amd_iommu.c 96.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
25
#include <linux/bitmap.h>
26
#include <linux/slab.h>
27
#include <linux/debugfs.h>
28
#include <linux/scatterlist.h>
29
#include <linux/dma-mapping.h>
30
#include <linux/iommu-helper.h>
31
#include <linux/iommu.h>
32
#include <linux/delay.h>
33
#include <linux/amd-iommu.h>
34 35
#include <linux/notifier.h>
#include <linux/export.h>
36 37
#include <linux/irq.h>
#include <linux/msi.h>
38
#include <linux/dma-contiguous.h>
39
#include <linux/irqdomain.h>
40
#include <linux/percpu.h>
41 42 43 44
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
45
#include <asm/msidef.h>
46
#include <asm/proto.h>
47
#include <asm/iommu.h>
48
#include <asm/gart.h>
49
#include <asm/dma.h>
50 51 52

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
53
#include "irq_remapping.h"
54 55 56

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

57
#define LOOP_TIMEOUT	100000
58

59 60 61 62 63 64
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
65
 * 512GB Pages are not supported due to a hardware bug
66
 */
J
Joerg Roedel 已提交
67
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
68

69 70
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
77
LIST_HEAD(acpihid_map);
78

79 80 81 82
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
83
static const struct iommu_ops amd_iommu_ops;
84

85
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
86
int amd_iommu_max_glx_val = -1;
87

88 89
static struct dma_map_ops amd_iommu_dma_ops;

90 91 92 93 94 95 96 97 98
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
99
	bool passthrough;		  /* Device is identity mapped */
100 101 102 103 104 105 106 107 108
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

109 110 111
/*
 * general struct to manage commands send to an IOMMU
 */
112
struct iommu_cmd {
113 114 115
	u32 data[4];
};

116 117
struct kmem_cache *amd_iommu_irq_cache;

118
static void update_domain(struct protection_domain *domain);
119
static int protection_domain_init(struct protection_domain *domain);
120
static void detach_device(struct device *dev);
121

122 123 124 125 126 127
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

128 129
	spinlock_t bitmap_lock;

130 131
	/* address allocation bitmap */
	unsigned long *bitmap;
132
	unsigned long offset;
133
	unsigned long next_bit;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

154
	/* aperture index we start searching for free addresses */
155
	u32 __percpu *next_index;
156 157 158 159 160

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

161 162 163 164 165 166
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

167 168 169 170 171
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

172
static struct iommu_dev_data *alloc_dev_data(u16 devid)
173 174 175 176 177 178 179 180
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

181
	dev_data->devid = devid;
182 183 184 185 186 187 188 189

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
{
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
}

static inline u16 get_pci_device_id(struct device *dev)
242 243 244
{
	struct pci_dev *pdev = to_pci_dev(dev);

245
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
246 247
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

275 276 277 278 279
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

280 281 282 283 284 285
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
{
	struct acpihid_map_entry *p, *entry = NULL;
286
	int devid;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
}

303 304 305 306
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
307 308
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
309 310 311 312 313 314 315 316 317 318 319 320
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

321 322 323 324 325 326 327 328 329
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

330
/*
331 332
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
333
 */
334 335
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
336
{
337
	u64 addr;
338

339 340 341 342 343
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
344
	}
345
}
346

347 348 349 350 351 352 353
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
354
	int devid;
355

356
	devid = get_device_id(dev);
357 358
	if (IS_ERR_VALUE(devid))
		return;
359

360 361 362 363 364
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
365 366
}

367 368 369 370 371 372
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
373
	int devid;
374 375 376 377 378

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
379 380
	if (IS_ERR_VALUE(devid))
		return false;
381 382 383 384 385 386 387 388 389 390 391

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

392
static void init_iommu_group(struct device *dev)
393
{
394 395
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
396 397
	struct iommu_group *group;

398
	group = iommu_group_get_for_dev(dev);
399 400 401 402 403 404 405 406 407 408 409 410
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
411 412 413 414 415
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
416
	int devid;
417 418 419 420

	if (dev->archdata.iommu)
		return 0;

421 422 423 424 425
	devid = get_device_id(dev);
	if (IS_ERR_VALUE(devid))
		return devid;

	dev_data = find_dev_data(devid);
426 427 428
	if (!dev_data)
		return -ENOMEM;

429
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
430 431
		struct amd_iommu *iommu;

432
		iommu = amd_iommu_rlookup_table[dev_data->devid];
433 434 435
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

436 437
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
438 439 440
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

441 442 443
	return 0;
}

444 445
static void iommu_ignore_device(struct device *dev)
{
446 447
	u16 alias;
	int devid;
448 449

	devid = get_device_id(dev);
450 451 452
	if (IS_ERR_VALUE(devid))
		return;

453 454 455 456 457 458 459 460 461
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

462 463
static void iommu_uninit_device(struct device *dev)
{
464 465 466 467 468 469
	int devid;
	struct iommu_dev_data *dev_data;

	devid = get_device_id(dev);
	if (IS_ERR_VALUE(devid))
		return;
470

471
	dev_data = search_dev_data(devid);
472 473 474
	if (!dev_data)
		return;

475 476 477
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
478 479 480
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

481 482
	iommu_group_remove_device(dev);

483 484 485
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

486
	/*
487 488
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
489
	 */
490
}
J
Joerg Roedel 已提交
491

492 493 494 495 496 497
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

498
DECLARE_STATS_COUNTER(compl_wait);
499
DECLARE_STATS_COUNTER(cnt_map_single);
500
DECLARE_STATS_COUNTER(cnt_unmap_single);
501
DECLARE_STATS_COUNTER(cnt_map_sg);
502
DECLARE_STATS_COUNTER(cnt_unmap_sg);
503
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
504
DECLARE_STATS_COUNTER(cnt_free_coherent);
505
DECLARE_STATS_COUNTER(cross_page);
506
DECLARE_STATS_COUNTER(domain_flush_single);
507
DECLARE_STATS_COUNTER(domain_flush_all);
508
DECLARE_STATS_COUNTER(alloced_io_mem);
509
DECLARE_STATS_COUNTER(total_map_requests);
510 511 512 513 514
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
534
					 &amd_iommu_unmap_flush);
535 536

	amd_iommu_stats_add(&compl_wait);
537
	amd_iommu_stats_add(&cnt_map_single);
538
	amd_iommu_stats_add(&cnt_unmap_single);
539
	amd_iommu_stats_add(&cnt_map_sg);
540
	amd_iommu_stats_add(&cnt_unmap_sg);
541
	amd_iommu_stats_add(&cnt_alloc_coherent);
542
	amd_iommu_stats_add(&cnt_free_coherent);
543
	amd_iommu_stats_add(&cross_page);
544
	amd_iommu_stats_add(&domain_flush_single);
545
	amd_iommu_stats_add(&domain_flush_all);
546
	amd_iommu_stats_add(&alloced_io_mem);
547
	amd_iommu_stats_add(&total_map_requests);
548 549 550 551
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
552 553 554 555
}

#endif

556 557 558 559 560 561
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

562 563 564 565
static void dump_dte_entry(u16 devid)
{
	int i;

566 567
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
568 569 570
			amd_iommu_dev_table[devid].data[i]);
}

571 572 573 574 575 576 577 578 579
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

580
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
581
{
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
603

604
	printk(KERN_ERR "AMD-Vi: Event logged [");
605 606 607 608 609

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611
		       address, flags);
612
		dump_dte_entry(devid);
613 614 615 616
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620 621 622
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
623
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 625 626 627 628
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
629
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
630 631 632 633
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
634
		dump_command(address);
635 636 637 638 639 640 641 642
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
643
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 645 646 647 648
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
649
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 651 652 653 654
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
655 656

	memset(__evt, 0, 4 * sizeof(u32));
657 658 659 660 661 662 663 664 665 666
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
667
		iommu_print_event(iommu, iommu->evt_buf + head);
668
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
669 670 671 672 673
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

674
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
675 676 677
{
	struct amd_iommu_fault fault;

678 679
	INC_STATS_COUNTER(pri_requests);

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
721

722 723 724
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
725

726 727 728 729 730 731 732
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
733 734
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
735 736 737 738 739 740

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
741 742 743 744
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

745
irqreturn_t amd_iommu_int_thread(int irq, void *data)
746
{
747 748
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
749

750 751 752 753
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
754

755 756 757 758
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
759

760 761 762 763
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
764

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
780
	return IRQ_HANDLED;
781 782
}

783 784 785 786 787
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

788 789 790 791 792 793
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
814 815 816
{
	u8 *target;

817
	target = iommu->cmd_buf + tail;
818
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
819 820 821 822 823

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
824
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
825
}
826

827
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
828
{
829 830
	WARN_ON(address & 0x7ULL);

831
	memset(cmd, 0, sizeof(*cmd));
832 833 834
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
835 836 837
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

838 839 840 841 842 843 844
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

845 846 847 848
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
849
	bool s;
850 851

	pages = iommu_num_pages(address, size, PAGE_SIZE);
852
	s     = false;
853 854 855 856 857 858 859

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
860
		s = true;
861 862 863 864 865 866 867 868 869 870 871
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
872
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
873 874 875
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

876 877 878 879
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
880
	bool s;
881 882

	pages = iommu_num_pages(address, size, PAGE_SIZE);
883
	s     = false;
884 885 886 887 888 889 890

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
891
		s = true;
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

907 908 909 910 911 912 913
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

914
	cmd->data[0]  = pasid;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
933
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
934 935
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
936
	cmd->data[1] |= (pasid & 0xff) << 16;
937 938 939 940 941 942 943 944
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

945 946 947 948 949 950 951
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
952
		cmd->data[1]  = pasid;
953 954 955 956 957 958 959 960
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

961 962 963 964
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
965 966
}

967 968 969 970 971 972 973
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

974 975
/*
 * Writes the command to the IOMMUs command buffer and informs the
976
 * hardware about the new command.
977
 */
978 979 980
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
981
{
982
	u32 left, tail, head, next_tail;
983 984
	unsigned long flags;

985
again:
986 987
	spin_lock_irqsave(&iommu->lock, flags);

988 989
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
990 991
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
992

993 994 995 996
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
997

998 999
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1000

1001 1002 1003 1004 1005 1006
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1007 1008
	}

1009 1010 1011
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1012
	iommu->need_sync = sync;
1013

1014
	spin_unlock_irqrestore(&iommu->lock, flags);
1015

1016
	return 0;
1017 1018
}

1019 1020 1021 1022 1023
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1024 1025 1026 1027
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1028
static int iommu_completion_wait(struct amd_iommu *iommu)
1029 1030
{
	struct iommu_cmd cmd;
1031
	volatile u64 sem = 0;
1032
	int ret;
1033

1034
	if (!iommu->need_sync)
1035
		return 0;
1036

1037
	build_completion_wait(&cmd, (u64)&sem);
1038

1039
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1040
	if (ret)
1041
		return ret;
1042

1043
	return wait_on_sem(&sem);
1044 1045
}

1046
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1047
{
1048
	struct iommu_cmd cmd;
1049

1050
	build_inv_dte(&cmd, devid);
1051

1052 1053
	return iommu_queue_command(iommu, &cmd);
}
1054

1055 1056 1057
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1058

1059 1060
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1061

1062 1063
	iommu_completion_wait(iommu);
}
1064

1065 1066 1067 1068 1069 1070 1071
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1072

1073 1074 1075 1076 1077 1078
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1079

1080
	iommu_completion_wait(iommu);
1081 1082
}

1083
static void iommu_flush_all(struct amd_iommu *iommu)
1084
{
1085
	struct iommu_cmd cmd;
1086

1087
	build_inv_all(&cmd);
1088

1089 1090 1091 1092
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1112 1113
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1114 1115 1116 1117
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1118
		iommu_flush_irt_all(iommu);
1119
		iommu_flush_tlb_all(iommu);
1120 1121 1122
	}
}

1123
/*
1124
 * Command send function for flushing on-device TLB
1125
 */
1126 1127
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1128 1129
{
	struct amd_iommu *iommu;
1130
	struct iommu_cmd cmd;
1131
	int qdep;
1132

1133 1134
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1135

1136
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1137 1138

	return iommu_queue_command(iommu, &cmd);
1139 1140
}

1141 1142 1143
/*
 * Command send function for invalidating a device table entry
 */
1144
static int device_flush_dte(struct iommu_dev_data *dev_data)
1145
{
1146
	struct amd_iommu *iommu;
1147
	u16 alias;
1148
	int ret;
1149

1150
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1151
	alias = amd_iommu_alias_table[dev_data->devid];
1152

1153
	ret = iommu_flush_dte(iommu, dev_data->devid);
1154 1155
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1156 1157 1158
	if (ret)
		return ret;

1159
	if (dev_data->ats.enabled)
1160
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1161 1162

	return ret;
1163 1164
}

1165 1166 1167 1168 1169
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1170 1171
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1172
{
1173
	struct iommu_dev_data *dev_data;
1174 1175
	struct iommu_cmd cmd;
	int ret = 0, i;
1176

1177
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1178

1179 1180 1181 1182 1183 1184 1185 1186
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1187
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1188 1189
	}

1190 1191
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1192
		if (!dev_data->ats.enabled)
1193 1194
			continue;

1195
		ret |= device_flush_iotlb(dev_data, address, size);
1196 1197
	}

1198
	WARN_ON(ret);
1199 1200
}

1201 1202
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1203
{
1204
	__domain_flush_pages(domain, address, size, 0);
1205
}
1206

1207
/* Flush the whole IO/TLB for a given protection domain */
1208
static void domain_flush_tlb(struct protection_domain *domain)
1209
{
1210
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1211 1212
}

1213
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1214
static void domain_flush_tlb_pde(struct protection_domain *domain)
1215
{
1216
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1217 1218
}

1219
static void domain_flush_complete(struct protection_domain *domain)
1220
{
1221
	int i;
1222

1223 1224 1225
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1226

1227 1228 1229 1230 1231
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1232
	}
1233 1234
}

1235

1236
/*
1237
 * This function flushes the DTEs for all devices in domain
1238
 */
1239
static void domain_flush_devices(struct protection_domain *domain)
1240
{
1241
	struct iommu_dev_data *dev_data;
1242

1243
	list_for_each_entry(dev_data, &domain->dev_list, list)
1244
		device_flush_dte(dev_data);
1245 1246
}

1247 1248 1249 1250 1251 1252 1253
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1283
		      unsigned long page_size,
1284 1285 1286
		      u64 **pte_page,
		      gfp_t gfp)
{
1287
	int level, end_lvl;
1288
	u64 *pte, *page;
1289 1290

	BUG_ON(!is_power_of_2(page_size));
1291 1292 1293 1294

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1295 1296 1297 1298
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1299 1300

	while (level > end_lvl) {
1301 1302 1303 1304 1305
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1306 1307 1308
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1309 1310 1311 1312 1313 1314 1315

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1316 1317
		}

1318 1319 1320 1321
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1339 1340 1341
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1342 1343 1344 1345
{
	int level;
	u64 *pte;

1346 1347 1348
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1349 1350 1351
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1352

1353 1354 1355
	while (level > 0) {

		/* Not Present */
1356 1357 1358
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1359
		/* Large PTE */
1360 1361 1362
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1363 1364 1365 1366 1367

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1368 1369
		level -= 1;

1370
		/* Walk to the next level */
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1386 1387 1388 1389 1390
	}

	return pte;
}

1391 1392 1393 1394 1395 1396 1397
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1398 1399 1400
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1401
			  int prot,
1402
			  unsigned long page_size)
1403
{
1404
	u64 __pte, *pte;
1405
	int i, count;
1406

1407 1408 1409
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1410
	if (!(prot & IOMMU_PROT_MASK))
1411 1412
		return -EINVAL;

1413 1414
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1415

1416 1417 1418
	if (!pte)
		return -ENOMEM;

1419 1420 1421
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1422

1423
	if (count > 1) {
1424 1425 1426 1427
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1428 1429 1430 1431 1432 1433

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1434 1435
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1436

1437 1438
	update_domain(dom);

1439 1440 1441
	return 0;
}

1442 1443 1444
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1445
{
1446 1447
	unsigned long long unmapped;
	unsigned long unmap_size;
1448 1449 1450 1451 1452
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1453

1454 1455
	while (unmapped < page_size) {

1456 1457 1458 1459 1460 1461
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1462 1463 1464 1465 1466 1467 1468 1469
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1470
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1471

1472
	return unmapped;
1473 1474
}

1475 1476 1477 1478 1479 1480 1481 1482 1483
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1484

1485
/*
1486
 * The address allocator core functions.
1487 1488 1489
 *
 * called with domain->lock held
 */
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1511 1512 1513 1514 1515
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1516
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1517 1518 1519
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1520
	unsigned long i, old_size, pte_pgsize;
1521 1522 1523
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1524

1525 1526 1527 1528
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1529 1530 1531
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1532 1533
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1534 1535
		return -ENOMEM;

1536 1537
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1538 1539
		goto out_free;

1540
	range->offset = dma_dom->aperture_size;
1541

1542
	spin_lock_init(&range->bitmap_lock);
1543

1544 1545 1546 1547 1548 1549
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1550
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1551 1552 1553 1554
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1555
			range->pte_pages[i] = pte_page;
1556 1557 1558 1559 1560

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1561 1562
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1563
	/* First take the bitmap_lock and then publish the range */
1564
	spin_lock(&range->bitmap_lock);
1565 1566 1567 1568

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1582
	/* Initialize the exclusion range if necessary */
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1604
	     i += pte_pgsize) {
1605
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1606 1607 1608
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1609 1610
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1611 1612
	}

1613 1614
	update_domain(&dma_dom->domain);

1615 1616 1617
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1618

1619 1620 1621
	return 0;

out_free:
1622 1623
	update_domain(&dma_dom->domain);

1624
	free_page((unsigned long)range->bitmap);
1625

1626
	kfree(range);
1627 1628 1629 1630

	return -ENOMEM;
}

1631 1632
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1633 1634 1635
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1636 1637
					 unsigned long align_mask,
					 bool trylock)
1638 1639 1640
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1641
	bool flush = false;
1642 1643 1644 1645 1646

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1647 1648 1649 1650 1651 1652 1653
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1654 1655
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1656
	if (address == -1) {
1657 1658 1659 1660
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1661 1662
		flush = true;
	}
1663 1664 1665 1666

	if (address != -1)
		range->next_bit = address + pages;

1667 1668
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1669 1670 1671 1672 1673
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1674 1675 1676
	return address;
}

1677 1678 1679 1680
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1681
					u64 dma_mask)
1682
{
1683
	unsigned long boundary_size, mask;
1684
	unsigned long address = -1;
1685
	bool first = true;
1686 1687 1688
	u32 start, i;

	preempt_disable();
1689

1690 1691
	mask = dma_get_seg_boundary(dev);

1692
again:
1693 1694 1695 1696 1697 1698 1699 1700
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1701 1702
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1703

1704 1705
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1706 1707 1708
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1709

1710
		range = dom->aperture[index];
1711 1712 1713

		if (!range || range->offset >= dma_mask)
			continue;
1714

1715
		address = dma_ops_aperture_alloc(dom, range, pages,
1716
						 dma_mask, boundary_size,
1717
						 align_mask, first);
1718
		if (address != -1) {
1719
			address = range->offset + (address << PAGE_SHIFT);
1720
			this_cpu_write(*dom->next_index, index);
1721 1722 1723 1724
			break;
		}
	}

1725 1726 1727 1728 1729
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1730 1731
	preempt_enable();

1732 1733 1734
	return address;
}

1735 1736
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1737
					     unsigned int pages,
1738 1739
					     unsigned long align_mask,
					     u64 dma_mask)
1740
{
1741
	unsigned long address = -1;
1742

1743 1744 1745 1746
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1747
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1748 1749
			break;
	}
1750

1751
	if (unlikely(address == -1))
1752
		address = DMA_ERROR_CODE;
1753 1754 1755 1756 1757 1758

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1759 1760 1761 1762 1763
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1764 1765 1766 1767
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1768 1769
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1770
	unsigned long flags;
1771

1772 1773
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1774 1775 1776 1777
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1778

1779
	if (amd_iommu_unmap_flush) {
1780 1781 1782
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1783 1784

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1785

1786
	spin_lock_irqsave(&range->bitmap_lock, flags);
1787 1788
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1789
	bitmap_clear(range->bitmap, address, pages);
1790
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1791

1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1866
		/* PTE present? */				\
1867 1868 1869
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1870 1871 1872 1873 1874
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1887
static void free_pagetable(struct protection_domain *domain)
1888
{
1889
	unsigned long root = (unsigned long)domain->pt_root;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1914 1915 1916
	}
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1947 1948
static void free_gcr3_table(struct protection_domain *domain)
{
1949 1950 1951 1952
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1953 1954
	else
		BUG_ON(domain->glx != 0);
1955

1956 1957 1958
	free_page((unsigned long)domain->gcr3_tbl);
}

1959 1960 1961 1962
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1963 1964
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1965 1966
	int i;

1967 1968 1969
	if (!dom)
		return;

1970 1971
	free_percpu(dom->next_index);

1972 1973
	del_domain_from_list(&dom->domain);

1974
	free_pagetable(&dom->domain);
1975

1976 1977 1978 1979 1980 1981
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1982 1983 1984 1985

	kfree(dom);
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

2003 2004
/*
 * Allocates a new protection domain usable for the dma_ops functions.
2005
 * It also initializes the page table and the address allocator data
2006 2007
 * structures required for the dma_ops interface
 */
2008
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2009 2010
{
	struct dma_ops_domain *dma_dom;
2011
	int cpu;
2012 2013 2014 2015 2016

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

2017
	if (protection_domain_init(&dma_dom->domain))
2018
		goto free_dma_dom;
2019

2020 2021 2022 2023
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

2024
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2025
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2026
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2027 2028 2029 2030
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2031 2032
	add_domain_to_list(&dma_dom->domain);

2033
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2034 2035
		goto free_dma_dom;

2036
	/*
2037 2038
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2039
	 */
2040
	dma_dom->aperture[0]->bitmap[0] = 1;
2041

2042 2043
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2044 2045 2046 2047 2048 2049 2050 2051 2052

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2062
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2063
{
2064
	u64 pte_root = 0;
2065
	u64 flags = 0;
2066

2067 2068 2069
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2070 2071 2072
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2073

2074 2075
	flags = amd_iommu_dev_table[devid].data[1];

2076 2077 2078
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2105 2106 2107 2108 2109
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2110 2111 2112 2113 2114
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2115 2116
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2117 2118

	amd_iommu_apply_erratum_63(devid);
2119 2120
}

2121 2122
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2123 2124
{
	struct amd_iommu *iommu;
2125
	u16 alias;
2126
	bool ats;
2127

2128
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2129
	alias = amd_iommu_alias_table[dev_data->devid];
2130
	ats   = dev_data->ats.enabled;
2131 2132 2133 2134 2135 2136 2137 2138 2139

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2140 2141 2142
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2143
		set_dte_entry(alias, domain, ats);
2144

2145
	device_flush_dte(dev_data);
2146 2147
}

2148
static void do_detach(struct iommu_dev_data *dev_data)
2149 2150
{
	struct amd_iommu *iommu;
2151
	u16 alias;
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2162
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2163
	alias = amd_iommu_alias_table[dev_data->devid];
2164 2165

	/* decrease reference counters */
2166 2167 2168 2169 2170 2171
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2172
	clear_dte_entry(dev_data->devid);
2173 2174
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2175

2176
	/* Flush the DTE entry */
2177
	device_flush_dte(dev_data);
2178 2179 2180 2181 2182 2183
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2184
static int __attach_device(struct iommu_dev_data *dev_data,
2185
			   struct protection_domain *domain)
2186
{
2187
	int ret;
2188

2189 2190 2191 2192 2193 2194
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2195 2196 2197
	/* lock domain */
	spin_lock(&domain->lock);

2198
	ret = -EBUSY;
2199
	if (dev_data->domain != NULL)
2200
		goto out_unlock;
2201

2202
	/* Attach alias group root */
2203
	do_attach(dev_data, domain);
2204

2205 2206 2207 2208
	ret = 0;

out_unlock:

2209 2210
	/* ready */
	spin_unlock(&domain->lock);
2211

2212
	return ret;
2213
}
2214

2215 2216 2217 2218 2219 2220 2221 2222

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2223 2224 2225 2226 2227 2228
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2229
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2230 2231 2232
	if (!pos)
		return -EINVAL;

2233 2234 2235
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2236 2237 2238 2239

	return 0;
}

2240 2241
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2242 2243 2244 2245 2246 2247 2248 2249
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2261 2262
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2263 2264 2265
	if (ret)
		goto out_err;

2266 2267 2268 2269 2270 2271
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2285
/* FIXME: Move this to PCI code */
2286
#define PCI_PRI_TLP_OFF		(1 << 15)
2287

J
Joerg Roedel 已提交
2288
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2289
{
2290
	u16 status;
2291 2292
	int pos;

2293
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2294 2295 2296
	if (!pos)
		return false;

2297
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2298

2299
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2300 2301
}

2302
/*
F
Frank Arnold 已提交
2303
 * If a device is not yet associated with a domain, this function
2304 2305
 * assigns it visible for the hardware
 */
2306 2307
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2308
{
2309
	struct pci_dev *pdev;
2310
	struct iommu_dev_data *dev_data;
2311
	unsigned long flags;
2312
	int ret;
2313

2314 2315
	dev_data = get_dev_data(dev);

2316 2317 2318 2319
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2320
	if (domain->flags & PD_IOMMUV2_MASK) {
2321
		if (!dev_data->passthrough)
2322 2323
			return -EINVAL;

2324 2325 2326
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2327

2328 2329 2330 2331
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2332 2333
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2334 2335 2336
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2337

2338
skip_ats_check:
2339
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2340
	ret = __attach_device(dev_data, domain);
2341 2342
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2343 2344 2345 2346 2347
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2348
	domain_flush_tlb_pde(domain);
2349 2350

	return ret;
2351 2352
}

2353 2354 2355
/*
 * Removes a device from a protection domain (unlocked)
 */
2356
static void __detach_device(struct iommu_dev_data *dev_data)
2357
{
2358
	struct protection_domain *domain;
2359

2360 2361 2362 2363 2364
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2365

2366 2367
	if (WARN_ON(!dev_data->domain))
		return;
2368

2369
	domain = dev_data->domain;
2370

2371
	spin_lock(&domain->lock);
2372

2373
	do_detach(dev_data);
2374

2375
	spin_unlock(&domain->lock);
2376 2377 2378 2379 2380
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2381
static void detach_device(struct device *dev)
2382
{
2383
	struct protection_domain *domain;
2384
	struct iommu_dev_data *dev_data;
2385 2386
	unsigned long flags;

2387
	dev_data = get_dev_data(dev);
2388
	domain   = dev_data->domain;
2389

2390 2391
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2392
	__detach_device(dev_data);
2393
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2394

2395 2396 2397
	if (!dev_is_pci(dev))
		return;

2398
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2399 2400
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2401
		pci_disable_ats(to_pci_dev(dev));
2402 2403

	dev_data->ats.enabled = false;
2404
}
2405

2406
static int amd_iommu_add_device(struct device *dev)
2407
{
2408
	struct iommu_dev_data *dev_data;
2409
	struct iommu_domain *domain;
2410
	struct amd_iommu *iommu;
2411
	int ret, devid;
2412

2413
	if (!check_device(dev) || get_dev_data(dev))
2414
		return 0;
2415

2416
	devid = get_device_id(dev);
2417 2418 2419
	if (IS_ERR_VALUE(devid))
		return devid;

2420
	iommu = amd_iommu_rlookup_table[devid];
2421

2422
	ret = iommu_init_device(dev);
2423 2424 2425 2426
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2427

2428
		iommu_ignore_device(dev);
2429
		dev->archdata.dma_ops = &nommu_dma_ops;
2430 2431 2432
		goto out;
	}
	init_iommu_group(dev);
2433

2434
	dev_data = get_dev_data(dev);
2435

2436
	BUG_ON(!dev_data);
2437

2438
	if (iommu_pass_through || dev_data->iommu_v2)
2439
		iommu_request_dm_for_dev(dev);
2440

2441 2442
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2443
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2444
		dev_data->passthrough = true;
2445
	else
2446
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2447

2448
out:
2449 2450 2451 2452 2453
	iommu_completion_wait(iommu);

	return 0;
}

2454
static void amd_iommu_remove_device(struct device *dev)
2455
{
2456
	struct amd_iommu *iommu;
2457
	int devid;
2458 2459 2460 2461 2462

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2463 2464 2465
	if (IS_ERR_VALUE(devid))
		return;

2466 2467 2468 2469
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2470 2471
}

2472 2473 2474 2475 2476 2477 2478 2479
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2493
static struct protection_domain *get_domain(struct device *dev)
2494
{
2495
	struct protection_domain *domain;
2496
	struct iommu_domain *io_domain;
2497

2498
	if (!check_device(dev))
2499
		return ERR_PTR(-EINVAL);
2500

2501
	io_domain = iommu_get_domain_for_dev(dev);
2502 2503
	if (!io_domain)
		return NULL;
2504

2505 2506
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2507
		return ERR_PTR(-EBUSY);
2508

2509
	return domain;
2510 2511
}

2512 2513
static void update_device_table(struct protection_domain *domain)
{
2514
	struct iommu_dev_data *dev_data;
2515

2516 2517
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2518 2519 2520 2521 2522 2523 2524 2525
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2526 2527 2528

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2529 2530 2531 2532

	domain->updated = false;
}

2533 2534 2535 2536 2537 2538
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2539
	struct aperture_range *aperture;
2540 2541
	u64 *pte, *pte_page;

2542 2543 2544 2545 2546
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2547
	if (!pte) {
2548
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2549
				GFP_ATOMIC);
2550 2551
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2552
		pte += PM_LEVEL_INDEX(0, address);
2553

2554
	update_domain(&dom->domain);
2555 2556 2557 2558

	return pte;
}

2559 2560 2561 2562
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2563
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2574
	pte  = dma_ops_get_pte(dom, address);
2575
	if (!pte)
2576
		return DMA_ERROR_CODE;
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2587
	WARN_ON_ONCE(*pte);
2588 2589 2590 2591 2592 2593

	*pte = __pte;

	return (dma_addr_t)address;
}

2594 2595 2596
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2597
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2598 2599
				 unsigned long address)
{
2600
	struct aperture_range *aperture;
2601 2602 2603 2604 2605
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2606 2607 2608 2609 2610 2611 2612
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2613

2614
	pte += PM_LEVEL_INDEX(0, address);
2615

2616
	WARN_ON_ONCE(!*pte);
2617 2618 2619 2620

	*pte = 0ULL;
}

2621 2622
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2623 2624
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2625 2626
 * Must be called with the domain lock held.
 */
2627 2628 2629 2630
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2631
			       int dir,
2632 2633
			       bool align,
			       u64 dma_mask)
2634 2635
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2636
	dma_addr_t address, start, ret;
2637
	unsigned int pages;
2638
	unsigned long align_mask = 0;
2639 2640
	int i;

2641
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2642 2643
	paddr &= PAGE_MASK;

2644 2645
	INC_STATS_COUNTER(total_map_requests);

2646 2647 2648
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2649 2650 2651
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2652 2653
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2654

2655 2656
	if (address == DMA_ERROR_CODE)
		goto out;
2657 2658 2659

	start = address;
	for (i = 0; i < pages; ++i) {
2660
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2661
		if (ret == DMA_ERROR_CODE)
2662 2663
			goto out_unmap;

2664 2665 2666 2667 2668
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2669 2670
	ADD_STATS_COUNTER(alloced_io_mem, size);

2671
	if (unlikely(amd_iommu_np_cache)) {
2672
		domain_flush_pages(&dma_dom->domain, address, size);
2673 2674
		domain_flush_complete(&dma_dom->domain);
	}
2675

2676 2677
out:
	return address;
2678 2679 2680 2681 2682

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2683
		dma_ops_domain_unmap(dma_dom, start);
2684 2685 2686 2687
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2688
	return DMA_ERROR_CODE;
2689 2690
}

2691 2692 2693 2694
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2695
static void __unmap_single(struct dma_ops_domain *dma_dom,
2696 2697 2698 2699
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2700
	dma_addr_t flush_addr;
2701 2702 2703
	dma_addr_t i, start;
	unsigned int pages;

2704
	if ((dma_addr == DMA_ERROR_CODE) ||
2705
	    (dma_addr + size > dma_dom->aperture_size))
2706 2707
		return;

2708
	flush_addr = dma_addr;
2709
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2710 2711 2712 2713
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2714
		dma_ops_domain_unmap(dma_dom, start);
2715 2716 2717
		start += PAGE_SIZE;
	}

2718 2719 2720
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2721 2722
}

2723 2724 2725
/*
 * The exported map_single function for dma_ops.
 */
2726 2727 2728 2729
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2730
{
2731
	phys_addr_t paddr = page_to_phys(page) + offset;
2732
	struct protection_domain *domain;
2733
	u64 dma_mask;
2734

2735 2736
	INC_STATS_COUNTER(cnt_map_single);

2737 2738
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2739
		return (dma_addr_t)paddr;
2740 2741
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2742

2743 2744
	dma_mask = *dev->dma_mask;

2745
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2746
			    dma_mask);
2747 2748
}

2749 2750 2751
/*
 * The exported unmap_single function for dma_ops.
 */
2752 2753
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2754 2755 2756
{
	struct protection_domain *domain;

2757 2758
	INC_STATS_COUNTER(cnt_unmap_single);

2759 2760
	domain = get_domain(dev);
	if (IS_ERR(domain))
2761 2762
		return;

2763
	__unmap_single(domain->priv, dma_addr, size, dir);
2764 2765
}

2766 2767 2768 2769
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2770
static int map_sg(struct device *dev, struct scatterlist *sglist,
2771 2772
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2773 2774 2775 2776 2777 2778
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2779
	u64 dma_mask;
2780

2781 2782
	INC_STATS_COUNTER(cnt_map_sg);

2783
	domain = get_domain(dev);
2784
	if (IS_ERR(domain))
2785
		return 0;
2786

2787
	dma_mask = *dev->dma_mask;
2788 2789 2790 2791

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2792
		s->dma_address = __map_single(dev, domain->priv,
2793 2794
					      paddr, s->length, dir, false,
					      dma_mask);
2795 2796 2797 2798 2799 2800 2801 2802 2803

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2804

2805 2806 2807
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2808
			__unmap_single(domain->priv, s->dma_address,
2809 2810 2811 2812
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2813
	return 0;
2814 2815
}

2816 2817 2818 2819
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2820
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2821 2822
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2823 2824 2825 2826 2827
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2828 2829
	INC_STATS_COUNTER(cnt_unmap_sg);

2830 2831
	domain = get_domain(dev);
	if (IS_ERR(domain))
2832 2833
		return;

2834
	for_each_sg(sglist, s, nelems, i) {
2835
		__unmap_single(domain->priv, s->dma_address,
2836 2837 2838 2839 2840
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2841 2842 2843
/*
 * The exported alloc_coherent function for dma_ops.
 */
2844
static void *alloc_coherent(struct device *dev, size_t size,
2845 2846
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2847
{
2848
	u64 dma_mask = dev->coherent_dma_mask;
2849 2850
	struct protection_domain *domain;
	struct page *page;
2851

2852 2853
	INC_STATS_COUNTER(cnt_alloc_coherent);

2854 2855
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2856 2857 2858
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2859 2860
	} else if (IS_ERR(domain))
		return NULL;
2861

2862
	size	  = PAGE_ALIGN(size);
2863 2864
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2865
	flag     |= __GFP_ZERO;
2866

2867 2868
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2869
		if (!gfpflags_allow_blocking(flag))
2870
			return NULL;
2871

2872 2873 2874 2875 2876
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2877

2878 2879 2880
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2881
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2882
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2883

2884
	if (*dma_addr == DMA_ERROR_CODE)
2885
		goto out_free;
2886

2887
	return page_address(page);
2888 2889 2890

out_free:

2891 2892
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2893 2894

	return NULL;
2895 2896
}

2897 2898 2899
/*
 * The exported free_coherent function for dma_ops.
 */
2900
static void free_coherent(struct device *dev, size_t size,
2901 2902
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2903 2904
{
	struct protection_domain *domain;
2905
	struct page *page;
2906

2907 2908
	INC_STATS_COUNTER(cnt_free_coherent);

2909 2910 2911
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2912 2913
	domain = get_domain(dev);
	if (IS_ERR(domain))
2914 2915
		goto free_mem;

2916
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2917 2918

free_mem:
2919 2920
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2921 2922
}

2923 2924 2925 2926 2927 2928
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2929
	return check_device(dev);
2930 2931
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2960
static struct dma_map_ops amd_iommu_dma_ops = {
2961 2962 2963 2964 2965 2966 2967 2968
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2969 2970
};

2971
int __init amd_iommu_init_api(void)
2972
{
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	int err = 0;

	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
	return 0;
2984 2985
}

2986 2987
int __init amd_iommu_init_dma_ops(void)
{
2988
	swiotlb        = iommu_pass_through ? 1 : 0;
2989 2990
	iommu_detected = 1;

2991 2992 2993 2994 2995 2996 2997 2998 2999
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

3000 3001
	amd_iommu_stats_init();

3002 3003 3004 3005 3006
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3007 3008
	return 0;
}
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3022
	struct iommu_dev_data *entry;
3023 3024 3025 3026
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3027 3028 3029 3030
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3031
	}
3032 3033 3034 3035

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3036 3037 3038 3039 3040
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3041 3042
	del_domain_from_list(domain);

3043 3044 3045 3046 3047 3048
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3061
static struct protection_domain *protection_domain_alloc(void)
3062 3063 3064 3065 3066
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3067
		return NULL;
3068

3069
	if (protection_domain_init(domain))
3070 3071
		goto out_err;

3072 3073
	add_domain_to_list(domain);

3074 3075 3076 3077 3078 3079 3080 3081
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3082
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3083
{
3084
	struct protection_domain *pdomain;
3085
	struct dma_ops_domain *dma_domain;
3086

3087 3088 3089 3090 3091
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3092

3093 3094 3095 3096 3097 3098
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3099

3100 3101 3102
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3113 3114 3115 3116
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3117

3118 3119
		pdomain->mode = PAGE_MODE_NONE;
		break;
3120 3121 3122
	default:
		return NULL;
	}
3123

3124
	return &pdomain->domain;
3125 3126
}

3127
static void amd_iommu_domain_free(struct iommu_domain *dom)
3128
{
3129
	struct protection_domain *domain;
3130

3131
	if (!dom)
3132 3133
		return;

3134 3135
	domain = to_pdomain(dom);

3136 3137 3138 3139 3140
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3141 3142
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3143

3144 3145 3146
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3147
	protection_domain_free(domain);
3148 3149
}

3150 3151 3152
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3153
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3154
	struct amd_iommu *iommu;
3155
	int devid;
3156

3157
	if (!check_device(dev))
3158 3159
		return;

3160
	devid = get_device_id(dev);
3161 3162
	if (IS_ERR_VALUE(devid))
		return;
3163

3164
	if (dev_data->domain != NULL)
3165
		detach_device(dev);
3166 3167 3168 3169 3170 3171 3172 3173

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3174 3175 3176
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3177
	struct protection_domain *domain = to_pdomain(dom);
3178
	struct iommu_dev_data *dev_data;
3179
	struct amd_iommu *iommu;
3180
	int ret;
3181

3182
	if (!check_device(dev))
3183 3184
		return -EINVAL;

3185 3186
	dev_data = dev->archdata.iommu;

3187
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3188 3189 3190
	if (!iommu)
		return -EINVAL;

3191
	if (dev_data->domain)
3192
		detach_device(dev);
3193

3194
	ret = attach_device(dev, domain);
3195 3196 3197

	iommu_completion_wait(iommu);

3198
	return ret;
3199 3200
}

3201
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3202
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3203
{
3204
	struct protection_domain *domain = to_pdomain(dom);
3205 3206 3207
	int prot = 0;
	int ret;

3208 3209 3210
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3211 3212 3213 3214 3215
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3216
	mutex_lock(&domain->api_lock);
3217
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3218 3219
	mutex_unlock(&domain->api_lock);

3220
	return ret;
3221 3222
}

3223 3224
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3225
{
3226
	struct protection_domain *domain = to_pdomain(dom);
3227
	size_t unmap_size;
3228

3229 3230 3231
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3232
	mutex_lock(&domain->api_lock);
3233
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3234
	mutex_unlock(&domain->api_lock);
3235

3236
	domain_flush_tlb_pde(domain);
3237

3238
	return unmap_size;
3239 3240
}

3241
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3242
					  dma_addr_t iova)
3243
{
3244
	struct protection_domain *domain = to_pdomain(dom);
3245
	unsigned long offset_mask, pte_pgsize;
3246
	u64 *pte, __pte;
3247

3248 3249 3250
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3251
	pte = fetch_pte(domain, iova, &pte_pgsize);
3252

3253
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3254 3255
		return 0;

3256 3257
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3258

3259
	return (__pte & ~offset_mask) | (iova & offset_mask);
3260 3261
}

3262
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3263
{
3264 3265
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3266
		return true;
3267
	case IOMMU_CAP_INTR_REMAP:
3268
		return (irq_remapping_enabled == 1);
3269 3270
	case IOMMU_CAP_NOEXEC:
		return false;
3271 3272
	}

3273
	return false;
S
Sheng Yang 已提交
3274 3275
}

3276 3277 3278 3279
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3280
	int devid;
3281 3282

	devid = get_device_id(dev);
3283 3284
	if (IS_ERR_VALUE(devid))
		return;
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3319
static const struct iommu_ops amd_iommu_ops = {
3320
	.capable = amd_iommu_capable,
3321 3322
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3323 3324
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3325 3326
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3327
	.map_sg = default_iommu_map_sg,
3328
	.iova_to_phys = amd_iommu_iova_to_phys,
3329 3330
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3331
	.device_group = amd_iommu_device_group,
3332 3333
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3334
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3335 3336
};

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3359 3360 3361

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3362
	struct protection_domain *domain = to_pdomain(dom);
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3380 3381 3382

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3383
	struct protection_domain *domain = to_pdomain(dom);
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3461 3462 3463 3464 3465 3466
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3492 3493
	INC_STATS_COUNTER(invalidate_iotlb);

3494 3495 3496 3497 3498 3499
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3500
	struct protection_domain *domain = to_pdomain(dom);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3514 3515
	INC_STATS_COUNTER(invalidate_iotlb_all);

3516 3517 3518 3519 3520 3521
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3522
	struct protection_domain *domain = to_pdomain(dom);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3602
	struct protection_domain *domain = to_pdomain(dom);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3616
	struct protection_domain *domain = to_pdomain(dom);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3627 3628 3629 3630 3631 3632 3633 3634

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3635 3636
	INC_STATS_COUNTER(complete_ppr);

3637 3638 3639 3640 3641 3642 3643 3644 3645
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3646 3647 3648

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3649
	struct protection_domain *pdomain;
3650

3651 3652
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3653 3654 3655
		return NULL;

	/* Only return IOMMUv2 domains */
3656
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3657 3658
		return NULL;

3659
	return &pdomain->domain;
3660 3661
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3741 3742 3743 3744 3745
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3808 3809 3810
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3811 3812 3813 3814 3815 3816 3817
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3818
		table = NULL;
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3836
		set_dte_irq_entry(alias, table);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3849
static int alloc_irq_index(u16 devid, int count)
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3933
static int get_devid(struct irq_alloc_info *info)
3934
{
3935
	int devid = -1;
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3952

3953 3954
	return devid;
}
3955

3956 3957 3958 3959
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3960

3961 3962
	if (!info)
		return NULL;
3963

3964 3965 3966 3967 3968 3969
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3970

3971
	return NULL;
3972 3973
}

3974
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3975
{
3976 3977
	struct amd_iommu *iommu;
	int devid;
3978

3979 3980
	if (!info)
		return NULL;
3981

3982 3983 3984 3985
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3986 3987 3988
		if (IS_ERR_VALUE(devid))
			return NULL;

3989 3990 3991
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3992 3993 3994 3995
		break;
	default:
		break;
	}
3996

3997 3998
	return NULL;
}
3999

4000 4001 4002 4003 4004 4005
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4006 4007 4008
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
4019

4020 4021
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4022

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4045

4046 4047 4048 4049 4050 4051 4052
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4053

4054 4055 4056 4057
	default:
		BUG_ON(1);
		break;
	}
4058 4059
}

4060 4061
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4062
{
4063 4064 4065
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
4066
	struct irq_cfg *cfg;
4067 4068
	int i, ret, devid;
	int index = -1;
4069

4070 4071 4072 4073
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4074 4075
		return -EINVAL;

4076 4077 4078 4079 4080 4081
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4082

4083 4084 4085
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4086

4087 4088 4089
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4090

4091 4092 4093 4094 4095 4096
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4097
		index = alloc_irq_index(devid, nr_irqs);
4098 4099 4100 4101 4102
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
4103

4104 4105 4106 4107 4108 4109 4110
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4111

4112 4113 4114 4115 4116
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4117 4118 4119 4120 4121 4122
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4123

4124
	return 0;
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4137 4138
}

4139 4140
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4141
{
4142 4143 4144 4145
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4146

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4158

4159 4160 4161 4162 4163
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4164

4165
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4166 4167
}

4168 4169
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4170
{
4171 4172 4173
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4174

4175 4176 4177
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4178

4179 4180 4181 4182 4183
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4184
};
4185

4186 4187 4188 4189 4190 4191 4192 4193
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4194

4195 4196 4197
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4198

4199 4200 4201 4202 4203 4204 4205
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4206

4207 4208 4209 4210 4211
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4212
	send_cleanup_vector(cfg);
4213 4214

	return IRQ_SET_MASK_OK_DONE;
4215 4216
}

4217
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4218
{
4219
	struct amd_ir_data *ir_data = irq_data->chip_data;
4220

4221 4222
	*msg = ir_data->msi_entry;
}
4223

4224 4225 4226 4227 4228
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4229

4230 4231 4232 4233 4234
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4235

4236 4237
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4238 4239 4240

	return 0;
}
4241
#endif