amd_iommu.c 97.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49
#include "pci.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84 85
static struct iommu_ops amd_iommu_ops;

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93
/*
 * general struct to manage commands send to an IOMMU
 */
94
struct iommu_cmd {
95 96 97
	u32 data[4];
};

98 99
struct kmem_cache *amd_iommu_irq_cache;

100
static void update_domain(struct protection_domain *domain);
101
static int __init alloc_passthrough_domain(void);
102

103 104 105 106 107 108
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

109
static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 111 112 113 114 115 116 117
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

118
	dev_data->devid = devid;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

136 137 138
	if (dev_data->group)
		iommu_group_put(dev_data->group);

139 140 141
	kfree(dev_data);
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

173 174 175 176
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

177
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
178 179
}

180 181 182 183 184
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

185 186 187 188
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
189 190
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
191 192 193 194 195 196 197 198 199 200 201 202
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

203 204 205 206 207 208 209 210 211
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

240 241 242 243 244 245 246 247 248 249 250 251
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
252
	if (dev->bus != &pci_bus_type)
253 254 255 256 257 258 259 260 261 262 263 264 265 266
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

267 268 269 270 271 272 273 274 275 276 277 278
static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
{
	while (!bus->self) {
		if (!pci_is_root_bus(bus))
			bus = bus->parent;
		else
			return ERR_PTR(-ENODEV);
	}

	return bus;
}

279 280
#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

281
static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
282
{
283
	struct pci_dev *dma_pdev = pdev;
284

285
	/* Account for quirked devices */
286 287
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

288 289 290 291
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
292 293 294 295 296 297 298
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

299 300 301 302 303
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
304
	while (!pci_is_root_bus(dma_pdev->bus)) {
305 306 307
		struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
		if (IS_ERR(bus))
			break;
308 309

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
310 311
			break;

312
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
313 314
	}

315 316 317
	return dma_pdev;
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
{
	struct iommu_group *group = iommu_group_get(&pdev->dev);
	int ret;

	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		WARN_ON(&pdev->dev != dev);
	}

	ret = iommu_group_add_device(group, dev);
	iommu_group_put(group);
	return ret;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349
static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
				    struct device *dev)
{
	if (!dev_data->group) {
		struct iommu_group *group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);

		dev_data->group = group;
	}

	return iommu_group_add_device(dev_data->group, dev);
}

350 351 352 353
static int init_iommu_group(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct iommu_group *group;
354
	struct pci_dev *dma_pdev;
355 356 357 358 359 360 361 362 363 364 365 366 367 368
	int ret;

	group = iommu_group_get(dev);
	if (group) {
		iommu_group_put(group);
		return 0;
	}

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	if (dev_data->alias_data) {
		u16 alias;
369 370 371 372
		struct pci_bus *bus;

		if (dev_data->alias_data->group)
			goto use_group;
373

374 375 376 377
		/*
		 * If the alias device exists, it's effectively just a first
		 * level quirk for finding the DMA source.
		 */
378 379
		alias = amd_iommu_alias_table[dev_data->devid];
		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
380 381 382 383
		if (dma_pdev) {
			dma_pdev = get_isolation_root(dma_pdev);
			goto use_pdev;
		}
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		/*
		 * If the alias is virtual, try to find a parent device
		 * and test whether the IOMMU group is actualy rooted above
		 * the alias.  Be careful to also test the parent device if
		 * we think the alias is the root of the group.
		 */
		bus = pci_find_bus(0, alias >> 8);
		if (!bus)
			goto use_group;

		bus = find_hosted_bus(bus);
		if (IS_ERR(bus) || !bus->self)
			goto use_group;

		dma_pdev = get_isolation_root(pci_dev_get(bus->self));
		if (dma_pdev != bus->self || (dma_pdev->multifunction &&
		    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
			goto use_pdev;

		pci_dev_put(dma_pdev);
		goto use_group;
	}
407

408 409
	dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
use_pdev:
410
	ret = use_pdev_iommu_group(dma_pdev, dev);
411
	pci_dev_put(dma_pdev);
412
	return ret;
413 414
use_group:
	return use_dev_data_iommu_group(dev_data->alias_data, dev);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;
	int ret;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

	alias = amd_iommu_alias_table[dev_data->devid];
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;
	}

	ret = init_iommu_group(dev);
446 447 448
	if (ret)
		return ret;

449 450 451 452 453 454 455
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

456 457 458 459 460
	dev->archdata.iommu = dev_data;

	return 0;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

475 476
static void iommu_uninit_device(struct device *dev)
{
477 478
	iommu_group_remove_device(dev);

479 480 481 482 483
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
484
}
J
Joerg Roedel 已提交
485 486 487

void __init amd_iommu_uninit_devices(void)
{
488
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
489 490 491 492 493 494 495 496 497
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
498 499 500 501

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
515 516 517
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
518 519 520 521 522 523 524 525 526 527 528
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
529 530 531 532 533 534
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

535
DECLARE_STATS_COUNTER(compl_wait);
536
DECLARE_STATS_COUNTER(cnt_map_single);
537
DECLARE_STATS_COUNTER(cnt_unmap_single);
538
DECLARE_STATS_COUNTER(cnt_map_sg);
539
DECLARE_STATS_COUNTER(cnt_unmap_sg);
540
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
541
DECLARE_STATS_COUNTER(cnt_free_coherent);
542
DECLARE_STATS_COUNTER(cross_page);
543
DECLARE_STATS_COUNTER(domain_flush_single);
544
DECLARE_STATS_COUNTER(domain_flush_all);
545
DECLARE_STATS_COUNTER(alloced_io_mem);
546
DECLARE_STATS_COUNTER(total_map_requests);
547 548 549 550 551
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
571
					 &amd_iommu_unmap_flush);
572 573

	amd_iommu_stats_add(&compl_wait);
574
	amd_iommu_stats_add(&cnt_map_single);
575
	amd_iommu_stats_add(&cnt_unmap_single);
576
	amd_iommu_stats_add(&cnt_map_sg);
577
	amd_iommu_stats_add(&cnt_unmap_sg);
578
	amd_iommu_stats_add(&cnt_alloc_coherent);
579
	amd_iommu_stats_add(&cnt_free_coherent);
580
	amd_iommu_stats_add(&cross_page);
581
	amd_iommu_stats_add(&domain_flush_single);
582
	amd_iommu_stats_add(&domain_flush_all);
583
	amd_iommu_stats_add(&alloced_io_mem);
584
	amd_iommu_stats_add(&total_map_requests);
585 586 587 588
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
589 590 591 592
}

#endif

593 594 595 596 597 598
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

599 600 601 602
static void dump_dte_entry(u16 devid)
{
	int i;

603 604
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
605 606 607
			amd_iommu_dev_table[devid].data[i]);
}

608 609 610 611 612 613 614 615 616
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

617
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
618
{
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
640

641
	printk(KERN_ERR "AMD-Vi: Event logged [");
642 643 644 645 646

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
647
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648
		       address, flags);
649
		dump_dte_entry(devid);
650 651 652 653
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
654
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
655 656 657 658 659
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
660
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
661 662 663 664 665
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
666
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
667 668 669 670
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
671
		dump_command(address);
672 673 674 675 676 677 678 679
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
680
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
681 682 683 684 685
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
686
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
687 688 689 690 691
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
692 693

	memset(__evt, 0, 4 * sizeof(u32));
694 695 696 697 698 699 700 701 702 703
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
704
		iommu_print_event(iommu, iommu->evt_buf + head);
705 706 707 708 709 710
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

711
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
712 713 714
{
	struct amd_iommu_fault fault;

715 716
	INC_STATS_COUNTER(pri_requests);

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
758

759 760 761
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
762

763 764 765 766 767 768 769
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
770 771
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
772 773 774 775 776 777

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
778 779 780 781
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

782
irqreturn_t amd_iommu_int_thread(int irq, void *data)
783
{
784 785
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
786

787 788 789 790
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
791

792 793 794 795
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
796

797 798 799 800
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
801

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
817
	return IRQ_HANDLED;
818 819
}

820 821 822 823 824
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

825 826 827 828 829 830
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
851 852 853
{
	u8 *target;

854
	target = iommu->cmd_buf + tail;
855 856 857 858 859 860
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
861
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
862
}
863

864
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
865
{
866 867
	WARN_ON(address & 0x7ULL);

868
	memset(cmd, 0, sizeof(*cmd));
869 870 871
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
872 873 874
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

875 876 877 878 879 880 881
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
909
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
910 911 912
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

998 999 1000 1001
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1002 1003
}

1004 1005 1006 1007 1008 1009 1010
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1011 1012
/*
 * Writes the command to the IOMMUs command buffer and informs the
1013
 * hardware about the new command.
1014
 */
1015 1016 1017
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
1018
{
1019
	u32 left, tail, head, next_tail;
1020 1021
	unsigned long flags;

1022
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1023 1024

again:
1025 1026
	spin_lock_irqsave(&iommu->lock, flags);

1027 1028 1029 1030
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
1031

1032 1033 1034 1035
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
1036

1037 1038
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1039

1040 1041 1042 1043 1044 1045
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1046 1047
	}

1048 1049 1050
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1051
	iommu->need_sync = sync;
1052

1053
	spin_unlock_irqrestore(&iommu->lock, flags);
1054

1055
	return 0;
1056 1057
}

1058 1059 1060 1061 1062
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1063 1064 1065 1066
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1067
static int iommu_completion_wait(struct amd_iommu *iommu)
1068 1069
{
	struct iommu_cmd cmd;
1070
	volatile u64 sem = 0;
1071
	int ret;
1072

1073
	if (!iommu->need_sync)
1074
		return 0;
1075

1076
	build_completion_wait(&cmd, (u64)&sem);
1077

1078
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1079
	if (ret)
1080
		return ret;
1081

1082
	return wait_on_sem(&sem);
1083 1084
}

1085
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1086
{
1087
	struct iommu_cmd cmd;
1088

1089
	build_inv_dte(&cmd, devid);
1090

1091 1092
	return iommu_queue_command(iommu, &cmd);
}
1093

1094 1095 1096
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1097

1098 1099
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1100

1101 1102
	iommu_completion_wait(iommu);
}
1103

1104 1105 1106 1107 1108 1109 1110
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1111

1112 1113 1114 1115 1116 1117
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1118

1119
	iommu_completion_wait(iommu);
1120 1121
}

1122
static void iommu_flush_all(struct amd_iommu *iommu)
1123
{
1124
	struct iommu_cmd cmd;
1125

1126
	build_inv_all(&cmd);
1127

1128 1129 1130 1131
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1151 1152
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1153 1154 1155 1156
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1157
		iommu_flush_irt_all(iommu);
1158
		iommu_flush_tlb_all(iommu);
1159 1160 1161
	}
}

1162
/*
1163
 * Command send function for flushing on-device TLB
1164
 */
1165 1166
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1167 1168
{
	struct amd_iommu *iommu;
1169
	struct iommu_cmd cmd;
1170
	int qdep;
1171

1172 1173
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1174

1175
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1176 1177

	return iommu_queue_command(iommu, &cmd);
1178 1179
}

1180 1181 1182
/*
 * Command send function for invalidating a device table entry
 */
1183
static int device_flush_dte(struct iommu_dev_data *dev_data)
1184
{
1185
	struct amd_iommu *iommu;
1186
	int ret;
1187

1188
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1189

1190
	ret = iommu_flush_dte(iommu, dev_data->devid);
1191 1192 1193
	if (ret)
		return ret;

1194
	if (dev_data->ats.enabled)
1195
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1196 1197

	return ret;
1198 1199
}

1200 1201 1202 1203 1204
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1205 1206
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1207
{
1208
	struct iommu_dev_data *dev_data;
1209 1210
	struct iommu_cmd cmd;
	int ret = 0, i;
1211

1212
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1213

1214 1215 1216 1217 1218 1219 1220 1221
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1222
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1223 1224
	}

1225 1226
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1227
		if (!dev_data->ats.enabled)
1228 1229
			continue;

1230
		ret |= device_flush_iotlb(dev_data, address, size);
1231 1232
	}

1233
	WARN_ON(ret);
1234 1235
}

1236 1237
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1238
{
1239
	__domain_flush_pages(domain, address, size, 0);
1240
}
1241

1242
/* Flush the whole IO/TLB for a given protection domain */
1243
static void domain_flush_tlb(struct protection_domain *domain)
1244
{
1245
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1246 1247
}

1248
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1249
static void domain_flush_tlb_pde(struct protection_domain *domain)
1250
{
1251
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1252 1253
}

1254
static void domain_flush_complete(struct protection_domain *domain)
1255
{
1256
	int i;
1257

1258 1259 1260
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1261

1262 1263 1264 1265 1266
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1267
	}
1268 1269
}

1270

1271
/*
1272
 * This function flushes the DTEs for all devices in domain
1273
 */
1274
static void domain_flush_devices(struct protection_domain *domain)
1275
{
1276
	struct iommu_dev_data *dev_data;
1277

1278
	list_for_each_entry(dev_data, &domain->dev_list, list)
1279
		device_flush_dte(dev_data);
1280 1281
}

1282 1283 1284 1285 1286 1287 1288
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1318
		      unsigned long page_size,
1319 1320 1321
		      u64 **pte_page,
		      gfp_t gfp)
{
1322
	int level, end_lvl;
1323
	u64 *pte, *page;
1324 1325

	BUG_ON(!is_power_of_2(page_size));
1326 1327 1328 1329

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1330 1331 1332 1333
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1334 1335 1336 1337 1338 1339 1340 1341 1342

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1343 1344 1345 1346
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1364
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1365 1366 1367 1368
{
	int level;
	u64 *pte;

1369 1370 1371 1372 1373
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1374

1375 1376 1377
	while (level > 0) {

		/* Not Present */
1378 1379 1380
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1400 1401
		level -= 1;

1402
		/* Walk to the next level */
1403 1404 1405 1406 1407 1408 1409
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1410 1411 1412 1413 1414 1415 1416
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1417 1418 1419
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1420
			  int prot,
1421
			  unsigned long page_size)
1422
{
1423
	u64 __pte, *pte;
1424
	int i, count;
1425

1426
	if (!(prot & IOMMU_PROT_MASK))
1427 1428
		return -EINVAL;

1429 1430 1431 1432 1433 1434 1435 1436
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1437

1438 1439 1440 1441 1442
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1443 1444 1445 1446 1447 1448

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1449 1450
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1451

1452 1453
	update_domain(dom);

1454 1455 1456
	return 0;
}

1457 1458 1459
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1460
{
1461 1462 1463 1464 1465 1466
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1497

1498
	return unmapped;
1499 1500
}

1501 1502 1503 1504
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1519 1520 1521 1522
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1523 1524 1525 1526 1527 1528 1529 1530
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1531
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1532
				     PAGE_SIZE);
1533 1534 1535 1536 1537 1538 1539
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1540
			__set_bit(addr >> PAGE_SHIFT,
1541
				  dma_dom->aperture[0]->bitmap);
1542 1543 1544 1545 1546
	}

	return 0;
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1569 1570 1571
/*
 * Inits the unity mappings required for a specific device
 */
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1598

1599
/*
1600
 * The address allocator core functions.
1601 1602 1603
 *
 * called with domain->lock held
 */
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1625 1626 1627 1628 1629
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1630
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1631 1632 1633
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1634
	struct amd_iommu *iommu;
1635
	unsigned long i, old_size;
1636

1637 1638 1639 1640
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1660
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1671
	old_size                = dma_dom->aperture_size;
1672 1673
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1686
	/* Initialize the exclusion range if necessary */
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1709
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1710 1711 1712
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1713
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1714 1715
	}

1716 1717
	update_domain(&dma_dom->domain);

1718 1719 1720
	return 0;

out_free:
1721 1722
	update_domain(&dma_dom->domain);

1723 1724 1725 1726 1727 1728 1729 1730
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1731 1732 1733 1734 1735 1736 1737
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1738
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1739 1740 1741 1742 1743 1744
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1745 1746
	next_bit >>= PAGE_SHIFT;

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1765
			dom->next_address = address + (pages << PAGE_SHIFT);
1766 1767 1768 1769 1770 1771 1772 1773 1774
			break;
		}

		next_bit = 0;
	}

	return address;
}

1775 1776
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1777
					     unsigned int pages,
1778 1779
					     unsigned long align_mask,
					     u64 dma_mask)
1780 1781 1782
{
	unsigned long address;

1783 1784 1785 1786
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1787

1788
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1789
				     dma_mask, dom->next_address);
1790

1791
	if (address == -1) {
1792
		dom->next_address = 0;
1793 1794
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1795 1796
		dom->need_flush = true;
	}
1797

1798
	if (unlikely(address == -1))
1799
		address = DMA_ERROR_CODE;
1800 1801 1802 1803 1804 1805

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1806 1807 1808 1809 1810
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1811 1812 1813 1814
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1815 1816
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1817

1818 1819
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1820 1821 1822 1823
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1824

1825
	if (address >= dom->next_address)
1826
		dom->need_flush = true;
1827 1828

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1829

A
Akinobu Mita 已提交
1830
	bitmap_clear(range->bitmap, address, pages);
1831

1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1921
static void free_pagetable(struct protection_domain *domain)
1922
{
1923
	unsigned long root = (unsigned long)domain->pt_root;
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1948 1949 1950
	}
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1981 1982
static void free_gcr3_table(struct protection_domain *domain)
{
1983 1984 1985 1986 1987 1988 1989
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1990 1991 1992
	free_page((unsigned long)domain->gcr3_tbl);
}

1993 1994 1995 1996
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1997 1998
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1999 2000
	int i;

2001 2002 2003
	if (!dom)
		return;

2004 2005
	del_domain_from_list(&dom->domain);

2006
	free_pagetable(&dom->domain);
2007

2008 2009 2010 2011 2012 2013
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
2014 2015 2016 2017

	kfree(dom);
}

2018 2019
/*
 * Allocates a new protection domain usable for the dma_ops functions.
2020
 * It also initializes the page table and the address allocator data
2021 2022
 * structures required for the dma_ops interface
 */
2023
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2036
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2037
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2038
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2039
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2040 2041 2042 2043
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2044
	dma_dom->need_flush = false;
2045
	dma_dom->target_dev = 0xffff;
2046

2047 2048
	add_domain_to_list(&dma_dom->domain);

2049
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2050 2051
		goto free_dma_dom;

2052
	/*
2053 2054
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2055
	 */
2056
	dma_dom->aperture[0]->bitmap[0] = 1;
2057
	dma_dom->next_address = 0;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2068 2069 2070 2071 2072 2073 2074 2075 2076
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2077
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2078
{
2079
	u64 pte_root = 0;
2080
	u64 flags = 0;
2081

2082 2083 2084
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2085 2086 2087
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2088

2089 2090
	flags = amd_iommu_dev_table[devid].data[1];

2091 2092 2093
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2120 2121 2122 2123 2124
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2125 2126 2127 2128 2129 2130 2131 2132 2133
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2134 2135
}

2136 2137
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2138 2139
{
	struct amd_iommu *iommu;
2140
	bool ats;
2141

2142 2143
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2144 2145 2146 2147

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2148
	set_dte_entry(dev_data->devid, domain, ats);
2149 2150 2151 2152 2153 2154

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2155
	device_flush_dte(dev_data);
2156 2157
}

2158
static void do_detach(struct iommu_dev_data *dev_data)
2159 2160 2161
{
	struct amd_iommu *iommu;

2162
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2163 2164

	/* decrease reference counters */
2165 2166 2167 2168 2169 2170
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2171
	clear_dte_entry(dev_data->devid);
2172

2173
	/* Flush the DTE entry */
2174
	device_flush_dte(dev_data);
2175 2176 2177 2178 2179 2180
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2181
static int __attach_device(struct iommu_dev_data *dev_data,
2182
			   struct protection_domain *domain)
2183
{
2184
	int ret;
2185

2186 2187 2188
	/* lock domain */
	spin_lock(&domain->lock);

2189 2190
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2191

2192 2193 2194 2195 2196
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2197

2198 2199 2200
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2201

2202
		/* Do real assignment */
2203
		if (alias_data->domain == NULL)
2204
			do_attach(alias_data, domain);
2205 2206

		atomic_inc(&alias_data->bind);
2207
	}
2208

2209
	if (dev_data->domain == NULL)
2210
		do_attach(dev_data, domain);
2211

2212 2213
	atomic_inc(&dev_data->bind);

2214 2215 2216 2217
	ret = 0;

out_unlock:

2218 2219
	/* ready */
	spin_unlock(&domain->lock);
2220

2221
	return ret;
2222
}
2223

2224 2225 2226 2227 2228 2229 2230 2231

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2232 2233 2234 2235 2236 2237
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2238
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2239 2240 2241
	if (!pos)
		return -EINVAL;

2242 2243 2244
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2245 2246 2247 2248

	return 0;
}

2249 2250
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2251 2252 2253 2254 2255 2256 2257 2258
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2270 2271
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2272 2273 2274
	if (ret)
		goto out_err;

2275 2276 2277 2278 2279 2280
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2294
/* FIXME: Move this to PCI code */
2295
#define PCI_PRI_TLP_OFF		(1 << 15)
2296

J
Joerg Roedel 已提交
2297
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2298
{
2299
	u16 status;
2300 2301
	int pos;

2302
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2303 2304 2305
	if (!pos)
		return false;

2306
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2307

2308
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2309 2310
}

2311
/*
F
Frank Arnold 已提交
2312
 * If a device is not yet associated with a domain, this function
2313 2314
 * assigns it visible for the hardware
 */
2315 2316
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2317
{
2318
	struct pci_dev *pdev = to_pci_dev(dev);
2319
	struct iommu_dev_data *dev_data;
2320
	unsigned long flags;
2321
	int ret;
2322

2323 2324
	dev_data = get_dev_data(dev);

2325 2326 2327 2328 2329 2330 2331 2332 2333
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2334
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2335 2336
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2337 2338 2339
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2340

2341
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2342
	ret = __attach_device(dev_data, domain);
2343 2344
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2345 2346 2347 2348 2349
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2350
	domain_flush_tlb_pde(domain);
2351 2352

	return ret;
2353 2354
}

2355 2356 2357
/*
 * Removes a device from a protection domain (unlocked)
 */
2358
static void __detach_device(struct iommu_dev_data *dev_data)
2359
{
2360
	struct protection_domain *domain;
2361
	unsigned long flags;
2362

2363
	BUG_ON(!dev_data->domain);
2364

2365 2366 2367
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2368

2369 2370 2371
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2372
		if (atomic_dec_and_test(&alias_data->bind))
2373
			do_detach(alias_data);
2374 2375
	}

2376
	if (atomic_dec_and_test(&dev_data->bind))
2377
		do_detach(dev_data);
2378

2379
	spin_unlock_irqrestore(&domain->lock, flags);
2380 2381 2382

	/*
	 * If we run in passthrough mode the device must be assigned to the
2383 2384
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2385
	 */
2386
	if (dev_data->passthrough &&
2387
	    (dev_data->domain == NULL && domain != pt_domain))
2388
		__attach_device(dev_data, pt_domain);
2389 2390 2391 2392 2393
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2394
static void detach_device(struct device *dev)
2395
{
2396
	struct protection_domain *domain;
2397
	struct iommu_dev_data *dev_data;
2398 2399
	unsigned long flags;

2400
	dev_data = get_dev_data(dev);
2401
	domain   = dev_data->domain;
2402

2403 2404
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2405
	__detach_device(dev_data);
2406
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2407

2408 2409 2410
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2411
		pci_disable_ats(to_pci_dev(dev));
2412 2413

	dev_data->ats.enabled = false;
2414
}
2415

2416 2417 2418 2419 2420 2421
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2422
	struct iommu_dev_data *dev_data;
2423
	struct protection_domain *dom = NULL;
2424 2425
	unsigned long flags;

2426
	dev_data   = get_dev_data(dev);
2427

2428 2429
	if (dev_data->domain)
		return dev_data->domain;
2430

2431 2432
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2433 2434 2435 2436 2437 2438 2439 2440

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2441 2442 2443 2444

	return dom;
}

2445 2446 2447 2448
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2449 2450 2451
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2452
	struct amd_iommu *iommu;
2453
	unsigned long flags;
2454
	u16 devid;
2455

2456 2457
	if (!check_device(dev))
		return 0;
2458

2459 2460 2461
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2462 2463

	switch (action) {
2464
	case BUS_NOTIFY_UNBOUND_DRIVER:
2465 2466 2467

		domain = domain_for_device(dev);

2468 2469
		if (!domain)
			goto out;
2470
		if (dev_data->passthrough)
2471
			break;
2472
		detach_device(dev);
2473 2474
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2475 2476 2477

		iommu_init_device(dev);

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2490 2491
		domain = domain_for_device(dev);

2492 2493
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2504

2505
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2506

2507
		break;
2508 2509 2510 2511
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2522
static struct notifier_block device_nb = {
2523 2524
	.notifier_call = device_change_notifier,
};
2525

2526 2527 2528 2529 2530
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2544
static struct protection_domain *get_domain(struct device *dev)
2545
{
2546
	struct protection_domain *domain;
2547
	struct dma_ops_domain *dma_dom;
2548
	u16 devid = get_device_id(dev);
2549

2550
	if (!check_device(dev))
2551
		return ERR_PTR(-EINVAL);
2552

2553 2554 2555
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2556

2557 2558
	if (domain != NULL)
		return domain;
2559

F
Frank Arnold 已提交
2560
	/* Device not bound yet - bind it */
2561
	dma_dom = find_protection_domain(devid);
2562
	if (!dma_dom)
2563 2564
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2565
	DUMP_printk("Using protection domain %d for device %s\n",
2566
		    dma_dom->domain.id, dev_name(dev));
2567

2568
	return &dma_dom->domain;
2569 2570
}

2571 2572
static void update_device_table(struct protection_domain *domain)
{
2573
	struct iommu_dev_data *dev_data;
2574

2575 2576
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2577 2578 2579 2580 2581 2582 2583 2584
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2585 2586 2587

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2588 2589 2590 2591

	domain->updated = false;
}

2592 2593 2594 2595 2596 2597
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2598
	struct aperture_range *aperture;
2599 2600
	u64 *pte, *pte_page;

2601 2602 2603 2604 2605
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2606
	if (!pte) {
2607
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2608
				GFP_ATOMIC);
2609 2610
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2611
		pte += PM_LEVEL_INDEX(0, address);
2612

2613
	update_domain(&dom->domain);
2614 2615 2616 2617

	return pte;
}

2618 2619 2620 2621
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2622
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2633
	pte  = dma_ops_get_pte(dom, address);
2634
	if (!pte)
2635
		return DMA_ERROR_CODE;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2653 2654 2655
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2656
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2657 2658
				 unsigned long address)
{
2659
	struct aperture_range *aperture;
2660 2661 2662 2663 2664
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2665 2666 2667 2668 2669 2670 2671
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2672

2673
	pte += PM_LEVEL_INDEX(0, address);
2674 2675 2676 2677 2678 2679

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2680 2681
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2682 2683
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2684 2685
 * Must be called with the domain lock held.
 */
2686 2687 2688 2689
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2690
			       int dir,
2691 2692
			       bool align,
			       u64 dma_mask)
2693 2694
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2695
	dma_addr_t address, start, ret;
2696
	unsigned int pages;
2697
	unsigned long align_mask = 0;
2698 2699
	int i;

2700
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2701 2702
	paddr &= PAGE_MASK;

2703 2704
	INC_STATS_COUNTER(total_map_requests);

2705 2706 2707
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2708 2709 2710
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2711
retry:
2712 2713
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2714
	if (unlikely(address == DMA_ERROR_CODE)) {
2715 2716 2717 2718 2719 2720 2721
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2722
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2723 2724 2725
			goto out;

		/*
2726
		 * aperture was successfully enlarged by 128 MB, try
2727 2728 2729 2730
		 * allocation again
		 */
		goto retry;
	}
2731 2732 2733

	start = address;
	for (i = 0; i < pages; ++i) {
2734
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2735
		if (ret == DMA_ERROR_CODE)
2736 2737
			goto out_unmap;

2738 2739 2740 2741 2742
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2743 2744
	ADD_STATS_COUNTER(alloced_io_mem, size);

2745
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2746
		domain_flush_tlb(&dma_dom->domain);
2747
		dma_dom->need_flush = false;
2748
	} else if (unlikely(amd_iommu_np_cache))
2749
		domain_flush_pages(&dma_dom->domain, address, size);
2750

2751 2752
out:
	return address;
2753 2754 2755 2756 2757

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2758
		dma_ops_domain_unmap(dma_dom, start);
2759 2760 2761 2762
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2763
	return DMA_ERROR_CODE;
2764 2765
}

2766 2767 2768 2769
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2770
static void __unmap_single(struct dma_ops_domain *dma_dom,
2771 2772 2773 2774
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2775
	dma_addr_t flush_addr;
2776 2777 2778
	dma_addr_t i, start;
	unsigned int pages;

2779
	if ((dma_addr == DMA_ERROR_CODE) ||
2780
	    (dma_addr + size > dma_dom->aperture_size))
2781 2782
		return;

2783
	flush_addr = dma_addr;
2784
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2785 2786 2787 2788
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2789
		dma_ops_domain_unmap(dma_dom, start);
2790 2791 2792
		start += PAGE_SIZE;
	}

2793 2794
	SUB_STATS_COUNTER(alloced_io_mem, size);

2795
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2796

2797
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2798
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2799 2800
		dma_dom->need_flush = false;
	}
2801 2802
}

2803 2804 2805
/*
 * The exported map_single function for dma_ops.
 */
2806 2807 2808 2809
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2810 2811 2812 2813
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2814
	u64 dma_mask;
2815
	phys_addr_t paddr = page_to_phys(page) + offset;
2816

2817 2818
	INC_STATS_COUNTER(cnt_map_single);

2819 2820
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2821
		return (dma_addr_t)paddr;
2822 2823
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2824

2825 2826
	dma_mask = *dev->dma_mask;

2827
	spin_lock_irqsave(&domain->lock, flags);
2828

2829
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2830
			    dma_mask);
2831
	if (addr == DMA_ERROR_CODE)
2832 2833
		goto out;

2834
	domain_flush_complete(domain);
2835 2836 2837 2838 2839 2840 2841

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2842 2843 2844
/*
 * The exported unmap_single function for dma_ops.
 */
2845 2846
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2847 2848 2849 2850
{
	unsigned long flags;
	struct protection_domain *domain;

2851 2852
	INC_STATS_COUNTER(cnt_unmap_single);

2853 2854
	domain = get_domain(dev);
	if (IS_ERR(domain))
2855 2856
		return;

2857 2858
	spin_lock_irqsave(&domain->lock, flags);

2859
	__unmap_single(domain->priv, dma_addr, size, dir);
2860

2861
	domain_flush_complete(domain);
2862 2863 2864 2865

	spin_unlock_irqrestore(&domain->lock, flags);
}

2866 2867 2868 2869
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2870
static int map_sg(struct device *dev, struct scatterlist *sglist,
2871 2872
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2873 2874 2875 2876 2877 2878 2879
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2880
	u64 dma_mask;
2881

2882 2883
	INC_STATS_COUNTER(cnt_map_sg);

2884
	domain = get_domain(dev);
2885
	if (IS_ERR(domain))
2886
		return 0;
2887

2888
	dma_mask = *dev->dma_mask;
2889 2890 2891 2892 2893 2894

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2895
		s->dma_address = __map_single(dev, domain->priv,
2896 2897
					      paddr, s->length, dir, false,
					      dma_mask);
2898 2899 2900 2901 2902 2903 2904 2905

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2906
	domain_flush_complete(domain);
2907 2908 2909 2910 2911 2912 2913 2914

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2915
			__unmap_single(domain->priv, s->dma_address,
2916 2917 2918 2919 2920 2921 2922 2923 2924
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2925 2926 2927 2928
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2929
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2930 2931
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2932 2933 2934 2935 2936 2937
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2938 2939
	INC_STATS_COUNTER(cnt_unmap_sg);

2940 2941
	domain = get_domain(dev);
	if (IS_ERR(domain))
2942 2943
		return;

2944 2945 2946
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2947
		__unmap_single(domain->priv, s->dma_address,
2948 2949 2950 2951
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2952
	domain_flush_complete(domain);
2953 2954 2955 2956

	spin_unlock_irqrestore(&domain->lock, flags);
}

2957 2958 2959
/*
 * The exported alloc_coherent function for dma_ops.
 */
2960
static void *alloc_coherent(struct device *dev, size_t size,
2961 2962
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2963 2964 2965 2966 2967
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2968
	u64 dma_mask = dev->coherent_dma_mask;
2969

2970 2971
	INC_STATS_COUNTER(cnt_alloc_coherent);

2972 2973
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2974 2975 2976
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2977 2978
	} else if (IS_ERR(domain))
		return NULL;
2979

2980 2981 2982
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2983 2984 2985

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2986
		return NULL;
2987 2988 2989

	paddr = virt_to_phys(virt_addr);

2990 2991 2992
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2993 2994
	spin_lock_irqsave(&domain->lock, flags);

2995
	*dma_addr = __map_single(dev, domain->priv, paddr,
2996
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2997

2998
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2999
		spin_unlock_irqrestore(&domain->lock, flags);
3000
		goto out_free;
J
Jiri Slaby 已提交
3001
	}
3002

3003
	domain_flush_complete(domain);
3004 3005 3006 3007

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
3008 3009 3010 3011 3012 3013

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
3014 3015
}

3016 3017 3018
/*
 * The exported free_coherent function for dma_ops.
 */
3019
static void free_coherent(struct device *dev, size_t size,
3020 3021
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
3022 3023 3024 3025
{
	unsigned long flags;
	struct protection_domain *domain;

3026 3027
	INC_STATS_COUNTER(cnt_free_coherent);

3028 3029
	domain = get_domain(dev);
	if (IS_ERR(domain))
3030 3031
		goto free_mem;

3032 3033
	spin_lock_irqsave(&domain->lock, flags);

3034
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3035

3036
	domain_flush_complete(domain);
3037 3038 3039 3040 3041 3042 3043

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

3044 3045 3046 3047 3048 3049
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3050
	return check_device(dev);
3051 3052
}

3053
/*
3054 3055
 * The function for pre-allocating protection domains.
 *
3056 3057 3058 3059
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3060
static void __init prealloc_protection_domains(void)
3061
{
3062
	struct iommu_dev_data *dev_data;
3063
	struct dma_ops_domain *dma_dom;
3064
	struct pci_dev *dev = NULL;
3065
	u16 devid;
3066

3067
	for_each_pci_dev(dev) {
3068 3069 3070

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3071
			continue;
3072

3073 3074 3075 3076 3077 3078
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3079
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3080 3081 3082
				dev_name(&dev->dev));
		}

3083
		/* Is there already any domain for it? */
3084
		if (domain_for_device(&dev->dev))
3085
			continue;
3086 3087 3088

		devid = get_device_id(&dev->dev);

3089
		dma_dom = dma_ops_domain_alloc();
3090 3091 3092
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3093 3094
		dma_dom->target_dev = devid;

3095
		attach_device(&dev->dev, &dma_dom->domain);
3096

3097
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3098 3099 3100
	}
}

3101
static struct dma_map_ops amd_iommu_dma_ops = {
3102 3103
	.alloc = alloc_coherent,
	.free = free_coherent,
3104 3105
	.map_page = map_page,
	.unmap_page = unmap_page,
3106 3107
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3108
	.dma_supported = amd_iommu_dma_supported,
3109 3110
};

3111 3112
static unsigned device_dma_ops_init(void)
{
3113
	struct iommu_dev_data *dev_data;
3114 3115 3116 3117 3118
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3119 3120 3121

			iommu_ignore_device(&pdev->dev);

3122 3123 3124 3125
			unhandled += 1;
			continue;
		}

3126 3127 3128 3129 3130 3131
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3132 3133 3134 3135 3136
	}

	return unhandled;
}

3137 3138 3139
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3140 3141 3142

void __init amd_iommu_init_api(void)
{
3143
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3144 3145
}

3146 3147 3148
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3149
	int ret, unhandled;
3150

3151 3152 3153 3154 3155
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3156
	for_each_iommu(iommu) {
3157
		iommu->default_dom = dma_ops_domain_alloc();
3158 3159
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3160
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3161 3162 3163 3164 3165
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3166
	/*
3167
	 * Pre-allocate the protection domains for each device.
3168
	 */
3169
	prealloc_protection_domains();
3170 3171

	iommu_detected = 1;
3172
	swiotlb = 0;
3173

3174
	/* Make the driver finally visible to the drivers */
3175 3176 3177 3178 3179
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3180

3181 3182
	amd_iommu_stats_init();

3183 3184 3185 3186 3187
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3188 3189 3190 3191
	return 0;

free_domains:

3192
	for_each_iommu(iommu) {
3193
		dma_ops_domain_free(iommu->default_dom);
3194 3195 3196 3197
	}

	return ret;
}
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3211
	struct iommu_dev_data *dev_data, *next;
3212 3213 3214 3215
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3216
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3217
		__detach_device(dev_data);
3218 3219
		atomic_set(&dev_data->bind, 0);
	}
3220 3221 3222 3223

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3224 3225 3226 3227 3228
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3229 3230
	del_domain_from_list(domain);

3231 3232 3233 3234 3235 3236 3237
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3238 3239 3240 3241 3242
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3243
		return NULL;
3244 3245

	spin_lock_init(&domain->lock);
3246
	mutex_init(&domain->api_lock);
3247 3248
	domain->id = domain_id_alloc();
	if (!domain->id)
3249
		goto out_err;
3250
	INIT_LIST_HEAD(&domain->dev_list);
3251

3252 3253
	add_domain_to_list(domain);

3254 3255 3256 3257 3258 3259 3260 3261
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3276 3277 3278 3279 3280 3281
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3282
		goto out_free;
3283 3284

	domain->mode    = PAGE_MODE_3_LEVEL;
3285 3286 3287 3288
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3289 3290
	domain->iommu_domain = dom;

3291 3292
	dom->priv = domain;

3293 3294 3295 3296
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3297 3298 3299
	return 0;

out_free:
3300
	protection_domain_free(domain);
3301 3302 3303 3304

	return -ENOMEM;
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3317 3318
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3319

3320 3321 3322
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3323
	protection_domain_free(domain);
3324 3325 3326 3327

	dom->priv = NULL;
}

3328 3329 3330
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3331
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3332 3333 3334
	struct amd_iommu *iommu;
	u16 devid;

3335
	if (!check_device(dev))
3336 3337
		return;

3338
	devid = get_device_id(dev);
3339

3340
	if (dev_data->domain != NULL)
3341
		detach_device(dev);
3342 3343 3344 3345 3346 3347 3348 3349

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3350 3351 3352 3353
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3354
	struct iommu_dev_data *dev_data;
3355
	struct amd_iommu *iommu;
3356
	int ret;
3357

3358
	if (!check_device(dev))
3359 3360
		return -EINVAL;

3361 3362
	dev_data = dev->archdata.iommu;

3363
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3364 3365 3366
	if (!iommu)
		return -EINVAL;

3367
	if (dev_data->domain)
3368
		detach_device(dev);
3369

3370
	ret = attach_device(dev, domain);
3371 3372 3373

	iommu_completion_wait(iommu);

3374
	return ret;
3375 3376
}

3377
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3378
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3379 3380 3381 3382 3383
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3384 3385 3386
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3387 3388 3389 3390 3391
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3392
	mutex_lock(&domain->api_lock);
3393
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3394 3395
	mutex_unlock(&domain->api_lock);

3396
	return ret;
3397 3398
}

3399 3400
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3401 3402
{
	struct protection_domain *domain = dom->priv;
3403
	size_t unmap_size;
3404

3405 3406 3407
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3408
	mutex_lock(&domain->api_lock);
3409
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3410
	mutex_unlock(&domain->api_lock);
3411

3412
	domain_flush_tlb_pde(domain);
3413

3414
	return unmap_size;
3415 3416
}

3417
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3418
					  dma_addr_t iova)
3419 3420
{
	struct protection_domain *domain = dom->priv;
3421
	unsigned long offset_mask;
3422
	phys_addr_t paddr;
3423
	u64 *pte, __pte;
3424

3425 3426 3427
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3428
	pte = fetch_pte(domain, iova);
3429

3430
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3431 3432
		return 0;

3433 3434 3435 3436 3437 3438 3439
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3440 3441 3442 3443

	return paddr;
}

S
Sheng Yang 已提交
3444 3445 3446
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3447 3448 3449
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
3450 3451
	case IOMMU_CAP_INTR_REMAP:
		return irq_remapping_enabled;
3452 3453
	}

S
Sheng Yang 已提交
3454 3455 3456
	return 0;
}

3457 3458 3459 3460 3461
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3462 3463
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3464
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3465
	.domain_has_cap = amd_iommu_domain_has_cap,
3466
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3467 3468
};

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3481
	struct iommu_dev_data *dev_data;
3482
	struct pci_dev *dev = NULL;
3483
	struct amd_iommu *iommu;
3484
	u16 devid;
3485
	int ret;
3486

3487 3488 3489
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3490

3491
	for_each_pci_dev(dev) {
3492
		if (!check_device(&dev->dev))
3493 3494
			continue;

3495 3496 3497
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3498 3499
		devid = get_device_id(&dev->dev);

3500
		iommu = amd_iommu_rlookup_table[devid];
3501 3502 3503
		if (!iommu)
			continue;

3504
		attach_device(&dev->dev, pt_domain);
3505 3506
	}

J
Joerg Roedel 已提交
3507 3508
	amd_iommu_stats_init();

3509 3510 3511 3512
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3654 3655
	INC_STATS_COUNTER(invalidate_iotlb);

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3676 3677
	INC_STATS_COUNTER(invalidate_iotlb_all);

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3789 3790 3791 3792 3793 3794 3795 3796

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3797 3798
	INC_STATS_COUNTER(complete_ppr);

3799 3800 3801 3802 3803 3804 3805 3806 3807
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3955 3956 3957
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3958 3959 3960 3961 3962 3963 3964
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3965
		table = NULL;
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
4018
			struct irq_2_irte *irte_info;
4019 4020 4021 4022 4023 4024

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

4025
			cfg->remapped	      = 1;
4026 4027 4028
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4104 4105 4106 4107 4108
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4109
	struct irq_2_irte *irte_info;
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4121
	irte_info = &cfg->irq_2_irte;
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4135
	cfg->remapped	      = 1;
4136 4137
	irte_info->devid      = devid;
	irte_info->index      = index;
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4171
	struct irq_2_irte *irte_info;
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
4182
	irte_info = &cfg->irq_2_irte;
4183 4184 4185 4186

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4187
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4203
	modify_irte(irte_info->devid, irte_info->index, irte);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4215
	struct irq_2_irte *irte_info;
4216 4217 4218 4219 4220 4221
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4222
	irte_info = &cfg->irq_2_irte;
4223

4224
	free_irte(irte_info->devid, irte_info->index);
4225 4226 4227 4228

	return 0;
}

4229 4230 4231 4232
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4233
	struct irq_2_irte *irte_info;
4234 4235 4236 4237 4238 4239 4240
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

4241
	irte_info = &cfg->irq_2_irte;
4242 4243 4244 4245 4246 4247 4248 4249

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4250
	modify_irte(irte_info->devid, irte_info->index, irte);
4251 4252 4253

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4254
	msg->data       = irte_info->index;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4279
	struct irq_2_irte *irte_info;
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4294
	irte_info	= &cfg->irq_2_irte;
4295

4296
	cfg->remapped	      = 1;
4297 4298
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4299 4300 4301 4302

	return 0;
}

4303 4304
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
4305
	struct irq_2_irte *irte_info;
4306 4307 4308 4309 4310 4311 4312
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

4313
	irte_info = &cfg->irq_2_irte;
4314 4315 4316 4317 4318 4319 4320 4321
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4322
	cfg->remapped	      = 1;
4323 4324
	irte_info->devid      = devid;
	irte_info->index      = index;
4325 4326 4327 4328

	return 0;
}

4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4344
#endif