amd_iommu.c 91.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

DEFINE_PER_CPU(struct flush_queue, flush_queue);

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
static const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120 121
static struct dma_map_ops amd_iommu_dma_ops;

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139 140 141
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

142 143 144
/*
 * general struct to manage commands send to an IOMMU
 */
145
struct iommu_cmd {
146 147 148
	u32 data[4];
};

149 150
struct kmem_cache *amd_iommu_irq_cache;

151
static void update_domain(struct protection_domain *domain);
152
static int protection_domain_init(struct protection_domain *domain);
153
static void detach_device(struct device *dev);
154

155 156 157 158 159 160 161
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

162 163
	/* IOVA RB-Tree */
	struct iova_domain iovad;
164 165
};

166 167 168
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

169 170 171 172 173 174
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

175 176
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
177
{
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
193 194
}

195
static inline u16 get_pci_device_id(struct device *dev)
196 197 198 199 200 201
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

229 230 231 232 233
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

234 235 236 237 238 239
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

240
static struct iommu_dev_data *alloc_dev_data(u16 devid)
241 242 243 244 245 246 247 248
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

249
	dev_data->devid = devid;
250 251 252 253 254 255 256 257

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

277 278 279 280 281 282 283 284 285 286 287
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

288
	/* The callers make sure that get_device_id() does not fail here */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
330
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
331 332 333 334 335 336 337 338
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

339 340 341 342 343 344 345 346 347 348 349 350
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

351 352 353 354 355
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

356 357 358 359
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
360
{
361
	struct acpihid_map_entry *p, *entry = NULL;
362
	int devid;
363 364 365 366 367 368 369 370 371 372 373 374 375 376

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
377 378
}

379 380 381 382
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
383 384
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
385 386 387 388 389 390 391 392 393 394 395 396
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

397 398 399 400 401 402 403 404 405
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

406 407 408 409 410 411
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
412
	int devid;
413 414 415 416 417

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
418
	if (devid < 0)
419
		return false;
420 421 422 423 424 425 426 427 428 429 430

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

431
static void init_iommu_group(struct device *dev)
432 433 434
{
	struct iommu_group *group;

435
	group = iommu_group_get_for_dev(dev);
436 437 438 439
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
440 441 442 443 444
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
445
	int devid;
446 447 448 449

	if (dev->archdata.iommu)
		return 0;

450
	devid = get_device_id(dev);
451
	if (devid < 0)
452 453 454
		return devid;

	dev_data = find_dev_data(devid);
455 456 457
	if (!dev_data)
		return -ENOMEM;

458 459
	dev_data->alias = get_alias(dev);

460
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
461 462
		struct amd_iommu *iommu;

463
		iommu = amd_iommu_rlookup_table[dev_data->devid];
464 465 466
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

467 468
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
469 470 471
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

472 473 474
	return 0;
}

475 476
static void iommu_ignore_device(struct device *dev)
{
477 478
	u16 alias;
	int devid;
479 480

	devid = get_device_id(dev);
481
	if (devid < 0)
482 483
		return;

484
	alias = get_alias(dev);
485 486 487 488 489 490 491 492

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

493 494
static void iommu_uninit_device(struct device *dev)
{
495 496
	int devid;
	struct iommu_dev_data *dev_data;
497

498
	devid = get_device_id(dev);
499
	if (devid < 0)
500
		return;
501

502
	dev_data = search_dev_data(devid);
503 504 505
	if (!dev_data)
		return;

506 507 508
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
509 510 511
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

512 513
	iommu_group_remove_device(dev);

514 515 516
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

517
	/*
518 519
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
520
	 */
521
}
J
Joerg Roedel 已提交
522

523 524 525 526 527 528
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

529 530 531 532
static void dump_dte_entry(u16 devid)
{
	int i;

533 534
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
535 536 537
			amd_iommu_dev_table[devid].data[i]);
}

538 539 540 541 542 543 544 545 546
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

547
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
548
{
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
570

571
	printk(KERN_ERR "AMD-Vi: Event logged [");
572 573 574 575 576

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
577
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
578
		       address, flags);
579
		dump_dte_entry(devid);
580 581 582 583
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
584
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 586 587 588 589
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
590
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
591 592 593 594 595
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
596
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
597 598 599 600
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
601
		dump_command(address);
602 603 604 605 606 607 608 609
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 612 613 614 615
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617 618 619 620 621
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
622 623

	memset(__evt, 0, 4 * sizeof(u32));
624 625 626 627 628 629 630 631 632 633
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
634
		iommu_print_event(iommu, iommu->evt_buf + head);
635
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
636 637 638 639 640
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

641
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
686

687 688 689
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
690

691 692 693 694 695 696 697
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
698 699
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 701 702 703 704 705

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
706 707 708 709
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

710
irqreturn_t amd_iommu_int_thread(int irq, void *data)
711
{
712 713
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
714

715 716 717 718
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
719

720 721 722 723
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
724

725 726 727 728
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
745
	return IRQ_HANDLED;
746 747
}

748 749 750 751 752
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

753 754 755 756 757 758
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
779 780 781
{
	u8 *target;

782
	target = iommu->cmd_buf + tail;
783
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
784 785 786 787 788

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
789
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
790
}
791

792
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
793
{
794 795
	WARN_ON(address & 0x7ULL);

796
	memset(cmd, 0, sizeof(*cmd));
797 798 799
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
800 801 802
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

803 804 805 806 807 808 809
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

810 811 812 813
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
814
	bool s;
815 816

	pages = iommu_num_pages(address, size, PAGE_SIZE);
817
	s     = false;
818 819 820 821 822 823 824

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
825
		s = true;
826 827 828 829 830 831 832 833 834 835 836
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
837
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
838 839 840
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

841 842 843 844
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
845
	bool s;
846 847

	pages = iommu_num_pages(address, size, PAGE_SIZE);
848
	s     = false;
849 850 851 852 853 854 855

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
856
		s = true;
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

872 873 874 875 876 877 878
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

879
	cmd->data[0]  = pasid;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
898
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
899 900
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
901
	cmd->data[1] |= (pasid & 0xff) << 16;
902 903 904 905 906 907 908 909
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

910 911 912 913 914 915 916
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
917
		cmd->data[1]  = pasid;
918 919 920 921 922 923 924 925
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

926 927 928 929
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
930 931
}

932 933 934 935 936 937 938
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

939 940
/*
 * Writes the command to the IOMMUs command buffer and informs the
941
 * hardware about the new command.
942
 */
943 944 945
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
946
{
947
	u32 left, tail, head, next_tail;
948 949
	unsigned long flags;

950
again:
951 952
	spin_lock_irqsave(&iommu->lock, flags);

953 954
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
955 956
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
957

958 959 960 961
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
962

963 964
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
965

966 967 968 969 970 971
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
972 973
	}

974 975 976
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
977
	iommu->need_sync = sync;
978

979
	spin_unlock_irqrestore(&iommu->lock, flags);
980

981
	return 0;
982 983
}

984 985 986 987 988
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

989 990 991 992
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
993
static int iommu_completion_wait(struct amd_iommu *iommu)
994 995
{
	struct iommu_cmd cmd;
996
	volatile u64 sem = 0;
997
	int ret;
998

999
	if (!iommu->need_sync)
1000
		return 0;
1001

1002
	build_completion_wait(&cmd, (u64)&sem);
1003

1004
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1005
	if (ret)
1006
		return ret;
1007

1008
	return wait_on_sem(&sem);
1009 1010
}

1011
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1012
{
1013
	struct iommu_cmd cmd;
1014

1015
	build_inv_dte(&cmd, devid);
1016

1017 1018
	return iommu_queue_command(iommu, &cmd);
}
1019

1020 1021 1022
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1023

1024 1025
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1026

1027 1028
	iommu_completion_wait(iommu);
}
1029

1030 1031 1032 1033 1034 1035 1036
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1037

1038 1039 1040 1041 1042 1043
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1044

1045
	iommu_completion_wait(iommu);
1046 1047
}

1048
static void iommu_flush_all(struct amd_iommu *iommu)
1049
{
1050
	struct iommu_cmd cmd;
1051

1052
	build_inv_all(&cmd);
1053

1054 1055 1056 1057
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1077 1078
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1079 1080 1081 1082
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1083
		iommu_flush_irt_all(iommu);
1084
		iommu_flush_tlb_all(iommu);
1085 1086 1087
	}
}

1088
/*
1089
 * Command send function for flushing on-device TLB
1090
 */
1091 1092
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1093 1094
{
	struct amd_iommu *iommu;
1095
	struct iommu_cmd cmd;
1096
	int qdep;
1097

1098 1099
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1100

1101
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1102 1103

	return iommu_queue_command(iommu, &cmd);
1104 1105
}

1106 1107 1108
/*
 * Command send function for invalidating a device table entry
 */
1109
static int device_flush_dte(struct iommu_dev_data *dev_data)
1110
{
1111
	struct amd_iommu *iommu;
1112
	u16 alias;
1113
	int ret;
1114

1115
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1116
	alias = dev_data->alias;
1117

1118
	ret = iommu_flush_dte(iommu, dev_data->devid);
1119 1120
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1121 1122 1123
	if (ret)
		return ret;

1124
	if (dev_data->ats.enabled)
1125
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1126 1127

	return ret;
1128 1129
}

1130 1131 1132 1133 1134
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1135 1136
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1137
{
1138
	struct iommu_dev_data *dev_data;
1139 1140
	struct iommu_cmd cmd;
	int ret = 0, i;
1141

1142
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1143

1144 1145 1146 1147 1148 1149 1150 1151
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1152
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1153 1154
	}

1155 1156
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1157
		if (!dev_data->ats.enabled)
1158 1159
			continue;

1160
		ret |= device_flush_iotlb(dev_data, address, size);
1161 1162
	}

1163
	WARN_ON(ret);
1164 1165
}

1166 1167
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1168
{
1169
	__domain_flush_pages(domain, address, size, 0);
1170
}
1171

1172
/* Flush the whole IO/TLB for a given protection domain */
1173
static void domain_flush_tlb(struct protection_domain *domain)
1174
{
1175
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1176 1177
}

1178
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1179
static void domain_flush_tlb_pde(struct protection_domain *domain)
1180
{
1181
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1182 1183
}

1184
static void domain_flush_complete(struct protection_domain *domain)
1185
{
1186
	int i;
1187

1188
	for (i = 0; i < amd_iommus_present; ++i) {
1189
		if (domain && !domain->dev_iommu[i])
1190
			continue;
1191

1192 1193 1194 1195 1196
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1197
	}
1198 1199
}

1200

1201
/*
1202
 * This function flushes the DTEs for all devices in domain
1203
 */
1204
static void domain_flush_devices(struct protection_domain *domain)
1205
{
1206
	struct iommu_dev_data *dev_data;
1207

1208
	list_for_each_entry(dev_data, &domain->dev_list, list)
1209
		device_flush_dte(dev_data);
1210 1211
}

1212 1213 1214 1215 1216 1217 1218
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1248
		      unsigned long page_size,
1249 1250 1251
		      u64 **pte_page,
		      gfp_t gfp)
{
1252
	int level, end_lvl;
1253
	u64 *pte, *page;
1254 1255

	BUG_ON(!is_power_of_2(page_size));
1256 1257 1258 1259

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1260 1261 1262 1263
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1264 1265

	while (level > end_lvl) {
1266 1267 1268 1269 1270
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1271 1272 1273
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1274 1275 1276 1277 1278 1279 1280

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1281 1282
		}

1283 1284 1285 1286
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1304 1305 1306
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1307 1308 1309 1310
{
	int level;
	u64 *pte;

1311 1312 1313
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1314 1315 1316
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1317

1318 1319 1320
	while (level > 0) {

		/* Not Present */
1321 1322 1323
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1324
		/* Large PTE */
1325 1326 1327
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1328 1329 1330 1331 1332

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1333 1334
		level -= 1;

1335
		/* Walk to the next level */
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1351 1352 1353 1354 1355
	}

	return pte;
}

1356 1357 1358 1359 1360 1361 1362
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1363 1364 1365
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1366
			  unsigned long page_size,
1367
			  int prot,
1368
			  gfp_t gfp)
1369
{
1370
	u64 __pte, *pte;
1371
	int i, count;
1372

1373 1374 1375
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1376
	if (!(prot & IOMMU_PROT_MASK))
1377 1378
		return -EINVAL;

1379
	count = PAGE_SIZE_PTE_COUNT(page_size);
1380
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1381

1382 1383 1384
	if (!pte)
		return -ENOMEM;

1385 1386 1387
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1388

1389
	if (count > 1) {
1390 1391 1392 1393
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1394 1395 1396 1397 1398 1399

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1400 1401
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1402

1403 1404
	update_domain(dom);

1405 1406 1407
	return 0;
}

1408 1409 1410
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1411
{
1412 1413
	unsigned long long unmapped;
	unsigned long unmap_size;
1414 1415 1416 1417 1418
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1419

1420 1421
	while (unmapped < page_size) {

1422 1423 1424 1425 1426 1427
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1428 1429 1430 1431 1432 1433 1434 1435
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1436
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1437

1438
	return unmapped;
1439 1440
}

1441 1442 1443
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1444
 * interface functions.
1445 1446
 *
 ****************************************************************************/
1447

1448

1449 1450 1451
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1452
{
1453
	unsigned long pfn = 0;
1454

1455
	pages = __roundup_pow_of_two(pages);
1456

1457 1458 1459
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1460

1461 1462
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1463

1464
	return (pfn << PAGE_SHIFT);
1465 1466
}

1467 1468 1469
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1470
{
1471 1472
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1473

1474
	free_iova_fast(&dma_dom->iovad, address, pages);
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1549
		/* PTE present? */				\
1550 1551 1552
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1553 1554 1555 1556 1557
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1570
static void free_pagetable(struct protection_domain *domain)
1571
{
1572
	unsigned long root = (unsigned long)domain->pt_root;
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1597 1598 1599
	}
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1630 1631
static void free_gcr3_table(struct protection_domain *domain)
{
1632 1633 1634 1635
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1636 1637
	else
		BUG_ON(domain->glx != 0);
1638

1639 1640 1641
	free_page((unsigned long)domain->gcr3_tbl);
}

1642 1643 1644 1645
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1646 1647 1648 1649 1650
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1651 1652
	del_domain_from_list(&dom->domain);

1653
	put_iova_domain(&dom->iovad);
1654

1655
	free_pagetable(&dom->domain);
1656 1657 1658 1659

	kfree(dom);
}

1660 1661
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1662
 * It also initializes the page table and the address allocator data
1663 1664
 * structures required for the dma_ops interface
 */
1665
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1666 1667 1668 1669 1670 1671 1672
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1673
	if (protection_domain_init(&dma_dom->domain))
1674
		goto free_dma_dom;
1675

1676
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1677
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1678
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1679 1680 1681
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1682 1683 1684
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1685 1686 1687
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1688 1689
	add_domain_to_list(&dma_dom->domain);

1690 1691 1692 1693 1694 1695 1696 1697
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1707
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1708
{
1709
	u64 pte_root = 0;
1710
	u64 flags = 0;
1711

1712 1713 1714
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1715 1716 1717
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1718

1719 1720
	flags = amd_iommu_dev_table[devid].data[1];

1721 1722 1723
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1750 1751 1752 1753 1754
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1755 1756 1757 1758 1759
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1760 1761
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1762 1763

	amd_iommu_apply_erratum_63(devid);
1764 1765
}

1766 1767
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1768 1769
{
	struct amd_iommu *iommu;
1770
	u16 alias;
1771
	bool ats;
1772

1773
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1774
	alias = dev_data->alias;
1775
	ats   = dev_data->ats.enabled;
1776 1777 1778 1779 1780 1781 1782 1783 1784

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1785 1786 1787
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1788
		set_dte_entry(alias, domain, ats);
1789

1790
	device_flush_dte(dev_data);
1791 1792
}

1793
static void do_detach(struct iommu_dev_data *dev_data)
1794 1795
{
	struct amd_iommu *iommu;
1796
	u16 alias;
1797

1798 1799 1800 1801 1802 1803 1804 1805 1806
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1807
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1808
	alias = dev_data->alias;
1809 1810

	/* decrease reference counters */
1811 1812 1813 1814 1815 1816
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1817
	clear_dte_entry(dev_data->devid);
1818 1819
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1820

1821
	/* Flush the DTE entry */
1822
	device_flush_dte(dev_data);
1823 1824 1825 1826 1827 1828
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1829
static int __attach_device(struct iommu_dev_data *dev_data,
1830
			   struct protection_domain *domain)
1831
{
1832
	int ret;
1833

1834 1835 1836 1837 1838 1839
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1840 1841 1842
	/* lock domain */
	spin_lock(&domain->lock);

1843
	ret = -EBUSY;
1844
	if (dev_data->domain != NULL)
1845
		goto out_unlock;
1846

1847
	/* Attach alias group root */
1848
	do_attach(dev_data, domain);
1849

1850 1851 1852 1853
	ret = 0;

out_unlock:

1854 1855
	/* ready */
	spin_unlock(&domain->lock);
1856

1857
	return ret;
1858
}
1859

1860 1861 1862 1863 1864 1865 1866 1867

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1868 1869 1870 1871 1872 1873
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1874
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1875 1876 1877
	if (!pos)
		return -EINVAL;

1878 1879 1880
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1881 1882 1883 1884

	return 0;
}

1885 1886
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1887 1888 1889 1890 1891 1892 1893 1894
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1906 1907
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
1908 1909 1910
	if (ret)
		goto out_err;

1911 1912 1913 1914 1915 1916
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

1930
/* FIXME: Move this to PCI code */
1931
#define PCI_PRI_TLP_OFF		(1 << 15)
1932

J
Joerg Roedel 已提交
1933
static bool pci_pri_tlp_required(struct pci_dev *pdev)
1934
{
1935
	u16 status;
1936 1937
	int pos;

1938
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1939 1940 1941
	if (!pos)
		return false;

1942
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
1943

1944
	return (status & PCI_PRI_TLP_OFF) ? true : false;
1945 1946
}

1947
/*
F
Frank Arnold 已提交
1948
 * If a device is not yet associated with a domain, this function
1949 1950
 * assigns it visible for the hardware
 */
1951 1952
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1953
{
1954
	struct pci_dev *pdev;
1955
	struct iommu_dev_data *dev_data;
1956
	unsigned long flags;
1957
	int ret;
1958

1959 1960
	dev_data = get_dev_data(dev);

1961 1962 1963 1964
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
1965
	if (domain->flags & PD_IOMMUV2_MASK) {
1966
		if (!dev_data->passthrough)
1967 1968
			return -EINVAL;

1969 1970 1971
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
1972

1973 1974 1975 1976
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
1977 1978
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1979 1980 1981
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1982

1983
skip_ats_check:
1984
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1985
	ret = __attach_device(dev_data, domain);
1986 1987
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1988 1989 1990 1991 1992
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1993
	domain_flush_tlb_pde(domain);
1994 1995

	return ret;
1996 1997
}

1998 1999 2000
/*
 * Removes a device from a protection domain (unlocked)
 */
2001
static void __detach_device(struct iommu_dev_data *dev_data)
2002
{
2003
	struct protection_domain *domain;
2004

2005 2006 2007 2008 2009
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2010

2011 2012
	if (WARN_ON(!dev_data->domain))
		return;
2013

2014
	domain = dev_data->domain;
2015

2016
	spin_lock(&domain->lock);
2017

2018
	do_detach(dev_data);
2019

2020
	spin_unlock(&domain->lock);
2021 2022 2023 2024 2025
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2026
static void detach_device(struct device *dev)
2027
{
2028
	struct protection_domain *domain;
2029
	struct iommu_dev_data *dev_data;
2030 2031
	unsigned long flags;

2032
	dev_data = get_dev_data(dev);
2033
	domain   = dev_data->domain;
2034

2035 2036
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2037
	__detach_device(dev_data);
2038
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2039

2040 2041 2042
	if (!dev_is_pci(dev))
		return;

2043
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2044 2045
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2046
		pci_disable_ats(to_pci_dev(dev));
2047 2048

	dev_data->ats.enabled = false;
2049
}
2050

2051
static int amd_iommu_add_device(struct device *dev)
2052
{
2053
	struct iommu_dev_data *dev_data;
2054
	struct iommu_domain *domain;
2055
	struct amd_iommu *iommu;
2056
	int ret, devid;
2057

2058
	if (!check_device(dev) || get_dev_data(dev))
2059
		return 0;
2060

2061
	devid = get_device_id(dev);
2062
	if (devid < 0)
2063 2064
		return devid;

2065
	iommu = amd_iommu_rlookup_table[devid];
2066

2067
	ret = iommu_init_device(dev);
2068 2069 2070 2071
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2072

2073
		iommu_ignore_device(dev);
2074
		dev->archdata.dma_ops = &nommu_dma_ops;
2075 2076 2077
		goto out;
	}
	init_iommu_group(dev);
2078

2079
	dev_data = get_dev_data(dev);
2080

2081
	BUG_ON(!dev_data);
2082

2083
	if (iommu_pass_through || dev_data->iommu_v2)
2084
		iommu_request_dm_for_dev(dev);
2085

2086 2087
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2088
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2089
		dev_data->passthrough = true;
2090
	else
2091
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2092

2093
out:
2094 2095 2096 2097 2098
	iommu_completion_wait(iommu);

	return 0;
}

2099
static void amd_iommu_remove_device(struct device *dev)
2100
{
2101
	struct amd_iommu *iommu;
2102
	int devid;
2103 2104 2105 2106 2107

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2108
	if (devid < 0)
2109 2110
		return;

2111 2112 2113 2114
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2115 2116
}

2117 2118 2119 2120 2121 2122 2123 2124
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2125 2126 2127 2128 2129 2130
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2162
static void queue_flush_all(void)
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2178 2179 2180 2181 2182 2183
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2209 2210 2211 2212

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2213 2214 2215 2216
	put_cpu_ptr(&flush_queue);
}


2217 2218 2219 2220 2221 2222 2223
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2224
static struct protection_domain *get_domain(struct device *dev)
2225
{
2226
	struct protection_domain *domain;
2227

2228
	if (!check_device(dev))
2229
		return ERR_PTR(-EINVAL);
2230

2231
	domain = get_dev_data(dev)->domain;
2232
	if (!dma_ops_domain(domain))
2233
		return ERR_PTR(-EBUSY);
2234

2235
	return domain;
2236 2237
}

2238 2239
static void update_device_table(struct protection_domain *domain)
{
2240
	struct iommu_dev_data *dev_data;
2241

2242 2243
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2244 2245 2246 2247 2248 2249 2250 2251
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2252 2253 2254

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2255 2256 2257 2258

	domain->updated = false;
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2270 2271
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2272 2273
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2274 2275
 * Must be called with the domain lock held.
 */
2276 2277 2278 2279
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2280
			       enum dma_data_direction direction,
2281
			       u64 dma_mask)
2282 2283
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2284
	dma_addr_t address, start, ret;
2285
	unsigned int pages;
2286
	int prot = 0;
2287 2288
	int i;

2289
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2290 2291
	paddr &= PAGE_MASK;

2292
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2293 2294
	if (address == DMA_ERROR_CODE)
		goto out;
2295

2296
	prot = dir2prot(direction);
2297

2298 2299
	start = address;
	for (i = 0; i < pages; ++i) {
2300 2301 2302
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2303 2304
			goto out_unmap;

2305 2306 2307 2308 2309
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2310
	if (unlikely(amd_iommu_np_cache)) {
2311
		domain_flush_pages(&dma_dom->domain, address, size);
2312 2313
		domain_flush_complete(&dma_dom->domain);
	}
2314

2315 2316
out:
	return address;
2317 2318 2319 2320 2321

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2322
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2323 2324
	}

2325 2326 2327 2328
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2329

2330
	return DMA_ERROR_CODE;
2331 2332
}

2333 2334 2335 2336
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2337
static void __unmap_single(struct dma_ops_domain *dma_dom,
2338 2339 2340 2341
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2342
	dma_addr_t flush_addr;
2343 2344 2345
	dma_addr_t i, start;
	unsigned int pages;

2346
	flush_addr = dma_addr;
2347
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2348 2349 2350 2351
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2352
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2353 2354 2355
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2356 2357 2358 2359 2360 2361 2362
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2363 2364
}

2365 2366 2367
/*
 * The exported map_single function for dma_ops.
 */
2368 2369 2370 2371
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2372
{
2373
	phys_addr_t paddr = page_to_phys(page) + offset;
2374
	struct protection_domain *domain;
2375
	struct dma_ops_domain *dma_dom;
2376
	u64 dma_mask;
2377

2378 2379
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2380
		return (dma_addr_t)paddr;
2381 2382
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2383

2384
	dma_mask = *dev->dma_mask;
2385
	dma_dom = to_dma_ops_domain(domain);
2386

2387
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2388 2389
}

2390 2391 2392
/*
 * The exported unmap_single function for dma_ops.
 */
2393 2394
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2395 2396
{
	struct protection_domain *domain;
2397
	struct dma_ops_domain *dma_dom;
2398

2399 2400
	domain = get_domain(dev);
	if (IS_ERR(domain))
2401 2402
		return;

2403 2404 2405
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2406 2407
}

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2434 2435 2436 2437
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2438
static int map_sg(struct device *dev, struct scatterlist *sglist,
2439
		  int nelems, enum dma_data_direction direction,
2440
		  struct dma_attrs *attrs)
2441
{
2442
	int mapped_pages = 0, npages = 0, prot = 0, i;
2443
	struct protection_domain *domain;
2444
	struct dma_ops_domain *dma_dom;
2445
	struct scatterlist *s;
2446
	unsigned long address;
2447
	u64 dma_mask;
2448

2449
	domain = get_domain(dev);
2450
	if (IS_ERR(domain))
2451
		return 0;
2452

2453
	dma_dom  = to_dma_ops_domain(domain);
2454
	dma_mask = *dev->dma_mask;
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2465
	for_each_sg(sglist, s, nelems, i) {
2466 2467 2468 2469 2470
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2471

2472 2473 2474 2475 2476
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2477

2478 2479
			mapped_pages += 1;
		}
2480 2481
	}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2499

2500 2501 2502 2503 2504 2505
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2506 2507
	}

2508 2509 2510 2511
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2512
	return 0;
2513 2514
}

2515 2516 2517 2518
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2519
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2520 2521
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2522 2523
{
	struct protection_domain *domain;
2524
	struct dma_ops_domain *dma_dom;
2525 2526
	unsigned long startaddr;
	int npages = 2;
2527

2528 2529
	domain = get_domain(dev);
	if (IS_ERR(domain))
2530 2531
		return;

2532
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2533
	dma_dom   = to_dma_ops_domain(domain);
2534 2535
	npages    = sg_num_pages(dev, sglist, nelems);

2536
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2537 2538
}

2539 2540 2541
/*
 * The exported alloc_coherent function for dma_ops.
 */
2542
static void *alloc_coherent(struct device *dev, size_t size,
2543 2544
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2545
{
2546
	u64 dma_mask = dev->coherent_dma_mask;
2547
	struct protection_domain *domain;
2548
	struct dma_ops_domain *dma_dom;
2549
	struct page *page;
2550

2551 2552
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2553 2554 2555
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2556 2557
	} else if (IS_ERR(domain))
		return NULL;
2558

2559
	dma_dom   = to_dma_ops_domain(domain);
2560
	size	  = PAGE_ALIGN(size);
2561 2562
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2563
	flag     |= __GFP_ZERO;
2564

2565 2566
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2567
		if (!gfpflags_allow_blocking(flag))
2568
			return NULL;
2569

2570 2571 2572 2573 2574
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2575

2576 2577 2578
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2579
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2580
				 size, DMA_BIDIRECTIONAL, dma_mask);
2581

2582
	if (*dma_addr == DMA_ERROR_CODE)
2583
		goto out_free;
2584

2585
	return page_address(page);
2586 2587 2588

out_free:

2589 2590
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2591 2592

	return NULL;
2593 2594
}

2595 2596 2597
/*
 * The exported free_coherent function for dma_ops.
 */
2598
static void free_coherent(struct device *dev, size_t size,
2599 2600
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2601 2602
{
	struct protection_domain *domain;
2603
	struct dma_ops_domain *dma_dom;
2604
	struct page *page;
2605

2606 2607 2608
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2609 2610
	domain = get_domain(dev);
	if (IS_ERR(domain))
2611 2612
		goto free_mem;

2613 2614 2615
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2616 2617

free_mem:
2618 2619
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2620 2621
}

2622 2623 2624 2625 2626 2627
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2628
	return check_device(dev);
2629 2630
}

2631
static struct dma_map_ops amd_iommu_dma_ops = {
2632 2633 2634 2635 2636 2637 2638
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2639 2640
};

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2694
int __init amd_iommu_init_api(void)
2695
{
2696
	int ret, cpu, err = 0;
2697 2698 2699 2700

	ret = iova_cache_get();
	if (ret)
		return ret;
2701

2702 2703 2704 2705
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2718 2719 2720 2721 2722 2723 2724 2725
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2726 2727 2728
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2729
	return 0;
2730 2731 2732 2733 2734 2735 2736 2737 2738

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2739 2740
}

2741 2742
int __init amd_iommu_init_dma_ops(void)
{
2743 2744 2745
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2746
	swiotlb        = iommu_pass_through ? 1 : 0;
2747 2748
	iommu_detected = 1;

2749 2750 2751 2752 2753 2754 2755 2756 2757
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2758 2759 2760 2761 2762
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2763
	return 0;
2764

2765
}
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2779
	struct iommu_dev_data *entry;
2780 2781 2782 2783
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2784 2785 2786 2787
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2788
	}
2789 2790 2791 2792

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2793 2794 2795 2796 2797
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2798 2799
	del_domain_from_list(domain);

2800 2801 2802 2803 2804 2805
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2818
static struct protection_domain *protection_domain_alloc(void)
2819 2820 2821 2822 2823
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2824
		return NULL;
2825

2826
	if (protection_domain_init(domain))
2827 2828
		goto out_err;

2829 2830
	add_domain_to_list(domain);

2831 2832 2833 2834 2835 2836 2837 2838
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2839
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2840
{
2841
	struct protection_domain *pdomain;
2842
	struct dma_ops_domain *dma_domain;
2843

2844 2845 2846 2847 2848
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2849

2850 2851 2852 2853 2854 2855
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2856

2857 2858 2859
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2870 2871 2872 2873
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2874

2875 2876
		pdomain->mode = PAGE_MODE_NONE;
		break;
2877 2878 2879
	default:
		return NULL;
	}
2880

2881
	return &pdomain->domain;
2882 2883
}

2884
static void amd_iommu_domain_free(struct iommu_domain *dom)
2885
{
2886
	struct protection_domain *domain;
2887
	struct dma_ops_domain *dma_dom;
2888

2889 2890
	domain = to_pdomain(dom);

2891 2892 2893 2894 2895
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2896 2897
	if (!dom)
		return;
2898

2899 2900
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2901 2902 2903 2904 2905 2906 2907
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
2908
		dma_dom = to_dma_ops_domain(domain);
2909 2910 2911 2912 2913
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2914

2915 2916 2917 2918 2919 2920
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2921 2922
}

2923 2924 2925
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2926
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2927
	struct amd_iommu *iommu;
2928
	int devid;
2929

2930
	if (!check_device(dev))
2931 2932
		return;

2933
	devid = get_device_id(dev);
2934
	if (devid < 0)
2935
		return;
2936

2937
	if (dev_data->domain != NULL)
2938
		detach_device(dev);
2939 2940 2941 2942 2943 2944 2945 2946

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2947 2948 2949
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2950
	struct protection_domain *domain = to_pdomain(dom);
2951
	struct iommu_dev_data *dev_data;
2952
	struct amd_iommu *iommu;
2953
	int ret;
2954

2955
	if (!check_device(dev))
2956 2957
		return -EINVAL;

2958 2959
	dev_data = dev->archdata.iommu;

2960
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2961 2962 2963
	if (!iommu)
		return -EINVAL;

2964
	if (dev_data->domain)
2965
		detach_device(dev);
2966

2967
	ret = attach_device(dev, domain);
2968 2969 2970

	iommu_completion_wait(iommu);

2971
	return ret;
2972 2973
}

2974
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2975
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2976
{
2977
	struct protection_domain *domain = to_pdomain(dom);
2978 2979 2980
	int prot = 0;
	int ret;

2981 2982 2983
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2984 2985 2986 2987 2988
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2989
	mutex_lock(&domain->api_lock);
2990
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
2991 2992
	mutex_unlock(&domain->api_lock);

2993
	return ret;
2994 2995
}

2996 2997
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
2998
{
2999
	struct protection_domain *domain = to_pdomain(dom);
3000
	size_t unmap_size;
3001

3002 3003 3004
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3005
	mutex_lock(&domain->api_lock);
3006
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3007
	mutex_unlock(&domain->api_lock);
3008

3009
	domain_flush_tlb_pde(domain);
3010

3011
	return unmap_size;
3012 3013
}

3014
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3015
					  dma_addr_t iova)
3016
{
3017
	struct protection_domain *domain = to_pdomain(dom);
3018
	unsigned long offset_mask, pte_pgsize;
3019
	u64 *pte, __pte;
3020

3021 3022 3023
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3024
	pte = fetch_pte(domain, iova, &pte_pgsize);
3025

3026
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3027 3028
		return 0;

3029 3030
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3031

3032
	return (__pte & ~offset_mask) | (iova & offset_mask);
3033 3034
}

3035
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3036
{
3037 3038
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3039
		return true;
3040
	case IOMMU_CAP_INTR_REMAP:
3041
		return (irq_remapping_enabled == 1);
3042 3043
	case IOMMU_CAP_NOEXEC:
		return false;
3044 3045
	}

3046
	return false;
S
Sheng Yang 已提交
3047 3048
}

3049 3050 3051 3052
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3053
	int devid;
3054 3055

	devid = get_device_id(dev);
3056
	if (devid < 0)
3057
		return;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3092 3093 3094 3095
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
3096
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3097 3098 3099 3100 3101 3102 3103 3104
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3105
static const struct iommu_ops amd_iommu_ops = {
3106
	.capable = amd_iommu_capable,
3107 3108
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3109 3110
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3111 3112
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3113
	.map_sg = default_iommu_map_sg,
3114
	.iova_to_phys = amd_iommu_iova_to_phys,
3115 3116
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3117
	.device_group = amd_iommu_device_group,
3118 3119
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3120
	.apply_dm_region = amd_iommu_apply_dm_region,
3121
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3122 3123
};

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3146 3147 3148

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3149
	struct protection_domain *domain = to_pdomain(dom);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3167 3168 3169

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3170
	struct protection_domain *domain = to_pdomain(dom);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3248 3249 3250 3251 3252 3253
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3285
	struct protection_domain *domain = to_pdomain(dom);
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3305
	struct protection_domain *domain = to_pdomain(dom);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3385
	struct protection_domain *domain = to_pdomain(dom);
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3399
	struct protection_domain *domain = to_pdomain(dom);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3427 3428 3429

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3430
	struct protection_domain *pdomain;
3431

3432 3433
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3434 3435 3436
		return NULL;

	/* Only return IOMMUv2 domains */
3437
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3438 3439
		return NULL;

3440
	return &pdomain->domain;
3441 3442
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3522 3523 3524 3525 3526
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3589 3590 3591
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3592 3593 3594 3595 3596 3597 3598
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3599
		table = NULL;
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3617
		set_dte_irq_entry(alias, table);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3630
static int alloc_irq_index(u16 devid, int count)
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3714
static int get_devid(struct irq_alloc_info *info)
3715
{
3716
	int devid = -1;
3717

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3733

3734 3735
	return devid;
}
3736

3737 3738 3739 3740
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3741

3742 3743
	if (!info)
		return NULL;
3744

3745 3746 3747 3748 3749 3750
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3751

3752
	return NULL;
3753 3754
}

3755
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3756
{
3757 3758
	struct amd_iommu *iommu;
	int devid;
3759

3760 3761
	if (!info)
		return NULL;
3762

3763 3764 3765 3766
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3767
		if (devid < 0)
3768 3769
			return NULL;

3770 3771 3772
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3773 3774 3775 3776
		break;
	default:
		break;
	}
3777

3778 3779
	return NULL;
}
3780

3781 3782 3783 3784 3785 3786
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3787 3788 3789
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3800

3801 3802
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3826

3827 3828 3829 3830 3831 3832 3833
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3834

3835 3836 3837 3838
	default:
		BUG_ON(1);
		break;
	}
3839 3840
}

3841 3842
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3843
{
3844 3845 3846
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3847
	struct irq_cfg *cfg;
3848 3849
	int i, ret, devid;
	int index = -1;
3850

3851 3852 3853 3854
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3855 3856
		return -EINVAL;

3857 3858 3859 3860 3861 3862
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3863

3864 3865 3866
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3867

3868 3869 3870
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3871

3872 3873 3874 3875 3876 3877
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3878
		index = alloc_irq_index(devid, nr_irqs);
3879 3880 3881 3882 3883
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3884

3885 3886 3887 3888 3889 3890 3891
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3892

3893 3894 3895 3896 3897
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3898 3899 3900 3901 3902 3903
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3904

3905
	return 0;
3906

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3918 3919
}

3920 3921
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3922
{
3923 3924 3925 3926
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3939

3940 3941 3942 3943 3944
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3945

3946
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3947 3948
}

3949 3950
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3951
{
3952 3953 3954
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3955

3956 3957 3958
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
3959

3960 3961 3962 3963 3964
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
3965
};
3966

3967 3968 3969 3970 3971 3972 3973 3974
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
3975

3976 3977 3978
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
3979

3980 3981 3982 3983 3984 3985 3986
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
3987

3988 3989 3990 3991 3992
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
3993
	send_cleanup_vector(cfg);
3994 3995

	return IRQ_SET_MASK_OK_DONE;
3996 3997
}

3998
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3999
{
4000
	struct amd_ir_data *ir_data = irq_data->chip_data;
4001

4002 4003
	*msg = ir_data->msi_entry;
}
4004

4005 4006 4007 4008 4009
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4010

4011 4012 4013 4014 4015
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4016

4017 4018
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4019 4020 4021

	return 0;
}
4022
#endif