain (unlocked)
 */
1993
static void __detach_device(struct iommu_dev_data *dev_data)
1994
{
1995
	struct protection_domain *domain;
1996

1997 1998 1999 2000 2001
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2002

2003 2004
	if (WARN_ON(!dev_data->domain))
		return;
2005

2006
	domain = dev_data->domain;
2007

2008
	spin_lock(&domain->lock);
2009

2010
	do_detach(dev_data);
2011

2012
	spin_unlock(&domain->lock);
2013 2014 2015 2016 2017
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2018
static void detach_device(struct device *dev)
2019
{
2020
	struct protection_domain *domain;
2021
	struct iommu_dev_data *dev_data;
2022 2023
	unsigned long flags;

2024
	dev_data = get_dev_data(dev);
2025
	domain   = dev_data->domain;
2026

2027 2028
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2029
	__detach_device(dev_data);
2030
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2031

2032 2033 2034
	if (!dev_is_pci(dev))
		return;

2035
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2036 2037
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2038
		pci_disable_ats(to_pci_dev(dev));
2039 2040

	dev_data->ats.enabled = false;
2041
}
2042

2043
static int amd_iommu_add_device(struct device *dev)
2044
{
2045
	struct iommu_dev_data *dev_data;
2046
	struct iommu_domain *domain;
2047
	struct amd_iommu *iommu;
2048
	int ret, devid;
2049

2050
	if (!check_device(dev) || get_dev_data(dev))
2051
		return 0;
2052

2053
	devid = get_device_id(dev);
2054
	if (devid < 0)
2055 2056
		return devid;

2057
	iommu = amd_iommu_rlookup_table[devid];
2058

2059
	ret = iommu_init_device(dev);
2060 2061 2062 2063
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2064

2065
		iommu_ignore_device(dev);
2066
		dev->archdata.dma_ops = &nommu_dma_ops;
2067 2068 2069
		goto out;
	}
	init_iommu_group(dev);
2070

2071
	dev_data = get_dev_data(dev);
2072

2073
	BUG_ON(!dev_data);
2074

2075
	if (iommu_pass_through || dev_data->iommu_v2)
2076
		iommu_request_dm_for_dev(dev);
2077

2078 2079
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2080
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2081
		dev_data->passthrough = true;
2082
	else
2083
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2084

2085
out:
2086 2087 2088 2089 2090
	iommu_completion_wait(iommu);

	return 0;
}

2091
static void amd_iommu_remove_device(struct device *dev)
2092
{
2093
	struct amd_iommu *iommu;
2094
	int devid;
2095 2096 2097 2098 2099

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2100
	if (devid < 0)
2101 2102
		return;

2103 2104 2105 2106
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2107 2108
}

2109 2110 2111 2112 2113 2114 2115 2116
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2130
static struct protection_domain *get_domain(struct device *dev)
2131
{
2132
	struct protection_domain *domain;
2133
	struct iommu_domain *io_domain;
2134

2135
	if (!check_device(dev))
2136
		return ERR_PTR(-EINVAL);
2137

2138
	io_domain = iommu_get_domain_for_dev(dev);
2139 2140
	if (!io_domain)
		return NULL;
2141

2142 2143
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2144
		return ERR_PTR(-EBUSY);
2145

2146
	return domain;
2147 2148
}

2149 2150
static void update_device_table(struct protection_domain *domain)
{
2151
	struct iommu_dev_data *dev_data;
2152

2153 2154
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2155 2156 2157 2158 2159 2160 2161 2162
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2163 2164 2165

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2166 2167 2168 2169

	domain->updated = false;
}

2170 2171
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2172 2173
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2174 2175
 * Must be called with the domain lock held.
 */
2176 2177 2178 2179
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2180
			       int direction,
2181
			       u64 dma_mask)
2182 2183
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2184
	dma_addr_t address, start, ret;
2185
	unsigned int pages;
2186
	int prot = 0;
2187 2188
	int i;

2189
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2190 2191
	paddr &= PAGE_MASK;

2192
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2193 2194
	if (address == DMA_ERROR_CODE)
		goto out;
2195

2196 2197 2198 2199 2200 2201 2202
	if (direction == DMA_TO_DEVICE)
		prot = IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		prot = IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		prot = IOMMU_PROT_IW | IOMMU_PROT_IR;

2203 2204
	start = address;
	for (i = 0; i < pages; ++i) {
2205 2206 2207
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2208 2209
			goto out_unmap;

2210 2211 2212 2213 2214
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2215
	if (unlikely(amd_iommu_np_cache)) {
2216
		domain_flush_pages(&dma_dom->domain, address, size);
2217 2218
		domain_flush_complete(&dma_dom->domain);
	}
2219

2220 2221
out:
	return address;
2222 2223 2224 2225 2226

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2227
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2228 2229
	}

2230 2231 2232 2233
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2234

2235
	return DMA_ERROR_CODE;
2236 2237
}

2238 2239 2240 2241
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2242
static void __unmap_single(struct dma_ops_domain *dma_dom,
2243 2244 2245 2246
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2247
	dma_addr_t flush_addr;
2248 2249 2250
	dma_addr_t i, start;
	unsigned int pages;

2251
	flush_addr = dma_addr;
2252
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2253 2254 2255 2256
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2257
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2258 2259 2260
		start += PAGE_SIZE;
	}

2261 2262 2263 2264
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, dma_addr, pages);
2265 2266
}

2267 2268 2269
/*
 * The exported map_single function for dma_ops.
 */
2270 2271 2272 2273
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2274
{
2275
	phys_addr_t paddr = page_to_phys(page) + offset;
2276
	struct protection_domain *domain;
2277
	u64 dma_mask;
2278

2279 2280
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2281
		return (dma_addr_t)paddr;
2282 2283
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2284

2285 2286
	dma_mask = *dev->dma_mask;

2287
	return __map_single(dev, domain->priv, paddr, size, dir, dma_mask);
2288 2289
}

2290 2291 2292
/*
 * The exported unmap_single function for dma_ops.
 */
2293 2294
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2295 2296 2297
{
	struct protection_domain *domain;

2298 2299
	domain = get_domain(dev);
	if (IS_ERR(domain))
2300 2301
		return;

2302
	__unmap_single(domain->priv, dma_addr, size, dir);
2303 2304
}

2305 2306 2307 2308
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2309
static int map_sg(struct device *dev, struct scatterlist *sglist,
2310 2311
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2312 2313 2314 2315 2316 2317
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2318
	u64 dma_mask;
2319

2320
	domain = get_domain(dev);
2321
	if (IS_ERR(domain))
2322
		return 0;
2323

2324
	dma_mask = *dev->dma_mask;
2325 2326 2327 2328

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2329
		s->dma_address = __map_single(dev, domain->priv,
2330
					      paddr, s->length, dir, dma_mask);
2331 2332 2333 2334 2335 2336 2337 2338 2339

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2340

2341 2342 2343
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2344
			__unmap_single(domain->priv, s->dma_address,
2345 2346 2347 2348
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2349
	return 0;
2350 2351
}

2352 2353 2354 2355
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2356
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2357 2358
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2359 2360 2361 2362 2363
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2364 2365
	domain = get_domain(dev);
	if (IS_ERR(domain))
2366 2367
		return;

2368
	for_each_sg(sglist, s, nelems, i) {
2369
		__unmap_single(domain->priv, s->dma_address,
2370 2371 2372 2373 2374
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2375 2376 2377
/*
 * The exported alloc_coherent function for dma_ops.
 */
2378
static void *alloc_coherent(struct device *dev, size_t size,
2379 2380
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2381
{
2382
	u64 dma_mask = dev->coherent_dma_mask;
2383 2384
	struct protection_domain *domain;
	struct page *page;
2385

2386 2387
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2388 2389 2390
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2391 2392
	} else if (IS_ERR(domain))
		return NULL;
2393

2394
	size	  = PAGE_ALIGN(size);
2395 2396
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2397
	flag     |= __GFP_ZERO;
2398

2399 2400
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2401
		if (!gfpflags_allow_blocking(flag))
2402
			return NULL;
2403

2404 2405 2406 2407 2408
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2409

2410 2411 2412
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2413
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2414
				 size, DMA_BIDIRECTIONAL, dma_mask);
2415

2416
	if (*dma_addr == DMA_ERROR_CODE)
2417
		goto out_free;
2418

2419
	return page_address(page);
2420 2421 2422

out_free:

2423 2424
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2425 2426

	return NULL;
2427 2428
}

2429 2430 2431
/*
 * The exported free_coherent function for dma_ops.
 */
2432
static void free_coherent(struct device *dev, size_t size,
2433 2434
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2435 2436
{
	struct protection_domain *domain;
2437
	struct page *page;
2438

2439 2440 2441
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2442 2443
	domain = get_domain(dev);
	if (IS_ERR(domain))
2444 2445
		goto free_mem;

2446
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2447 2448

free_mem:
2449 2450
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2451 2452
}

2453 2454 2455 2456 2457 2458
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2459
	return check_device(dev);
2460 2461
}

2462
static struct dma_map_ops amd_iommu_dma_ops = {
2463 2464 2465 2466 2467 2468 2469
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2470 2471
};

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2525
int __init amd_iommu_init_api(void)
2526
{
2527
	int ret, cpu, err = 0;
2528 2529 2530 2531

	ret = iova_cache_get();
	if (ret)
		return ret;
2532

2533 2534 2535 2536
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2549 2550 2551 2552 2553 2554 2555 2556
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2557 2558 2559
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2560
	return 0;
2561 2562 2563 2564 2565 2566 2567 2568 2569

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2570 2571
}

2572 2573
int __init amd_iommu_init_dma_ops(void)
{
2574
	swiotlb        = iommu_pass_through ? 1 : 0;
2575 2576
	iommu_detected = 1;

2577 2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2586 2587 2588 2589 2590
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2591
	return 0;
2592

2593
}
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2607
	struct iommu_dev_data *entry;
2608 2609 2610 2611
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2612 2613 2614 2615
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2616
	}
2617 2618 2619 2620

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2621 2622 2623 2624 2625
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2626 2627
	del_domain_from_list(domain);

2628 2629 2630 2631 2632 2633
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2646
static struct protection_domain *protection_domain_alloc(void)
2647 2648 2649 2650 2651
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2652
		return NULL;
2653

2654
	if (protection_domain_init(domain))
2655 2656
		goto out_err;

2657 2658
	add_domain_to_list(domain);

2659 2660 2661 2662 2663 2664 2665 2666
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2667
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2668
{
2669
	struct protection_domain *pdomain;
2670
	struct dma_ops_domain *dma_domain;
2671

2672 2673 2674 2675 2676
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2677

2678 2679 2680 2681 2682 2683
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2684

2685 2686 2687
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2688

2689 2690 2691 2692 2693 2694 2695 2696 2697
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2698 2699 2700 2701
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2702

2703 2704
		pdomain->mode = PAGE_MODE_NONE;
		break;
2705 2706 2707
	default:
		return NULL;
	}
2708

2709
	return &pdomain->domain;
2710 2711
}

2712
static void amd_iommu_domain_free(struct iommu_domain *dom)
2713
{
2714
	struct protection_domain *domain;
2715

2716
	if (!dom)
2717 2718
		return;

2719 2720
	domain = to_pdomain(dom);

2721 2722 2723 2724 2725
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2726 2727
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2728

2729 2730 2731
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2732
	protection_domain_free(domain);
2733 2734
}

2735 2736 2737
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2738
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2739
	struct amd_iommu *iommu;
2740
	int devid;
2741

2742
	if (!check_device(dev))
2743 2744
		return;

2745
	devid = get_device_id(dev);
2746
	if (devid < 0)
2747
		return;
2748

2749
	if (dev_data->domain != NULL)
2750
		detach_device(dev);
2751 2752 2753 2754 2755 2756 2757 2758

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2759 2760 2761
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2762
	struct protection_domain *domain = to_pdomain(dom);
2763
	struct iommu_dev_data *dev_data;
2764
	struct amd_iommu *iommu;
2765
	int ret;
2766

2767
	if (!check_device(dev))
2768 2769
		return -EINVAL;

2770 2771
	dev_data = dev->archdata.iommu;

2772
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2773 2774 2775
	if (!iommu)
		return -EINVAL;

2776
	if (dev_data->domain)
2777
		detach_device(dev);
2778

2779
	ret = attach_device(dev, domain);
2780 2781 2782

	iommu_completion_wait(iommu);

2783
	return ret;
2784 2785
}

2786
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2787
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2788
{
2789
	struct protection_domain *domain = to_pdomain(dom);
2790 2791 2792
	int prot = 0;
	int ret;

2793 2794 2795
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2796 2797 2798 2799 2800
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2801
	mutex_lock(&domain->api_lock);
2802
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
2803 2804
	mutex_unlock(&domain->api_lock);

2805
	return ret;
2806 2807
}

2808 2809
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
2810
{
2811
	struct protection_domain *domain = to_pdomain(dom);
2812
	size_t unmap_size;
2813

2814 2815 2816
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2817
	mutex_lock(&domain->api_lock);
2818
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2819
	mutex_unlock(&domain->api_lock);
2820

2821
	domain_flush_tlb_pde(domain);
2822

2823
	return unmap_size;
2824 2825
}

2826
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2827
					  dma_addr_t iova)
2828
{
2829
	struct protection_domain *domain = to_pdomain(dom);
2830
	unsigned long offset_mask, pte_pgsize;
2831
	u64 *pte, __pte;
2832

2833 2834 2835
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

2836
	pte = fetch_pte(domain, iova, &pte_pgsize);
2837

2838
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2839 2840
		return 0;

2841 2842
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
2843

2844
	return (__pte & ~offset_mask) | (iova & offset_mask);
2845 2846
}

2847
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
2848
{
2849 2850
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
2851
		return true;
2852
	case IOMMU_CAP_INTR_REMAP:
2853
		return (irq_remapping_enabled == 1);
2854 2855
	case IOMMU_CAP_NOEXEC:
		return false;
2856 2857
	}

2858
	return false;
S
Sheng Yang 已提交
2859 2860
}

2861 2862 2863 2864
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
2865
	int devid;
2866 2867

	devid = get_device_id(dev);
2868
	if (devid < 0)
2869
		return;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
	struct protection_domain *pdomain = to_pdomain(domain);
	struct dma_ops_domain *dma_dom = pdomain->priv;
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

2918
static const struct iommu_ops amd_iommu_ops = {
2919
	.capable = amd_iommu_capable,
2920 2921
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
2922 2923
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2924 2925
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
2926
	.map_sg = default_iommu_map_sg,
2927
	.iova_to_phys = amd_iommu_iova_to_phys,
2928 2929
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
2930
	.device_group = amd_iommu_device_group,
2931 2932
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
2933
	.apply_dm_region = amd_iommu_apply_dm_region,
2934
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2935 2936
};

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2959 2960 2961

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
2962
	struct protection_domain *domain = to_pdomain(dom);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2980 2981 2982

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
2983
	struct protection_domain *domain = to_pdomain(dom);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3061 3062 3063 3064 3065 3066
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3098
	struct protection_domain *domain = to_pdomain(dom);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3118
	struct protection_domain *domain = to_pdomain(dom);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3198
	struct protection_domain *domain = to_pdomain(dom);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3212
	struct protection_domain *domain = to_pdomain(dom);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3240 3241 3242

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3243
	struct protection_domain *pdomain;
3244

3245 3246
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3247 3248 3249
		return NULL;

	/* Only return IOMMUv2 domains */
3250
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3251 3252
		return NULL;

3253
	return &pdomain->domain;
3254 3255
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3335 3336 3337 3338 3339
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3402 3403 3404
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3405 3406 3407 3408 3409 3410 3411
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3412
		table = NULL;
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3430
		set_dte_irq_entry(alias, table);
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3443
static int alloc_irq_index(u16 devid, int count)
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3527
static int get_devid(struct irq_alloc_info *info)
3528
{
3529
	int devid = -1;
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3546

3547 3548
	return devid;
}
3549

3550 3551 3552 3553
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3554

3555 3556
	if (!info)
		return NULL;
3557

3558 3559 3560 3561 3562 3563
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3564

3565
	return NULL;
3566 3567
}

3568
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3569
{
3570 3571
	struct amd_iommu *iommu;
	int devid;
3572

3573 3574
	if (!info)
		return NULL;
3575

3576 3577 3578 3579
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3580
		if (devid < 0)
3581 3582
			return NULL;

3583 3584 3585
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3586 3587 3588 3589
		break;
	default:
		break;
	}
3590

3591 3592
	return NULL;
}
3593

3594 3595 3596 3597 3598 3599
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3600 3601 3602
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3603

3604 3605 3606 3607 3608 3609 3610 3611 3612
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3613

3614 3615
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3616

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3639

3640 3641 3642 3643 3644 3645 3646
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3647

3648 3649 3650 3651
	default:
		BUG_ON(1);
		break;
	}
3652 3653
}

3654 3655
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3656
{
3657 3658 3659
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3660
	struct irq_cfg *cfg;
3661 3662
	int i, ret, devid;
	int index = -1;
3663

3664 3665 3666 3667
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3668 3669
		return -EINVAL;

3670 3671 3672 3673 3674 3675
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3676

3677 3678 3679
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3680

3681 3682 3683
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3684

3685 3686 3687 3688 3689 3690
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3691
		index = alloc_irq_index(devid, nr_irqs);
3692 3693 3694 3695 3696
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3697

3698 3699 3700 3701 3702 3703 3704
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3705

3706 3707 3708 3709 3710
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3711 3712 3713 3714 3715 3716
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3717

3718
	return 0;
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3731 3732
}

3733 3734
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3735
{
3736 3737 3738 3739
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3740

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3752

3753 3754 3755 3756 3757
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3758

3759
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3760 3761
}

3762 3763
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3764
{
3765 3766 3767
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3768

3769 3770 3771
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
3772

3773 3774 3775 3776 3777
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
3778
};
3779

3780 3781 3782 3783 3784 3785 3786 3787
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
3788

3789 3790 3791
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
3792

3793 3794 3795 3796 3797 3798 3799
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
3800

3801 3802 3803 3804 3805
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
3806
	send_cleanup_vector(cfg);
3807 3808

	return IRQ_SET_MASK_OK_DONE;
3809 3810
}

3811
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3812
{
3813
	struct amd_ir_data *ir_data = irq_data->chip_data;
3814

3815 3816
	*msg = ir_data->msi_entry;
}
3817

3818 3819 3820 3821 3822
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
3823

3824 3825 3826 3827 3828
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
3829

3830 3831
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
3832 3833 3834

	return 0;
}
3835
#endif