amd_iommu.c 97.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49
#include "pci.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84 85
static struct iommu_ops amd_iommu_ops;

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93
/*
 * general struct to manage commands send to an IOMMU
 */
94
struct iommu_cmd {
95 96 97
	u32 data[4];
};

98 99
struct kmem_cache *amd_iommu_irq_cache;

100
static void update_domain(struct protection_domain *domain);
101
static int __init alloc_passthrough_domain(void);
102

103 104 105 106 107 108
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

109
static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 111 112 113 114 115 116 117
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

118
	dev_data->devid = devid;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

136 137 138
	if (dev_data->group)
		iommu_group_put(dev_data->group);

139 140 141
	kfree(dev_data);
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

173 174 175 176
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

177
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
178 179
}

180 181 182 183 184
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

185 186 187 188
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
189 190
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
191 192 193 194 195 196 197 198 199 200 201 202
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

203 204 205 206 207 208 209 210 211
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

240 241 242 243 244 245 246 247 248 249 250
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

251 252
	/* No PCI device */
	if (!dev_is_pci(dev))
253 254 255 256 257 258 259 260 261 262 263 264 265 266
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

267 268 269 270 271 272 273 274 275 276 277 278
static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
{
	while (!bus->self) {
		if (!pci_is_root_bus(bus))
			bus = bus->parent;
		else
			return ERR_PTR(-ENODEV);
	}

	return bus;
}

279 280
#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

281
static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
282
{
283
	struct pci_dev *dma_pdev = pdev;
284

285
	/* Account for quirked devices */
286 287
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

288 289
	/*
	 * If it's a multifunction device that does not support our
290 291
	 * required ACS flags, add to the same group as lowest numbered
	 * function that also does not suport the required ACS flags.
292
	 */
293
	if (dma_pdev->multifunction &&
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
		u8 i, slot = PCI_SLOT(dma_pdev->devfn);

		for (i = 0; i < 8; i++) {
			struct pci_dev *tmp;

			tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
			if (!tmp)
				continue;

			if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
				swap_pci_ref(&dma_pdev, tmp);
				break;
			}
			pci_dev_put(tmp);
		}
	}
311

312 313 314 315 316
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
317
	while (!pci_is_root_bus(dma_pdev->bus)) {
318 319 320
		struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
		if (IS_ERR(bus))
			break;
321 322

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
323 324
			break;

325
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
326 327
	}

328 329 330
	return dma_pdev;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
{
	struct iommu_group *group = iommu_group_get(&pdev->dev);
	int ret;

	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		WARN_ON(&pdev->dev != dev);
	}

	ret = iommu_group_add_device(group, dev);
	iommu_group_put(group);
	return ret;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362
static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
				    struct device *dev)
{
	if (!dev_data->group) {
		struct iommu_group *group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		dev_data->group = group;
	}

	return iommu_group_add_device(dev_data->group, dev);
}

363 364 365 366
static int init_iommu_group(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct iommu_group *group;
367
	struct pci_dev *dma_pdev;
368 369 370 371 372 373 374 375 376 377 378 379 380 381
	int ret;

	group = iommu_group_get(dev);
	if (group) {
		iommu_group_put(group);
		return 0;
	}

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	if (dev_data->alias_data) {
		u16 alias;
382 383 384 385
		struct pci_bus *bus;

		if (dev_data->alias_data->group)
			goto use_group;
386

387 388 389 390
		/*
		 * If the alias device exists, it's effectively just a first
		 * level quirk for finding the DMA source.
		 */
391 392
		alias = amd_iommu_alias_table[dev_data->devid];
		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
393 394 395 396
		if (dma_pdev) {
			dma_pdev = get_isolation_root(dma_pdev);
			goto use_pdev;
		}
397

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		/*
		 * If the alias is virtual, try to find a parent device
		 * and test whether the IOMMU group is actualy rooted above
		 * the alias.  Be careful to also test the parent device if
		 * we think the alias is the root of the group.
		 */
		bus = pci_find_bus(0, alias >> 8);
		if (!bus)
			goto use_group;

		bus = find_hosted_bus(bus);
		if (IS_ERR(bus) || !bus->self)
			goto use_group;

		dma_pdev = get_isolation_root(pci_dev_get(bus->self));
		if (dma_pdev != bus->self || (dma_pdev->multifunction &&
		    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
			goto use_pdev;

		pci_dev_put(dma_pdev);
		goto use_group;
	}
420

421 422
	dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
use_pdev:
423
	ret = use_pdev_iommu_group(dma_pdev, dev);
424
	pci_dev_put(dma_pdev);
425
	return ret;
426 427
use_group:
	return use_dev_data_iommu_group(dev_data->alias_data, dev);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;
	int ret;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	alias = amd_iommu_alias_table[dev_data->devid];
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;
	}

	ret = init_iommu_group(dev);
459 460
	if (ret) {
		free_dev_data(dev_data);
461
		return ret;
462
	}
463

464 465 466 467 468 469 470
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

471 472 473 474 475
	dev->archdata.iommu = dev_data;

	return 0;
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

490 491
static void iommu_uninit_device(struct device *dev)
{
492 493
	iommu_group_remove_device(dev);

494 495 496 497 498
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
499
}
J
Joerg Roedel 已提交
500 501 502

void __init amd_iommu_uninit_devices(void)
{
503
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
504 505 506 507 508 509 510 511 512
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
513 514 515 516

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
530 531 532
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
533 534 535 536 537 538 539 540 541 542 543
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
544 545 546 547 548 549
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

550
DECLARE_STATS_COUNTER(compl_wait);
551
DECLARE_STATS_COUNTER(cnt_map_single);
552
DECLARE_STATS_COUNTER(cnt_unmap_single);
553
DECLARE_STATS_COUNTER(cnt_map_sg);
554
DECLARE_STATS_COUNTER(cnt_unmap_sg);
555
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
556
DECLARE_STATS_COUNTER(cnt_free_coherent);
557
DECLARE_STATS_COUNTER(cross_page);
558
DECLARE_STATS_COUNTER(domain_flush_single);
559
DECLARE_STATS_COUNTER(domain_flush_all);
560
DECLARE_STATS_COUNTER(alloced_io_mem);
561
DECLARE_STATS_COUNTER(total_map_requests);
562 563 564 565 566
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
586
					 &amd_iommu_unmap_flush);
587 588

	amd_iommu_stats_add(&compl_wait);
589
	amd_iommu_stats_add(&cnt_map_single);
590
	amd_iommu_stats_add(&cnt_unmap_single);
591
	amd_iommu_stats_add(&cnt_map_sg);
592
	amd_iommu_stats_add(&cnt_unmap_sg);
593
	amd_iommu_stats_add(&cnt_alloc_coherent);
594
	amd_iommu_stats_add(&cnt_free_coherent);
595
	amd_iommu_stats_add(&cross_page);
596
	amd_iommu_stats_add(&domain_flush_single);
597
	amd_iommu_stats_add(&domain_flush_all);
598
	amd_iommu_stats_add(&alloced_io_mem);
599
	amd_iommu_stats_add(&total_map_requests);
600 601 602 603
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
604 605 606 607
}

#endif

608 609 610 611 612 613
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

614 615 616 617
static void dump_dte_entry(u16 devid)
{
	int i;

618 619
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
620 621 622
			amd_iommu_dev_table[devid].data[i]);
}

623 624 625 626 627 628 629 630 631
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

632
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
633
{
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
655

656
	printk(KERN_ERR "AMD-Vi: Event logged [");
657 658 659 660 661

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
662
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
663
		       address, flags);
664
		dump_dte_entry(devid);
665 666 667 668
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
669
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
670 671 672 673 674
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
675
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
676 677 678 679 680
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
681
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
682 683 684 685
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
686
		dump_command(address);
687 688 689 690 691 692 693 694
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
695
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
696 697 698 699 700
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
701
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
702 703 704 705 706
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
707 708

	memset(__evt, 0, 4 * sizeof(u32));
709 710 711 712 713 714 715 716 717 718
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
719
		iommu_print_event(iommu, iommu->evt_buf + head);
720 721 722 723 724 725
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

726
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
727 728 729
{
	struct amd_iommu_fault fault;

730 731
	INC_STATS_COUNTER(pri_requests);

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
773

774 775 776
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
777

778 779 780 781 782 783 784
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
785 786
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
787 788 789 790 791 792

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
793 794 795 796
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

797
irqreturn_t amd_iommu_int_thread(int irq, void *data)
798
{
799 800
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
801

802 803 804 805
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
806

807 808 809 810
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
811

812 813 814 815
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
832
	return IRQ_HANDLED;
833 834
}

835 836 837 838 839
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

840 841 842 843 844 845
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
866 867 868
{
	u8 *target;

869
	target = iommu->cmd_buf + tail;
870 871 872 873 874 875
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
876
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
877
}
878

879
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
880
{
881 882
	WARN_ON(address & 0x7ULL);

883
	memset(cmd, 0, sizeof(*cmd));
884 885 886
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
887 888 889
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

890 891 892 893 894 895 896
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
924
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
925 926 927
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

959 960 961 962 963 964 965
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

966
	cmd->data[0]  = pasid;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
985
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
986 987
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
988
	cmd->data[1] |= (pasid & 0xff) << 16;
989 990 991 992 993 994 995 996
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

997 998 999 1000 1001 1002 1003
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1004
		cmd->data[1]  = pasid;
1005 1006 1007 1008 1009 1010 1011 1012
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1013 1014 1015 1016
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1017 1018
}

1019 1020 1021 1022 1023 1024 1025
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1026 1027
/*
 * Writes the command to the IOMMUs command buffer and informs the
1028
 * hardware about the new command.
1029
 */
1030 1031 1032
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1033
{
1034
	u32 left, tail, head, next_tail;
1035 1036
	unsigned long flags;

1037
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1038 1039

again:
1040 1041
	spin_lock_irqsave(&iommu->lock, flags);

1042 1043 1044 1045
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
1046

1047 1048 1049 1050
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1051

1052 1053
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1054

1055 1056 1057 1058 1059 1060
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1061 1062
	}

1063 1064 1065
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1066
	iommu->need_sync = sync;
1067

1068
	spin_unlock_irqrestore(&iommu->lock, flags);
1069

1070
	return 0;
1071 1072
}

1073 1074 1075 1076 1077
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1078 1079 1080 1081
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1082
static int iommu_completion_wait(struct amd_iommu *iommu)
1083 1084
{
	struct iommu_cmd cmd;
1085
	volatile u64 sem = 0;
1086
	int ret;
1087

1088
	if (!iommu->need_sync)
1089
		return 0;
1090

1091
	build_completion_wait(&cmd, (u64)&sem);
1092

1093
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1094
	if (ret)
1095
		return ret;
1096

1097
	return wait_on_sem(&sem);
1098 1099
}

1100
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101
{
1102
	struct iommu_cmd cmd;
1103

1104
	build_inv_dte(&cmd, devid);
1105

1106 1107
	return iommu_queue_command(iommu, &cmd);
}
1108

1109 1110 1111
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1112

1113 1114
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1115

1116 1117
	iommu_completion_wait(iommu);
}
1118

1119 1120 1121 1122 1123 1124 1125
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1126

1127 1128 1129 1130 1131 1132
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1133

1134
	iommu_completion_wait(iommu);
1135 1136
}

1137
static void iommu_flush_all(struct amd_iommu *iommu)
1138
{
1139
	struct iommu_cmd cmd;
1140

1141
	build_inv_all(&cmd);
1142

1143 1144 1145 1146
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1166 1167
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1168 1169 1170 1171
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1172
		iommu_flush_irt_all(iommu);
1173
		iommu_flush_tlb_all(iommu);
1174 1175 1176
	}
}

1177
/*
1178
 * Command send function for flushing on-device TLB
1179
 */
1180 1181
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1182 1183
{
	struct amd_iommu *iommu;
1184
	struct iommu_cmd cmd;
1185
	int qdep;
1186

1187 1188
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1189

1190
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191 1192

	return iommu_queue_command(iommu, &cmd);
1193 1194
}

1195 1196 1197
/*
 * Command send function for invalidating a device table entry
 */
1198
static int device_flush_dte(struct iommu_dev_data *dev_data)
1199
{
1200
	struct amd_iommu *iommu;
1201
	int ret;
1202

1203
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1204

1205
	ret = iommu_flush_dte(iommu, dev_data->devid);
1206 1207 1208
	if (ret)
		return ret;

1209
	if (dev_data->ats.enabled)
1210
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1211 1212

	return ret;
1213 1214
}

1215 1216 1217 1218 1219
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1220 1221
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1222
{
1223
	struct iommu_dev_data *dev_data;
1224 1225
	struct iommu_cmd cmd;
	int ret = 0, i;
1226

1227
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1228

1229 1230 1231 1232 1233 1234 1235 1236
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1237
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1238 1239
	}

1240 1241
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1242
		if (!dev_data->ats.enabled)
1243 1244
			continue;

1245
		ret |= device_flush_iotlb(dev_data, address, size);
1246 1247
	}

1248
	WARN_ON(ret);
1249 1250
}

1251 1252
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1253
{
1254
	__domain_flush_pages(domain, address, size, 0);
1255
}
1256

1257
/* Flush the whole IO/TLB for a given protection domain */
1258
static void domain_flush_tlb(struct protection_domain *domain)
1259
{
1260
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1261 1262
}

1263
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1264
static void domain_flush_tlb_pde(struct protection_domain *domain)
1265
{
1266
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1267 1268
}

1269
static void domain_flush_complete(struct protection_domain *domain)
1270
{
1271
	int i;
1272

1273 1274 1275
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1276

1277 1278 1279 1280 1281
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1282
	}
1283 1284
}

1285

1286
/*
1287
 * This function flushes the DTEs for all devices in domain
1288
 */
1289
static void domain_flush_devices(struct protection_domain *domain)
1290
{
1291
	struct iommu_dev_data *dev_data;
1292

1293
	list_for_each_entry(dev_data, &domain->dev_list, list)
1294
		device_flush_dte(dev_data);
1295 1296
}

1297 1298 1299 1300 1301 1302 1303
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1333
		      unsigned long page_size,
1334 1335 1336
		      u64 **pte_page,
		      gfp_t gfp)
{
1337
	int level, end_lvl;
1338
	u64 *pte, *page;
1339 1340

	BUG_ON(!is_power_of_2(page_size));
1341 1342 1343 1344

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1345 1346 1347 1348
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1349 1350 1351 1352 1353 1354 1355 1356 1357

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1358 1359 1360 1361
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1379
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1380 1381 1382 1383
{
	int level;
	u64 *pte;

1384 1385 1386 1387 1388
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1389

1390 1391 1392
	while (level > 0) {

		/* Not Present */
1393 1394 1395
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1415 1416
		level -= 1;

1417
		/* Walk to the next level */
1418 1419 1420 1421 1422 1423 1424
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1425 1426 1427 1428 1429 1430 1431
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1432 1433 1434
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1435
			  int prot,
1436
			  unsigned long page_size)
1437
{
1438
	u64 __pte, *pte;
1439
	int i, count;
1440

1441
	if (!(prot & IOMMU_PROT_MASK))
1442 1443
		return -EINVAL;

1444 1445 1446 1447 1448 1449 1450 1451
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1452

1453 1454 1455 1456 1457
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1458 1459 1460 1461 1462 1463

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1464 1465
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1466

1467 1468
	update_domain(dom);

1469 1470 1471
	return 0;
}

1472 1473 1474
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1475
{
1476 1477 1478 1479 1480 1481
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
1502 1503 1504 1505

			/* Only unmap from the first pte in the page */
			if ((unmap_size - 1) & bus_addr)
				break;
1506 1507 1508 1509 1510 1511 1512 1513 1514
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1515
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1516

1517
	return unmapped;
1518 1519
}

1520 1521 1522 1523
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1538 1539 1540 1541
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1542 1543 1544 1545 1546 1547 1548 1549
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1550
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1551
				     PAGE_SIZE);
1552 1553 1554 1555 1556 1557 1558
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1559
			__set_bit(addr >> PAGE_SHIFT,
1560
				  dma_dom->aperture[0]->bitmap);
1561 1562 1563 1564 1565
	}

	return 0;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1588 1589 1590
/*
 * Inits the unity mappings required for a specific device
 */
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1608 1609 1610 1611 1612 1613 1614 1615 1616
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1617

1618
/*
1619
 * The address allocator core functions.
1620 1621 1622
 *
 * called with domain->lock held
 */
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1644 1645 1646 1647 1648
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1649
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1650 1651 1652
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1653
	struct amd_iommu *iommu;
1654
	unsigned long i, old_size;
1655

1656 1657 1658 1659
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1679
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1690
	old_size                = dma_dom->aperture_size;
1691 1692
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1705
	/* Initialize the exclusion range if necessary */
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1728
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1729 1730 1731
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1732
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1733 1734
	}

1735 1736
	update_domain(&dma_dom->domain);

1737 1738 1739
	return 0;

out_free:
1740 1741
	update_domain(&dma_dom->domain);

1742 1743 1744 1745 1746 1747 1748 1749
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1750 1751 1752 1753 1754 1755 1756
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1757
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1758 1759 1760 1761 1762 1763
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1764 1765
	next_bit >>= PAGE_SHIFT;

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1784
			dom->next_address = address + (pages << PAGE_SHIFT);
1785 1786 1787 1788 1789 1790 1791 1792 1793
			break;
		}

		next_bit = 0;
	}

	return address;
}

1794 1795
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1796
					     unsigned int pages,
1797 1798
					     unsigned long align_mask,
					     u64 dma_mask)
1799 1800 1801
{
	unsigned long address;

1802 1803 1804 1805
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1806

1807
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1808
				     dma_mask, dom->next_address);
1809

1810
	if (address == -1) {
1811
		dom->next_address = 0;
1812 1813
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1814 1815
		dom->need_flush = true;
	}
1816

1817
	if (unlikely(address == -1))
1818
		address = DMA_ERROR_CODE;
1819 1820 1821 1822 1823 1824

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1825 1826 1827 1828 1829
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1830 1831 1832 1833
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1834 1835
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1836

1837 1838
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1839 1840 1841 1842
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1843

1844
	if (address >= dom->next_address)
1845
		dom->need_flush = true;
1846 1847

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1848

A
Akinobu Mita 已提交
1849
	bitmap_clear(range->bitmap, address, pages);
1850

1851 1852
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1940
static void free_pagetable(struct protection_domain *domain)
1941
{
1942
	unsigned long root = (unsigned long)domain->pt_root;
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1967 1968 1969
	}
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

2000 2001
static void free_gcr3_table(struct protection_domain *domain)
{
2002 2003 2004 2005 2006 2007 2008
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

2009 2010 2011
	free_page((unsigned long)domain->gcr3_tbl);
}

2012 2013 2014 2015
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
2016 2017
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
2018 2019
	int i;

2020 2021 2022
	if (!dom)
		return;

2023 2024
	del_domain_from_list(&dom->domain);

2025
	free_pagetable(&dom->domain);
2026

2027 2028 2029 2030 2031 2032
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
2033 2034 2035 2036

	kfree(dom);
}

2037 2038
/*
 * Allocates a new protection domain usable for the dma_ops functions.
2039
 * It also initializes the page table and the address allocator data
2040 2041
 * structures required for the dma_ops interface
 */
2042
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2055
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2056
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2057
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2058
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2059 2060 2061 2062
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2063
	dma_dom->need_flush = false;
2064
	dma_dom->target_dev = 0xffff;
2065

2066 2067
	add_domain_to_list(&dma_dom->domain);

2068
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2069 2070
		goto free_dma_dom;

2071
	/*
2072 2073
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2074
	 */
2075
	dma_dom->aperture[0]->bitmap[0] = 1;
2076
	dma_dom->next_address = 0;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2096
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2097
{
2098
	u64 pte_root = 0;
2099
	u64 flags = 0;
2100

2101 2102 2103
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2104 2105 2106
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2107

2108 2109
	flags = amd_iommu_dev_table[devid].data[1];

2110 2111 2112
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2139 2140 2141 2142 2143
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2144 2145 2146 2147 2148 2149 2150 2151 2152
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2153 2154
}

2155 2156
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2157 2158
{
	struct amd_iommu *iommu;
2159
	bool ats;
2160

2161 2162
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2163 2164 2165 2166

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2167
	set_dte_entry(dev_data->devid, domain, ats);
2168 2169 2170 2171 2172 2173

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2174
	device_flush_dte(dev_data);
2175 2176
}

2177
static void do_detach(struct iommu_dev_data *dev_data)
2178 2179 2180
{
	struct amd_iommu *iommu;

2181
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2182 2183

	/* decrease reference counters */
2184 2185 2186 2187 2188 2189
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2190
	clear_dte_entry(dev_data->devid);
2191

2192
	/* Flush the DTE entry */
2193
	device_flush_dte(dev_data);
2194 2195 2196 2197 2198 2199
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2200
static int __attach_device(struct iommu_dev_data *dev_data,
2201
			   struct protection_domain *domain)
2202
{
2203
	int ret;
2204

2205 2206 2207
	/* lock domain */
	spin_lock(&domain->lock);

2208 2209
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2210

2211 2212 2213 2214 2215
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2216

2217 2218 2219
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2220

2221
		/* Do real assignment */
2222
		if (alias_data->domain == NULL)
2223
			do_attach(alias_data, domain);
2224 2225

		atomic_inc(&alias_data->bind);
2226
	}
2227

2228
	if (dev_data->domain == NULL)
2229
		do_attach(dev_data, domain);
2230

2231 2232
	atomic_inc(&dev_data->bind);

2233 2234 2235 2236
	ret = 0;

out_unlock:

2237 2238
	/* ready */
	spin_unlock(&domain->lock);
2239

2240
	return ret;
2241
}
2242

2243 2244 2245 2246 2247 2248 2249 2250

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2251 2252 2253 2254 2255 2256
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2257
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2258 2259 2260
	if (!pos)
		return -EINVAL;

2261 2262 2263
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2264 2265 2266 2267

	return 0;
}

2268 2269
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2270 2271 2272 2273 2274 2275 2276 2277
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2289 2290
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2291 2292 2293
	if (ret)
		goto out_err;

2294 2295 2296 2297 2298 2299
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2313
/* FIXME: Move this to PCI code */
2314
#define PCI_PRI_TLP_OFF		(1 << 15)
2315

J
Joerg Roedel 已提交
2316
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2317
{
2318
	u16 status;
2319 2320
	int pos;

2321
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2322 2323 2324
	if (!pos)
		return false;

2325
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2326

2327
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2328 2329
}

2330
/*
F
Frank Arnold 已提交
2331
 * If a device is not yet associated with a domain, this function
2332 2333
 * assigns it visible for the hardware
 */
2334 2335
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2336
{
2337
	struct pci_dev *pdev = to_pci_dev(dev);
2338
	struct iommu_dev_data *dev_data;
2339
	unsigned long flags;
2340
	int ret;
2341

2342 2343
	dev_data = get_dev_data(dev);

2344 2345 2346 2347 2348 2349 2350 2351 2352
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2353
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2354 2355
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2356 2357 2358
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2359

2360
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2361
	ret = __attach_device(dev_data, domain);
2362 2363
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2364 2365 2366 2367 2368
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2369
	domain_flush_tlb_pde(domain);
2370 2371

	return ret;
2372 2373
}

2374 2375 2376
/*
 * Removes a device from a protection domain (unlocked)
 */
2377
static void __detach_device(struct iommu_dev_data *dev_data)
2378
{
2379
	struct protection_domain *domain;
2380
	unsigned long flags;
2381

2382
	BUG_ON(!dev_data->domain);
2383

2384 2385 2386
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2387

2388 2389 2390
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2391
		if (atomic_dec_and_test(&alias_data->bind))
2392
			do_detach(alias_data);
2393 2394
	}

2395
	if (atomic_dec_and_test(&dev_data->bind))
2396
		do_detach(dev_data);
2397

2398
	spin_unlock_irqrestore(&domain->lock, flags);
2399 2400 2401

	/*
	 * If we run in passthrough mode the device must be assigned to the
2402 2403
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2404
	 */
2405
	if (dev_data->passthrough &&
2406
	    (dev_data->domain == NULL && domain != pt_domain))
2407
		__attach_device(dev_data, pt_domain);
2408 2409 2410 2411 2412
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2413
static void detach_device(struct device *dev)
2414
{
2415
	struct protection_domain *domain;
2416
	struct iommu_dev_data *dev_data;
2417 2418
	unsigned long flags;

2419
	dev_data = get_dev_data(dev);
2420
	domain   = dev_data->domain;
2421

2422 2423
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2424
	__detach_device(dev_data);
2425
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2426

2427 2428 2429
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2430
		pci_disable_ats(to_pci_dev(dev));
2431 2432

	dev_data->ats.enabled = false;
2433
}
2434

2435 2436 2437 2438 2439 2440
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2441
	struct iommu_dev_data *dev_data;
2442
	struct protection_domain *dom = NULL;
2443 2444
	unsigned long flags;

2445
	dev_data   = get_dev_data(dev);
2446

2447 2448
	if (dev_data->domain)
		return dev_data->domain;
2449

2450 2451
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2452 2453 2454 2455 2456 2457 2458 2459

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2460 2461 2462 2463

	return dom;
}

2464 2465 2466 2467
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2468 2469 2470
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2471
	struct amd_iommu *iommu;
2472
	unsigned long flags;
2473
	u16 devid;
2474

2475 2476
	if (!check_device(dev))
		return 0;
2477

2478 2479 2480
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2481 2482

	switch (action) {
2483
	case BUS_NOTIFY_UNBOUND_DRIVER:
2484 2485 2486

		domain = domain_for_device(dev);

2487 2488
		if (!domain)
			goto out;
2489
		if (dev_data->passthrough)
2490
			break;
2491
		detach_device(dev);
2492 2493
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2494 2495 2496

		iommu_init_device(dev);

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2509 2510
		domain = domain_for_device(dev);

2511 2512
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2523

2524
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2525

2526
		break;
2527 2528 2529 2530
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2541
static struct notifier_block device_nb = {
2542 2543
	.notifier_call = device_change_notifier,
};
2544

2545 2546 2547 2548 2549
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2563
static struct protection_domain *get_domain(struct device *dev)
2564
{
2565
	struct protection_domain *domain;
2566
	struct dma_ops_domain *dma_dom;
2567
	u16 devid = get_device_id(dev);
2568

2569
	if (!check_device(dev))
2570
		return ERR_PTR(-EINVAL);
2571

2572 2573 2574
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2575

2576 2577
	if (domain != NULL)
		return domain;
2578

F
Frank Arnold 已提交
2579
	/* Device not bound yet - bind it */
2580
	dma_dom = find_protection_domain(devid);
2581
	if (!dma_dom)
2582 2583
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2584
	DUMP_printk("Using protection domain %d for device %s\n",
2585
		    dma_dom->domain.id, dev_name(dev));
2586

2587
	return &dma_dom->domain;
2588 2589
}

2590 2591
static void update_device_table(struct protection_domain *domain)
{
2592
	struct iommu_dev_data *dev_data;
2593

2594 2595
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2596 2597 2598 2599 2600 2601 2602 2603
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2604 2605 2606

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2607 2608 2609 2610

	domain->updated = false;
}

2611 2612 2613 2614 2615 2616
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2617
	struct aperture_range *aperture;
2618 2619
	u64 *pte, *pte_page;

2620 2621 2622 2623 2624
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2625
	if (!pte) {
2626
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2627
				GFP_ATOMIC);
2628 2629
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2630
		pte += PM_LEVEL_INDEX(0, address);
2631

2632
	update_domain(&dom->domain);
2633 2634 2635 2636

	return pte;
}

2637 2638 2639 2640
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2641
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2652
	pte  = dma_ops_get_pte(dom, address);
2653
	if (!pte)
2654
		return DMA_ERROR_CODE;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2672 2673 2674
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2675
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2676 2677
				 unsigned long address)
{
2678
	struct aperture_range *aperture;
2679 2680 2681 2682 2683
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2684 2685 2686 2687 2688 2689 2690
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2691

2692
	pte += PM_LEVEL_INDEX(0, address);
2693 2694 2695 2696 2697 2698

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2699 2700
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2701 2702
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2703 2704
 * Must be called with the domain lock held.
 */
2705 2706 2707 2708
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2709
			       int dir,
2710 2711
			       bool align,
			       u64 dma_mask)
2712 2713
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2714
	dma_addr_t address, start, ret;
2715
	unsigned int pages;
2716
	unsigned long align_mask = 0;
2717 2718
	int i;

2719
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2720 2721
	paddr &= PAGE_MASK;

2722 2723
	INC_STATS_COUNTER(total_map_requests);

2724 2725 2726
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2727 2728 2729
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2730
retry:
2731 2732
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2733
	if (unlikely(address == DMA_ERROR_CODE)) {
2734 2735 2736 2737 2738 2739 2740
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2741
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2742 2743 2744
			goto out;

		/*
2745
		 * aperture was successfully enlarged by 128 MB, try
2746 2747 2748 2749
		 * allocation again
		 */
		goto retry;
	}
2750 2751 2752

	start = address;
	for (i = 0; i < pages; ++i) {
2753
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2754
		if (ret == DMA_ERROR_CODE)
2755 2756
			goto out_unmap;

2757 2758 2759 2760 2761
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2762 2763
	ADD_STATS_COUNTER(alloced_io_mem, size);

2764
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2765
		domain_flush_tlb(&dma_dom->domain);
2766
		dma_dom->need_flush = false;
2767
	} else if (unlikely(amd_iommu_np_cache))
2768
		domain_flush_pages(&dma_dom->domain, address, size);
2769

2770 2771
out:
	return address;
2772 2773 2774 2775 2776

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2777
		dma_ops_domain_unmap(dma_dom, start);
2778 2779 2780 2781
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2782
	return DMA_ERROR_CODE;
2783 2784
}

2785 2786 2787 2788
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2789
static void __unmap_single(struct dma_ops_domain *dma_dom,
2790 2791 2792 2793
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2794
	dma_addr_t flush_addr;
2795 2796 2797
	dma_addr_t i, start;
	unsigned int pages;

2798
	if ((dma_addr == DMA_ERROR_CODE) ||
2799
	    (dma_addr + size > dma_dom->aperture_size))
2800 2801
		return;

2802
	flush_addr = dma_addr;
2803
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2804 2805 2806 2807
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2808
		dma_ops_domain_unmap(dma_dom, start);
2809 2810 2811
		start += PAGE_SIZE;
	}

2812 2813
	SUB_STATS_COUNTER(alloced_io_mem, size);

2814
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2815

2816
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2817
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2818 2819
		dma_dom->need_flush = false;
	}
2820 2821
}

2822 2823 2824
/*
 * The exported map_single function for dma_ops.
 */
2825 2826 2827 2828
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2829 2830 2831 2832
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2833
	u64 dma_mask;
2834
	phys_addr_t paddr = page_to_phys(page) + offset;
2835

2836 2837
	INC_STATS_COUNTER(cnt_map_single);

2838 2839
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2840
		return (dma_addr_t)paddr;
2841 2842
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2843

2844 2845
	dma_mask = *dev->dma_mask;

2846
	spin_lock_irqsave(&domain->lock, flags);
2847

2848
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2849
			    dma_mask);
2850
	if (addr == DMA_ERROR_CODE)
2851 2852
		goto out;

2853
	domain_flush_complete(domain);
2854 2855 2856 2857 2858 2859 2860

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2861 2862 2863
/*
 * The exported unmap_single function for dma_ops.
 */
2864 2865
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2866 2867 2868 2869
{
	unsigned long flags;
	struct protection_domain *domain;

2870 2871
	INC_STATS_COUNTER(cnt_unmap_single);

2872 2873
	domain = get_domain(dev);
	if (IS_ERR(domain))
2874 2875
		return;

2876 2877
	spin_lock_irqsave(&domain->lock, flags);

2878
	__unmap_single(domain->priv, dma_addr, size, dir);
2879

2880
	domain_flush_complete(domain);
2881 2882 2883 2884

	spin_unlock_irqrestore(&domain->lock, flags);
}

2885 2886 2887 2888
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2889
static int map_sg(struct device *dev, struct scatterlist *sglist,
2890 2891
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2892 2893 2894 2895 2896 2897 2898
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2899
	u64 dma_mask;
2900

2901 2902
	INC_STATS_COUNTER(cnt_map_sg);

2903
	domain = get_domain(dev);
2904
	if (IS_ERR(domain))
2905
		return 0;
2906

2907
	dma_mask = *dev->dma_mask;
2908 2909 2910 2911 2912 2913

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2914
		s->dma_address = __map_single(dev, domain->priv,
2915 2916
					      paddr, s->length, dir, false,
					      dma_mask);
2917 2918 2919 2920 2921 2922 2923 2924

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2925
	domain_flush_complete(domain);
2926 2927 2928 2929 2930 2931 2932 2933

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2934
			__unmap_single(domain->priv, s->dma_address,
2935 2936 2937 2938 2939 2940 2941 2942 2943
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2944 2945 2946 2947
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2948
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2949 2950
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2951 2952 2953 2954 2955 2956
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2957 2958
	INC_STATS_COUNTER(cnt_unmap_sg);

2959 2960
	domain = get_domain(dev);
	if (IS_ERR(domain))
2961 2962
		return;

2963 2964 2965
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2966
		__unmap_single(domain->priv, s->dma_address,
2967 2968 2969 2970
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2971
	domain_flush_complete(domain);
2972 2973 2974 2975

	spin_unlock_irqrestore(&domain->lock, flags);
}

2976 2977 2978
/*
 * The exported alloc_coherent function for dma_ops.
 */
2979
static void *alloc_coherent(struct device *dev, size_t size,
2980 2981
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2982 2983 2984 2985 2986
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2987
	u64 dma_mask = dev->coherent_dma_mask;
2988

2989 2990
	INC_STATS_COUNTER(cnt_alloc_coherent);

2991 2992
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2993 2994 2995
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2996 2997
	} else if (IS_ERR(domain))
		return NULL;
2998

2999 3000 3001
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
3002 3003 3004

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
3005
		return NULL;
3006 3007 3008

	paddr = virt_to_phys(virt_addr);

3009 3010 3011
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

3012 3013
	spin_lock_irqsave(&domain->lock, flags);

3014
	*dma_addr = __map_single(dev, domain->priv, paddr,
3015
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
3016

3017
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
3018
		spin_unlock_irqrestore(&domain->lock, flags);
3019
		goto out_free;
J
Jiri Slaby 已提交
3020
	}
3021

3022
	domain_flush_complete(domain);
3023 3024 3025 3026

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
3027 3028 3029 3030 3031 3032

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
3033 3034
}

3035 3036 3037
/*
 * The exported free_coherent function for dma_ops.
 */
3038
static void free_coherent(struct device *dev, size_t size,
3039 3040
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
3041 3042 3043 3044
{
	unsigned long flags;
	struct protection_domain *domain;

3045 3046
	INC_STATS_COUNTER(cnt_free_coherent);

3047 3048
	domain = get_domain(dev);
	if (IS_ERR(domain))
3049 3050
		goto free_mem;

3051 3052
	spin_lock_irqsave(&domain->lock, flags);

3053
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3054

3055
	domain_flush_complete(domain);
3056 3057 3058 3059 3060 3061 3062

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

3063 3064 3065 3066 3067 3068
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3069
	return check_device(dev);
3070 3071
}

3072
/*
3073 3074
 * The function for pre-allocating protection domains.
 *
3075 3076 3077 3078
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3079
static void __init prealloc_protection_domains(void)
3080
{
3081
	struct iommu_dev_data *dev_data;
3082
	struct dma_ops_domain *dma_dom;
3083
	struct pci_dev *dev = NULL;
3084
	u16 devid;
3085

3086
	for_each_pci_dev(dev) {
3087 3088 3089

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3090
			continue;
3091

3092 3093 3094 3095 3096 3097
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3098
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3099 3100 3101
				dev_name(&dev->dev));
		}

3102
		/* Is there already any domain for it? */
3103
		if (domain_for_device(&dev->dev))
3104
			continue;
3105 3106 3107

		devid = get_device_id(&dev->dev);

3108
		dma_dom = dma_ops_domain_alloc();
3109 3110 3111
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3112 3113
		dma_dom->target_dev = devid;

3114
		attach_device(&dev->dev, &dma_dom->domain);
3115

3116
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3117 3118 3119
	}
}

3120
static struct dma_map_ops amd_iommu_dma_ops = {
3121 3122
	.alloc = alloc_coherent,
	.free = free_coherent,
3123 3124
	.map_page = map_page,
	.unmap_page = unmap_page,
3125 3126
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3127
	.dma_supported = amd_iommu_dma_supported,
3128 3129
};

3130 3131
static unsigned device_dma_ops_init(void)
{
3132
	struct iommu_dev_data *dev_data;
3133 3134 3135 3136 3137
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3138 3139 3140

			iommu_ignore_device(&pdev->dev);

3141 3142 3143 3144
			unhandled += 1;
			continue;
		}

3145 3146 3147 3148 3149 3150
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3151 3152 3153 3154 3155
	}

	return unhandled;
}

3156 3157 3158
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3159 3160 3161

void __init amd_iommu_init_api(void)
{
3162
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3163 3164
}

3165 3166 3167
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3168
	int ret, unhandled;
3169

3170 3171 3172 3173 3174
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3175
	for_each_iommu(iommu) {
3176
		iommu->default_dom = dma_ops_domain_alloc();
3177 3178
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3179
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3180 3181 3182 3183 3184
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3185
	/*
3186
	 * Pre-allocate the protection domains for each device.
3187
	 */
3188
	prealloc_protection_domains();
3189 3190

	iommu_detected = 1;
3191
	swiotlb = 0;
3192

3193
	/* Make the driver finally visible to the drivers */
3194 3195 3196 3197 3198
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3199

3200 3201
	amd_iommu_stats_init();

3202 3203 3204 3205 3206
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3207 3208 3209 3210
	return 0;

free_domains:

3211
	for_each_iommu(iommu) {
3212
		dma_ops_domain_free(iommu->default_dom);
3213 3214 3215 3216
	}

	return ret;
}
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3230
	struct iommu_dev_data *dev_data, *next;
3231 3232 3233 3234
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3235
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3236
		__detach_device(dev_data);
3237 3238
		atomic_set(&dev_data->bind, 0);
	}
3239 3240 3241 3242

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3243 3244 3245 3246 3247
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3248 3249
	del_domain_from_list(domain);

3250 3251 3252 3253 3254 3255 3256
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3257 3258 3259 3260 3261
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3262
		return NULL;
3263 3264

	spin_lock_init(&domain->lock);
3265
	mutex_init(&domain->api_lock);
3266 3267
	domain->id = domain_id_alloc();
	if (!domain->id)
3268
		goto out_err;
3269
	INIT_LIST_HEAD(&domain->dev_list);
3270

3271 3272
	add_domain_to_list(domain);

3273 3274 3275 3276 3277 3278 3279 3280
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3295 3296 3297 3298 3299 3300
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3301
		goto out_free;
3302 3303

	domain->mode    = PAGE_MODE_3_LEVEL;
3304 3305 3306 3307
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3308 3309
	domain->iommu_domain = dom;

3310 3311
	dom->priv = domain;

3312 3313 3314 3315
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3316 3317 3318
	return 0;

out_free:
3319
	protection_domain_free(domain);
3320 3321 3322 3323

	return -ENOMEM;
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3336 3337
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3338

3339 3340 3341
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3342
	protection_domain_free(domain);
3343 3344 3345 3346

	dom->priv = NULL;
}

3347 3348 3349
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3350
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3351 3352 3353
	struct amd_iommu *iommu;
	u16 devid;

3354
	if (!check_device(dev))
3355 3356
		return;

3357
	devid = get_device_id(dev);
3358

3359
	if (dev_data->domain != NULL)
3360
		detach_device(dev);
3361 3362 3363 3364 3365 3366 3367 3368

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3369 3370 3371 3372
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3373
	struct iommu_dev_data *dev_data;
3374
	struct amd_iommu *iommu;
3375
	int ret;
3376

3377
	if (!check_device(dev))
3378 3379
		return -EINVAL;

3380 3381
	dev_data = dev->archdata.iommu;

3382
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3383 3384 3385
	if (!iommu)
		return -EINVAL;

3386
	if (dev_data->domain)
3387
		detach_device(dev);
3388

3389
	ret = attach_device(dev, domain);
3390 3391 3392

	iommu_completion_wait(iommu);

3393
	return ret;
3394 3395
}

3396
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3397
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3398 3399 3400 3401 3402
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3403 3404 3405
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3406 3407 3408 3409 3410
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3411
	mutex_lock(&domain->api_lock);
3412
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3413 3414
	mutex_unlock(&domain->api_lock);

3415
	return ret;
3416 3417
}

3418 3419
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3420 3421
{
	struct protection_domain *domain = dom->priv;
3422
	size_t unmap_size;
3423

3424 3425 3426
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3427
	mutex_lock(&domain->api_lock);
3428
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3429
	mutex_unlock(&domain->api_lock);
3430

3431
	domain_flush_tlb_pde(domain);
3432

3433
	return unmap_size;
3434 3435
}

3436
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3437
					  dma_addr_t iova)
3438 3439
{
	struct protection_domain *domain = dom->priv;
3440
	unsigned long offset_mask;
3441
	phys_addr_t paddr;
3442
	u64 *pte, __pte;
3443

3444 3445 3446
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3447
	pte = fetch_pte(domain, iova);
3448

3449
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3450 3451
		return 0;

3452 3453 3454 3455 3456 3457 3458
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3459 3460 3461 3462

	return paddr;
}

S
Sheng Yang 已提交
3463 3464 3465
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3466 3467 3468
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
3469 3470
	case IOMMU_CAP_INTR_REMAP:
		return irq_remapping_enabled;
3471 3472
	}

S
Sheng Yang 已提交
3473 3474 3475
	return 0;
}

3476 3477 3478 3479 3480
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3481 3482
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3483
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3484
	.domain_has_cap = amd_iommu_domain_has_cap,
3485
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3486 3487
};

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3500
	struct iommu_dev_data *dev_data;
3501
	struct pci_dev *dev = NULL;
3502
	int ret;
3503

3504 3505 3506
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3507

3508
	for_each_pci_dev(dev) {
3509
		if (!check_device(&dev->dev))
3510 3511
			continue;

3512 3513 3514
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3515
		attach_device(&dev->dev, pt_domain);
3516 3517
	}

J
Joerg Roedel 已提交
3518 3519
	amd_iommu_stats_init();

3520 3521 3522 3523
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3665 3666
	INC_STATS_COUNTER(invalidate_iotlb);

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3687 3688
	INC_STATS_COUNTER(invalidate_iotlb_all);

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3800 3801 3802 3803 3804 3805 3806 3807

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3808 3809
	INC_STATS_COUNTER(complete_ppr);

3810 3811 3812 3813 3814 3815 3816 3817 3818
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3966 3967 3968
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3969 3970 3971 3972 3973 3974 3975
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3976
		table = NULL;
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3994
		set_dte_irq_entry(alias, table);
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
4029
			struct irq_2_irte *irte_info;
4030 4031 4032 4033 4034 4035

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

4036
			cfg->remapped	      = 1;
4037 4038 4039
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4115 4116 4117 4118 4119
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4120
	struct irq_2_irte *irte_info;
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4132
	irte_info = &cfg->irq_2_irte;
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4146
	cfg->remapped	      = 1;
4147 4148
	irte_info->devid      = devid;
	irte_info->index      = index;
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4182
	struct irq_2_irte *irte_info;
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
4193
	irte_info = &cfg->irq_2_irte;
4194 4195 4196 4197

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4198
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4214
	modify_irte(irte_info->devid, irte_info->index, irte);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4226
	struct irq_2_irte *irte_info;
4227 4228 4229 4230 4231 4232
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4233
	irte_info = &cfg->irq_2_irte;
4234

4235
	free_irte(irte_info->devid, irte_info->index);
4236 4237 4238 4239

	return 0;
}

4240 4241 4242 4243
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4244
	struct irq_2_irte *irte_info;
4245 4246 4247 4248 4249 4250 4251
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

4252
	irte_info = &cfg->irq_2_irte;
4253 4254 4255 4256 4257 4258 4259 4260

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4261
	modify_irte(irte_info->devid, irte_info->index, irte);
4262 4263 4264

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4265
	msg->data       = irte_info->index;
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4290
	struct irq_2_irte *irte_info;
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4305
	irte_info	= &cfg->irq_2_irte;
4306

4307
	cfg->remapped	      = 1;
4308 4309
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4310 4311 4312 4313

	return 0;
}

4314 4315
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
4316
	struct irq_2_irte *irte_info;
4317 4318 4319 4320 4321 4322 4323
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4324
	irte_info = &cfg->irq_2_irte;
4325 4326 4327 4328 4329 4330 4331 4332
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4333
	cfg->remapped	      = 1;
4334 4335
	irte_info->devid      = devid;
	irte_info->index      = index;
4336 4337 4338 4339

	return 0;
}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4355
#endif