amd_iommu.c 64.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
21
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <linux/amd-iommu.h>
31
#include <asm/msidef.h>
32
#include <asm/proto.h>
33
#include <asm/iommu.h>
34
#include <asm/gart.h>
35
#include <asm/dma.h>
36 37 38

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
39 40 41

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

42
#define LOOP_TIMEOUT	100000
43

44 45
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

46 47 48 49
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

50 51 52 53
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

54 55 56 57 58 59
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

60 61
static struct iommu_ops amd_iommu_ops;

62 63 64
/*
 * general struct to manage commands send to an IOMMU
 */
65
struct iommu_cmd {
66 67 68
	u32 data[4];
};

69
static void update_domain(struct protection_domain *domain);
70

71 72 73 74 75 76
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

77
static struct iommu_dev_data *alloc_dev_data(u16 devid)
78 79 80 81 82 83 84 85
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

86
	dev_data->devid = devid;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

138 139 140 141 142 143 144
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

145 146 147 148 149
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

178 179 180 181 182 183 184 185 186 187 188 189
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
190
	if (dev->bus != &pci_bus_type)
191 192 193 194 195 196 197 198 199 200 201 202 203 204
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

205 206 207
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
208
	u16 alias;
209 210 211 212

	if (dev->archdata.iommu)
		return 0;

213
	dev_data = find_dev_data(get_device_id(dev));
214 215 216
	if (!dev_data)
		return -ENOMEM;

217
	alias = amd_iommu_alias_table[dev_data->devid];
218
	if (alias != dev_data->devid) {
219
		struct iommu_dev_data *alias_data;
220

221 222 223 224
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
225 226 227
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
228
		dev_data->alias_data = alias_data;
229
	}
230 231 232 233 234 235

	dev->archdata.iommu = dev_data;

	return 0;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

250 251
static void iommu_uninit_device(struct device *dev)
{
252 253 254 255 256
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
257
}
J
Joerg Roedel 已提交
258 259 260

void __init amd_iommu_uninit_devices(void)
{
261
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
262 263 264 265 266 267 268 269 270
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
271 272 273 274

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
288 289 290
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
291 292 293 294 295 296 297 298 299 300 301
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
302 303 304 305 306 307
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

308
DECLARE_STATS_COUNTER(compl_wait);
309
DECLARE_STATS_COUNTER(cnt_map_single);
310
DECLARE_STATS_COUNTER(cnt_unmap_single);
311
DECLARE_STATS_COUNTER(cnt_map_sg);
312
DECLARE_STATS_COUNTER(cnt_unmap_sg);
313
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
314
DECLARE_STATS_COUNTER(cnt_free_coherent);
315
DECLARE_STATS_COUNTER(cross_page);
316
DECLARE_STATS_COUNTER(domain_flush_single);
317
DECLARE_STATS_COUNTER(domain_flush_all);
318
DECLARE_STATS_COUNTER(alloced_io_mem);
319
DECLARE_STATS_COUNTER(total_map_requests);
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
341 342

	amd_iommu_stats_add(&compl_wait);
343
	amd_iommu_stats_add(&cnt_map_single);
344
	amd_iommu_stats_add(&cnt_unmap_single);
345
	amd_iommu_stats_add(&cnt_map_sg);
346
	amd_iommu_stats_add(&cnt_unmap_sg);
347
	amd_iommu_stats_add(&cnt_alloc_coherent);
348
	amd_iommu_stats_add(&cnt_free_coherent);
349
	amd_iommu_stats_add(&cross_page);
350
	amd_iommu_stats_add(&domain_flush_single);
351
	amd_iommu_stats_add(&domain_flush_all);
352
	amd_iommu_stats_add(&alloced_io_mem);
353
	amd_iommu_stats_add(&total_map_requests);
354 355 356 357
}

#endif

358 359 360 361 362 363
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

364 365 366 367 368 369 370 371 372
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

373 374 375 376 377 378 379 380 381
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

382
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
383 384 385 386 387 388 389 390
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

391
	printk(KERN_ERR "AMD-Vi: Event logged [");
392 393 394 395 396 397 398

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
399
		dump_dte_entry(devid);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
421
		dump_command(address);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
455
		iommu_print_event(iommu, iommu->evt_buf + head);
456 457 458 459 460 461 462 463
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

464
irqreturn_t amd_iommu_int_thread(int irq, void *data)
465
{
466 467
	struct amd_iommu *iommu;

468
	for_each_iommu(iommu)
469 470 471
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
472 473
}

474 475 476 477 478
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

479 480 481 482 483 484
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
505 506 507
{
	u8 *target;

508
	target = iommu->cmd_buf + tail;
509 510 511 512 513 514
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
515
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
516
}
517

518
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
519
{
520 521
	WARN_ON(address & 0x7ULL);

522
	memset(cmd, 0, sizeof(*cmd));
523 524 525
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
526 527 528
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

529 530 531 532 533 534 535
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

598 599 600 601
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
602 603
}

604 605
/*
 * Writes the command to the IOMMUs command buffer and informs the
606
 * hardware about the new command.
607
 */
608
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
609
{
610
	u32 left, tail, head, next_tail;
611 612
	unsigned long flags;

613
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
614 615

again:
616 617
	spin_lock_irqsave(&iommu->lock, flags);

618 619 620 621
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
622

623 624 625 626
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
627

628 629
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
630

631 632 633 634 635 636
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
637 638
	}

639 640 641
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
642
	iommu->need_sync = true;
643

644
	spin_unlock_irqrestore(&iommu->lock, flags);
645

646
	return 0;
647 648 649 650 651 652
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
653
static int iommu_completion_wait(struct amd_iommu *iommu)
654 655
{
	struct iommu_cmd cmd;
656
	volatile u64 sem = 0;
657
	int ret;
658

659
	if (!iommu->need_sync)
660
		return 0;
661

662
	build_completion_wait(&cmd, (u64)&sem);
663

664
	ret = iommu_queue_command(iommu, &cmd);
665
	if (ret)
666
		return ret;
667

668
	return wait_on_sem(&sem);
669 670
}

671
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
672
{
673
	struct iommu_cmd cmd;
674

675
	build_inv_dte(&cmd, devid);
676

677 678
	return iommu_queue_command(iommu, &cmd);
}
679

680 681 682
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
683

684 685
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
686

687 688
	iommu_completion_wait(iommu);
}
689

690 691 692 693 694 695 696
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
697

698 699 700 701 702 703
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
704

705
	iommu_completion_wait(iommu);
706 707
}

708
static void iommu_flush_all(struct amd_iommu *iommu)
709
{
710
	struct iommu_cmd cmd;
711

712
	build_inv_all(&cmd);
713

714 715 716 717
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

718 719
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
720 721 722 723 724
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
725 726 727
	}
}

728
/*
729
 * Command send function for flushing on-device TLB
730
 */
731 732
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
733 734
{
	struct amd_iommu *iommu;
735
	struct iommu_cmd cmd;
736
	int qdep;
737

738 739
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
740

741
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
742 743

	return iommu_queue_command(iommu, &cmd);
744 745
}

746 747 748
/*
 * Command send function for invalidating a device table entry
 */
749
static int device_flush_dte(struct iommu_dev_data *dev_data)
750
{
751
	struct amd_iommu *iommu;
752
	int ret;
753

754
	iommu = amd_iommu_rlookup_table[dev_data->devid];
755

756
	ret = iommu_flush_dte(iommu, dev_data->devid);
757 758 759
	if (ret)
		return ret;

760
	if (dev_data->ats.enabled)
761
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
762 763

	return ret;
764 765
}

766 767 768 769 770
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
771 772
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
773
{
774
	struct iommu_dev_data *dev_data;
775 776
	struct iommu_cmd cmd;
	int ret = 0, i;
777

778
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
779

780 781 782 783 784 785 786 787
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
788
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
789 790
	}

791 792
	list_for_each_entry(dev_data, &domain->dev_list, list) {

793
		if (!dev_data->ats.enabled)
794 795
			continue;

796
		ret |= device_flush_iotlb(dev_data, address, size);
797 798
	}

799
	WARN_ON(ret);
800 801
}

802 803
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
804
{
805
	__domain_flush_pages(domain, address, size, 0);
806
}
807

808
/* Flush the whole IO/TLB for a given protection domain */
809
static void domain_flush_tlb(struct protection_domain *domain)
810
{
811
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
812 813
}

814
/* Flush the whole IO/TLB for a given protection domain - including PDE */
815
static void domain_flush_tlb_pde(struct protection_domain *domain)
816
{
817
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
818 819
}

820
static void domain_flush_complete(struct protection_domain *domain)
821
{
822
	int i;
823

824 825 826
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
827

828 829 830 831 832
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
833
	}
834 835
}

836

837
/*
838
 * This function flushes the DTEs for all devices in domain
839
 */
840
static void domain_flush_devices(struct protection_domain *domain)
841
{
842
	struct iommu_dev_data *dev_data;
843 844
	unsigned long flags;

845
	spin_lock_irqsave(&domain->lock, flags);
846

847
	list_for_each_entry(dev_data, &domain->dev_list, list)
848
		device_flush_dte(dev_data);
849

850
	spin_unlock_irqrestore(&domain->lock, flags);
851 852
}

853 854 855 856 857 858 859
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
889
		      unsigned long page_size,
890 891 892
		      u64 **pte_page,
		      gfp_t gfp)
{
893
	int level, end_lvl;
894
	u64 *pte, *page;
895 896

	BUG_ON(!is_power_of_2(page_size));
897 898 899 900

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

901 902 903 904
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
905 906 907 908 909 910 911 912 913

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

914 915 916 917
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
935
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
936 937 938 939
{
	int level;
	u64 *pte;

940 941 942 943 944
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
945

946 947 948
	while (level > 0) {

		/* Not Present */
949 950 951
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

971 972
		level -= 1;

973
		/* Walk to the next level */
974 975 976 977 978 979 980
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

981 982 983 984 985 986 987
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
988 989 990
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
991
			  int prot,
992
			  unsigned long page_size)
993
{
994
	u64 __pte, *pte;
995
	int i, count;
996

997
	if (!(prot & IOMMU_PROT_MASK))
998 999
		return -EINVAL;

1000 1001 1002 1003 1004 1005 1006 1007
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1008

1009 1010 1011 1012 1013
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1014 1015 1016 1017 1018 1019

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1020 1021
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1022

1023 1024
	update_domain(dom);

1025 1026 1027
	return 0;
}

1028 1029 1030
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1031
{
1032 1033 1034 1035 1036 1037
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1068

1069
	return unmapped;
1070 1071
}

1072 1073 1074 1075
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1090 1091 1092 1093
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1094 1095 1096 1097 1098 1099 1100 1101
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1102
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1103
				     PAGE_SIZE);
1104 1105 1106 1107 1108 1109 1110
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1111
			__set_bit(addr >> PAGE_SHIFT,
1112
				  dma_dom->aperture[0]->bitmap);
1113 1114 1115 1116 1117
	}

	return 0;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1140 1141 1142
/*
 * Inits the unity mappings required for a specific device
 */
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1160 1161 1162 1163 1164 1165 1166 1167 1168
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1169

1170
/*
1171
 * The address allocator core functions.
1172 1173 1174
 *
 * called with domain->lock held
 */
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1196 1197 1198 1199 1200
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1201
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1202 1203 1204
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1205
	struct amd_iommu *iommu;
1206
	unsigned long i, old_size;
1207

1208 1209 1210 1211
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1231
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1242
	old_size                = dma_dom->aperture_size;
1243 1244
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1257
	/* Initialize the exclusion range if necessary */
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1280
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1281 1282 1283 1284 1285 1286
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1287 1288
	update_domain(&dma_dom->domain);

1289 1290 1291
	return 0;

out_free:
1292 1293
	update_domain(&dma_dom->domain);

1294 1295 1296 1297 1298 1299 1300 1301
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1302 1303 1304 1305 1306 1307 1308
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1309
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1310 1311 1312 1313 1314 1315
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1316 1317
	next_bit >>= PAGE_SHIFT;

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1336
			dom->next_address = address + (pages << PAGE_SHIFT);
1337 1338 1339 1340 1341 1342 1343 1344 1345
			break;
		}

		next_bit = 0;
	}

	return address;
}

1346 1347
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1348
					     unsigned int pages,
1349 1350
					     unsigned long align_mask,
					     u64 dma_mask)
1351 1352 1353
{
	unsigned long address;

1354 1355 1356 1357
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1358

1359
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1360
				     dma_mask, dom->next_address);
1361

1362
	if (address == -1) {
1363
		dom->next_address = 0;
1364 1365
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1366 1367
		dom->need_flush = true;
	}
1368

1369
	if (unlikely(address == -1))
1370
		address = DMA_ERROR_CODE;
1371 1372 1373 1374 1375 1376

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1377 1378 1379 1380 1381
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1382 1383 1384 1385
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1386 1387
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1388

1389 1390
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1391 1392 1393 1394
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1395

1396
	if (address >= dom->next_address)
1397
		dom->need_flush = true;
1398 1399

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1400

A
Akinobu Mita 已提交
1401
	bitmap_clear(range->bitmap, address, pages);
1402

1403 1404
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1467
static void free_pagetable(struct protection_domain *domain)
1468 1469 1470 1471
{
	int i, j;
	u64 *p1, *p2, *p3;

1472
	p1 = domain->pt_root;
1473 1474 1475 1476 1477 1478 1479 1480 1481

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1482
		for (j = 0; j < 512; ++j) {
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1493 1494

	domain->pt_root = NULL;
1495 1496
}

1497 1498 1499 1500
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1501 1502
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1503 1504
	int i;

1505 1506 1507
	if (!dom)
		return;

1508 1509
	del_domain_from_list(&dom->domain);

1510
	free_pagetable(&dom->domain);
1511

1512 1513 1514 1515 1516 1517
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1518 1519 1520 1521

	kfree(dom);
}

1522 1523
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1524
 * It also initializes the page table and the address allocator data
1525 1526
 * structures required for the dma_ops interface
 */
1527
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1540
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1541
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1542
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1543
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1544 1545 1546 1547
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1548
	dma_dom->need_flush = false;
1549
	dma_dom->target_dev = 0xffff;
1550

1551 1552
	add_domain_to_list(&dma_dom->domain);

1553
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1554 1555
		goto free_dma_dom;

1556
	/*
1557 1558
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1559
	 */
1560
	dma_dom->aperture[0]->bitmap[0] = 1;
1561
	dma_dom->next_address = 0;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1581
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1582 1583
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1584
	u32 flags = 0;
1585

1586 1587 1588
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1589

1590 1591 1592 1593 1594 1595 1596
	if (ats)
		flags |= DTE_FLAG_IOTLB;

	amd_iommu_dev_table[devid].data[3] |= flags;
	amd_iommu_dev_table[devid].data[2]  = domain->id;
	amd_iommu_dev_table[devid].data[1]  = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0]  = lower_32_bits(pte_root);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1607 1608
}

1609 1610
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1611 1612
{
	struct amd_iommu *iommu;
1613
	bool ats;
1614

1615 1616
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1617 1618 1619 1620

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1621
	set_dte_entry(dev_data->devid, domain, ats);
1622 1623 1624 1625 1626 1627

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1628
	device_flush_dte(dev_data);
1629 1630
}

1631
static void do_detach(struct iommu_dev_data *dev_data)
1632 1633 1634
{
	struct amd_iommu *iommu;

1635
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1636 1637

	/* decrease reference counters */
1638 1639 1640 1641 1642 1643
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1644
	clear_dte_entry(dev_data->devid);
1645

1646
	/* Flush the DTE entry */
1647
	device_flush_dte(dev_data);
1648 1649 1650 1651 1652 1653
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1654
static int __attach_device(struct iommu_dev_data *dev_data,
1655
			   struct protection_domain *domain)
1656
{
1657
	int ret;
1658

1659 1660 1661
	/* lock domain */
	spin_lock(&domain->lock);

1662 1663
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1664

1665 1666 1667 1668 1669
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1670

1671 1672 1673
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1674

1675
		/* Do real assignment */
1676
		if (alias_data->domain == NULL)
1677
			do_attach(alias_data, domain);
1678 1679

		atomic_inc(&alias_data->bind);
1680
	}
1681

1682
	if (dev_data->domain == NULL)
1683
		do_attach(dev_data, domain);
1684

1685 1686
	atomic_inc(&dev_data->bind);

1687 1688 1689 1690
	ret = 0;

out_unlock:

1691 1692
	/* ready */
	spin_unlock(&domain->lock);
1693

1694
	return ret;
1695
}
1696

1697 1698 1699 1700
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1701 1702
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1703
{
1704
	struct pci_dev *pdev = to_pci_dev(dev);
1705
	struct iommu_dev_data *dev_data;
1706
	unsigned long flags;
1707
	int ret;
1708

1709 1710 1711 1712 1713 1714
	dev_data = get_dev_data(dev);

	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1715

1716
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1717
	ret = __attach_device(dev_data, domain);
1718 1719
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1720 1721 1722 1723 1724
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1725
	domain_flush_tlb_pde(domain);
1726 1727

	return ret;
1728 1729
}

1730 1731 1732
/*
 * Removes a device from a protection domain (unlocked)
 */
1733
static void __detach_device(struct iommu_dev_data *dev_data)
1734
{
1735
	struct protection_domain *domain;
1736
	unsigned long flags;
1737

1738
	BUG_ON(!dev_data->domain);
1739

1740 1741 1742
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1743

1744 1745 1746
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

1747
		if (atomic_dec_and_test(&alias_data->bind))
1748
			do_detach(alias_data);
1749 1750
	}

1751
	if (atomic_dec_and_test(&dev_data->bind))
1752
		do_detach(dev_data);
1753

1754
	spin_unlock_irqrestore(&domain->lock, flags);
1755 1756 1757

	/*
	 * If we run in passthrough mode the device must be assigned to the
1758 1759
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1760
	 */
1761 1762
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1763
		__attach_device(dev_data, pt_domain);
1764 1765 1766 1767 1768
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1769
static void detach_device(struct device *dev)
1770
{
1771
	struct iommu_dev_data *dev_data;
1772 1773
	unsigned long flags;

1774 1775
	dev_data = get_dev_data(dev);

1776 1777
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1778
	__detach_device(dev_data);
1779
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1780

1781 1782 1783 1784
	if (dev_data->ats.enabled) {
		pci_disable_ats(to_pci_dev(dev));
		dev_data->ats.enabled = false;
	}
1785
}
1786

1787 1788 1789 1790 1791 1792
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
1793
	struct iommu_dev_data *dev_data;
1794
	struct protection_domain *dom = NULL;
1795 1796
	unsigned long flags;

1797
	dev_data   = get_dev_data(dev);
1798

1799 1800
	if (dev_data->domain)
		return dev_data->domain;
1801

1802 1803
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1804 1805 1806 1807 1808 1809 1810 1811

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
1812 1813 1814 1815

	return dom;
}

1816 1817 1818 1819
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1820
	u16 devid;
1821 1822 1823
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1824
	unsigned long flags;
1825

1826 1827
	if (!check_device(dev))
		return 0;
1828

1829 1830
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1831 1832

	switch (action) {
1833
	case BUS_NOTIFY_UNBOUND_DRIVER:
1834 1835 1836

		domain = domain_for_device(dev);

1837 1838
		if (!domain)
			goto out;
1839 1840
		if (iommu_pass_through)
			break;
1841
		detach_device(dev);
1842 1843
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1844 1845 1846 1847 1848

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1849 1850 1851 1852
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1853
		dma_domain = dma_ops_domain_alloc();
1854 1855 1856 1857 1858 1859 1860 1861
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1862
		break;
1863 1864 1865 1866
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

1877
static struct notifier_block device_nb = {
1878 1879
	.notifier_call = device_change_notifier,
};
1880

1881 1882 1883 1884 1885
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1899
static struct protection_domain *get_domain(struct device *dev)
1900
{
1901
	struct protection_domain *domain;
1902
	struct dma_ops_domain *dma_dom;
1903
	u16 devid = get_device_id(dev);
1904

1905
	if (!check_device(dev))
1906
		return ERR_PTR(-EINVAL);
1907

1908 1909 1910
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1911

1912 1913
	if (domain != NULL)
		return domain;
1914

1915
	/* Device not bount yet - bind it */
1916
	dma_dom = find_protection_domain(devid);
1917
	if (!dma_dom)
1918 1919
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1920
	DUMP_printk("Using protection domain %d for device %s\n",
1921
		    dma_dom->domain.id, dev_name(dev));
1922

1923
	return &dma_dom->domain;
1924 1925
}

1926 1927
static void update_device_table(struct protection_domain *domain)
{
1928
	struct iommu_dev_data *dev_data;
1929

1930 1931
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1932 1933 1934 1935 1936 1937 1938 1939
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1940 1941 1942

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1943 1944 1945 1946

	domain->updated = false;
}

1947 1948 1949 1950 1951 1952
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1953
	struct aperture_range *aperture;
1954 1955
	u64 *pte, *pte_page;

1956 1957 1958 1959 1960
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1961
	if (!pte) {
1962
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1963
				GFP_ATOMIC);
1964 1965
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1966
		pte += PM_LEVEL_INDEX(0, address);
1967

1968
	update_domain(&dom->domain);
1969 1970 1971 1972

	return pte;
}

1973 1974 1975 1976
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1977
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1988
	pte  = dma_ops_get_pte(dom, address);
1989
	if (!pte)
1990
		return DMA_ERROR_CODE;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2008 2009 2010
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2011
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2012 2013
				 unsigned long address)
{
2014
	struct aperture_range *aperture;
2015 2016 2017 2018 2019
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2020 2021 2022 2023 2024 2025 2026
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2027

2028
	pte += PM_LEVEL_INDEX(0, address);
2029 2030 2031 2032 2033 2034

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2035 2036
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2037 2038
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2039 2040
 * Must be called with the domain lock held.
 */
2041 2042 2043 2044
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2045
			       int dir,
2046 2047
			       bool align,
			       u64 dma_mask)
2048 2049
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2050
	dma_addr_t address, start, ret;
2051
	unsigned int pages;
2052
	unsigned long align_mask = 0;
2053 2054
	int i;

2055
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2056 2057
	paddr &= PAGE_MASK;

2058 2059
	INC_STATS_COUNTER(total_map_requests);

2060 2061 2062
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2063 2064 2065
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2066
retry:
2067 2068
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2069
	if (unlikely(address == DMA_ERROR_CODE)) {
2070 2071 2072 2073 2074 2075 2076
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2077
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2078 2079 2080
			goto out;

		/*
2081
		 * aperture was successfully enlarged by 128 MB, try
2082 2083 2084 2085
		 * allocation again
		 */
		goto retry;
	}
2086 2087 2088

	start = address;
	for (i = 0; i < pages; ++i) {
2089
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2090
		if (ret == DMA_ERROR_CODE)
2091 2092
			goto out_unmap;

2093 2094 2095 2096 2097
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2098 2099
	ADD_STATS_COUNTER(alloced_io_mem, size);

2100
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2101
		domain_flush_tlb(&dma_dom->domain);
2102
		dma_dom->need_flush = false;
2103
	} else if (unlikely(amd_iommu_np_cache))
2104
		domain_flush_pages(&dma_dom->domain, address, size);
2105

2106 2107
out:
	return address;
2108 2109 2110 2111 2112

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2113
		dma_ops_domain_unmap(dma_dom, start);
2114 2115 2116 2117
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2118
	return DMA_ERROR_CODE;
2119 2120
}

2121 2122 2123 2124
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2125
static void __unmap_single(struct dma_ops_domain *dma_dom,
2126 2127 2128 2129
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2130
	dma_addr_t flush_addr;
2131 2132 2133
	dma_addr_t i, start;
	unsigned int pages;

2134
	if ((dma_addr == DMA_ERROR_CODE) ||
2135
	    (dma_addr + size > dma_dom->aperture_size))
2136 2137
		return;

2138
	flush_addr = dma_addr;
2139
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2140 2141 2142 2143
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2144
		dma_ops_domain_unmap(dma_dom, start);
2145 2146 2147
		start += PAGE_SIZE;
	}

2148 2149
	SUB_STATS_COUNTER(alloced_io_mem, size);

2150
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2151

2152
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2153
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2154 2155
		dma_dom->need_flush = false;
	}
2156 2157
}

2158 2159 2160
/*
 * The exported map_single function for dma_ops.
 */
2161 2162 2163 2164
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2165 2166 2167 2168
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2169
	u64 dma_mask;
2170
	phys_addr_t paddr = page_to_phys(page) + offset;
2171

2172 2173
	INC_STATS_COUNTER(cnt_map_single);

2174 2175
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2176
		return (dma_addr_t)paddr;
2177 2178
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2179

2180 2181
	dma_mask = *dev->dma_mask;

2182
	spin_lock_irqsave(&domain->lock, flags);
2183

2184
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2185
			    dma_mask);
2186
	if (addr == DMA_ERROR_CODE)
2187 2188
		goto out;

2189
	domain_flush_complete(domain);
2190 2191 2192 2193 2194 2195 2196

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2197 2198 2199
/*
 * The exported unmap_single function for dma_ops.
 */
2200 2201
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2202 2203 2204 2205
{
	unsigned long flags;
	struct protection_domain *domain;

2206 2207
	INC_STATS_COUNTER(cnt_unmap_single);

2208 2209
	domain = get_domain(dev);
	if (IS_ERR(domain))
2210 2211
		return;

2212 2213
	spin_lock_irqsave(&domain->lock, flags);

2214
	__unmap_single(domain->priv, dma_addr, size, dir);
2215

2216
	domain_flush_complete(domain);
2217 2218 2219 2220

	spin_unlock_irqrestore(&domain->lock, flags);
}

2221 2222 2223 2224
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2239 2240 2241 2242
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2243
static int map_sg(struct device *dev, struct scatterlist *sglist,
2244 2245
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2246 2247 2248 2249 2250 2251 2252
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2253
	u64 dma_mask;
2254

2255 2256
	INC_STATS_COUNTER(cnt_map_sg);

2257 2258
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2259
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2260 2261
	else if (IS_ERR(domain))
		return 0;
2262

2263
	dma_mask = *dev->dma_mask;
2264 2265 2266 2267 2268 2269

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2270
		s->dma_address = __map_single(dev, domain->priv,
2271 2272
					      paddr, s->length, dir, false,
					      dma_mask);
2273 2274 2275 2276 2277 2278 2279 2280

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2281
	domain_flush_complete(domain);
2282 2283 2284 2285 2286 2287 2288 2289

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2290
			__unmap_single(domain->priv, s->dma_address,
2291 2292 2293 2294 2295 2296 2297 2298 2299
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2300 2301 2302 2303
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2304
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2305 2306
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2307 2308 2309 2310 2311 2312
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2313 2314
	INC_STATS_COUNTER(cnt_unmap_sg);

2315 2316
	domain = get_domain(dev);
	if (IS_ERR(domain))
2317 2318
		return;

2319 2320 2321
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2322
		__unmap_single(domain->priv, s->dma_address,
2323 2324 2325 2326
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2327
	domain_flush_complete(domain);
2328 2329 2330 2331

	spin_unlock_irqrestore(&domain->lock, flags);
}

2332 2333 2334
/*
 * The exported alloc_coherent function for dma_ops.
 */
2335 2336 2337 2338 2339 2340 2341
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2342
	u64 dma_mask = dev->coherent_dma_mask;
2343

2344 2345
	INC_STATS_COUNTER(cnt_alloc_coherent);

2346 2347
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2348 2349 2350
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2351 2352
	} else if (IS_ERR(domain))
		return NULL;
2353

2354 2355 2356
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2357 2358 2359

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2360
		return NULL;
2361 2362 2363

	paddr = virt_to_phys(virt_addr);

2364 2365 2366
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2367 2368
	spin_lock_irqsave(&domain->lock, flags);

2369
	*dma_addr = __map_single(dev, domain->priv, paddr,
2370
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2371

2372
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2373
		spin_unlock_irqrestore(&domain->lock, flags);
2374
		goto out_free;
J
Jiri Slaby 已提交
2375
	}
2376

2377
	domain_flush_complete(domain);
2378 2379 2380 2381

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2382 2383 2384 2385 2386 2387

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2388 2389
}

2390 2391 2392
/*
 * The exported free_coherent function for dma_ops.
 */
2393 2394 2395 2396 2397 2398
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2399 2400
	INC_STATS_COUNTER(cnt_free_coherent);

2401 2402
	domain = get_domain(dev);
	if (IS_ERR(domain))
2403 2404
		goto free_mem;

2405 2406
	spin_lock_irqsave(&domain->lock, flags);

2407
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2408

2409
	domain_flush_complete(domain);
2410 2411 2412 2413 2414 2415 2416

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2417 2418 2419 2420 2421 2422
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2423
	return check_device(dev);
2424 2425
}

2426
/*
2427 2428
 * The function for pre-allocating protection domains.
 *
2429 2430 2431 2432
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2433
static void prealloc_protection_domains(void)
2434 2435 2436
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2437
	u16 devid;
2438

2439
	for_each_pci_dev(dev) {
2440 2441 2442

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2443
			continue;
2444 2445

		/* Is there already any domain for it? */
2446
		if (domain_for_device(&dev->dev))
2447
			continue;
2448 2449 2450

		devid = get_device_id(&dev->dev);

2451
		dma_dom = dma_ops_domain_alloc();
2452 2453 2454
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2455 2456
		dma_dom->target_dev = devid;

2457
		attach_device(&dev->dev, &dma_dom->domain);
2458

2459
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2460 2461 2462
	}
}

2463
static struct dma_map_ops amd_iommu_dma_ops = {
2464 2465
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2466 2467
	.map_page = map_page,
	.unmap_page = unmap_page,
2468 2469
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2470
	.dma_supported = amd_iommu_dma_supported,
2471 2472
};

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
static unsigned device_dma_ops_init(void)
{
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

		pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
	}

	return unhandled;
}

2490 2491 2492
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2493 2494 2495 2496 2497 2498

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2499 2500 2501
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2502
	int ret, unhandled;
2503

2504 2505 2506 2507 2508
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2509
	for_each_iommu(iommu) {
2510
		iommu->default_dom = dma_ops_domain_alloc();
2511 2512
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2513
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2514 2515 2516 2517 2518
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2519
	/*
2520
	 * Pre-allocate the protection domains for each device.
2521
	 */
2522
	prealloc_protection_domains();
2523 2524

	iommu_detected = 1;
2525
	swiotlb = 0;
2526

2527
	/* Make the driver finally visible to the drivers */
2528 2529 2530 2531 2532
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2533

2534 2535
	amd_iommu_stats_init();

2536 2537 2538 2539
	return 0;

free_domains:

2540
	for_each_iommu(iommu) {
2541 2542 2543 2544 2545 2546
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2560
	struct iommu_dev_data *dev_data, *next;
2561 2562 2563 2564
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2565
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2566
		__detach_device(dev_data);
2567 2568
		atomic_set(&dev_data->bind, 0);
	}
2569 2570 2571 2572

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2573 2574 2575 2576 2577
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2578 2579
	del_domain_from_list(domain);

2580 2581 2582 2583 2584 2585 2586
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2587 2588 2589 2590 2591
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2592
		return NULL;
2593 2594

	spin_lock_init(&domain->lock);
2595
	mutex_init(&domain->api_lock);
2596 2597
	domain->id = domain_id_alloc();
	if (!domain->id)
2598
		goto out_err;
2599
	INIT_LIST_HEAD(&domain->dev_list);
2600

2601 2602
	add_domain_to_list(domain);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2617
		goto out_free;
2618 2619

	domain->mode    = PAGE_MODE_3_LEVEL;
2620 2621 2622 2623 2624 2625 2626 2627 2628
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2629
	protection_domain_free(domain);
2630 2631 2632 2633

	return -ENOMEM;
}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2648
	protection_domain_free(domain);
2649 2650 2651 2652

	dom->priv = NULL;
}

2653 2654 2655
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2656
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2657 2658 2659
	struct amd_iommu *iommu;
	u16 devid;

2660
	if (!check_device(dev))
2661 2662
		return;

2663
	devid = get_device_id(dev);
2664

2665
	if (dev_data->domain != NULL)
2666
		detach_device(dev);
2667 2668 2669 2670 2671 2672 2673 2674

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2675 2676 2677 2678
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2679
	struct iommu_dev_data *dev_data;
2680
	struct amd_iommu *iommu;
2681
	int ret;
2682

2683
	if (!check_device(dev))
2684 2685
		return -EINVAL;

2686 2687
	dev_data = dev->archdata.iommu;

2688
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2689 2690 2691
	if (!iommu)
		return -EINVAL;

2692
	if (dev_data->domain)
2693
		detach_device(dev);
2694

2695
	ret = attach_device(dev, domain);
2696 2697 2698

	iommu_completion_wait(iommu);

2699
	return ret;
2700 2701
}

2702 2703
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2704
{
2705
	unsigned long page_size = 0x1000UL << gfp_order;
2706 2707 2708 2709 2710 2711 2712 2713 2714
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2715
	mutex_lock(&domain->api_lock);
2716
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2717 2718
	mutex_unlock(&domain->api_lock);

2719
	return ret;
2720 2721
}

2722 2723
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2724 2725
{
	struct protection_domain *domain = dom->priv;
2726
	unsigned long page_size, unmap_size;
2727

2728
	page_size  = 0x1000UL << gfp_order;
2729

2730
	mutex_lock(&domain->api_lock);
2731
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2732
	mutex_unlock(&domain->api_lock);
2733

2734
	domain_flush_tlb_pde(domain);
2735

2736
	return get_order(unmap_size);
2737 2738
}

2739 2740 2741 2742
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2743
	unsigned long offset_mask;
2744
	phys_addr_t paddr;
2745
	u64 *pte, __pte;
2746

2747
	pte = fetch_pte(domain, iova);
2748

2749
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2750 2751
		return 0;

2752 2753 2754 2755 2756 2757 2758
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2759 2760 2761 2762

	return paddr;
}

S
Sheng Yang 已提交
2763 2764 2765
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2766 2767 2768 2769 2770
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2771 2772 2773
	return 0;
}

2774 2775 2776 2777 2778
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2779 2780
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2781
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2782
	.domain_has_cap = amd_iommu_domain_has_cap,
2783 2784
};

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2797
	struct amd_iommu *iommu;
2798
	struct pci_dev *dev = NULL;
2799
	u16 devid;
2800

2801
	/* allocate passthrough domain */
2802 2803 2804 2805 2806 2807
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

2808
	for_each_pci_dev(dev) {
2809
		if (!check_device(&dev->dev))
2810 2811
			continue;

2812 2813
		devid = get_device_id(&dev->dev);

2814
		iommu = amd_iommu_rlookup_table[devid];
2815 2816 2817
		if (!iommu)
			continue;

2818
		attach_device(&dev->dev, pt_domain);
2819 2820 2821 2822 2823 2824
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}