amd_iommu.c 93.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
92
	struct list_head alias_list;      /* Link alias-groups together */
93 94 95 96
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
97
	bool passthrough;		  /* Device is identity mapped */
98 99 100 101 102 103 104 105 106
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

107 108 109
/*
 * general struct to manage commands send to an IOMMU
 */
110
struct iommu_cmd {
111 112 113
	u32 data[4];
};

114 115
struct kmem_cache *amd_iommu_irq_cache;

116
static void update_domain(struct protection_domain *domain);
117
static int protection_domain_init(struct protection_domain *domain);
118

119 120 121 122 123 124
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

125 126 127 128 129
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

130
static struct iommu_dev_data *alloc_dev_data(u16 devid)
131 132 133 134 135 136 137 138
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

139 140
	INIT_LIST_HEAD(&dev_data->alias_list);

141
	dev_data->devid = devid;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

192 193 194 195
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

196
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
197 198
}

199 200 201 202 203
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

204 205 206 207
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
208 209
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
210 211 212 213 214 215 216 217 218 219 220 221
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

222 223 224 225 226 227 228 229 230
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

231
/*
232 233
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
234
 */
235 236
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
237
{
238
	u64 addr;
239

240 241 242 243 244
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
245
	}
246
}
247

248 249 250 251 252 253 254 255
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
256

257
	devid = get_device_id(dev);
258

259 260 261 262 263
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
264 265
}

266 267 268 269 270 271 272 273 274 275 276
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

277 278
	/* No PCI device */
	if (!dev_is_pci(dev))
279 280 281 282 283 284 285 286 287 288 289 290 291 292
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

293
static void init_iommu_group(struct device *dev)
294
{
295 296
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
297 298
	struct iommu_group *group;

299
	group = iommu_group_get_for_dev(dev);
300 301 302 303 304 305 306 307 308 309 310 311
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

376 377 378 379 380 381 382 383 384 385 386 387 388
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

389 390
	alias = get_alias(dev);

391 392 393 394 395 396 397 398 399 400 401 402
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

403 404
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
405
	}
406

407 408 409 410 411 412 413
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

414 415
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
416 417 418
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

419 420 421
	return 0;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

436 437
static void iommu_uninit_device(struct device *dev)
{
438 439 440 441 442
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
443 444 445
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

446 447
	iommu_group_remove_device(dev);

448 449 450
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

451 452 453
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

454
	/*
455 456
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
457
	 */
458
}
J
Joerg Roedel 已提交
459

460 461 462 463 464 465
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

466
DECLARE_STATS_COUNTER(compl_wait);
467
DECLARE_STATS_COUNTER(cnt_map_single);
468
DECLARE_STATS_COUNTER(cnt_unmap_single);
469
DECLARE_STATS_COUNTER(cnt_map_sg);
470
DECLARE_STATS_COUNTER(cnt_unmap_sg);
471
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
472
DECLARE_STATS_COUNTER(cnt_free_coherent);
473
DECLARE_STATS_COUNTER(cross_page);
474
DECLARE_STATS_COUNTER(domain_flush_single);
475
DECLARE_STATS_COUNTER(domain_flush_all);
476
DECLARE_STATS_COUNTER(alloced_io_mem);
477
DECLARE_STATS_COUNTER(total_map_requests);
478 479 480 481 482
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
502
					 &amd_iommu_unmap_flush);
503 504

	amd_iommu_stats_add(&compl_wait);
505
	amd_iommu_stats_add(&cnt_map_single);
506
	amd_iommu_stats_add(&cnt_unmap_single);
507
	amd_iommu_stats_add(&cnt_map_sg);
508
	amd_iommu_stats_add(&cnt_unmap_sg);
509
	amd_iommu_stats_add(&cnt_alloc_coherent);
510
	amd_iommu_stats_add(&cnt_free_coherent);
511
	amd_iommu_stats_add(&cross_page);
512
	amd_iommu_stats_add(&domain_flush_single);
513
	amd_iommu_stats_add(&domain_flush_all);
514
	amd_iommu_stats_add(&alloced_io_mem);
515
	amd_iommu_stats_add(&total_map_requests);
516 517 518 519
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
520 521 522 523
}

#endif

524 525 526 527 528 529
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

530 531 532 533
static void dump_dte_entry(u16 devid)
{
	int i;

534 535
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
536 537 538
			amd_iommu_dev_table[devid].data[i]);
}

539 540 541 542 543 544 545 546 547
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

548
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549
{
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
571

572
	printk(KERN_ERR "AMD-Vi: Event logged [");
573 574 575 576 577

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
578
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579
		       address, flags);
580
		dump_dte_entry(devid);
581 582 583 584
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
585
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
586 587 588 589 590
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
591
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 593 594 595 596
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
602
		dump_command(address);
603 604 605 606 607 608 609 610
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
611
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612 613 614 615 616
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620 621 622
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
623 624

	memset(__evt, 0, 4 * sizeof(u32));
625 626 627 628 629 630 631 632 633 634
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
635
		iommu_print_event(iommu, iommu->evt_buf + head);
636 637 638 639 640 641
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

642
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
643 644 645
{
	struct amd_iommu_fault fault;

646 647
	INC_STATS_COUNTER(pri_requests);

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
689

690 691 692
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
693

694 695 696 697 698 699 700
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
701 702
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 704 705 706 707 708

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 710 711 712
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

713
irqreturn_t amd_iommu_int_thread(int irq, void *data)
714
{
715 716
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
717

718 719 720 721
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
722

723 724 725 726
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
727

728 729 730 731
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
748
	return IRQ_HANDLED;
749 750
}

751 752 753 754 755
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

756 757 758 759 760 761
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
782 783 784
{
	u8 *target;

785
	target = iommu->cmd_buf + tail;
786 787 788 789 790 791
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
792
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
793
}
794

795
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
796
{
797 798
	WARN_ON(address & 0x7ULL);

799
	memset(cmd, 0, sizeof(*cmd));
800 801 802
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
803 804 805
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

806 807 808 809 810 811 812
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

813 814 815 816
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
817
	bool s;
818 819

	pages = iommu_num_pages(address, size, PAGE_SIZE);
820
	s     = false;
821 822 823 824 825 826 827

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
828
		s = true;
829 830 831 832 833 834 835 836 837 838 839
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
840
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
841 842 843
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

844 845 846 847
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
848
	bool s;
849 850

	pages = iommu_num_pages(address, size, PAGE_SIZE);
851
	s     = false;
852 853 854 855 856 857 858

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
859
		s = true;
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

875 876 877 878 879 880 881
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

882
	cmd->data[0]  = pasid;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
901
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
902 903
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
904
	cmd->data[1] |= (pasid & 0xff) << 16;
905 906 907 908 909 910 911 912
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

913 914 915 916 917 918 919
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
920
		cmd->data[1]  = pasid;
921 922 923 924 925 926 927 928
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

929 930 931 932
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
933 934
}

935 936 937 938 939 940 941
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

942 943
/*
 * Writes the command to the IOMMUs command buffer and informs the
944
 * hardware about the new command.
945
 */
946 947 948
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
949
{
950
	u32 left, tail, head, next_tail;
951 952
	unsigned long flags;

953
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
954 955

again:
956 957
	spin_lock_irqsave(&iommu->lock, flags);

958 959 960 961
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
962

963 964 965 966
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
967

968 969
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
970

971 972 973 974 975 976
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
977 978
	}

979 980 981
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
982
	iommu->need_sync = sync;
983

984
	spin_unlock_irqrestore(&iommu->lock, flags);
985

986
	return 0;
987 988
}

989 990 991 992 993
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

994 995 996 997
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
998
static int iommu_completion_wait(struct amd_iommu *iommu)
999 1000
{
	struct iommu_cmd cmd;
1001
	volatile u64 sem = 0;
1002
	int ret;
1003

1004
	if (!iommu->need_sync)
1005
		return 0;
1006

1007
	build_completion_wait(&cmd, (u64)&sem);
1008

1009
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1010
	if (ret)
1011
		return ret;
1012

1013
	return wait_on_sem(&sem);
1014 1015
}

1016
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1017
{
1018
	struct iommu_cmd cmd;
1019

1020
	build_inv_dte(&cmd, devid);
1021

1022 1023
	return iommu_queue_command(iommu, &cmd);
}
1024

1025 1026 1027
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1028

1029 1030
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1031

1032 1033
	iommu_completion_wait(iommu);
}
1034

1035 1036 1037 1038 1039 1040 1041
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1042

1043 1044 1045 1046 1047 1048
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1049

1050
	iommu_completion_wait(iommu);
1051 1052
}

1053
static void iommu_flush_all(struct amd_iommu *iommu)
1054
{
1055
	struct iommu_cmd cmd;
1056

1057
	build_inv_all(&cmd);
1058

1059 1060 1061 1062
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1082 1083
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1084 1085 1086 1087
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1088
		iommu_flush_irt_all(iommu);
1089
		iommu_flush_tlb_all(iommu);
1090 1091 1092
	}
}

1093
/*
1094
 * Command send function for flushing on-device TLB
1095
 */
1096 1097
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1098 1099
{
	struct amd_iommu *iommu;
1100
	struct iommu_cmd cmd;
1101
	int qdep;
1102

1103 1104
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1105

1106
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1107 1108

	return iommu_queue_command(iommu, &cmd);
1109 1110
}

1111 1112 1113
/*
 * Command send function for invalidating a device table entry
 */
1114
static int device_flush_dte(struct iommu_dev_data *dev_data)
1115
{
1116
	struct amd_iommu *iommu;
1117
	int ret;
1118

1119
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1120

1121
	ret = iommu_flush_dte(iommu, dev_data->devid);
1122 1123 1124
	if (ret)
		return ret;

1125
	if (dev_data->ats.enabled)
1126
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1127 1128

	return ret;
1129 1130
}

1131 1132 1133 1134 1135
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1136 1137
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1138
{
1139
	struct iommu_dev_data *dev_data;
1140 1141
	struct iommu_cmd cmd;
	int ret = 0, i;
1142

1143
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1144

1145 1146 1147 1148 1149 1150 1151 1152
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1153
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1154 1155
	}

1156 1157
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1158
		if (!dev_data->ats.enabled)
1159 1160
			continue;

1161
		ret |= device_flush_iotlb(dev_data, address, size);
1162 1163
	}

1164
	WARN_ON(ret);
1165 1166
}

1167 1168
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1169
{
1170
	__domain_flush_pages(domain, address, size, 0);
1171
}
1172

1173
/* Flush the whole IO/TLB for a given protection domain */
1174
static void domain_flush_tlb(struct protection_domain *domain)
1175
{
1176
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1177 1178
}

1179
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1180
static void domain_flush_tlb_pde(struct protection_domain *domain)
1181
{
1182
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1183 1184
}

1185
static void domain_flush_complete(struct protection_domain *domain)
1186
{
1187
	int i;
1188

1189 1190 1191
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1192

1193 1194 1195 1196 1197
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1198
	}
1199 1200
}

1201

1202
/*
1203
 * This function flushes the DTEs for all devices in domain
1204
 */
1205
static void domain_flush_devices(struct protection_domain *domain)
1206
{
1207
	struct iommu_dev_data *dev_data;
1208

1209
	list_for_each_entry(dev_data, &domain->dev_list, list)
1210
		device_flush_dte(dev_data);
1211 1212
}

1213 1214 1215 1216 1217 1218 1219
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1249
		      unsigned long page_size,
1250 1251 1252
		      u64 **pte_page,
		      gfp_t gfp)
{
1253
	int level, end_lvl;
1254
	u64 *pte, *page;
1255 1256

	BUG_ON(!is_power_of_2(page_size));
1257 1258 1259 1260

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1261 1262 1263 1264
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1265 1266 1267 1268 1269 1270 1271 1272 1273

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1274 1275 1276 1277
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1295 1296 1297
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1298 1299 1300 1301
{
	int level;
	u64 *pte;

1302 1303 1304
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1305 1306 1307
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1308

1309 1310 1311
	while (level > 0) {

		/* Not Present */
1312 1313 1314
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1315
		/* Large PTE */
1316 1317 1318
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1319 1320 1321 1322 1323

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1324 1325
		level -= 1;

1326
		/* Walk to the next level */
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1342 1343 1344 1345 1346
	}

	return pte;
}

1347 1348 1349 1350 1351 1352 1353
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1354 1355 1356
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1357
			  int prot,
1358
			  unsigned long page_size)
1359
{
1360
	u64 __pte, *pte;
1361
	int i, count;
1362

1363 1364 1365
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1366
	if (!(prot & IOMMU_PROT_MASK))
1367 1368
		return -EINVAL;

1369 1370
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1371

1372 1373 1374
	if (!pte)
		return -ENOMEM;

1375 1376 1377
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1378

1379
	if (count > 1) {
1380 1381 1382 1383
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1384 1385 1386 1387 1388 1389

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1390 1391
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1392

1393 1394
	update_domain(dom);

1395 1396 1397
	return 0;
}

1398 1399 1400
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1401
{
1402 1403
	unsigned long long unmapped;
	unsigned long unmap_size;
1404 1405 1406 1407 1408
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1409

1410 1411
	while (unmapped < page_size) {

1412 1413 1414 1415 1416 1417
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1418 1419 1420 1421 1422 1423 1424 1425
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1426
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1427

1428
	return unmapped;
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1440

1441
/*
1442
 * The address allocator core functions.
1443 1444 1445
 *
 * called with domain->lock held
 */
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1467 1468 1469 1470 1471
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1472
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1473 1474 1475
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1476
	struct amd_iommu *iommu;
1477
	unsigned long i, old_size, pte_pgsize;
1478

1479 1480 1481 1482
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1502
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1513
	old_size                = dma_dom->aperture_size;
1514 1515
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1528
	/* Initialize the exclusion range if necessary */
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1550
	     i += pte_pgsize) {
1551
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1552 1553 1554
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1555 1556
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1557 1558
	}

1559 1560
	update_domain(&dma_dom->domain);

1561 1562 1563
	return 0;

out_free:
1564 1565
	update_domain(&dma_dom->domain);

1566 1567 1568 1569 1570 1571 1572 1573
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1574 1575 1576 1577 1578 1579 1580
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1581
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1582 1583
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
1584
	unsigned long boundary_size, mask;
1585 1586 1587
	unsigned long address = -1;
	unsigned long limit;

1588 1589
	next_bit >>= PAGE_SHIFT;

1590 1591 1592 1593
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1610
			dom->next_address = address + (pages << PAGE_SHIFT);
1611 1612 1613 1614 1615 1616 1617 1618 1619
			break;
		}

		next_bit = 0;
	}

	return address;
}

1620 1621
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1622
					     unsigned int pages,
1623 1624
					     unsigned long align_mask,
					     u64 dma_mask)
1625 1626 1627
{
	unsigned long address;

1628 1629 1630 1631
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1632

1633
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1634
				     dma_mask, dom->next_address);
1635

1636
	if (address == -1) {
1637
		dom->next_address = 0;
1638 1639
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1640 1641
		dom->need_flush = true;
	}
1642

1643
	if (unlikely(address == -1))
1644
		address = DMA_ERROR_CODE;
1645 1646 1647 1648 1649 1650

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1651 1652 1653 1654 1655
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1656 1657 1658 1659
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1660 1661
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1662

1663 1664
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1665 1666 1667 1668
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1669

1670
	if (address >= dom->next_address)
1671
		dom->need_flush = true;
1672 1673

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1674

A
Akinobu Mita 已提交
1675
	bitmap_clear(range->bitmap, address, pages);
1676

1677 1678
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1751
		/* PTE present? */				\
1752 1753 1754
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1755 1756 1757 1758 1759
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1772
static void free_pagetable(struct protection_domain *domain)
1773
{
1774
	unsigned long root = (unsigned long)domain->pt_root;
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1799 1800 1801
	}
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1832 1833
static void free_gcr3_table(struct protection_domain *domain)
{
1834 1835 1836 1837
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1838 1839
	else
		BUG_ON(domain->glx != 0);
1840

1841 1842 1843
	free_page((unsigned long)domain->gcr3_tbl);
}

1844 1845 1846 1847
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1848 1849
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1850 1851
	int i;

1852 1853 1854
	if (!dom)
		return;

1855 1856
	del_domain_from_list(&dom->domain);

1857
	free_pagetable(&dom->domain);
1858

1859 1860 1861 1862 1863 1864
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1865 1866 1867 1868

	kfree(dom);
}

1869 1870
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1871
 * It also initializes the page table and the address allocator data
1872 1873
 * structures required for the dma_ops interface
 */
1874
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1875 1876 1877 1878 1879 1880 1881
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1882
	if (protection_domain_init(&dma_dom->domain))
1883
		goto free_dma_dom;
1884

1885
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1886
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1887
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1888 1889 1890 1891
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1892 1893
	dma_dom->need_flush = false;

1894 1895
	add_domain_to_list(&dma_dom->domain);

1896
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1897 1898
		goto free_dma_dom;

1899
	/*
1900 1901
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1902
	 */
1903
	dma_dom->aperture[0]->bitmap[0] = 1;
1904
	dma_dom->next_address = 0;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1924
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1925
{
1926
	u64 pte_root = 0;
1927
	u64 flags = 0;
1928

1929 1930 1931
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1932 1933 1934
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1935

1936 1937
	flags = amd_iommu_dev_table[devid].data[1];

1938 1939 1940
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1967 1968 1969 1970 1971
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1972 1973 1974 1975 1976 1977 1978 1979 1980
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1981 1982
}

1983 1984
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1985 1986
{
	struct amd_iommu *iommu;
1987
	bool ats;
1988

1989 1990
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1991 1992 1993 1994

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1995
	set_dte_entry(dev_data->devid, domain, ats);
1996 1997 1998 1999 2000 2001

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2002
	device_flush_dte(dev_data);
2003 2004
}

2005
static void do_detach(struct iommu_dev_data *dev_data)
2006 2007 2008
{
	struct amd_iommu *iommu;

2009
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2010 2011

	/* decrease reference counters */
2012 2013 2014 2015 2016 2017
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2018
	clear_dte_entry(dev_data->devid);
2019

2020
	/* Flush the DTE entry */
2021
	device_flush_dte(dev_data);
2022 2023 2024 2025 2026 2027
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2028
static int __attach_device(struct iommu_dev_data *dev_data,
2029
			   struct protection_domain *domain)
2030
{
2031
	int ret;
2032

2033 2034 2035 2036 2037 2038
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2039 2040 2041
	/* lock domain */
	spin_lock(&domain->lock);

2042
	ret = -EBUSY;
2043
	if (dev_data->domain != NULL)
2044
		goto out_unlock;
2045

2046
	/* Attach alias group root */
2047
	do_attach(dev_data, domain);
2048

2049 2050 2051 2052
	ret = 0;

out_unlock:

2053 2054
	/* ready */
	spin_unlock(&domain->lock);
2055

2056
	return ret;
2057
}
2058

2059 2060 2061 2062 2063 2064 2065 2066

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2067 2068 2069 2070 2071 2072
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2073
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2074 2075 2076
	if (!pos)
		return -EINVAL;

2077 2078 2079
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2080 2081 2082 2083

	return 0;
}

2084 2085
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2086 2087 2088 2089 2090 2091 2092 2093
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2105 2106
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2107 2108 2109
	if (ret)
		goto out_err;

2110 2111 2112 2113 2114 2115
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2129
/* FIXME: Move this to PCI code */
2130
#define PCI_PRI_TLP_OFF		(1 << 15)
2131

J
Joerg Roedel 已提交
2132
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2133
{
2134
	u16 status;
2135 2136
	int pos;

2137
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2138 2139 2140
	if (!pos)
		return false;

2141
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2142

2143
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2144 2145
}

2146
/*
F
Frank Arnold 已提交
2147
 * If a device is not yet associated with a domain, this function
2148 2149
 * assigns it visible for the hardware
 */
2150 2151
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2152
{
2153
	struct pci_dev *pdev = to_pci_dev(dev);
2154
	struct iommu_dev_data *dev_data;
2155
	unsigned long flags;
2156
	int ret;
2157

2158 2159
	dev_data = get_dev_data(dev);

2160
	if (domain->flags & PD_IOMMUV2_MASK) {
2161
		if (!dev_data->passthrough)
2162 2163
			return -EINVAL;

2164 2165 2166
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2167

2168 2169 2170 2171
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2172 2173
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2174 2175 2176
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2177

2178
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2179
	ret = __attach_device(dev_data, domain);
2180 2181
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2182 2183 2184 2185 2186
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2187
	domain_flush_tlb_pde(domain);
2188 2189

	return ret;
2190 2191
}

2192 2193 2194
/*
 * Removes a device from a protection domain (unlocked)
 */
2195
static void __detach_device(struct iommu_dev_data *dev_data)
2196
{
2197
	struct protection_domain *domain;
2198

2199 2200 2201 2202 2203 2204
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2205 2206
	if (WARN_ON(!dev_data->domain))
		return;
2207

2208 2209
	domain = dev_data->domain;

2210
	spin_lock(&domain->lock);
2211

2212
	do_detach(dev_data);
2213

2214
	spin_unlock(&domain->lock);
2215 2216 2217 2218 2219
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2220
static void detach_device(struct device *dev)
2221
{
2222
	struct protection_domain *domain;
2223
	struct iommu_dev_data *dev_data;
2224 2225
	unsigned long flags;

2226
	dev_data = get_dev_data(dev);
2227
	domain   = dev_data->domain;
2228

2229 2230
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2231
	__detach_device(dev_data);
2232
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2233

2234
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2235 2236
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2237
		pci_disable_ats(to_pci_dev(dev));
2238 2239

	dev_data->ats.enabled = false;
2240
}
2241

2242
static int amd_iommu_add_device(struct device *dev)
2243
{
2244
	struct iommu_dev_data *dev_data;
2245
	struct iommu_domain *domain;
2246
	struct amd_iommu *iommu;
2247
	u16 devid;
2248
	int ret;
2249

2250
	if (!check_device(dev) || get_dev_data(dev))
2251
		return 0;
2252

2253 2254
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2255

2256
	ret = iommu_init_device(dev);
2257 2258 2259 2260
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2261

2262
		iommu_ignore_device(dev);
2263
		dev->archdata.dma_ops = &nommu_dma_ops;
2264 2265 2266
		goto out;
	}
	init_iommu_group(dev);
2267

2268
	dev_data = get_dev_data(dev);
2269

2270
	BUG_ON(!dev_data);
2271

2272
	if (iommu_pass_through || dev_data->iommu_v2)
2273
		iommu_request_dm_for_dev(dev);
2274

2275 2276
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2277
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2278
		dev_data->passthrough = true;
2279
	else
2280
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2281

2282
out:
2283 2284 2285 2286 2287
	iommu_completion_wait(iommu);

	return 0;
}

2288
static void amd_iommu_remove_device(struct device *dev)
2289
{
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2316
static struct protection_domain *get_domain(struct device *dev)
2317
{
2318
	struct protection_domain *domain;
2319
	struct iommu_domain *io_domain;
2320

2321
	if (!check_device(dev))
2322
		return ERR_PTR(-EINVAL);
2323

2324
	io_domain = iommu_get_domain_for_dev(dev);
2325 2326
	if (!io_domain)
		return NULL;
2327

2328 2329
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2330
		return ERR_PTR(-EBUSY);
2331

2332
	return domain;
2333 2334
}

2335 2336
static void update_device_table(struct protection_domain *domain)
{
2337
	struct iommu_dev_data *dev_data;
2338

2339 2340
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2341 2342 2343 2344 2345 2346 2347 2348
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2349 2350 2351

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2352 2353 2354 2355

	domain->updated = false;
}

2356 2357 2358 2359 2360 2361
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2362
	struct aperture_range *aperture;
2363 2364
	u64 *pte, *pte_page;

2365 2366 2367 2368 2369
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2370
	if (!pte) {
2371
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2372
				GFP_ATOMIC);
2373 2374
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2375
		pte += PM_LEVEL_INDEX(0, address);
2376

2377
	update_domain(&dom->domain);
2378 2379 2380 2381

	return pte;
}

2382 2383 2384 2385
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2386
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2397
	pte  = dma_ops_get_pte(dom, address);
2398
	if (!pte)
2399
		return DMA_ERROR_CODE;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2417 2418 2419
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2420
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2421 2422
				 unsigned long address)
{
2423
	struct aperture_range *aperture;
2424 2425 2426 2427 2428
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2429 2430 2431 2432 2433 2434 2435
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2436

2437
	pte += PM_LEVEL_INDEX(0, address);
2438 2439 2440 2441 2442 2443

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2444 2445
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2446 2447
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2448 2449
 * Must be called with the domain lock held.
 */
2450 2451 2452 2453
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2454
			       int dir,
2455 2456
			       bool align,
			       u64 dma_mask)
2457 2458
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2459
	dma_addr_t address, start, ret;
2460
	unsigned int pages;
2461
	unsigned long align_mask = 0;
2462 2463
	int i;

2464
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2465 2466
	paddr &= PAGE_MASK;

2467 2468
	INC_STATS_COUNTER(total_map_requests);

2469 2470 2471
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2472 2473 2474
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2475
retry:
2476 2477
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2478
	if (unlikely(address == DMA_ERROR_CODE)) {
2479 2480 2481 2482 2483 2484 2485
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2486
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2487 2488 2489
			goto out;

		/*
2490
		 * aperture was successfully enlarged by 128 MB, try
2491 2492 2493 2494
		 * allocation again
		 */
		goto retry;
	}
2495 2496 2497

	start = address;
	for (i = 0; i < pages; ++i) {
2498
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2499
		if (ret == DMA_ERROR_CODE)
2500 2501
			goto out_unmap;

2502 2503 2504 2505 2506
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2507 2508
	ADD_STATS_COUNTER(alloced_io_mem, size);

2509
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2510
		domain_flush_tlb(&dma_dom->domain);
2511
		dma_dom->need_flush = false;
2512
	} else if (unlikely(amd_iommu_np_cache))
2513
		domain_flush_pages(&dma_dom->domain, address, size);
2514

2515 2516
out:
	return address;
2517 2518 2519 2520 2521

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2522
		dma_ops_domain_unmap(dma_dom, start);
2523 2524 2525 2526
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2527
	return DMA_ERROR_CODE;
2528 2529
}

2530 2531 2532 2533
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2534
static void __unmap_single(struct dma_ops_domain *dma_dom,
2535 2536 2537 2538
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2539
	dma_addr_t flush_addr;
2540 2541 2542
	dma_addr_t i, start;
	unsigned int pages;

2543
	if ((dma_addr == DMA_ERROR_CODE) ||
2544
	    (dma_addr + size > dma_dom->aperture_size))
2545 2546
		return;

2547
	flush_addr = dma_addr;
2548
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2549 2550 2551 2552
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2553
		dma_ops_domain_unmap(dma_dom, start);
2554 2555 2556
		start += PAGE_SIZE;
	}

2557 2558
	SUB_STATS_COUNTER(alloced_io_mem, size);

2559
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2560

2561
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2562
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2563 2564
		dma_dom->need_flush = false;
	}
2565 2566
}

2567 2568 2569
/*
 * The exported map_single function for dma_ops.
 */
2570 2571 2572 2573
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2574 2575 2576 2577
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2578
	u64 dma_mask;
2579
	phys_addr_t paddr = page_to_phys(page) + offset;
2580

2581 2582
	INC_STATS_COUNTER(cnt_map_single);

2583 2584
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2585
		return (dma_addr_t)paddr;
2586 2587
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2588

2589 2590
	dma_mask = *dev->dma_mask;

2591
	spin_lock_irqsave(&domain->lock, flags);
2592

2593
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2594
			    dma_mask);
2595
	if (addr == DMA_ERROR_CODE)
2596 2597
		goto out;

2598
	domain_flush_complete(domain);
2599 2600 2601 2602 2603 2604 2605

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2606 2607 2608
/*
 * The exported unmap_single function for dma_ops.
 */
2609 2610
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2611 2612 2613 2614
{
	unsigned long flags;
	struct protection_domain *domain;

2615 2616
	INC_STATS_COUNTER(cnt_unmap_single);

2617 2618
	domain = get_domain(dev);
	if (IS_ERR(domain))
2619 2620
		return;

2621 2622
	spin_lock_irqsave(&domain->lock, flags);

2623
	__unmap_single(domain->priv, dma_addr, size, dir);
2624

2625
	domain_flush_complete(domain);
2626 2627 2628 2629

	spin_unlock_irqrestore(&domain->lock, flags);
}

2630 2631 2632 2633
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2634
static int map_sg(struct device *dev, struct scatterlist *sglist,
2635 2636
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2637 2638 2639 2640 2641 2642 2643
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2644
	u64 dma_mask;
2645

2646 2647
	INC_STATS_COUNTER(cnt_map_sg);

2648
	domain = get_domain(dev);
2649
	if (IS_ERR(domain))
2650
		return 0;
2651

2652
	dma_mask = *dev->dma_mask;
2653 2654 2655 2656 2657 2658

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2659
		s->dma_address = __map_single(dev, domain->priv,
2660 2661
					      paddr, s->length, dir, false,
					      dma_mask);
2662 2663 2664 2665 2666 2667 2668 2669

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2670
	domain_flush_complete(domain);
2671 2672 2673 2674 2675 2676 2677 2678

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2679
			__unmap_single(domain->priv, s->dma_address,
2680 2681 2682 2683 2684 2685 2686 2687 2688
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2689 2690 2691 2692
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2693
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2694 2695
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2696 2697 2698 2699 2700 2701
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2702 2703
	INC_STATS_COUNTER(cnt_unmap_sg);

2704 2705
	domain = get_domain(dev);
	if (IS_ERR(domain))
2706 2707
		return;

2708 2709 2710
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2711
		__unmap_single(domain->priv, s->dma_address,
2712 2713 2714 2715
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2716
	domain_flush_complete(domain);
2717 2718 2719 2720

	spin_unlock_irqrestore(&domain->lock, flags);
}

2721 2722 2723
/*
 * The exported alloc_coherent function for dma_ops.
 */
2724
static void *alloc_coherent(struct device *dev, size_t size,
2725 2726
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2727
{
2728
	u64 dma_mask = dev->coherent_dma_mask;
2729 2730 2731
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2732

2733 2734
	INC_STATS_COUNTER(cnt_alloc_coherent);

2735 2736
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2737 2738 2739
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2740 2741
	} else if (IS_ERR(domain))
		return NULL;
2742

2743
	size	  = PAGE_ALIGN(size);
2744 2745
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2746
	flag     |= __GFP_ZERO;
2747

2748 2749 2750 2751
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2752

2753 2754 2755 2756 2757
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2758

2759 2760 2761
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2762 2763
	spin_lock_irqsave(&domain->lock, flags);

2764
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2765
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2766

2767
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2768
		spin_unlock_irqrestore(&domain->lock, flags);
2769
		goto out_free;
J
Jiri Slaby 已提交
2770
	}
2771

2772
	domain_flush_complete(domain);
2773 2774 2775

	spin_unlock_irqrestore(&domain->lock, flags);

2776
	return page_address(page);
2777 2778 2779

out_free:

2780 2781
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2782 2783

	return NULL;
2784 2785
}

2786 2787 2788
/*
 * The exported free_coherent function for dma_ops.
 */
2789
static void free_coherent(struct device *dev, size_t size,
2790 2791
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2792 2793
{
	struct protection_domain *domain;
2794 2795
	unsigned long flags;
	struct page *page;
2796

2797 2798
	INC_STATS_COUNTER(cnt_free_coherent);

2799 2800 2801
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2802 2803
	domain = get_domain(dev);
	if (IS_ERR(domain))
2804 2805
		goto free_mem;

2806 2807
	spin_lock_irqsave(&domain->lock, flags);

2808
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2809

2810
	domain_flush_complete(domain);
2811 2812 2813 2814

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2815 2816
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2817 2818
}

2819 2820 2821 2822 2823 2824
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2825
	return check_device(dev);
2826 2827
}

2828
static struct dma_map_ops amd_iommu_dma_ops = {
2829 2830
	.alloc = alloc_coherent,
	.free = free_coherent,
2831 2832
	.map_page = map_page,
	.unmap_page = unmap_page,
2833 2834
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2835
	.dma_supported = amd_iommu_dma_supported,
2836 2837
};

2838
int __init amd_iommu_init_api(void)
2839
{
2840
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2841 2842
}

2843 2844
int __init amd_iommu_init_dma_ops(void)
{
2845
	swiotlb        = iommu_pass_through ? 1 : 0;
2846 2847
	iommu_detected = 1;

2848 2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2857 2858
	amd_iommu_stats_init();

2859 2860 2861 2862 2863
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2864 2865
	return 0;
}
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2879
	struct iommu_dev_data *entry;
2880 2881 2882 2883
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2884 2885 2886 2887
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2888
	}
2889 2890 2891 2892

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2893 2894 2895 2896 2897
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2898 2899
	del_domain_from_list(domain);

2900 2901 2902 2903 2904 2905
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2918
static struct protection_domain *protection_domain_alloc(void)
2919 2920 2921 2922 2923
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2924
		return NULL;
2925

2926
	if (protection_domain_init(domain))
2927 2928
		goto out_err;

2929 2930
	add_domain_to_list(domain);

2931 2932 2933 2934 2935 2936 2937 2938
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2939
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2940
{
2941
	struct protection_domain *pdomain;
2942
	struct dma_ops_domain *dma_domain;
2943

2944 2945 2946 2947 2948
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2949

2950 2951 2952 2953 2954 2955
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2956

2957 2958 2959
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2970 2971 2972 2973
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2974

2975 2976
		pdomain->mode = PAGE_MODE_NONE;
		break;
2977 2978 2979
	default:
		return NULL;
	}
2980

2981
	return &pdomain->domain;
2982 2983
}

2984
static void amd_iommu_domain_free(struct iommu_domain *dom)
2985
{
2986
	struct protection_domain *domain;
2987

2988
	if (!dom)
2989 2990
		return;

2991 2992
	domain = to_pdomain(dom);

2993 2994 2995 2996 2997
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2998 2999
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3000

3001 3002 3003
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3004
	protection_domain_free(domain);
3005 3006
}

3007 3008 3009
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3010
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3011 3012 3013
	struct amd_iommu *iommu;
	u16 devid;

3014
	if (!check_device(dev))
3015 3016
		return;

3017
	devid = get_device_id(dev);
3018

3019
	if (dev_data->domain != NULL)
3020
		detach_device(dev);
3021 3022 3023 3024 3025 3026 3027 3028

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3029 3030 3031
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3032
	struct protection_domain *domain = to_pdomain(dom);
3033
	struct iommu_dev_data *dev_data;
3034
	struct amd_iommu *iommu;
3035
	int ret;
3036

3037
	if (!check_device(dev))
3038 3039
		return -EINVAL;

3040 3041
	dev_data = dev->archdata.iommu;

3042
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3043 3044 3045
	if (!iommu)
		return -EINVAL;

3046
	if (dev_data->domain)
3047
		detach_device(dev);
3048

3049
	ret = attach_device(dev, domain);
3050 3051 3052

	iommu_completion_wait(iommu);

3053
	return ret;
3054 3055
}

3056
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3057
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3058
{
3059
	struct protection_domain *domain = to_pdomain(dom);
3060 3061 3062
	int prot = 0;
	int ret;

3063 3064 3065
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3066 3067 3068 3069 3070
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3071
	mutex_lock(&domain->api_lock);
3072
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3073 3074
	mutex_unlock(&domain->api_lock);

3075
	return ret;
3076 3077
}

3078 3079
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3080
{
3081
	struct protection_domain *domain = to_pdomain(dom);
3082
	size_t unmap_size;
3083

3084 3085 3086
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3087
	mutex_lock(&domain->api_lock);
3088
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3089
	mutex_unlock(&domain->api_lock);
3090

3091
	domain_flush_tlb_pde(domain);
3092

3093
	return unmap_size;
3094 3095
}

3096
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3097
					  dma_addr_t iova)
3098
{
3099
	struct protection_domain *domain = to_pdomain(dom);
3100
	unsigned long offset_mask, pte_pgsize;
3101
	u64 *pte, __pte;
3102

3103 3104 3105
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3106
	pte = fetch_pte(domain, iova, &pte_pgsize);
3107

3108
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3109 3110
		return 0;

3111 3112
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3113

3114
	return (__pte & ~offset_mask) | (iova & offset_mask);
3115 3116
}

3117
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3118
{
3119 3120
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3121
		return true;
3122
	case IOMMU_CAP_INTR_REMAP:
3123
		return (irq_remapping_enabled == 1);
3124 3125
	case IOMMU_CAP_NOEXEC:
		return false;
3126 3127
	}

3128
	return false;
S
Sheng Yang 已提交
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3172
static const struct iommu_ops amd_iommu_ops = {
3173
	.capable = amd_iommu_capable,
3174 3175
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3176 3177
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3178 3179
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3180
	.map_sg = default_iommu_map_sg,
3181
	.iova_to_phys = amd_iommu_iova_to_phys,
3182 3183
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3184 3185
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3186
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3187 3188
};

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3211 3212 3213

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3214
	struct protection_domain *domain = to_pdomain(dom);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3232 3233 3234

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3235
	struct protection_domain *domain = to_pdomain(dom);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3313 3314 3315 3316 3317 3318
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3344 3345
	INC_STATS_COUNTER(invalidate_iotlb);

3346 3347 3348 3349 3350 3351
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3352
	struct protection_domain *domain = to_pdomain(dom);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3366 3367
	INC_STATS_COUNTER(invalidate_iotlb_all);

3368 3369 3370 3371 3372 3373
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3374
	struct protection_domain *domain = to_pdomain(dom);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3454
	struct protection_domain *domain = to_pdomain(dom);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3468
	struct protection_domain *domain = to_pdomain(dom);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3479 3480 3481 3482 3483 3484 3485 3486

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3487 3488
	INC_STATS_COUNTER(complete_ppr);

3489 3490 3491 3492 3493 3494 3495 3496 3497
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3498 3499 3500

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3501
	struct protection_domain *pdomain;
3502

3503 3504
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3505 3506 3507
		return NULL;

	/* Only return IOMMUv2 domains */
3508
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3509 3510
		return NULL;

3511
	return &pdomain->domain;
3512 3513
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3593 3594 3595 3596 3597
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3660 3661 3662
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3663 3664 3665 3666 3667 3668 3669
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3670
		table = NULL;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3688
		set_dte_irq_entry(alias, table);
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3701
static int alloc_irq_index(u16 devid, int count)
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3785
static int get_devid(struct irq_alloc_info *info)
3786
{
3787
	int devid = -1;
3788

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3804

3805 3806
	return devid;
}
3807

3808 3809 3810 3811
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3812

3813 3814
	if (!info)
		return NULL;
3815

3816 3817 3818 3819 3820 3821
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3822

3823
	return NULL;
3824 3825
}

3826
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3827
{
3828 3829
	struct amd_iommu *iommu;
	int devid;
3830

3831 3832
	if (!info)
		return NULL;
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3847

3848 3849
	return NULL;
}
3850

3851 3852 3853 3854 3855 3856
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3857 3858 3859
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3870

3871 3872
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3873

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3896

3897 3898 3899 3900 3901 3902 3903
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3904

3905 3906 3907 3908
	default:
		BUG_ON(1);
		break;
	}
3909 3910
}

3911 3912
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3913
{
3914 3915 3916
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3917
	struct irq_cfg *cfg;
3918 3919
	int i, ret, devid;
	int index = -1;
3920

3921 3922 3923 3924
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3925 3926
		return -EINVAL;

3927 3928 3929 3930 3931 3932
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3933

3934 3935 3936
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3937

3938 3939 3940
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3941

3942 3943 3944 3945 3946 3947
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3948
		index = alloc_irq_index(devid, nr_irqs);
3949 3950 3951 3952 3953
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3954

3955 3956 3957 3958 3959 3960 3961
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3962

3963 3964 3965 3966 3967
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3968 3969 3970 3971 3972 3973
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3974

3975
	return 0;
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3988 3989
}

3990 3991
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3992
{
3993 3994 3995 3996
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4009

4010 4011 4012 4013 4014
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4015

4016
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4017 4018
}

4019 4020
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4021
{
4022 4023 4024
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4025

4026 4027 4028
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4029

4030 4031 4032 4033 4034
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4035
};
4036

4037 4038 4039 4040 4041 4042 4043 4044
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4045

4046 4047 4048
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4049

4050 4051 4052 4053 4054 4055 4056
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4057

4058 4059 4060 4061 4062
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4063
	send_cleanup_vector(cfg);
4064 4065

	return IRQ_SET_MASK_OK_DONE;
4066 4067
}

4068
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4069
{
4070
	struct amd_ir_data *ir_data = irq_data->chip_data;
4071

4072 4073
	*msg = ir_data->msi_entry;
}
4074

4075 4076 4077 4078 4079
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4080

4081 4082 4083 4084 4085
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4086

4087 4088
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4089 4090 4091

	return 0;
}
4092
#endif