amd_iommu.c 95.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
24
#include <linux/bitmap.h>
25
#include <linux/slab.h>
26
#include <linux/debugfs.h>
27
#include <linux/scatterlist.h>
28
#include <linux/dma-mapping.h>
29
#include <linux/iommu-helper.h>
30
#include <linux/iommu.h>
31
#include <linux/delay.h>
32
#include <linux/amd-iommu.h>
33 34
#include <linux/notifier.h>
#include <linux/export.h>
35 36
#include <linux/irq.h>
#include <linux/msi.h>
37
#include <linux/dma-contiguous.h>
38
#include <linux/irqdomain.h>
39
#include <linux/percpu.h>
40 41 42 43
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
44
#include <asm/msidef.h>
45
#include <asm/proto.h>
46
#include <asm/iommu.h>
47
#include <asm/gart.h>
48
#include <asm/dma.h>
49 50 51

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
52
#include "irq_remapping.h"
53 54 55

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

56
#define LOOP_TIMEOUT	100000
57

58 59 60 61 62 63
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
64
 * 512GB Pages are not supported due to a hardware bug
65
 */
J
Joerg Roedel 已提交
66
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
67

68 69
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

70 71 72 73
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

74 75
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
76
LIST_HEAD(acpihid_map);
77

78 79 80 81
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
82
static const struct iommu_ops amd_iommu_ops;
83

84
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
85
int amd_iommu_max_glx_val = -1;
86

87 88
static struct dma_map_ops amd_iommu_dma_ops;

89 90 91 92 93 94 95 96 97
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
98
	bool passthrough;		  /* Device is identity mapped */
99 100 101 102 103 104 105 106 107
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

108 109 110
/*
 * general struct to manage commands send to an IOMMU
 */
111
struct iommu_cmd {
112 113 114
	u32 data[4];
};

115 116
struct kmem_cache *amd_iommu_irq_cache;

117
static void update_domain(struct protection_domain *domain);
118
static int protection_domain_init(struct protection_domain *domain);
119
static void detach_device(struct device *dev);
120

121 122 123 124 125 126
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

127 128
	spinlock_t bitmap_lock;

129 130
	/* address allocation bitmap */
	unsigned long *bitmap;
131
	unsigned long offset;
132
	unsigned long next_bit;
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

153
	/* aperture index we start searching for free addresses */
154
	u32 __percpu *next_index;
155 156 157 158 159

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

160 161 162 163 164 165
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

166 167 168 169 170
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

171
static struct iommu_dev_data *alloc_dev_data(u16 devid)
172 173 174 175 176 177 178 179
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

180
	dev_data->devid = devid;
181 182 183 184 185 186 187 188

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
{
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
}

static inline u16 get_pci_device_id(struct device *dev)
241 242 243
{
	struct pci_dev *pdev = to_pci_dev(dev);

244
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

274 275 276 277 278
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

279 280 281 282
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
283 284
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
285 286 287 288 289 290 291 292 293 294 295 296
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

297 298 299 300 301 302 303 304 305
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

306
/*
307 308
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
309
 */
310 311
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
312
{
313
	u64 addr;
314

315 316 317 318 319
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
320
	}
321
}
322

323 324 325 326 327 328 329
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
330
	int devid;
331

332
	devid = get_device_id(dev);
333 334
	if (IS_ERR_VALUE(devid))
		return;
335

336 337 338 339 340
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
341 342
}

343 344 345 346 347 348
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
349
	int devid;
350 351 352 353 354

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
355 356
	if (IS_ERR_VALUE(devid))
		return false;
357 358 359 360 361 362 363 364 365 366 367

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

368
static void init_iommu_group(struct device *dev)
369
{
370 371
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
372 373
	struct iommu_group *group;

374
	group = iommu_group_get_for_dev(dev);
375 376 377 378 379 380 381 382 383 384 385 386
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
387 388 389 390 391
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
392
	int devid;
393 394 395 396

	if (dev->archdata.iommu)
		return 0;

397 398 399 400 401
	devid = get_device_id(dev);
	if (IS_ERR_VALUE(devid))
		return devid;

	dev_data = find_dev_data(devid);
402 403 404
	if (!dev_data)
		return -ENOMEM;

405
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
406 407
		struct amd_iommu *iommu;

408
		iommu = amd_iommu_rlookup_table[dev_data->devid];
409 410 411
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

412 413
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
414 415 416
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

417 418 419
	return 0;
}

420 421
static void iommu_ignore_device(struct device *dev)
{
422 423
	u16 alias;
	int devid;
424 425

	devid = get_device_id(dev);
426 427 428
	if (IS_ERR_VALUE(devid))
		return;

429 430 431 432 433 434 435 436 437
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

438 439
static void iommu_uninit_device(struct device *dev)
{
440 441 442 443 444 445
	int devid;
	struct iommu_dev_data *dev_data;

	devid = get_device_id(dev);
	if (IS_ERR_VALUE(devid))
		return;
446

447
	dev_data = search_dev_data(devid);
448 449 450
	if (!dev_data)
		return;

451 452 453
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
454 455 456
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

457 458
	iommu_group_remove_device(dev);

459 460 461
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

462
	/*
463 464
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
465
	 */
466
}
J
Joerg Roedel 已提交
467

468 469 470 471 472 473
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

474
DECLARE_STATS_COUNTER(compl_wait);
475
DECLARE_STATS_COUNTER(cnt_map_single);
476
DECLARE_STATS_COUNTER(cnt_unmap_single);
477
DECLARE_STATS_COUNTER(cnt_map_sg);
478
DECLARE_STATS_COUNTER(cnt_unmap_sg);
479
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
480
DECLARE_STATS_COUNTER(cnt_free_coherent);
481
DECLARE_STATS_COUNTER(cross_page);
482
DECLARE_STATS_COUNTER(domain_flush_single);
483
DECLARE_STATS_COUNTER(domain_flush_all);
484
DECLARE_STATS_COUNTER(alloced_io_mem);
485
DECLARE_STATS_COUNTER(total_map_requests);
486 487 488 489 490
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
510
					 &amd_iommu_unmap_flush);
511 512

	amd_iommu_stats_add(&compl_wait);
513
	amd_iommu_stats_add(&cnt_map_single);
514
	amd_iommu_stats_add(&cnt_unmap_single);
515
	amd_iommu_stats_add(&cnt_map_sg);
516
	amd_iommu_stats_add(&cnt_unmap_sg);
517
	amd_iommu_stats_add(&cnt_alloc_coherent);
518
	amd_iommu_stats_add(&cnt_free_coherent);
519
	amd_iommu_stats_add(&cross_page);
520
	amd_iommu_stats_add(&domain_flush_single);
521
	amd_iommu_stats_add(&domain_flush_all);
522
	amd_iommu_stats_add(&alloced_io_mem);
523
	amd_iommu_stats_add(&total_map_requests);
524 525 526 527
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
528 529 530 531
}

#endif

532 533 534 535 536 537
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

538 539 540 541
static void dump_dte_entry(u16 devid)
{
	int i;

542 543
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
544 545 546
			amd_iommu_dev_table[devid].data[i]);
}

547 548 549 550 551 552 553 554 555
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

556
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
579

580
	printk(KERN_ERR "AMD-Vi: Event logged [");
581 582 583 584 585

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
586
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
587
		       address, flags);
588
		dump_dte_entry(devid);
589 590 591 592
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
593
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
594 595 596 597 598
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
599
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
600 601 602 603 604
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
605
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
606 607 608 609
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
610
		dump_command(address);
611 612 613 614 615 616 617 618
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
619
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
620 621 622 623 624
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
625
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
626 627 628 629 630
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
631 632

	memset(__evt, 0, 4 * sizeof(u32));
633 634 635 636 637 638 639 640 641 642
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
643
		iommu_print_event(iommu, iommu->evt_buf + head);
644
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
645 646 647 648 649
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

650
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
651 652 653
{
	struct amd_iommu_fault fault;

654 655
	INC_STATS_COUNTER(pri_requests);

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
697

698 699 700
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
701

702 703 704 705 706 707 708
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
709 710
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 712 713 714 715 716

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
717 718 719 720
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

721
irqreturn_t amd_iommu_int_thread(int irq, void *data)
722
{
723 724
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
725

726 727 728 729
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
730

731 732 733 734
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
735

736 737 738 739
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
756
	return IRQ_HANDLED;
757 758
}

759 760 761 762 763
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

764 765 766 767 768 769
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
790 791 792
{
	u8 *target;

793
	target = iommu->cmd_buf + tail;
794
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
795 796 797 798 799

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
800
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
801
}
802

803
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
804
{
805 806
	WARN_ON(address & 0x7ULL);

807
	memset(cmd, 0, sizeof(*cmd));
808 809 810
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
811 812 813
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

814 815 816 817 818 819 820
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

821 822 823 824
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
825
	bool s;
826 827

	pages = iommu_num_pages(address, size, PAGE_SIZE);
828
	s     = false;
829 830 831 832 833 834 835

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
836
		s = true;
837 838 839 840 841 842 843 844 845 846 847
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
848
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
849 850 851
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

852 853 854 855
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
856
	bool s;
857 858

	pages = iommu_num_pages(address, size, PAGE_SIZE);
859
	s     = false;
860 861 862 863 864 865 866

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
867
		s = true;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

883 884 885 886 887 888 889
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

890
	cmd->data[0]  = pasid;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
909
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
910 911
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
912
	cmd->data[1] |= (pasid & 0xff) << 16;
913 914 915 916 917 918 919 920
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

921 922 923 924 925 926 927
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
928
		cmd->data[1]  = pasid;
929 930 931 932 933 934 935 936
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

937 938 939 940
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
941 942
}

943 944 945 946 947 948 949
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

950 951
/*
 * Writes the command to the IOMMUs command buffer and informs the
952
 * hardware about the new command.
953
 */
954 955 956
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
957
{
958
	u32 left, tail, head, next_tail;
959 960
	unsigned long flags;

961
again:
962 963
	spin_lock_irqsave(&iommu->lock, flags);

964 965
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
966 967
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
968

969 970 971 972
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
973

974 975
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
976

977 978 979 980 981 982
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
983 984
	}

985 986 987
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
988
	iommu->need_sync = sync;
989

990
	spin_unlock_irqrestore(&iommu->lock, flags);
991

992
	return 0;
993 994
}

995 996 997 998 999
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1000 1001 1002 1003
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1004
static int iommu_completion_wait(struct amd_iommu *iommu)
1005 1006
{
	struct iommu_cmd cmd;
1007
	volatile u64 sem = 0;
1008
	int ret;
1009

1010
	if (!iommu->need_sync)
1011
		return 0;
1012

1013
	build_completion_wait(&cmd, (u64)&sem);
1014

1015
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1016
	if (ret)
1017
		return ret;
1018

1019
	return wait_on_sem(&sem);
1020 1021
}

1022
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1023
{
1024
	struct iommu_cmd cmd;
1025

1026
	build_inv_dte(&cmd, devid);
1027

1028 1029
	return iommu_queue_command(iommu, &cmd);
}
1030

1031 1032 1033
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1034

1035 1036
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1037

1038 1039
	iommu_completion_wait(iommu);
}
1040

1041 1042 1043 1044 1045 1046 1047
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1048

1049 1050 1051 1052 1053 1054
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1055

1056
	iommu_completion_wait(iommu);
1057 1058
}

1059
static void iommu_flush_all(struct amd_iommu *iommu)
1060
{
1061
	struct iommu_cmd cmd;
1062

1063
	build_inv_all(&cmd);
1064

1065 1066 1067 1068
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1088 1089
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1090 1091 1092 1093
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1094
		iommu_flush_irt_all(iommu);
1095
		iommu_flush_tlb_all(iommu);
1096 1097 1098
	}
}

1099
/*
1100
 * Command send function for flushing on-device TLB
1101
 */
1102 1103
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1104 1105
{
	struct amd_iommu *iommu;
1106
	struct iommu_cmd cmd;
1107
	int qdep;
1108

1109 1110
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1111

1112
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1113 1114

	return iommu_queue_command(iommu, &cmd);
1115 1116
}

1117 1118 1119
/*
 * Command send function for invalidating a device table entry
 */
1120
static int device_flush_dte(struct iommu_dev_data *dev_data)
1121
{
1122
	struct amd_iommu *iommu;
1123
	u16 alias;
1124
	int ret;
1125

1126
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1127
	alias = amd_iommu_alias_table[dev_data->devid];
1128

1129
	ret = iommu_flush_dte(iommu, dev_data->devid);
1130 1131
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1132 1133 1134
	if (ret)
		return ret;

1135
	if (dev_data->ats.enabled)
1136
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1137 1138

	return ret;
1139 1140
}

1141 1142 1143 1144 1145
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1146 1147
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1148
{
1149
	struct iommu_dev_data *dev_data;
1150 1151
	struct iommu_cmd cmd;
	int ret = 0, i;
1152

1153
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1154

1155 1156 1157 1158 1159 1160 1161 1162
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1163
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1164 1165
	}

1166 1167
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1168
		if (!dev_data->ats.enabled)
1169 1170
			continue;

1171
		ret |= device_flush_iotlb(dev_data, address, size);
1172 1173
	}

1174
	WARN_ON(ret);
1175 1176
}

1177 1178
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1179
{
1180
	__domain_flush_pages(domain, address, size, 0);
1181
}
1182

1183
/* Flush the whole IO/TLB for a given protection domain */
1184
static void domain_flush_tlb(struct protection_domain *domain)
1185
{
1186
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1187 1188
}

1189
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1190
static void domain_flush_tlb_pde(struct protection_domain *domain)
1191
{
1192
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1193 1194
}

1195
static void domain_flush_complete(struct protection_domain *domain)
1196
{
1197
	int i;
1198

1199 1200 1201
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1202

1203 1204 1205 1206 1207
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1208
	}
1209 1210
}

1211

1212
/*
1213
 * This function flushes the DTEs for all devices in domain
1214
 */
1215
static void domain_flush_devices(struct protection_domain *domain)
1216
{
1217
	struct iommu_dev_data *dev_data;
1218

1219
	list_for_each_entry(dev_data, &domain->dev_list, list)
1220
		device_flush_dte(dev_data);
1221 1222
}

1223 1224 1225 1226 1227 1228 1229
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1259
		      unsigned long page_size,
1260 1261 1262
		      u64 **pte_page,
		      gfp_t gfp)
{
1263
	int level, end_lvl;
1264
	u64 *pte, *page;
1265 1266

	BUG_ON(!is_power_of_2(page_size));
1267 1268 1269 1270

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1271 1272 1273 1274
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1275 1276

	while (level > end_lvl) {
1277 1278 1279 1280 1281
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1282 1283 1284
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1285 1286 1287 1288 1289 1290 1291

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1292 1293
		}

1294 1295 1296 1297
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1315 1316 1317
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1318 1319 1320 1321
{
	int level;
	u64 *pte;

1322 1323 1324
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1325 1326 1327
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1328

1329 1330 1331
	while (level > 0) {

		/* Not Present */
1332 1333 1334
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1335
		/* Large PTE */
1336 1337 1338
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1339 1340 1341 1342 1343

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1344 1345
		level -= 1;

1346
		/* Walk to the next level */
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1362 1363 1364 1365 1366
	}

	return pte;
}

1367 1368 1369 1370 1371 1372 1373
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1374 1375 1376
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1377
			  int prot,
1378
			  unsigned long page_size)
1379
{
1380
	u64 __pte, *pte;
1381
	int i, count;
1382

1383 1384 1385
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1386
	if (!(prot & IOMMU_PROT_MASK))
1387 1388
		return -EINVAL;

1389 1390
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1391

1392 1393 1394
	if (!pte)
		return -ENOMEM;

1395 1396 1397
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1398

1399
	if (count > 1) {
1400 1401 1402 1403
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1404 1405 1406 1407 1408 1409

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1410 1411
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1412

1413 1414
	update_domain(dom);

1415 1416 1417
	return 0;
}

1418 1419 1420
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1421
{
1422 1423
	unsigned long long unmapped;
	unsigned long unmap_size;
1424 1425 1426 1427 1428
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1429

1430 1431
	while (unmapped < page_size) {

1432 1433 1434 1435 1436 1437
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1438 1439 1440 1441 1442 1443 1444 1445
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1446
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1447

1448
	return unmapped;
1449 1450
}

1451 1452 1453 1454 1455 1456 1457 1458 1459
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1460

1461
/*
1462
 * The address allocator core functions.
1463 1464 1465
 *
 * called with domain->lock held
 */
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1487 1488 1489 1490 1491
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1492
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1493 1494 1495
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1496
	unsigned long i, old_size, pte_pgsize;
1497 1498 1499
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1500

1501 1502 1503 1504
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1505 1506 1507
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1508 1509
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1510 1511
		return -ENOMEM;

1512 1513
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1514 1515
		goto out_free;

1516
	range->offset = dma_dom->aperture_size;
1517

1518
	spin_lock_init(&range->bitmap_lock);
1519

1520 1521 1522 1523 1524 1525
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1526
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1527 1528 1529 1530
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1531
			range->pte_pages[i] = pte_page;
1532 1533 1534 1535 1536

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1537 1538
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1539
	/* First take the bitmap_lock and then publish the range */
1540
	spin_lock(&range->bitmap_lock);
1541 1542 1543 1544

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1558
	/* Initialize the exclusion range if necessary */
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1580
	     i += pte_pgsize) {
1581
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1582 1583 1584
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1585 1586
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1587 1588
	}

1589 1590
	update_domain(&dma_dom->domain);

1591 1592 1593
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1594

1595 1596 1597
	return 0;

out_free:
1598 1599
	update_domain(&dma_dom->domain);

1600
	free_page((unsigned long)range->bitmap);
1601

1602
	kfree(range);
1603 1604 1605 1606

	return -ENOMEM;
}

1607 1608
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1609 1610 1611
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1612 1613
					 unsigned long align_mask,
					 bool trylock)
1614 1615 1616
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1617
	bool flush = false;
1618 1619 1620 1621 1622

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1623 1624 1625 1626 1627 1628 1629
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1630 1631
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1632
	if (address == -1) {
1633 1634 1635 1636
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1637 1638
		flush = true;
	}
1639 1640 1641 1642

	if (address != -1)
		range->next_bit = address + pages;

1643 1644
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1645 1646 1647 1648 1649
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1650 1651 1652
	return address;
}

1653 1654 1655 1656
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1657
					u64 dma_mask)
1658
{
1659
	unsigned long boundary_size, mask;
1660
	unsigned long address = -1;
1661
	bool first = true;
1662 1663 1664
	u32 start, i;

	preempt_disable();
1665

1666 1667
	mask = dma_get_seg_boundary(dev);

1668
again:
1669 1670 1671 1672 1673 1674 1675 1676
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1677 1678
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1679

1680 1681
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1682 1683 1684
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1685

1686
		range = dom->aperture[index];
1687 1688 1689

		if (!range || range->offset >= dma_mask)
			continue;
1690

1691
		address = dma_ops_aperture_alloc(dom, range, pages,
1692
						 dma_mask, boundary_size,
1693
						 align_mask, first);
1694
		if (address != -1) {
1695
			address = range->offset + (address << PAGE_SHIFT);
1696
			this_cpu_write(*dom->next_index, index);
1697 1698 1699 1700
			break;
		}
	}

1701 1702 1703 1704 1705
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1706 1707
	preempt_enable();

1708 1709 1710
	return address;
}

1711 1712
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1713
					     unsigned int pages,
1714 1715
					     unsigned long align_mask,
					     u64 dma_mask)
1716
{
1717
	unsigned long address = -1;
1718

1719 1720 1721 1722
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1723
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1724 1725
			break;
	}
1726

1727
	if (unlikely(address == -1))
1728
		address = DMA_ERROR_CODE;
1729 1730 1731 1732 1733 1734

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1735 1736 1737 1738 1739
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1740 1741 1742 1743
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1744 1745
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1746
	unsigned long flags;
1747

1748 1749
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1750 1751 1752 1753
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1754

1755
	if (amd_iommu_unmap_flush) {
1756 1757 1758
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1759 1760

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1761

1762
	spin_lock_irqsave(&range->bitmap_lock, flags);
1763 1764
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1765
	bitmap_clear(range->bitmap, address, pages);
1766
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1767

1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1842
		/* PTE present? */				\
1843 1844 1845
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1846 1847 1848 1849 1850
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1863
static void free_pagetable(struct protection_domain *domain)
1864
{
1865
	unsigned long root = (unsigned long)domain->pt_root;
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1890 1891 1892
	}
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1923 1924
static void free_gcr3_table(struct protection_domain *domain)
{
1925 1926 1927 1928
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1929 1930
	else
		BUG_ON(domain->glx != 0);
1931

1932 1933 1934
	free_page((unsigned long)domain->gcr3_tbl);
}

1935 1936 1937 1938
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1939 1940
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1941 1942
	int i;

1943 1944 1945
	if (!dom)
		return;

1946 1947
	free_percpu(dom->next_index);

1948 1949
	del_domain_from_list(&dom->domain);

1950
	free_pagetable(&dom->domain);
1951

1952 1953 1954 1955 1956 1957
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1958 1959 1960 1961

	kfree(dom);
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

1979 1980
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1981
 * It also initializes the page table and the address allocator data
1982 1983
 * structures required for the dma_ops interface
 */
1984
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1985 1986
{
	struct dma_ops_domain *dma_dom;
1987
	int cpu;
1988 1989 1990 1991 1992

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1993
	if (protection_domain_init(&dma_dom->domain))
1994
		goto free_dma_dom;
1995

1996 1997 1998 1999
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

2000
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2001
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2002
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2003 2004 2005 2006
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2007 2008
	add_domain_to_list(&dma_dom->domain);

2009
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2010 2011
		goto free_dma_dom;

2012
	/*
2013 2014
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2015
	 */
2016
	dma_dom->aperture[0]->bitmap[0] = 1;
2017

2018 2019
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2020 2021 2022 2023 2024 2025 2026 2027 2028

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2029 2030 2031 2032 2033 2034 2035 2036 2037
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2038
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2039
{
2040
	u64 pte_root = 0;
2041
	u64 flags = 0;
2042

2043 2044 2045
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2046 2047 2048
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2049

2050 2051
	flags = amd_iommu_dev_table[devid].data[1];

2052 2053 2054
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2081 2082 2083 2084 2085
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2086 2087 2088 2089 2090
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2091 2092
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2093 2094

	amd_iommu_apply_erratum_63(devid);
2095 2096
}

2097 2098
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2099 2100
{
	struct amd_iommu *iommu;
2101
	u16 alias;
2102
	bool ats;
2103

2104
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2105
	alias = amd_iommu_alias_table[dev_data->devid];
2106
	ats   = dev_data->ats.enabled;
2107 2108 2109 2110 2111 2112 2113 2114 2115

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2116 2117 2118
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2119
		set_dte_entry(alias, domain, ats);
2120

2121
	device_flush_dte(dev_data);
2122 2123
}

2124
static void do_detach(struct iommu_dev_data *dev_data)
2125 2126
{
	struct amd_iommu *iommu;
2127
	u16 alias;
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2138
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2139
	alias = amd_iommu_alias_table[dev_data->devid];
2140 2141

	/* decrease reference counters */
2142 2143 2144 2145 2146 2147
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2148
	clear_dte_entry(dev_data->devid);
2149 2150
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2151

2152
	/* Flush the DTE entry */
2153
	device_flush_dte(dev_data);
2154 2155 2156 2157 2158 2159
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2160
static int __attach_device(struct iommu_dev_data *dev_data,
2161
			   struct protection_domain *domain)
2162
{
2163
	int ret;
2164

2165 2166 2167 2168 2169 2170
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2171 2172 2173
	/* lock domain */
	spin_lock(&domain->lock);

2174
	ret = -EBUSY;
2175
	if (dev_data->domain != NULL)
2176
		goto out_unlock;
2177

2178
	/* Attach alias group root */
2179
	do_attach(dev_data, domain);
2180

2181 2182 2183 2184
	ret = 0;

out_unlock:

2185 2186
	/* ready */
	spin_unlock(&domain->lock);
2187

2188
	return ret;
2189
}
2190

2191 2192 2193 2194 2195 2196 2197 2198

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2199 2200 2201 2202 2203 2204
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2205
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2206 2207 2208
	if (!pos)
		return -EINVAL;

2209 2210 2211
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2212 2213 2214 2215

	return 0;
}

2216 2217
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2218 2219 2220 2221 2222 2223 2224 2225
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2237 2238
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2239 2240 2241
	if (ret)
		goto out_err;

2242 2243 2244 2245 2246 2247
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2261
/* FIXME: Move this to PCI code */
2262
#define PCI_PRI_TLP_OFF		(1 << 15)
2263

J
Joerg Roedel 已提交
2264
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2265
{
2266
	u16 status;
2267 2268
	int pos;

2269
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2270 2271 2272
	if (!pos)
		return false;

2273
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2274

2275
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2276 2277
}

2278
/*
F
Frank Arnold 已提交
2279
 * If a device is not yet associated with a domain, this function
2280 2281
 * assigns it visible for the hardware
 */
2282 2283
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2284
{
2285
	struct pci_dev *pdev;
2286
	struct iommu_dev_data *dev_data;
2287
	unsigned long flags;
2288
	int ret;
2289

2290 2291
	dev_data = get_dev_data(dev);

2292 2293 2294 2295
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2296
	if (domain->flags & PD_IOMMUV2_MASK) {
2297
		if (!dev_data->passthrough)
2298 2299
			return -EINVAL;

2300 2301 2302
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2303

2304 2305 2306 2307
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2308 2309
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2310 2311 2312
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2313

2314
skip_ats_check:
2315
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2316
	ret = __attach_device(dev_data, domain);
2317 2318
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2319 2320 2321 2322 2323
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2324
	domain_flush_tlb_pde(domain);
2325 2326

	return ret;
2327 2328
}

2329 2330 2331
/*
 * Removes a device from a protection domain (unlocked)
 */
2332
static void __detach_device(struct iommu_dev_data *dev_data)
2333
{
2334
	struct protection_domain *domain;
2335

2336 2337 2338 2339 2340
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2341

2342 2343
	if (WARN_ON(!dev_data->domain))
		return;
2344

2345
	domain = dev_data->domain;
2346

2347
	spin_lock(&domain->lock);
2348

2349
	do_detach(dev_data);
2350

2351
	spin_unlock(&domain->lock);
2352 2353 2354 2355 2356
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2357
static void detach_device(struct device *dev)
2358
{
2359
	struct protection_domain *domain;
2360
	struct iommu_dev_data *dev_data;
2361 2362
	unsigned long flags;

2363
	dev_data = get_dev_data(dev);
2364
	domain   = dev_data->domain;
2365

2366 2367
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2368
	__detach_device(dev_data);
2369
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2370

2371 2372 2373
	if (!dev_is_pci(dev))
		return;

2374
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2375 2376
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2377
		pci_disable_ats(to_pci_dev(dev));
2378 2379

	dev_data->ats.enabled = false;
2380
}
2381

2382
static int amd_iommu_add_device(struct device *dev)
2383
{
2384
	struct iommu_dev_data *dev_data;
2385
	struct iommu_domain *domain;
2386
	struct amd_iommu *iommu;
2387
	int ret, devid;
2388

2389
	if (!check_device(dev) || get_dev_data(dev))
2390
		return 0;
2391

2392
	devid = get_device_id(dev);
2393 2394 2395
	if (IS_ERR_VALUE(devid))
		return devid;

2396
	iommu = amd_iommu_rlookup_table[devid];
2397

2398
	ret = iommu_init_device(dev);
2399 2400 2401 2402
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2403

2404
		iommu_ignore_device(dev);
2405
		dev->archdata.dma_ops = &nommu_dma_ops;
2406 2407 2408
		goto out;
	}
	init_iommu_group(dev);
2409

2410
	dev_data = get_dev_data(dev);
2411

2412
	BUG_ON(!dev_data);
2413

2414
	if (iommu_pass_through || dev_data->iommu_v2)
2415
		iommu_request_dm_for_dev(dev);
2416

2417 2418
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2419
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2420
		dev_data->passthrough = true;
2421
	else
2422
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2423

2424
out:
2425 2426 2427 2428 2429
	iommu_completion_wait(iommu);

	return 0;
}

2430
static void amd_iommu_remove_device(struct device *dev)
2431
{
2432
	struct amd_iommu *iommu;
2433
	int devid;
2434 2435 2436 2437 2438

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2439 2440 2441
	if (IS_ERR_VALUE(devid))
		return;

2442 2443 2444 2445
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2446 2447
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2461
static struct protection_domain *get_domain(struct device *dev)
2462
{
2463
	struct protection_domain *domain;
2464
	struct iommu_domain *io_domain;
2465

2466
	if (!check_device(dev))
2467
		return ERR_PTR(-EINVAL);
2468

2469
	io_domain = iommu_get_domain_for_dev(dev);
2470 2471
	if (!io_domain)
		return NULL;
2472

2473 2474
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2475
		return ERR_PTR(-EBUSY);
2476

2477
	return domain;
2478 2479
}

2480 2481
static void update_device_table(struct protection_domain *domain)
{
2482
	struct iommu_dev_data *dev_data;
2483

2484 2485
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2486 2487 2488 2489 2490 2491 2492 2493
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2494 2495 2496

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2497 2498 2499 2500

	domain->updated = false;
}

2501 2502 2503 2504 2505 2506
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2507
	struct aperture_range *aperture;
2508 2509
	u64 *pte, *pte_page;

2510 2511 2512 2513 2514
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2515
	if (!pte) {
2516
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2517
				GFP_ATOMIC);
2518 2519
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2520
		pte += PM_LEVEL_INDEX(0, address);
2521

2522
	update_domain(&dom->domain);
2523 2524 2525 2526

	return pte;
}

2527 2528 2529 2530
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2531
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2542
	pte  = dma_ops_get_pte(dom, address);
2543
	if (!pte)
2544
		return DMA_ERROR_CODE;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2555
	WARN_ON_ONCE(*pte);
2556 2557 2558 2559 2560 2561

	*pte = __pte;

	return (dma_addr_t)address;
}

2562 2563 2564
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2565
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2566 2567
				 unsigned long address)
{
2568
	struct aperture_range *aperture;
2569 2570 2571 2572 2573
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2574 2575 2576 2577 2578 2579 2580
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2581

2582
	pte += PM_LEVEL_INDEX(0, address);
2583

2584
	WARN_ON_ONCE(!*pte);
2585 2586 2587 2588

	*pte = 0ULL;
}

2589 2590
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2591 2592
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2593 2594
 * Must be called with the domain lock held.
 */
2595 2596 2597 2598
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2599
			       int dir,
2600 2601
			       bool align,
			       u64 dma_mask)
2602 2603
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2604
	dma_addr_t address, start, ret;
2605
	unsigned int pages;
2606
	unsigned long align_mask = 0;
2607 2608
	int i;

2609
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2610 2611
	paddr &= PAGE_MASK;

2612 2613
	INC_STATS_COUNTER(total_map_requests);

2614 2615 2616
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2617 2618 2619
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2620 2621
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2622

2623 2624
	if (address == DMA_ERROR_CODE)
		goto out;
2625 2626 2627

	start = address;
	for (i = 0; i < pages; ++i) {
2628
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2629
		if (ret == DMA_ERROR_CODE)
2630 2631
			goto out_unmap;

2632 2633 2634 2635 2636
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2637 2638
	ADD_STATS_COUNTER(alloced_io_mem, size);

2639
	if (unlikely(amd_iommu_np_cache)) {
2640
		domain_flush_pages(&dma_dom->domain, address, size);
2641 2642
		domain_flush_complete(&dma_dom->domain);
	}
2643

2644 2645
out:
	return address;
2646 2647 2648 2649 2650

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2651
		dma_ops_domain_unmap(dma_dom, start);
2652 2653 2654 2655
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2656
	return DMA_ERROR_CODE;
2657 2658
}

2659 2660 2661 2662
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2663
static void __unmap_single(struct dma_ops_domain *dma_dom,
2664 2665 2666 2667
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2668
	dma_addr_t flush_addr;
2669 2670 2671
	dma_addr_t i, start;
	unsigned int pages;

2672
	if ((dma_addr == DMA_ERROR_CODE) ||
2673
	    (dma_addr + size > dma_dom->aperture_size))
2674 2675
		return;

2676
	flush_addr = dma_addr;
2677
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2678 2679 2680 2681
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2682
		dma_ops_domain_unmap(dma_dom, start);
2683 2684 2685
		start += PAGE_SIZE;
	}

2686 2687 2688
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2689 2690
}

2691 2692 2693
/*
 * The exported map_single function for dma_ops.
 */
2694 2695 2696 2697
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2698
{
2699
	phys_addr_t paddr = page_to_phys(page) + offset;
2700
	struct protection_domain *domain;
2701
	u64 dma_mask;
2702

2703 2704
	INC_STATS_COUNTER(cnt_map_single);

2705 2706
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2707
		return (dma_addr_t)paddr;
2708 2709
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2710

2711 2712
	dma_mask = *dev->dma_mask;

2713
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2714
			    dma_mask);
2715 2716
}

2717 2718 2719
/*
 * The exported unmap_single function for dma_ops.
 */
2720 2721
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2722 2723 2724
{
	struct protection_domain *domain;

2725 2726
	INC_STATS_COUNTER(cnt_unmap_single);

2727 2728
	domain = get_domain(dev);
	if (IS_ERR(domain))
2729 2730
		return;

2731
	__unmap_single(domain->priv, dma_addr, size, dir);
2732 2733
}

2734 2735 2736 2737
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2738
static int map_sg(struct device *dev, struct scatterlist *sglist,
2739 2740
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2741 2742 2743 2744 2745 2746
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2747
	u64 dma_mask;
2748

2749 2750
	INC_STATS_COUNTER(cnt_map_sg);

2751
	domain = get_domain(dev);
2752
	if (IS_ERR(domain))
2753
		return 0;
2754

2755
	dma_mask = *dev->dma_mask;
2756 2757 2758 2759

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2760
		s->dma_address = __map_single(dev, domain->priv,
2761 2762
					      paddr, s->length, dir, false,
					      dma_mask);
2763 2764 2765 2766 2767 2768 2769 2770 2771

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2772

2773 2774 2775
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2776
			__unmap_single(domain->priv, s->dma_address,
2777 2778 2779 2780
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2781
	return 0;
2782 2783
}

2784 2785 2786 2787
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2788
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2789 2790
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2791 2792 2793 2794 2795
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2796 2797
	INC_STATS_COUNTER(cnt_unmap_sg);

2798 2799
	domain = get_domain(dev);
	if (IS_ERR(domain))
2800 2801
		return;

2802
	for_each_sg(sglist, s, nelems, i) {
2803
		__unmap_single(domain->priv, s->dma_address,
2804 2805 2806 2807 2808
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2809 2810 2811
/*
 * The exported alloc_coherent function for dma_ops.
 */
2812
static void *alloc_coherent(struct device *dev, size_t size,
2813 2814
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2815
{
2816
	u64 dma_mask = dev->coherent_dma_mask;
2817 2818
	struct protection_domain *domain;
	struct page *page;
2819

2820 2821
	INC_STATS_COUNTER(cnt_alloc_coherent);

2822 2823
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2824 2825 2826
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2827 2828
	} else if (IS_ERR(domain))
		return NULL;
2829

2830
	size	  = PAGE_ALIGN(size);
2831 2832
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2833
	flag     |= __GFP_ZERO;
2834

2835 2836
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2837
		if (!gfpflags_allow_blocking(flag))
2838
			return NULL;
2839

2840 2841 2842 2843 2844
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2845

2846 2847 2848
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2849
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2850
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2851

2852
	if (*dma_addr == DMA_ERROR_CODE)
2853
		goto out_free;
2854

2855
	return page_address(page);
2856 2857 2858

out_free:

2859 2860
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2861 2862

	return NULL;
2863 2864
}

2865 2866 2867
/*
 * The exported free_coherent function for dma_ops.
 */
2868
static void free_coherent(struct device *dev, size_t size,
2869 2870
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2871 2872
{
	struct protection_domain *domain;
2873
	struct page *page;
2874

2875 2876
	INC_STATS_COUNTER(cnt_free_coherent);

2877 2878 2879
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2880 2881
	domain = get_domain(dev);
	if (IS_ERR(domain))
2882 2883
		goto free_mem;

2884
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2885 2886

free_mem:
2887 2888
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2889 2890
}

2891 2892 2893 2894 2895 2896
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2897
	return check_device(dev);
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2928
static struct dma_map_ops amd_iommu_dma_ops = {
2929 2930 2931 2932 2933 2934 2935 2936
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2937 2938
};

2939
int __init amd_iommu_init_api(void)
2940
{
2941
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2942 2943
}

2944 2945
int __init amd_iommu_init_dma_ops(void)
{
2946
	swiotlb        = iommu_pass_through ? 1 : 0;
2947 2948
	iommu_detected = 1;

2949 2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2958 2959
	amd_iommu_stats_init();

2960 2961 2962 2963 2964
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2965 2966
	return 0;
}
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2980
	struct iommu_dev_data *entry;
2981 2982 2983 2984
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2985 2986 2987 2988
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2989
	}
2990 2991 2992 2993

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2994 2995 2996 2997 2998
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2999 3000
	del_domain_from_list(domain);

3001 3002 3003 3004 3005 3006
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3019
static struct protection_domain *protection_domain_alloc(void)
3020 3021 3022 3023 3024
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3025
		return NULL;
3026

3027
	if (protection_domain_init(domain))
3028 3029
		goto out_err;

3030 3031
	add_domain_to_list(domain);

3032 3033 3034 3035 3036 3037 3038 3039
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3040
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3041
{
3042
	struct protection_domain *pdomain;
3043
	struct dma_ops_domain *dma_domain;
3044

3045 3046 3047 3048 3049
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3050

3051 3052 3053 3054 3055 3056
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3057

3058 3059 3060
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3071 3072 3073 3074
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3075

3076 3077
		pdomain->mode = PAGE_MODE_NONE;
		break;
3078 3079 3080
	default:
		return NULL;
	}
3081

3082
	return &pdomain->domain;
3083 3084
}

3085
static void amd_iommu_domain_free(struct iommu_domain *dom)
3086
{
3087
	struct protection_domain *domain;
3088

3089
	if (!dom)
3090 3091
		return;

3092 3093
	domain = to_pdomain(dom);

3094 3095 3096 3097 3098
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3099 3100
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3101

3102 3103 3104
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3105
	protection_domain_free(domain);
3106 3107
}

3108 3109 3110
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3111
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3112
	struct amd_iommu *iommu;
3113
	int devid;
3114

3115
	if (!check_device(dev))
3116 3117
		return;

3118
	devid = get_device_id(dev);
3119 3120
	if (IS_ERR_VALUE(devid))
		return;
3121

3122
	if (dev_data->domain != NULL)
3123
		detach_device(dev);
3124 3125 3126 3127 3128 3129 3130 3131

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3132 3133 3134
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3135
	struct protection_domain *domain = to_pdomain(dom);
3136
	struct iommu_dev_data *dev_data;
3137
	struct amd_iommu *iommu;
3138
	int ret;
3139

3140
	if (!check_device(dev))
3141 3142
		return -EINVAL;

3143 3144
	dev_data = dev->archdata.iommu;

3145
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3146 3147 3148
	if (!iommu)
		return -EINVAL;

3149
	if (dev_data->domain)
3150
		detach_device(dev);
3151

3152
	ret = attach_device(dev, domain);
3153 3154 3155

	iommu_completion_wait(iommu);

3156
	return ret;
3157 3158
}

3159
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3160
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3161
{
3162
	struct protection_domain *domain = to_pdomain(dom);
3163 3164 3165
	int prot = 0;
	int ret;

3166 3167 3168
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3169 3170 3171 3172 3173
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3174
	mutex_lock(&domain->api_lock);
3175
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3176 3177
	mutex_unlock(&domain->api_lock);

3178
	return ret;
3179 3180
}

3181 3182
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3183
{
3184
	struct protection_domain *domain = to_pdomain(dom);
3185
	size_t unmap_size;
3186

3187 3188 3189
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3190
	mutex_lock(&domain->api_lock);
3191
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3192
	mutex_unlock(&domain->api_lock);
3193

3194
	domain_flush_tlb_pde(domain);
3195

3196
	return unmap_size;
3197 3198
}

3199
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3200
					  dma_addr_t iova)
3201
{
3202
	struct protection_domain *domain = to_pdomain(dom);
3203
	unsigned long offset_mask, pte_pgsize;
3204
	u64 *pte, __pte;
3205

3206 3207 3208
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3209
	pte = fetch_pte(domain, iova, &pte_pgsize);
3210

3211
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3212 3213
		return 0;

3214 3215
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3216

3217
	return (__pte & ~offset_mask) | (iova & offset_mask);
3218 3219
}

3220
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3221
{
3222 3223
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3224
		return true;
3225
	case IOMMU_CAP_INTR_REMAP:
3226
		return (irq_remapping_enabled == 1);
3227 3228
	case IOMMU_CAP_NOEXEC:
		return false;
3229 3230
	}

3231
	return false;
S
Sheng Yang 已提交
3232 3233
}

3234 3235 3236 3237
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3238
	int devid;
3239 3240

	devid = get_device_id(dev);
3241 3242
	if (IS_ERR_VALUE(devid))
		return;
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3277
static const struct iommu_ops amd_iommu_ops = {
3278
	.capable = amd_iommu_capable,
3279 3280
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3281 3282
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3283 3284
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3285
	.map_sg = default_iommu_map_sg,
3286
	.iova_to_phys = amd_iommu_iova_to_phys,
3287 3288
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3289
	.device_group = pci_device_group,
3290 3291
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3292
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3293 3294
};

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3317 3318 3319

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3320
	struct protection_domain *domain = to_pdomain(dom);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3338 3339 3340

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3341
	struct protection_domain *domain = to_pdomain(dom);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3419 3420 3421 3422 3423 3424
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3450 3451
	INC_STATS_COUNTER(invalidate_iotlb);

3452 3453 3454 3455 3456 3457
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3458
	struct protection_domain *domain = to_pdomain(dom);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3472 3473
	INC_STATS_COUNTER(invalidate_iotlb_all);

3474 3475 3476 3477 3478 3479
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3480
	struct protection_domain *domain = to_pdomain(dom);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3560
	struct protection_domain *domain = to_pdomain(dom);
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3574
	struct protection_domain *domain = to_pdomain(dom);
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3585 3586 3587 3588 3589 3590 3591 3592

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3593 3594
	INC_STATS_COUNTER(complete_ppr);

3595 3596 3597 3598 3599 3600 3601 3602 3603
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3604 3605 3606

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3607
	struct protection_domain *pdomain;
3608

3609 3610
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3611 3612 3613
		return NULL;

	/* Only return IOMMUv2 domains */
3614
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3615 3616
		return NULL;

3617
	return &pdomain->domain;
3618 3619
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3699 3700 3701 3702 3703
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3766 3767 3768
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3769 3770 3771 3772 3773 3774 3775
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3776
		table = NULL;
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3794
		set_dte_irq_entry(alias, table);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3807
static int alloc_irq_index(u16 devid, int count)
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3891
static int get_devid(struct irq_alloc_info *info)
3892
{
3893
	int devid = -1;
3894

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3910

3911 3912
	return devid;
}
3913

3914 3915 3916 3917
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3918

3919 3920
	if (!info)
		return NULL;
3921

3922 3923 3924 3925 3926 3927
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3928

3929
	return NULL;
3930 3931
}

3932
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3933
{
3934 3935
	struct amd_iommu *iommu;
	int devid;
3936

3937 3938
	if (!info)
		return NULL;
3939

3940 3941 3942 3943
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3944 3945 3946
		if (IS_ERR_VALUE(devid))
			return NULL;

3947 3948 3949
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3950 3951 3952 3953
		break;
	default:
		break;
	}
3954

3955 3956
	return NULL;
}
3957

3958 3959 3960 3961 3962 3963
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3964 3965 3966
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3977

3978 3979
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4003

4004 4005 4006 4007 4008 4009 4010
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4011

4012 4013 4014 4015
	default:
		BUG_ON(1);
		break;
	}
4016 4017
}

4018 4019
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4020
{
4021 4022 4023
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
4024
	struct irq_cfg *cfg;
4025 4026
	int i, ret, devid;
	int index = -1;
4027

4028 4029 4030 4031
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4032 4033
		return -EINVAL;

4034 4035 4036 4037 4038 4039
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4040

4041 4042 4043
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4044

4045 4046 4047
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4048

4049 4050 4051 4052 4053 4054
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4055
		index = alloc_irq_index(devid, nr_irqs);
4056 4057 4058 4059 4060
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
4061

4062 4063 4064 4065 4066 4067 4068
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4069

4070 4071 4072 4073 4074
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4075 4076 4077 4078 4079 4080
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4081

4082
	return 0;
4083

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4095 4096
}

4097 4098
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4099
{
4100 4101 4102 4103
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4104

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4116

4117 4118 4119 4120 4121
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4122

4123
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4124 4125
}

4126 4127
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4128
{
4129 4130 4131
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4132

4133 4134 4135
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4136

4137 4138 4139 4140 4141
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4142
};
4143

4144 4145 4146 4147 4148 4149 4150 4151
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4152

4153 4154 4155
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4156

4157 4158 4159 4160 4161 4162 4163
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4164

4165 4166 4167 4168 4169
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4170
	send_cleanup_vector(cfg);
4171 4172

	return IRQ_SET_MASK_OK_DONE;
4173 4174
}

4175
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4176
{
4177
	struct amd_ir_data *ir_data = irq_data->chip_data;
4178

4179 4180
	*msg = ir_data->msi_entry;
}
4181

4182 4183 4184 4185 4186
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4187

4188 4189 4190 4191 4192
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4193

4194 4195
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4196 4197 4198

	return 0;
}
4199
#endif