amd_iommu.c 98.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

DEFINE_PER_CPU(struct flush_queue, flush_queue);

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
static const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120 121
static struct dma_map_ops amd_iommu_dma_ops;

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139 140 141
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

142 143 144
/*
 * general struct to manage commands send to an IOMMU
 */
145
struct iommu_cmd {
146 147 148
	u32 data[4];
};

149 150
struct kmem_cache *amd_iommu_irq_cache;

151
static void update_domain(struct protection_domain *domain);
152
static int protection_domain_init(struct protection_domain *domain);
153
static void detach_device(struct device *dev);
154

155 156 157 158 159 160 161
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

162 163
	/* IOVA RB-Tree */
	struct iova_domain iovad;
164 165
};

166 167 168
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

169 170 171 172 173 174
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

175 176
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
177
{
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
193 194
}

195
static inline u16 get_pci_device_id(struct device *dev)
196 197 198 199 200 201
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

229 230 231 232 233
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

234 235 236 237 238 239
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

240
static struct iommu_dev_data *alloc_dev_data(u16 devid)
241 242 243 244 245 246 247 248
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

249
	dev_data->devid = devid;
250 251 252 253 254 255 256 257

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

277 278 279 280 281 282 283 284 285 286 287
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

288
	/* The callers make sure that get_device_id() does not fail here */
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
330
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
331 332 333 334 335 336 337 338
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

339 340 341 342 343 344 345 346 347 348 349 350
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

351 352 353 354 355
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

356 357 358 359
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
360
{
361
	struct acpihid_map_entry *p, *entry = NULL;
362
	int devid;
363 364 365 366 367 368 369 370 371 372 373 374 375 376

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
377 378
}

379 380 381 382
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
383 384
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
385 386 387 388 389 390 391 392 393 394 395 396
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

397 398 399 400 401 402 403 404 405
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

406 407 408 409 410 411
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
412
	int devid;
413 414 415 416 417

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
418
	if (devid < 0)
419
		return false;
420 421 422 423 424 425 426 427 428 429 430

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

431
static void init_iommu_group(struct device *dev)
432 433 434
{
	struct iommu_group *group;

435
	group = iommu_group_get_for_dev(dev);
436 437 438 439
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
440 441 442 443 444
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
445
	int devid;
446 447 448 449

	if (dev->archdata.iommu)
		return 0;

450
	devid = get_device_id(dev);
451
	if (devid < 0)
452 453 454
		return devid;

	dev_data = find_dev_data(devid);
455 456 457
	if (!dev_data)
		return -ENOMEM;

458 459
	dev_data->alias = get_alias(dev);

460
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
461 462
		struct amd_iommu *iommu;

463
		iommu = amd_iommu_rlookup_table[dev_data->devid];
464 465 466
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

467 468
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
469 470 471
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

472 473 474
	return 0;
}

475 476
static void iommu_ignore_device(struct device *dev)
{
477 478
	u16 alias;
	int devid;
479 480

	devid = get_device_id(dev);
481
	if (devid < 0)
482 483
		return;

484
	alias = get_alias(dev);
485 486 487 488 489 490 491 492

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

493 494
static void iommu_uninit_device(struct device *dev)
{
495 496
	int devid;
	struct iommu_dev_data *dev_data;
497

498
	devid = get_device_id(dev);
499
	if (devid < 0)
500
		return;
501

502
	dev_data = search_dev_data(devid);
503 504 505
	if (!dev_data)
		return;

506 507 508
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
509 510 511
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

512 513
	iommu_group_remove_device(dev);

514 515 516
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

517
	/*
518 519
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
520
	 */
521
}
J
Joerg Roedel 已提交
522

523 524 525 526 527 528
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

529 530 531 532
static void dump_dte_entry(u16 devid)
{
	int i;

533 534
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
535 536 537
			amd_iommu_dev_table[devid].data[i]);
}

538 539 540 541 542 543 544 545 546
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

547
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
548
{
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
570

571
	printk(KERN_ERR "AMD-Vi: Event logged [");
572 573 574 575 576

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
577
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
578
		       address, flags);
579
		dump_dte_entry(devid);
580 581 582 583
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
584
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 586 587 588 589
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
590
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
591 592 593 594 595
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
596
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
597 598 599 600
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
601
		dump_command(address);
602 603 604 605 606 607 608 609
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 612 613 614 615
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617 618 619 620 621
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
622 623

	memset(__evt, 0, 4 * sizeof(u32));
624 625 626 627 628 629 630 631 632 633
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
634
		iommu_print_event(iommu, iommu->evt_buf + head);
635
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
636 637 638 639 640
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

641
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
686

687 688 689
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
690

691 692 693 694 695 696 697
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
698 699
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 701 702 703 704 705

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
706 707 708 709
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

770
irqreturn_t amd_iommu_int_thread(int irq, void *data)
771
{
772 773
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
774

775 776 777
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
778
			iommu->mmio_base + MMIO_STATUS_OFFSET);
779

780 781 782 783
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
784

785 786 787 788
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
789

790 791 792 793 794 795 796
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
812
	return IRQ_HANDLED;
813 814
}

815 816 817 818 819
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

820 821 822 823 824 825
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
846 847 848
{
	u8 *target;

849
	target = iommu->cmd_buf + tail;
850
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
851 852 853 854 855

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
856
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
857
}
858

859
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
860
{
861 862
	WARN_ON(address & 0x7ULL);

863
	memset(cmd, 0, sizeof(*cmd));
864 865 866
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
867 868 869
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

870 871 872 873 874 875 876
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

877 878 879 880
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
881
	bool s;
882 883

	pages = iommu_num_pages(address, size, PAGE_SIZE);
884
	s     = false;
885 886 887 888 889 890 891

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
892
		s = true;
893 894 895 896 897 898 899 900 901 902 903
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
904
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
905 906 907
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

908 909 910 911
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
912
	bool s;
913 914

	pages = iommu_num_pages(address, size, PAGE_SIZE);
915
	s     = false;
916 917 918 919 920 921 922

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
923
		s = true;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

939 940 941 942 943 944 945
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

946
	cmd->data[0]  = pasid;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
965
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
966 967
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
968
	cmd->data[1] |= (pasid & 0xff) << 16;
969 970 971 972 973 974 975 976
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

977 978 979 980 981 982 983
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
984
		cmd->data[1]  = pasid;
985 986 987 988 989 990 991 992
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

993 994 995 996
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
997 998
}

999 1000 1001 1002 1003 1004 1005
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1006 1007
/*
 * Writes the command to the IOMMUs command buffer and informs the
1008
 * hardware about the new command.
1009
 */
1010 1011 1012
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1013
{
1014
	u32 left, tail, head, next_tail;
1015 1016
	unsigned long flags;

1017
again:
1018 1019
	spin_lock_irqsave(&iommu->lock, flags);

1020 1021
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1022 1023
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1024

1025 1026 1027 1028
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1029

1030 1031
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1032

1033 1034 1035 1036 1037 1038
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1039 1040
	}

1041 1042 1043
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1044
	iommu->need_sync = sync;
1045

1046
	spin_unlock_irqrestore(&iommu->lock, flags);
1047

1048
	return 0;
1049 1050
}

1051 1052 1053 1054 1055
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1056 1057 1058 1059
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1060
static int iommu_completion_wait(struct amd_iommu *iommu)
1061 1062
{
	struct iommu_cmd cmd;
1063
	volatile u64 sem = 0;
1064
	int ret;
1065

1066
	if (!iommu->need_sync)
1067
		return 0;
1068

1069
	build_completion_wait(&cmd, (u64)&sem);
1070

1071
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1072
	if (ret)
1073
		return ret;
1074

1075
	return wait_on_sem(&sem);
1076 1077
}

1078
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1079
{
1080
	struct iommu_cmd cmd;
1081

1082
	build_inv_dte(&cmd, devid);
1083

1084 1085
	return iommu_queue_command(iommu, &cmd);
}
1086

1087 1088 1089
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1090

1091 1092
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1093

1094 1095
	iommu_completion_wait(iommu);
}
1096

1097 1098 1099 1100 1101 1102 1103
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1104

1105 1106 1107 1108 1109 1110
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1111

1112
	iommu_completion_wait(iommu);
1113 1114
}

1115
static void iommu_flush_all(struct amd_iommu *iommu)
1116
{
1117
	struct iommu_cmd cmd;
1118

1119
	build_inv_all(&cmd);
1120

1121 1122 1123 1124
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1144 1145
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1146 1147 1148 1149
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1150
		iommu_flush_irt_all(iommu);
1151
		iommu_flush_tlb_all(iommu);
1152 1153 1154
	}
}

1155
/*
1156
 * Command send function for flushing on-device TLB
1157
 */
1158 1159
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1160 1161
{
	struct amd_iommu *iommu;
1162
	struct iommu_cmd cmd;
1163
	int qdep;
1164

1165 1166
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1167

1168
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1169 1170

	return iommu_queue_command(iommu, &cmd);
1171 1172
}

1173 1174 1175
/*
 * Command send function for invalidating a device table entry
 */
1176
static int device_flush_dte(struct iommu_dev_data *dev_data)
1177
{
1178
	struct amd_iommu *iommu;
1179
	u16 alias;
1180
	int ret;
1181

1182
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1183
	alias = dev_data->alias;
1184

1185
	ret = iommu_flush_dte(iommu, dev_data->devid);
1186 1187
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1188 1189 1190
	if (ret)
		return ret;

1191
	if (dev_data->ats.enabled)
1192
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1193 1194

	return ret;
1195 1196
}

1197 1198 1199 1200 1201
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1202 1203
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1204
{
1205
	struct iommu_dev_data *dev_data;
1206 1207
	struct iommu_cmd cmd;
	int ret = 0, i;
1208

1209
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1210

1211 1212 1213 1214 1215 1216 1217 1218
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1219
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1220 1221
	}

1222 1223
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1224
		if (!dev_data->ats.enabled)
1225 1226
			continue;

1227
		ret |= device_flush_iotlb(dev_data, address, size);
1228 1229
	}

1230
	WARN_ON(ret);
1231 1232
}

1233 1234
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1235
{
1236
	__domain_flush_pages(domain, address, size, 0);
1237
}
1238

1239
/* Flush the whole IO/TLB for a given protection domain */
1240
static void domain_flush_tlb(struct protection_domain *domain)
1241
{
1242
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1243 1244
}

1245
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1246
static void domain_flush_tlb_pde(struct protection_domain *domain)
1247
{
1248
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1249 1250
}

1251
static void domain_flush_complete(struct protection_domain *domain)
1252
{
1253
	int i;
1254

1255
	for (i = 0; i < amd_iommus_present; ++i) {
1256
		if (domain && !domain->dev_iommu[i])
1257
			continue;
1258

1259 1260 1261 1262 1263
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1264
	}
1265 1266
}

1267

1268
/*
1269
 * This function flushes the DTEs for all devices in domain
1270
 */
1271
static void domain_flush_devices(struct protection_domain *domain)
1272
{
1273
	struct iommu_dev_data *dev_data;
1274

1275
	list_for_each_entry(dev_data, &domain->dev_list, list)
1276
		device_flush_dte(dev_data);
1277 1278
}

1279 1280 1281 1282 1283 1284 1285
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1315
		      unsigned long page_size,
1316 1317 1318
		      u64 **pte_page,
		      gfp_t gfp)
{
1319
	int level, end_lvl;
1320
	u64 *pte, *page;
1321 1322

	BUG_ON(!is_power_of_2(page_size));
1323 1324 1325 1326

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1327 1328 1329 1330
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1331 1332

	while (level > end_lvl) {
1333 1334 1335 1336 1337
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1338 1339 1340
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1341 1342 1343 1344 1345 1346 1347

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1348 1349
		}

1350 1351 1352 1353
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1371 1372 1373
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1374 1375 1376 1377
{
	int level;
	u64 *pte;

1378 1379 1380
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1381 1382 1383
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1384

1385 1386 1387
	while (level > 0) {

		/* Not Present */
1388 1389 1390
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1391
		/* Large PTE */
1392 1393 1394
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1395 1396 1397 1398 1399

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1400 1401
		level -= 1;

1402
		/* Walk to the next level */
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1418 1419 1420 1421 1422
	}

	return pte;
}

1423 1424 1425 1426 1427 1428 1429
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1430 1431 1432
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1433
			  unsigned long page_size,
1434
			  int prot,
1435
			  gfp_t gfp)
1436
{
1437
	u64 __pte, *pte;
1438
	int i, count;
1439

1440 1441 1442
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1443
	if (!(prot & IOMMU_PROT_MASK))
1444 1445
		return -EINVAL;

1446
	count = PAGE_SIZE_PTE_COUNT(page_size);
1447
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1448

1449 1450 1451
	if (!pte)
		return -ENOMEM;

1452 1453 1454
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1455

1456
	if (count > 1) {
1457 1458 1459 1460
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1461 1462 1463 1464 1465 1466

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1467 1468
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1469

1470 1471
	update_domain(dom);

1472 1473 1474
	return 0;
}

1475 1476 1477
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1478
{
1479 1480
	unsigned long long unmapped;
	unsigned long unmap_size;
1481 1482 1483 1484 1485
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1486

1487 1488
	while (unmapped < page_size) {

1489 1490 1491 1492 1493 1494
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1495 1496 1497 1498 1499 1500 1501 1502
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1503
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1504

1505
	return unmapped;
1506 1507
}

1508 1509 1510
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1511
 * interface functions.
1512 1513
 *
 ****************************************************************************/
1514

1515

1516 1517 1518
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1519
{
1520
	unsigned long pfn = 0;
1521

1522
	pages = __roundup_pow_of_two(pages);
1523

1524 1525 1526
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1527

1528 1529
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1530

1531
	return (pfn << PAGE_SHIFT);
1532 1533
}

1534 1535 1536
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1537
{
1538 1539
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1540

1541
	free_iova_fast(&dma_dom->iovad, address, pages);
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1616
		/* PTE present? */				\
1617 1618 1619
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1620 1621 1622 1623 1624
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1637
static void free_pagetable(struct protection_domain *domain)
1638
{
1639
	unsigned long root = (unsigned long)domain->pt_root;
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1664 1665 1666
	}
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1697 1698
static void free_gcr3_table(struct protection_domain *domain)
{
1699 1700 1701 1702
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1703 1704
	else
		BUG_ON(domain->glx != 0);
1705

1706 1707 1708
	free_page((unsigned long)domain->gcr3_tbl);
}

1709 1710 1711 1712
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1713 1714 1715 1716 1717
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1718 1719
	del_domain_from_list(&dom->domain);

1720
	put_iova_domain(&dom->iovad);
1721

1722
	free_pagetable(&dom->domain);
1723 1724 1725 1726

	kfree(dom);
}

1727 1728
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1729
 * It also initializes the page table and the address allocator data
1730 1731
 * structures required for the dma_ops interface
 */
1732
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1733 1734 1735 1736 1737 1738 1739
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1740
	if (protection_domain_init(&dma_dom->domain))
1741
		goto free_dma_dom;
1742

1743
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1744
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1745
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1746 1747 1748
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1749 1750 1751
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1752 1753 1754
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1755 1756
	add_domain_to_list(&dma_dom->domain);

1757 1758 1759 1760 1761 1762 1763 1764
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1765 1766 1767 1768 1769 1770 1771 1772 1773
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1774
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1775
{
1776
	u64 pte_root = 0;
1777
	u64 flags = 0;
1778

1779 1780 1781
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1782 1783 1784
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1785

1786 1787
	flags = amd_iommu_dev_table[devid].data[1];

1788 1789 1790
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1817 1818 1819 1820 1821
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1822 1823 1824 1825 1826
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1827 1828
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1829 1830

	amd_iommu_apply_erratum_63(devid);
1831 1832
}

1833 1834
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1835 1836
{
	struct amd_iommu *iommu;
1837
	u16 alias;
1838
	bool ats;
1839

1840
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1841
	alias = dev_data->alias;
1842
	ats   = dev_data->ats.enabled;
1843 1844 1845 1846 1847 1848 1849 1850 1851

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1852 1853 1854
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1855
		set_dte_entry(alias, domain, ats);
1856

1857
	device_flush_dte(dev_data);
1858 1859
}

1860
static void do_detach(struct iommu_dev_data *dev_data)
1861 1862
{
	struct amd_iommu *iommu;
1863
	u16 alias;
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1874
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1875
	alias = dev_data->alias;
1876 1877

	/* decrease reference counters */
1878 1879 1880 1881 1882 1883
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1884
	clear_dte_entry(dev_data->devid);
1885 1886
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1887

1888
	/* Flush the DTE entry */
1889
	device_flush_dte(dev_data);
1890 1891 1892 1893 1894 1895
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1896
static int __attach_device(struct iommu_dev_data *dev_data,
1897
			   struct protection_domain *domain)
1898
{
1899
	int ret;
1900

1901 1902 1903 1904 1905 1906
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1907 1908 1909
	/* lock domain */
	spin_lock(&domain->lock);

1910
	ret = -EBUSY;
1911
	if (dev_data->domain != NULL)
1912
		goto out_unlock;
1913

1914
	/* Attach alias group root */
1915
	do_attach(dev_data, domain);
1916

1917 1918 1919 1920
	ret = 0;

out_unlock:

1921 1922
	/* ready */
	spin_unlock(&domain->lock);
1923

1924
	return ret;
1925
}
1926

1927 1928 1929 1930 1931 1932 1933 1934

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1935 1936 1937 1938 1939 1940
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1941
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1942 1943 1944
	if (!pos)
		return -EINVAL;

1945 1946 1947
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1948 1949 1950 1951

	return 0;
}

1952 1953
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1954 1955 1956 1957 1958 1959 1960 1961
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1973 1974
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
1975 1976 1977
	if (ret)
		goto out_err;

1978 1979 1980 1981 1982 1983
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

1997
/* FIXME: Move this to PCI code */
1998
#define PCI_PRI_TLP_OFF		(1 << 15)
1999

J
Joerg Roedel 已提交
2000
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2001
{
2002
	u16 status;
2003 2004
	int pos;

2005
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2006 2007 2008
	if (!pos)
		return false;

2009
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2010

2011
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2012 2013
}

2014
/*
F
Frank Arnold 已提交
2015
 * If a device is not yet associated with a domain, this function
2016 2017
 * assigns it visible for the hardware
 */
2018 2019
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2020
{
2021
	struct pci_dev *pdev;
2022
	struct iommu_dev_data *dev_data;
2023
	unsigned long flags;
2024
	int ret;
2025

2026 2027
	dev_data = get_dev_data(dev);

2028 2029 2030 2031
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2032
	if (domain->flags & PD_IOMMUV2_MASK) {
2033
		if (!dev_data->passthrough)
2034 2035
			return -EINVAL;

2036 2037 2038
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2039

2040 2041 2042 2043
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2044 2045
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2046 2047 2048
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2049

2050
skip_ats_check:
2051
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2052
	ret = __attach_device(dev_data, domain);
2053 2054
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2055 2056 2057 2058 2059
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2060
	domain_flush_tlb_pde(domain);
2061 2062

	return ret;
2063 2064
}

2065 2066 2067
/*
 * Removes a device from a protection domain (unlocked)
 */
2068
static void __detach_device(struct iommu_dev_data *dev_data)
2069
{
2070
	struct protection_domain *domain;
2071

2072 2073 2074 2075 2076
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2077

2078 2079
	if (WARN_ON(!dev_data->domain))
		return;
2080

2081
	domain = dev_data->domain;
2082

2083
	spin_lock(&domain->lock);
2084

2085
	do_detach(dev_data);
2086

2087
	spin_unlock(&domain->lock);
2088 2089 2090 2091 2092
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2093
static void detach_device(struct device *dev)
2094
{
2095
	struct protection_domain *domain;
2096
	struct iommu_dev_data *dev_data;
2097 2098
	unsigned long flags;

2099
	dev_data = get_dev_data(dev);
2100
	domain   = dev_data->domain;
2101

2102 2103
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2104
	__detach_device(dev_data);
2105
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2106

2107 2108 2109
	if (!dev_is_pci(dev))
		return;

2110
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2111 2112
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2113
		pci_disable_ats(to_pci_dev(dev));
2114 2115

	dev_data->ats.enabled = false;
2116
}
2117

2118
static int amd_iommu_add_device(struct device *dev)
2119
{
2120
	struct iommu_dev_data *dev_data;
2121
	struct iommu_domain *domain;
2122
	struct amd_iommu *iommu;
2123
	int ret, devid;
2124

2125
	if (!check_device(dev) || get_dev_data(dev))
2126
		return 0;
2127

2128
	devid = get_device_id(dev);
2129
	if (devid < 0)
2130 2131
		return devid;

2132
	iommu = amd_iommu_rlookup_table[devid];
2133

2134
	ret = iommu_init_device(dev);
2135 2136 2137 2138
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2139

2140
		iommu_ignore_device(dev);
2141
		dev->archdata.dma_ops = &nommu_dma_ops;
2142 2143 2144
		goto out;
	}
	init_iommu_group(dev);
2145

2146
	dev_data = get_dev_data(dev);
2147

2148
	BUG_ON(!dev_data);
2149

2150
	if (iommu_pass_through || dev_data->iommu_v2)
2151
		iommu_request_dm_for_dev(dev);
2152

2153 2154
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2155
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2156
		dev_data->passthrough = true;
2157
	else
2158
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2159

2160
out:
2161 2162 2163 2164 2165
	iommu_completion_wait(iommu);

	return 0;
}

2166
static void amd_iommu_remove_device(struct device *dev)
2167
{
2168
	struct amd_iommu *iommu;
2169
	int devid;
2170 2171 2172 2173 2174

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2175
	if (devid < 0)
2176 2177
		return;

2178 2179 2180 2181
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2192 2193 2194 2195 2196 2197
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2229
static void queue_flush_all(void)
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2245 2246 2247 2248 2249 2250
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2276 2277 2278 2279

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2280 2281 2282 2283
	put_cpu_ptr(&flush_queue);
}


2284 2285 2286 2287 2288 2289 2290
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2291
static struct protection_domain *get_domain(struct device *dev)
2292
{
2293
	struct protection_domain *domain;
2294

2295
	if (!check_device(dev))
2296
		return ERR_PTR(-EINVAL);
2297

2298
	domain = get_dev_data(dev)->domain;
2299
	if (!dma_ops_domain(domain))
2300
		return ERR_PTR(-EBUSY);
2301

2302
	return domain;
2303 2304
}

2305 2306
static void update_device_table(struct protection_domain *domain)
{
2307
	struct iommu_dev_data *dev_data;
2308

2309
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2310
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2311 2312 2313 2314 2315 2316 2317

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2318 2319 2320 2321 2322 2323 2324 2325
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2326 2327 2328

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2329 2330 2331 2332

	domain->updated = false;
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2344 2345
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2346 2347
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2348 2349
 * Must be called with the domain lock held.
 */
2350 2351 2352 2353
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2354
			       enum dma_data_direction direction,
2355
			       u64 dma_mask)
2356 2357
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2358
	dma_addr_t address, start, ret;
2359
	unsigned int pages;
2360
	int prot = 0;
2361 2362
	int i;

2363
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2364 2365
	paddr &= PAGE_MASK;

2366
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2367 2368
	if (address == DMA_ERROR_CODE)
		goto out;
2369

2370
	prot = dir2prot(direction);
2371

2372 2373
	start = address;
	for (i = 0; i < pages; ++i) {
2374 2375 2376
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2377 2378
			goto out_unmap;

2379 2380 2381 2382 2383
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2384
	if (unlikely(amd_iommu_np_cache)) {
2385
		domain_flush_pages(&dma_dom->domain, address, size);
2386 2387
		domain_flush_complete(&dma_dom->domain);
	}
2388

2389 2390
out:
	return address;
2391 2392 2393 2394 2395

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2396
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2397 2398
	}

2399 2400 2401 2402
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2403

2404
	return DMA_ERROR_CODE;
2405 2406
}

2407 2408 2409 2410
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2411
static void __unmap_single(struct dma_ops_domain *dma_dom,
2412 2413 2414 2415
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2416
	dma_addr_t flush_addr;
2417 2418 2419
	dma_addr_t i, start;
	unsigned int pages;

2420
	flush_addr = dma_addr;
2421
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2422 2423 2424 2425
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2426
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2427 2428 2429
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2430 2431 2432 2433 2434 2435 2436
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2437 2438
}

2439 2440 2441
/*
 * The exported map_single function for dma_ops.
 */
2442 2443 2444
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2445
			   unsigned long attrs)
2446
{
2447
	phys_addr_t paddr = page_to_phys(page) + offset;
2448
	struct protection_domain *domain;
2449
	struct dma_ops_domain *dma_dom;
2450
	u64 dma_mask;
2451

2452 2453
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2454
		return (dma_addr_t)paddr;
2455 2456
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2457

2458
	dma_mask = *dev->dma_mask;
2459
	dma_dom = to_dma_ops_domain(domain);
2460

2461
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2462 2463
}

2464 2465 2466
/*
 * The exported unmap_single function for dma_ops.
 */
2467
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2468
		       enum dma_data_direction dir, unsigned long attrs)
2469 2470
{
	struct protection_domain *domain;
2471
	struct dma_ops_domain *dma_dom;
2472

2473 2474
	domain = get_domain(dev);
	if (IS_ERR(domain))
2475 2476
		return;

2477 2478 2479
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2480 2481
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2508 2509 2510 2511
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2512
static int map_sg(struct device *dev, struct scatterlist *sglist,
2513
		  int nelems, enum dma_data_direction direction,
2514
		  unsigned long attrs)
2515
{
2516
	int mapped_pages = 0, npages = 0, prot = 0, i;
2517
	struct protection_domain *domain;
2518
	struct dma_ops_domain *dma_dom;
2519
	struct scatterlist *s;
2520
	unsigned long address;
2521
	u64 dma_mask;
2522

2523
	domain = get_domain(dev);
2524
	if (IS_ERR(domain))
2525
		return 0;
2526

2527
	dma_dom  = to_dma_ops_domain(domain);
2528
	dma_mask = *dev->dma_mask;
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2539
	for_each_sg(sglist, s, nelems, i) {
2540 2541 2542 2543 2544
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2545

2546 2547 2548 2549 2550
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2551

2552 2553
			mapped_pages += 1;
		}
2554 2555
	}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2573

2574 2575 2576 2577 2578 2579
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2580 2581
	}

2582 2583 2584 2585
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2586
	return 0;
2587 2588
}

2589 2590 2591 2592
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2593
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2594
		     int nelems, enum dma_data_direction dir,
2595
		     unsigned long attrs)
2596 2597
{
	struct protection_domain *domain;
2598
	struct dma_ops_domain *dma_dom;
2599 2600
	unsigned long startaddr;
	int npages = 2;
2601

2602 2603
	domain = get_domain(dev);
	if (IS_ERR(domain))
2604 2605
		return;

2606
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2607
	dma_dom   = to_dma_ops_domain(domain);
2608 2609
	npages    = sg_num_pages(dev, sglist, nelems);

2610
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2611 2612
}

2613 2614 2615
/*
 * The exported alloc_coherent function for dma_ops.
 */
2616
static void *alloc_coherent(struct device *dev, size_t size,
2617
			    dma_addr_t *dma_addr, gfp_t flag,
2618
			    unsigned long attrs)
2619
{
2620
	u64 dma_mask = dev->coherent_dma_mask;
2621
	struct protection_domain *domain;
2622
	struct dma_ops_domain *dma_dom;
2623
	struct page *page;
2624

2625 2626
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2627 2628 2629
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2630 2631
	} else if (IS_ERR(domain))
		return NULL;
2632

2633
	dma_dom   = to_dma_ops_domain(domain);
2634
	size	  = PAGE_ALIGN(size);
2635 2636
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2637
	flag     |= __GFP_ZERO;
2638

2639 2640
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2641
		if (!gfpflags_allow_blocking(flag))
2642
			return NULL;
2643

2644 2645 2646 2647 2648
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2649

2650 2651 2652
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2653
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2654
				 size, DMA_BIDIRECTIONAL, dma_mask);
2655

2656
	if (*dma_addr == DMA_ERROR_CODE)
2657
		goto out_free;
2658

2659
	return page_address(page);
2660 2661 2662

out_free:

2663 2664
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2665 2666

	return NULL;
2667 2668
}

2669 2670 2671
/*
 * The exported free_coherent function for dma_ops.
 */
2672
static void free_coherent(struct device *dev, size_t size,
2673
			  void *virt_addr, dma_addr_t dma_addr,
2674
			  unsigned long attrs)
2675 2676
{
	struct protection_domain *domain;
2677
	struct dma_ops_domain *dma_dom;
2678
	struct page *page;
2679

2680 2681 2682
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2683 2684
	domain = get_domain(dev);
	if (IS_ERR(domain))
2685 2686
		goto free_mem;

2687 2688 2689
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2690 2691

free_mem:
2692 2693
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2694 2695
}

2696 2697 2698 2699 2700 2701
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2702
	return check_device(dev);
2703 2704
}

2705
static struct dma_map_ops amd_iommu_dma_ops = {
2706 2707 2708 2709 2710 2711 2712
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2713 2714
};

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2768
int __init amd_iommu_init_api(void)
2769
{
2770
	int ret, cpu, err = 0;
2771 2772 2773 2774

	ret = iova_cache_get();
	if (ret)
		return ret;
2775

2776 2777 2778 2779
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2792 2793 2794 2795 2796 2797 2798 2799
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2800 2801 2802
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2803
	return 0;
2804 2805 2806 2807 2808 2809 2810 2811 2812

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2813 2814
}

2815 2816
int __init amd_iommu_init_dma_ops(void)
{
2817 2818 2819
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2820
	swiotlb        = iommu_pass_through ? 1 : 0;
2821 2822
	iommu_detected = 1;

2823 2824 2825 2826 2827 2828 2829 2830 2831
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2832 2833 2834 2835 2836
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2837
	return 0;
2838

2839
}
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2853
	struct iommu_dev_data *entry;
2854 2855 2856 2857
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2858 2859 2860 2861
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2862
	}
2863 2864 2865 2866

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2867 2868 2869 2870 2871
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2872 2873
	del_domain_from_list(domain);

2874 2875 2876 2877 2878 2879
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2892
static struct protection_domain *protection_domain_alloc(void)
2893 2894 2895 2896 2897
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2898
		return NULL;
2899

2900
	if (protection_domain_init(domain))
2901 2902
		goto out_err;

2903 2904
	add_domain_to_list(domain);

2905 2906 2907 2908 2909 2910 2911 2912
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2913
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2914
{
2915
	struct protection_domain *pdomain;
2916
	struct dma_ops_domain *dma_domain;
2917

2918 2919 2920 2921 2922
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2923

2924 2925 2926 2927 2928 2929
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2930

2931 2932 2933
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2944 2945 2946 2947
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2948

2949 2950
		pdomain->mode = PAGE_MODE_NONE;
		break;
2951 2952 2953
	default:
		return NULL;
	}
2954

2955
	return &pdomain->domain;
2956 2957
}

2958
static void amd_iommu_domain_free(struct iommu_domain *dom)
2959
{
2960
	struct protection_domain *domain;
2961
	struct dma_ops_domain *dma_dom;
2962

2963 2964
	domain = to_pdomain(dom);

2965 2966 2967 2968 2969
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2970 2971
	if (!dom)
		return;
2972

2973 2974
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2975 2976 2977 2978 2979 2980 2981
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
2982
		dma_dom = to_dma_ops_domain(domain);
2983 2984 2985 2986 2987
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2988

2989 2990 2991 2992 2993 2994
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2995 2996
}

2997 2998 2999
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3000
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3001
	struct amd_iommu *iommu;
3002
	int devid;
3003

3004
	if (!check_device(dev))
3005 3006
		return;

3007
	devid = get_device_id(dev);
3008
	if (devid < 0)
3009
		return;
3010

3011
	if (dev_data->domain != NULL)
3012
		detach_device(dev);
3013 3014 3015 3016 3017 3018 3019 3020

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3021 3022 3023
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3024
	struct protection_domain *domain = to_pdomain(dom);
3025
	struct iommu_dev_data *dev_data;
3026
	struct amd_iommu *iommu;
3027
	int ret;
3028

3029
	if (!check_device(dev))
3030 3031
		return -EINVAL;

3032 3033
	dev_data = dev->archdata.iommu;

3034
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3035 3036 3037
	if (!iommu)
		return -EINVAL;

3038
	if (dev_data->domain)
3039
		detach_device(dev);
3040

3041
	ret = attach_device(dev, domain);
3042 3043 3044

	iommu_completion_wait(iommu);

3045
	return ret;
3046 3047
}

3048
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3049
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3050
{
3051
	struct protection_domain *domain = to_pdomain(dom);
3052 3053 3054
	int prot = 0;
	int ret;

3055 3056 3057
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3058 3059 3060 3061 3062
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3063
	mutex_lock(&domain->api_lock);
3064
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3065 3066
	mutex_unlock(&domain->api_lock);

3067
	return ret;
3068 3069
}

3070 3071
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3072
{
3073
	struct protection_domain *domain = to_pdomain(dom);
3074
	size_t unmap_size;
3075

3076 3077 3078
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3079
	mutex_lock(&domain->api_lock);
3080
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3081
	mutex_unlock(&domain->api_lock);
3082

3083
	domain_flush_tlb_pde(domain);
3084

3085
	return unmap_size;
3086 3087
}

3088
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3089
					  dma_addr_t iova)
3090
{
3091
	struct protection_domain *domain = to_pdomain(dom);
3092
	unsigned long offset_mask, pte_pgsize;
3093
	u64 *pte, __pte;
3094

3095 3096 3097
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3098
	pte = fetch_pte(domain, iova, &pte_pgsize);
3099

3100
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3101 3102
		return 0;

3103 3104
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3105

3106
	return (__pte & ~offset_mask) | (iova & offset_mask);
3107 3108
}

3109
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3110
{
3111 3112
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3113
		return true;
3114
	case IOMMU_CAP_INTR_REMAP:
3115
		return (irq_remapping_enabled == 1);
3116 3117
	case IOMMU_CAP_NOEXEC:
		return false;
3118 3119
	}

3120
	return false;
S
Sheng Yang 已提交
3121 3122
}

3123 3124 3125 3126
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3127
	int devid;
3128 3129

	devid = get_device_id(dev);
3130
	if (devid < 0)
3131
		return;
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3166 3167 3168 3169
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
3170
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3171 3172 3173 3174 3175 3176 3177 3178
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3179
static const struct iommu_ops amd_iommu_ops = {
3180
	.capable = amd_iommu_capable,
3181 3182
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3183 3184
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3185 3186
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3187
	.map_sg = default_iommu_map_sg,
3188
	.iova_to_phys = amd_iommu_iova_to_phys,
3189 3190
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3191
	.device_group = amd_iommu_device_group,
3192 3193
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3194
	.apply_dm_region = amd_iommu_apply_dm_region,
3195
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3196 3197
};

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3220 3221 3222

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3223
	struct protection_domain *domain = to_pdomain(dom);
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3241 3242 3243

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3244
	struct protection_domain *domain = to_pdomain(dom);
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3322 3323 3324 3325 3326 3327
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3359
	struct protection_domain *domain = to_pdomain(dom);
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3379
	struct protection_domain *domain = to_pdomain(dom);
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3459
	struct protection_domain *domain = to_pdomain(dom);
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3473
	struct protection_domain *domain = to_pdomain(dom);
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3501 3502 3503

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3504
	struct protection_domain *pdomain;
3505

3506 3507
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3508 3509 3510
		return NULL;

	/* Only return IOMMUv2 domains */
3511
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3512 3513
		return NULL;

3514
	return &pdomain->domain;
3515 3516
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3572 3573 3574 3575 3576 3577 3578 3579 3580

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3581 3582
static struct irq_chip amd_ir_chip;

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3633 3634 3635
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3636 3637 3638 3639 3640 3641 3642
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3643
		table = NULL;
3644 3645 3646
		goto out;
	}

3647 3648 3649 3650 3651 3652
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3653 3654 3655 3656 3657

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3658
			iommu->irte_ops->set_allocated(table, i);
3659 3660 3661 3662 3663 3664 3665
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3666
		set_dte_irq_entry(alias, table);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3679
static int alloc_irq_index(u16 devid, int count)
3680 3681 3682 3683
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3684 3685 3686 3687
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3699
		if (!iommu->irte_ops->is_allocated(table, index))
3700 3701 3702 3703 3704 3705
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3706
				iommu->irte_ops->set_allocated(table, index - c + 1);
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3721
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte)
3722 3723 3724 3725
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3726
	struct irte_ga *entry;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte->val;
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3792
	iommu->irte_ops->clear_allocated(table, index);
3793 3794 3795 3796 3797 3798
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
			 u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
			    u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.guest_mode  = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
	modify_irte_ga(devid, index, irte);
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
	modify_irte_ga(devid, index, irte);
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->hi.fields.vector = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.guest_mode = 0;
	modify_irte_ga(devid, index, irte);
}

3882
#define IRTE_ALLOCATED (~1U)
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3928
static int get_devid(struct irq_alloc_info *info)
3929
{
3930
	int devid = -1;
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3947

3948 3949
	return devid;
}
3950

3951 3952 3953 3954
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3955

3956 3957
	if (!info)
		return NULL;
3958

3959 3960 3961 3962 3963 3964
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3965

3966
	return NULL;
3967 3968
}

3969
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3970
{
3971 3972
	struct amd_iommu *iommu;
	int devid;
3973

3974 3975
	if (!info)
		return NULL;
3976

3977 3978 3979 3980
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3981
		if (devid < 0)
3982 3983
			return NULL;

3984 3985 3986
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3987 3988 3989 3990
		break;
	default:
		break;
	}
3991

3992 3993
	return NULL;
}
3994

3995 3996 3997 3998 3999 4000
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4001 4002 4003
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4004

4005 4006 4007 4008 4009 4010 4011 4012
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4013 4014 4015 4016
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4017

4018 4019
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4020 4021 4022
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
				 irq_cfg->dest_apicid);
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4038

4039 4040 4041 4042 4043 4044 4045
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4046

4047 4048 4049 4050
	default:
		BUG_ON(1);
		break;
	}
4051 4052
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4073 4074
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4075
{
4076 4077
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4078
	struct amd_ir_data *data = NULL;
4079
	struct irq_cfg *cfg;
4080 4081
	int i, ret, devid;
	int index = -1;
4082

4083 4084 4085 4086
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4087 4088
		return -EINVAL;

4089 4090 4091 4092 4093 4094
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4095

4096 4097 4098
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4099

4100 4101 4102
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4103

4104 4105 4106 4107 4108 4109
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4110
		index = alloc_irq_index(devid, nr_irqs);
4111 4112 4113 4114 4115
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
4116

4117 4118 4119 4120 4121 4122 4123
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4124

4125 4126 4127 4128 4129
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4140 4141 4142 4143 4144 4145
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4146

4147
	return 0;
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4160 4161
}

4162 4163
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4164
{
4165 4166 4167 4168
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4169

4170 4171 4172 4173 4174 4175
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4176
			kfree(data->entry);
4177 4178 4179 4180 4181
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4182

4183 4184 4185 4186 4187
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4188
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4189

4190 4191 4192
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4193 4194
}

4195 4196
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4197
{
4198 4199
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4200
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4201

4202 4203 4204
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4205
}
4206

4207 4208 4209 4210 4211
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4212
};
4213

4214 4215 4216 4217 4218 4219 4220
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4221
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4222
	int ret;
4223

4224 4225 4226
	if (!iommu)
		return -ENODEV;

4227 4228 4229
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4230

4231 4232 4233 4234
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4235 4236
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4237

4238 4239 4240 4241 4242
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4243
	send_cleanup_vector(cfg);
4244 4245

	return IRQ_SET_MASK_OK_DONE;
4246 4247
}

4248
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4249
{
4250
	struct amd_ir_data *ir_data = irq_data->chip_data;
4251

4252 4253
	*msg = ir_data->msi_entry;
}
4254

4255 4256 4257 4258 4259
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4260

4261 4262 4263 4264 4265
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4266

4267 4268
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4269 4270 4271

	return 0;
}
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4311
#endif