slab.c 112.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
A
Andrew Morton 已提交
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
202
			 */
L
Linus Torvalds 已提交
203 204
};

J
Joonsoo Kim 已提交
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
227 228 229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
230 231 232 233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
235 236
};

237 238 239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_AC MAX_NUMNODES
244
#define	SIZE_NODE (2 * MAX_NUMNODES)
245

246
static int drain_freelist(struct kmem_cache *cache,
247
			struct kmem_cache_node *n, int tofree);
248
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 250
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252
static void cache_reap(struct work_struct *unused);
253

254 255
static int slab_early_init = 1;

256
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
258

259
static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 261 262 263 264 265
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
266
	parent->colour_next = 0;
267 268 269 270 271
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
272 273 274
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
275
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
276 277
	} while (0)

A
Andrew Morton 已提交
278 279
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
280 281 282 283
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
284 285 286 287 288

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
289 290 291
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
292
 *
A
Adrian Bunk 已提交
293
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
294 295
 * which could lock up otherwise freeable slabs.
 */
296 297
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
298 299 300 301 302 303

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
304
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
305 306 307 308 309
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
310 311
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
314 315 316 317 318
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
319 320 321 322 323 324 325 326 327
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
328
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
329 330 331
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332
#define	STATS_INC_NODEFREES(x)	do { } while (0)
333
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
334
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
343 344
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
345
 * 0		: objp
346
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
347 348
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
349
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
350
 * 		redzone word.
351
 * cachep->obj_offset: The real object.
352 353
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
354
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
355
 */
356
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
357
{
358
	return cachep->obj_offset;
L
Linus Torvalds 已提交
359 360
}

361
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
362 363
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 365
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
366 367
}

368
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
369 370 371
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
372
		return (unsigned long long *)(objp + cachep->size -
373
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
374
					      REDZONE_ALIGN);
375
	return (unsigned long long *) (objp + cachep->size -
376
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
377 378
}

379
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
380 381
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
383 384 385 386
}

#else

387
#define obj_offset(x)			0
388 389
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
390 391 392 393
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

L
Linus Torvalds 已提交
427
/*
428 429
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
430
 */
431 432 433
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
434
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
435

436 437
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
438
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
439
	return page->slab_cache;
440 441
}

442
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 444
				 unsigned int idx)
{
445
	return page->s_mem + cache->size * idx;
446 447
}

448
/*
449 450 451
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
452 453 454
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455
					const struct page *page, void *obj)
456
{
457
	u32 offset = (obj - page->s_mem);
458
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 460
}

L
Linus Torvalds 已提交
461
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
462
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
463 464

/* internal cache of cache description objs */
465
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
466 467 468
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
469
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
470
	.name = "kmem_cache",
L
Linus Torvalds 已提交
471 472
};

473 474
#define BAD_ALIEN_MAGIC 0x01020304ul

475 476 477 478 479 480 481 482
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
483 484 485 486
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
487
 */
488 489 490
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

491 492 493 494 495
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
496
		struct kmem_cache_node *n)
497
{
J
Joonsoo Kim 已提交
498
	struct alien_cache **alc;
499 500
	int r;

501 502
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
503 504 505 506 507 508 509 510 511 512 513
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
514
			lockdep_set_class(&(alc[r]->lock), alc_key);
515 516 517
	}
}

518 519
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
520
{
521
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, n);
522 523 524 525 526
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;
527
	struct kmem_cache_node *n;
528

529 530
	for_each_kmem_cache_node(cachep, node, n)
		slab_set_debugobj_lock_classes_node(cachep, n);
531 532
}

533
static void init_node_lock_keys(int q)
534
{
535
	int i;
536

537
	if (slab_state < UP)
538 539
		return;

C
Christoph Lameter 已提交
540
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
541
		struct kmem_cache_node *n;
542 543 544 545
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
546

547
		n = get_node(cache, q);
548
		if (!n || OFF_SLAB(cache))
549
			continue;
550

551
		slab_set_lock_classes(cache, &on_slab_l3_key,
552
				&on_slab_alc_key, n);
553 554
	}
}
555

556 557
static void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
558 559
{
	slab_set_lock_classes(cachep, &on_slab_l3_key,
560
			&on_slab_alc_key, n);
561 562 563 564 565
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;
566
	struct kmem_cache_node *n;
567 568

	VM_BUG_ON(OFF_SLAB(cachep));
569 570
	for_each_kmem_cache_node(cachep, node, n)
		on_slab_lock_classes_node(cachep, n);
571 572
}

573
static inline void __init init_lock_keys(void)
574 575 576 577 578 579
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
580
#else
581
static void __init init_node_lock_keys(int q)
582 583 584
{
}

585
static inline void init_lock_keys(void)
586 587
{
}
588

589 590 591 592
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

593 594
static inline void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
595 596 597
{
}

598 599
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
600 601 602 603 604 605
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
606 607
#endif

608
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
609

610
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
611 612 613 614
{
	return cachep->array[smp_processor_id()];
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

629 630
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
631
{
632
	int nr_objs;
633
	size_t remained_size;
634
	size_t freelist_size;
635
	int extra_space = 0;
636

637 638
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
639 640 641 642 643 644 645 646
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
647
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
648 649 650 651 652

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
653 654 655
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
656 657 658
		nr_objs--;

	return nr_objs;
659
}
L
Linus Torvalds 已提交
660

A
Andrew Morton 已提交
661 662 663
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
664 665 666 667 668 669 670
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
671

672 673 674 675 676
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
677
	 * - One unsigned int for each object
678 679 680 681 682 683 684 685 686 687 688 689 690
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
691
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
692
					sizeof(freelist_idx_t), align);
693
		mgmt_size = calculate_freelist_size(nr_objs, align);
694 695 696
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
697 698
}

699
#if DEBUG
700
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
701

A
Andrew Morton 已提交
702 703
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
704 705
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
706
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
707
	dump_stack();
708
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
709
}
710
#endif
L
Linus Torvalds 已提交
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

728 729 730 731 732 733 734 735 736 737 738
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

739 740 741 742 743 744 745
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
746
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
747 748 749 750 751

static void init_reap_node(int cpu)
{
	int node;

752
	node = next_node(cpu_to_mem(cpu), node_online_map);
753
	if (node == MAX_NUMNODES)
754
		node = first_node(node_online_map);
755

756
	per_cpu(slab_reap_node, cpu) = node;
757 758 759 760
}

static void next_reap_node(void)
{
761
	int node = __this_cpu_read(slab_reap_node);
762 763 764 765

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
766
	__this_cpu_write(slab_reap_node, node);
767 768 769 770 771 772 773
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
774 775 776 777 778 779 780
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
781
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
782
{
783
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
784 785 786 787 788 789

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
790
	if (keventd_up() && reap_work->work.func == NULL) {
791
		init_reap_node(cpu);
792
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
793 794
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
795 796 797
	}
}

798
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
799
{
800 801
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
802
	 * However, when such objects are allocated or transferred to another
803 804 805 806
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
807 808 809 810 811 812
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
813
	}
814 815 816 817 818 819 820 821 822 823 824
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
825 826
}

827
static inline bool is_slab_pfmemalloc(struct page *page)
828 829 830 831 832 833 834 835
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
836
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
837
	struct page *page;
838 839 840 841 842
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

843
	spin_lock_irqsave(&n->list_lock, flags);
844 845
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
846 847
			goto out;

848 849
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
850 851
			goto out;

852 853
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
854 855 856 857
			goto out;

	pfmemalloc_active = false;
out:
858
	spin_unlock_irqrestore(&n->list_lock, flags);
859 860
}

861
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
862 863 864 865 866 867 868
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
869
		struct kmem_cache_node *n;
870 871 872 873 874 875 876

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
877
		for (i = 0; i < ac->avail; i++) {
878 879 880 881 882 883 884 885 886 887 888 889 890
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
891
		n = get_node(cachep, numa_mem_id());
892
		if (!list_empty(&n->slabs_free) && force_refill) {
893
			struct page *page = virt_to_head_page(objp);
894
			ClearPageSlabPfmemalloc(page);
895 896 897 898 899 900 901 902 903 904 905 906 907
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
922 923 924 925
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
926
		struct page *page = virt_to_head_page(objp);
927 928 929 930
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

931 932 933 934 935 936 937 938 939
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

940 941 942
	ac->entry[ac->avail++] = objp;
}

943 944 945 946 947 948 949 950 951 952
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
953
	int nr = min3(from->avail, max, to->limit - to->avail);
954 955 956 957 958 959 960 961 962 963 964 965

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

966 967 968
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
969
#define reap_alien(cachep, n) do { } while (0)
970

J
Joonsoo Kim 已提交
971 972
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
973
{
J
Joonsoo Kim 已提交
974
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
975 976
}

J
Joonsoo Kim 已提交
977
static inline void free_alien_cache(struct alien_cache **ac_ptr)
978 979 980 981 982 983 984 985 986 987 988 989 990 991
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

992
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
993 994 995 996 997 998 999
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1000
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1001
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1002

J
Joonsoo Kim 已提交
1003 1004 1005 1006 1007 1008 1009 1010
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
1011
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
1012 1013 1014 1015
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1016
{
J
Joonsoo Kim 已提交
1017
	struct alien_cache **alc_ptr;
1018
	int memsize = sizeof(void *) * nr_node_ids;
1019 1020 1021 1022
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
1036 1037
		}
	}
J
Joonsoo Kim 已提交
1038
	return alc_ptr;
1039 1040
}

J
Joonsoo Kim 已提交
1041
static void free_alien_cache(struct alien_cache **alc_ptr)
1042 1043 1044
{
	int i;

J
Joonsoo Kim 已提交
1045
	if (!alc_ptr)
1046 1047
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
1048 1049
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
1050 1051
}

1052
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1053
				struct array_cache *ac, int node)
1054
{
1055
	struct kmem_cache_node *n = get_node(cachep, node);
1056
	LIST_HEAD(list);
1057 1058

	if (ac->avail) {
1059
		spin_lock(&n->list_lock);
1060 1061 1062 1063 1064
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1065 1066
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1067

1068
		free_block(cachep, ac->entry, ac->avail, node, &list);
1069
		ac->avail = 0;
1070
		spin_unlock(&n->list_lock);
1071
		slabs_destroy(cachep, &list);
1072 1073 1074
	}
}

1075 1076 1077
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1078
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1079
{
1080
	int node = __this_cpu_read(slab_reap_node);
1081

1082
	if (n->alien) {
J
Joonsoo Kim 已提交
1083 1084 1085 1086 1087
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
1088
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
J
Joonsoo Kim 已提交
1089
				__drain_alien_cache(cachep, ac, node);
1090
				spin_unlock_irq(&alc->lock);
J
Joonsoo Kim 已提交
1091
			}
1092 1093 1094 1095
		}
	}
}

A
Andrew Morton 已提交
1096
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
1097
				struct alien_cache **alien)
1098
{
P
Pekka Enberg 已提交
1099
	int i = 0;
J
Joonsoo Kim 已提交
1100
	struct alien_cache *alc;
1101 1102 1103 1104
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
1105 1106 1107
		alc = alien[i];
		if (alc) {
			ac = &alc->ac;
1108
			spin_lock_irqsave(&alc->lock, flags);
1109
			__drain_alien_cache(cachep, ac, i);
1110
			spin_unlock_irqrestore(&alc->lock, flags);
1111 1112 1113
		}
	}
}
1114

1115
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1116
{
J
Joonsoo Kim 已提交
1117
	int nodeid = page_to_nid(virt_to_page(objp));
1118
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
1119 1120
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
P
Pekka Enberg 已提交
1121
	int node;
1122
	LIST_HEAD(list);
P
Pekka Enberg 已提交
1123

1124
	node = numa_mem_id();
1125 1126 1127 1128 1129

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1130
	if (likely(nodeid == node))
1131 1132
		return 0;

1133
	n = get_node(cachep, node);
1134
	STATS_INC_NODEFREES(cachep);
1135 1136
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
J
Joonsoo Kim 已提交
1137
		ac = &alien->ac;
1138
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
1139
		if (unlikely(ac->avail == ac->limit)) {
1140
			STATS_INC_ACOVERFLOW(cachep);
J
Joonsoo Kim 已提交
1141
			__drain_alien_cache(cachep, ac, nodeid);
1142
		}
J
Joonsoo Kim 已提交
1143
		ac_put_obj(cachep, ac, objp);
1144
		spin_unlock(&alien->lock);
1145
	} else {
1146 1147
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1148
		free_block(cachep, &objp, 1, nodeid, &list);
1149
		spin_unlock(&n->list_lock);
1150
		slabs_destroy(cachep, &list);
1151 1152 1153
	}
	return 1;
}
1154 1155
#endif

1156
/*
1157
 * Allocates and initializes node for a node on each slab cache, used for
1158
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1159
 * will be allocated off-node since memory is not yet online for the new node.
1160
 * When hotplugging memory or a cpu, existing node are not replaced if
1161 1162
 * already in use.
 *
1163
 * Must hold slab_mutex.
1164
 */
1165
static int init_cache_node_node(int node)
1166 1167
{
	struct kmem_cache *cachep;
1168
	struct kmem_cache_node *n;
1169
	const int memsize = sizeof(struct kmem_cache_node);
1170

1171
	list_for_each_entry(cachep, &slab_caches, list) {
1172
		/*
1173
		 * Set up the kmem_cache_node for cpu before we can
1174 1175 1176
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1177 1178
		n = get_node(cachep, node);
		if (!n) {
1179 1180
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1181
				return -ENOMEM;
1182
			kmem_cache_node_init(n);
1183 1184
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1185 1186

			/*
1187 1188
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1189 1190
			 * protection here.
			 */
1191
			cachep->node[node] = n;
1192 1193
		}

1194 1195
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1196 1197
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1198
		spin_unlock_irq(&n->list_lock);
1199 1200 1201 1202
	}
	return 0;
}

1203 1204 1205 1206 1207 1208
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1209
static void cpuup_canceled(long cpu)
1210 1211
{
	struct kmem_cache *cachep;
1212
	struct kmem_cache_node *n = NULL;
1213
	int node = cpu_to_mem(cpu);
1214
	const struct cpumask *mask = cpumask_of_node(node);
1215

1216
	list_for_each_entry(cachep, &slab_caches, list) {
1217 1218
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1219
		struct alien_cache **alien;
1220
		LIST_HEAD(list);
1221 1222 1223 1224

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1225
		n = get_node(cachep, node);
1226

1227
		if (!n)
1228 1229
			goto free_array_cache;

1230
		spin_lock_irq(&n->list_lock);
1231

1232 1233
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1234
		if (nc)
1235
			free_block(cachep, nc->entry, nc->avail, node, &list);
1236

1237
		if (!cpumask_empty(mask)) {
1238
			spin_unlock_irq(&n->list_lock);
1239 1240 1241
			goto free_array_cache;
		}

1242
		shared = n->shared;
1243 1244
		if (shared) {
			free_block(cachep, shared->entry,
1245
				   shared->avail, node, &list);
1246
			n->shared = NULL;
1247 1248
		}

1249 1250
		alien = n->alien;
		n->alien = NULL;
1251

1252
		spin_unlock_irq(&n->list_lock);
1253 1254 1255 1256 1257 1258 1259

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
1260
		slabs_destroy(cachep, &list);
1261 1262 1263 1264 1265 1266 1267
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1268
	list_for_each_entry(cachep, &slab_caches, list) {
1269
		n = get_node(cachep, node);
1270
		if (!n)
1271
			continue;
1272
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1273 1274 1275
	}
}

1276
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1277
{
1278
	struct kmem_cache *cachep;
1279
	struct kmem_cache_node *n = NULL;
1280
	int node = cpu_to_mem(cpu);
1281
	int err;
L
Linus Torvalds 已提交
1282

1283 1284 1285 1286
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1287
	 * kmem_cache_node and not this cpu's kmem_cache_node
1288
	 */
1289
	err = init_cache_node_node(node);
1290 1291
	if (err < 0)
		goto bad;
1292 1293 1294 1295 1296

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1297
	list_for_each_entry(cachep, &slab_caches, list) {
1298 1299
		struct array_cache *nc;
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1300
		struct alien_cache **alien = NULL;
1301 1302

		nc = alloc_arraycache(node, cachep->limit,
1303
					cachep->batchcount, GFP_KERNEL);
1304 1305 1306 1307 1308
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1309
				0xbaadf00d, GFP_KERNEL);
1310 1311
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1312
				goto bad;
1313
			}
1314 1315
		}
		if (use_alien_caches) {
1316
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1317 1318 1319
			if (!alien) {
				kfree(shared);
				kfree(nc);
1320
				goto bad;
1321
			}
1322 1323
		}
		cachep->array[cpu] = nc;
1324
		n = get_node(cachep, node);
1325
		BUG_ON(!n);
1326

1327 1328
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1329 1330 1331 1332
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1333
			n->shared = shared;
1334 1335
			shared = NULL;
		}
1336
#ifdef CONFIG_NUMA
1337 1338
		if (!n->alien) {
			n->alien = alien;
1339
			alien = NULL;
L
Linus Torvalds 已提交
1340
		}
1341
#endif
1342
		spin_unlock_irq(&n->list_lock);
1343 1344
		kfree(shared);
		free_alien_cache(alien);
1345
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1346
			slab_set_debugobj_lock_classes_node(cachep, n);
1347 1348
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1349
			on_slab_lock_classes_node(cachep, n);
1350
	}
1351 1352
	init_node_lock_keys(node);

1353 1354
	return 0;
bad:
1355
	cpuup_canceled(cpu);
1356 1357 1358
	return -ENOMEM;
}

1359
static int cpuup_callback(struct notifier_block *nfb,
1360 1361 1362 1363 1364 1365 1366 1367
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1368
		mutex_lock(&slab_mutex);
1369
		err = cpuup_prepare(cpu);
1370
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1371 1372
		break;
	case CPU_ONLINE:
1373
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1374 1375 1376
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1377
  	case CPU_DOWN_PREPARE:
1378
  	case CPU_DOWN_PREPARE_FROZEN:
1379
		/*
1380
		 * Shutdown cache reaper. Note that the slab_mutex is
1381 1382 1383 1384
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1385
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1386
		/* Now the cache_reaper is guaranteed to be not running. */
1387
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1388 1389
  		break;
  	case CPU_DOWN_FAILED:
1390
  	case CPU_DOWN_FAILED_FROZEN:
1391 1392
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1393
	case CPU_DEAD:
1394
	case CPU_DEAD_FROZEN:
1395 1396
		/*
		 * Even if all the cpus of a node are down, we don't free the
1397
		 * kmem_cache_node of any cache. This to avoid a race between
1398
		 * cpu_down, and a kmalloc allocation from another cpu for
1399
		 * memory from the node of the cpu going down.  The node
1400 1401 1402
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1403
		/* fall through */
1404
#endif
L
Linus Torvalds 已提交
1405
	case CPU_UP_CANCELED:
1406
	case CPU_UP_CANCELED_FROZEN:
1407
		mutex_lock(&slab_mutex);
1408
		cpuup_canceled(cpu);
1409
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1410 1411
		break;
	}
1412
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1413 1414
}

1415
static struct notifier_block cpucache_notifier = {
1416 1417
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1418

1419 1420 1421 1422 1423 1424
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1425
 * Must hold slab_mutex.
1426
 */
1427
static int __meminit drain_cache_node_node(int node)
1428 1429 1430 1431
{
	struct kmem_cache *cachep;
	int ret = 0;

1432
	list_for_each_entry(cachep, &slab_caches, list) {
1433
		struct kmem_cache_node *n;
1434

1435
		n = get_node(cachep, node);
1436
		if (!n)
1437 1438
			continue;

1439
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1440

1441 1442
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1463
		mutex_lock(&slab_mutex);
1464
		ret = init_cache_node_node(nid);
1465
		mutex_unlock(&slab_mutex);
1466 1467
		break;
	case MEM_GOING_OFFLINE:
1468
		mutex_lock(&slab_mutex);
1469
		ret = drain_cache_node_node(nid);
1470
		mutex_unlock(&slab_mutex);
1471 1472 1473 1474 1475 1476 1477 1478
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1479
	return notifier_from_errno(ret);
1480 1481 1482
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1483
/*
1484
 * swap the static kmem_cache_node with kmalloced memory
1485
 */
1486
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1487
				int nodeid)
1488
{
1489
	struct kmem_cache_node *ptr;
1490

1491
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1492 1493
	BUG_ON(!ptr);

1494
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1495 1496 1497 1498 1499
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1500
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1501
	cachep->node[nodeid] = ptr;
1502 1503
}

1504
/*
1505 1506
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1507
 */
1508
static void __init set_up_node(struct kmem_cache *cachep, int index)
1509 1510 1511 1512
{
	int node;

	for_each_online_node(node) {
1513
		cachep->node[node] = &init_kmem_cache_node[index + node];
1514
		cachep->node[node]->next_reap = jiffies +
1515 1516
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1517 1518 1519
	}
}

C
Christoph Lameter 已提交
1520 1521
/*
 * The memory after the last cpu cache pointer is used for the
1522
 * the node pointer.
C
Christoph Lameter 已提交
1523
 */
1524
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1525
{
1526
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1527 1528
}

A
Andrew Morton 已提交
1529 1530 1531
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1532 1533 1534
 */
void __init kmem_cache_init(void)
{
1535 1536
	int i;

1537 1538
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1539
	kmem_cache = &kmem_cache_boot;
1540
	setup_node_pointer(kmem_cache);
1541

1542
	if (num_possible_nodes() == 1)
1543 1544
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1545
	for (i = 0; i < NUM_INIT_LISTS; i++)
1546
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1547

1548
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1549 1550 1551

	/*
	 * Fragmentation resistance on low memory - only use bigger
1552 1553
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1554
	 */
1555
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1556
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1557 1558 1559

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1560 1561 1562
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1563
	 *    Initially an __init data area is used for the head array and the
1564
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1565
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1566
	 * 2) Create the first kmalloc cache.
1567
	 *    The struct kmem_cache for the new cache is allocated normally.
1568 1569 1570
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1571
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1572
	 *    kmalloc cache with kmalloc allocated arrays.
1573
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1574 1575
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1576 1577
	 */

1578
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1579

E
Eric Dumazet 已提交
1580
	/*
1581
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1582
	 */
1583 1584
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1585
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1586 1587
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1588 1589 1590

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1591 1592
	/*
	 * Initialize the caches that provide memory for the array cache and the
1593
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1594
	 * bug.
1595 1596
	 */

1597 1598
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1599

1600 1601 1602 1603
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1604

1605 1606
	slab_early_init = 0;

L
Linus Torvalds 已提交
1607 1608
	/* 4) Replace the bootstrap head arrays */
	{
1609
		struct array_cache *ptr;
1610

1611
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1612

1613
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1614
		       sizeof(struct arraycache_init));
1615

1616
		kmem_cache->array[smp_processor_id()] = ptr;
1617

1618
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1619

1620
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1621
		       != &initarray_generic.cache);
1622
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1623
		       sizeof(struct arraycache_init));
1624

1625
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1626
	}
1627
	/* 5) Replace the bootstrap kmem_cache_node */
1628
	{
P
Pekka Enberg 已提交
1629 1630
		int nid;

1631
		for_each_online_node(nid) {
1632
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1633

1634
			init_list(kmalloc_caches[INDEX_AC],
1635
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1636

1637 1638 1639
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1640 1641 1642
			}
		}
	}
L
Linus Torvalds 已提交
1643

1644
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1645 1646 1647 1648 1649 1650
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1651
	slab_state = UP;
P
Peter Zijlstra 已提交
1652

1653
	/* 6) resize the head arrays to their final sizes */
1654 1655
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1656 1657
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1658
	mutex_unlock(&slab_mutex);
1659

1660 1661 1662
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1663 1664 1665
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1666 1667 1668
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1669 1670 1671
	 */
	register_cpu_notifier(&cpucache_notifier);

1672 1673 1674
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1675
	 * node.
1676 1677 1678 1679
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1680 1681 1682
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688 1689
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1690 1691
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1692
	 */
1693
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1694
		start_cpu_timer(cpu);
1695 1696

	/* Done! */
1697
	slab_state = FULL;
L
Linus Torvalds 已提交
1698 1699 1700 1701
	return 0;
}
__initcall(cpucache_init);

1702 1703 1704
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1705
#if DEBUG
1706
	struct kmem_cache_node *n;
1707
	struct page *page;
1708 1709
	unsigned long flags;
	int node;
1710 1711 1712 1713 1714
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1715 1716 1717 1718 1719

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1720
		cachep->name, cachep->size, cachep->gfporder);
1721

1722
	for_each_kmem_cache_node(cachep, node, n) {
1723 1724 1725
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1726
		spin_lock_irqsave(&n->list_lock, flags);
1727
		list_for_each_entry(page, &n->slabs_full, lru) {
1728 1729 1730
			active_objs += cachep->num;
			active_slabs++;
		}
1731 1732
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1733 1734
			active_slabs++;
		}
1735
		list_for_each_entry(page, &n->slabs_free, lru)
1736 1737
			num_slabs++;

1738 1739
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1740 1741 1742 1743 1744 1745 1746 1747

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1748
#endif
1749 1750
}

L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756 1757
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1758 1759
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1760 1761
{
	struct page *page;
1762
	int nr_pages;
1763

1764
	flags |= cachep->allocflags;
1765 1766
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1767

1768 1769 1770
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1771
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1772
	if (!page) {
1773
		memcg_uncharge_slab(cachep, cachep->gfporder);
1774
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1775
		return NULL;
1776
	}
L
Linus Torvalds 已提交
1777

1778
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1779 1780 1781
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1782
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1783
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1784 1785 1786 1787 1788
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1789 1790 1791
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
1792

1793 1794 1795 1796 1797 1798 1799 1800
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1801

1802
	return page;
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807
}

/*
 * Interface to system's page release.
 */
1808
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1809
{
1810
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1811

1812
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1813

1814 1815 1816 1817 1818 1819
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1820

1821
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1822
	__ClearPageSlabPfmemalloc(page);
1823
	__ClearPageSlab(page);
1824 1825
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1826

L
Linus Torvalds 已提交
1827 1828
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1829 1830
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1831 1832 1833 1834
}

static void kmem_rcu_free(struct rcu_head *head)
{
1835 1836
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1837

1838 1839 1840 1841
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1847
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1848
			    unsigned long caller)
L
Linus Torvalds 已提交
1849
{
1850
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1851

1852
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1853

P
Pekka Enberg 已提交
1854
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1855 1856
		return;

P
Pekka Enberg 已提交
1857 1858 1859 1860
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1861 1862 1863 1864 1865 1866 1867
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1868
				*addr++ = svalue;
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874 1875
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1876
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1877 1878 1879
}
#endif

1880
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1881
{
1882
	int size = cachep->object_size;
1883
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1884 1885

	memset(addr, val, size);
P
Pekka Enberg 已提交
1886
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1892 1893 1894
	unsigned char error = 0;
	int bad_count = 0;

1895
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1896 1897 1898 1899 1900 1901
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1902 1903
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1918 1919 1920 1921 1922
}
#endif

#if DEBUG

1923
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1929
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1930 1931
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1932 1933 1934
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1935 1936 1937
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1938
	}
1939
	realobj = (char *)objp + obj_offset(cachep);
1940
	size = cachep->object_size;
P
Pekka Enberg 已提交
1941
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1942 1943
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1944 1945
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1946 1947 1948 1949
		dump_line(realobj, i, limit);
	}
}

1950
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955
{
	char *realobj;
	int size, i;
	int lines = 0;

1956
	realobj = (char *)objp + obj_offset(cachep);
1957
	size = cachep->object_size;
L
Linus Torvalds 已提交
1958

P
Pekka Enberg 已提交
1959
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1960
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1961
		if (i == size - 1)
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1968
				printk(KERN_ERR
1969 1970
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1971 1972 1973
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1974
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1975
			limit = 16;
P
Pekka Enberg 已提交
1976 1977
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1990
		struct page *page = virt_to_head_page(objp);
1991
		unsigned int objnr;
L
Linus Torvalds 已提交
1992

1993
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1994
		if (objnr) {
1995
			objp = index_to_obj(cachep, page, objnr - 1);
1996
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1997
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1998
			       realobj, size);
L
Linus Torvalds 已提交
1999 2000
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2001
		if (objnr + 1 < cachep->num) {
2002
			objp = index_to_obj(cachep, page, objnr + 1);
2003
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2004
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2005
			       realobj, size);
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2012
#if DEBUG
2013 2014
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
2015 2016 2017
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2018
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2019 2020 2021

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2022
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2023
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2024
				kernel_map_pages(virt_to_page(objp),
2025
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2035
					   "was overwritten");
L
Linus Torvalds 已提交
2036 2037
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2038
					   "was overwritten");
L
Linus Torvalds 已提交
2039 2040
		}
	}
2041
}
L
Linus Torvalds 已提交
2042
#else
2043 2044
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
2045 2046
{
}
L
Linus Torvalds 已提交
2047 2048
#endif

2049 2050 2051
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
2052
 * @page: page pointer being destroyed
2053
 *
2054
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2055 2056
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2057
 */
2058
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
2059
{
2060
	void *freelist;
2061

2062 2063
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
2064
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
2075 2076

	} else {
2077
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2078
	}
2079 2080

	/*
2081
	 * From now on, we don't use freelist
2082 2083 2084
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
2085
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

2098
/**
2099 2100 2101 2102 2103 2104 2105
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2106 2107 2108 2109 2110
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2111
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2112
			size_t size, size_t align, unsigned long flags)
2113
{
2114
	unsigned long offslab_limit;
2115
	size_t left_over = 0;
2116
	int gfporder;
2117

2118
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2119 2120 2121
		unsigned int num;
		size_t remainder;

2122
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2123 2124
		if (!num)
			continue;
2125

2126 2127 2128 2129
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

2130
		if (flags & CFLGS_OFF_SLAB) {
2131
			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
2132 2133 2134 2135 2136
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2137 2138
			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
				freelist_size_per_obj += sizeof(char);
2139
			offslab_limit = size;
2140
			offslab_limit /= freelist_size_per_obj;
2141 2142 2143 2144

 			if (num > offslab_limit)
				break;
		}
2145

2146
		/* Found something acceptable - save it away */
2147
		cachep->num = num;
2148
		cachep->gfporder = gfporder;
2149 2150
		left_over = remainder;

2151 2152 2153 2154 2155 2156 2157 2158
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2159 2160 2161 2162
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2163
		if (gfporder >= slab_max_order)
2164 2165
			break;

2166 2167 2168
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2169
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2170 2171 2172 2173 2174
			break;
	}
	return left_over;
}

2175
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2176
{
2177
	if (slab_state >= FULL)
2178
		return enable_cpucache(cachep, gfp);
2179

2180
	if (slab_state == DOWN) {
2181
		/*
2182
		 * Note: Creation of first cache (kmem_cache).
2183
		 * The setup_node is taken care
2184 2185 2186 2187 2188 2189 2190
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2191 2192 2193 2194 2195 2196
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2197 2198
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2199 2200
		 * otherwise the creation of further caches will BUG().
		 */
2201 2202 2203
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2204
		else
2205
			slab_state = PARTIAL_ARRAYCACHE;
2206
	} else {
2207
		/* Remaining boot caches */
2208
		cachep->array[smp_processor_id()] =
2209
			kmalloc(sizeof(struct arraycache_init), gfp);
2210

2211
		if (slab_state == PARTIAL_ARRAYCACHE) {
2212 2213
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2214 2215
		} else {
			int node;
2216
			for_each_online_node(node) {
2217
				cachep->node[node] =
2218
				    kmalloc_node(sizeof(struct kmem_cache_node),
2219
						gfp, node);
2220
				BUG_ON(!cachep->node[node]);
2221
				kmem_cache_node_init(cachep->node[node]);
2222 2223 2224
			}
		}
	}
2225
	cachep->node[numa_mem_id()]->next_reap =
2226 2227
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2228 2229 2230 2231 2232 2233 2234

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2235
	return 0;
2236 2237
}

L
Linus Torvalds 已提交
2238
/**
2239
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2240
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2241 2242 2243 2244
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2245
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2259
int
2260
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2261
{
2262
	size_t left_over, freelist_size, ralign;
2263
	gfp_t gfp;
2264
	int err;
2265
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2275 2276
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2277
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282 2283 2284
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2285 2286
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2287 2288 2289
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2290 2291 2292
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2293 2294
	}

2295
	/*
D
David Woodhouse 已提交
2296 2297 2298
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2299
	 */
D
David Woodhouse 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2310

2311
	/* 3) caller mandated alignment */
2312 2313
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2314
	}
2315 2316
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2317
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2318
	/*
2319
	 * 4) Store it.
L
Linus Torvalds 已提交
2320
	 */
2321
	cachep->align = ralign;
L
Linus Torvalds 已提交
2322

2323 2324 2325 2326 2327
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2328
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2329 2330
#if DEBUG

2331 2332 2333 2334
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2335 2336
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2337 2338
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2339 2340
	}
	if (flags & SLAB_STORE_USER) {
2341
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2342 2343
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2344
		 */
D
David Woodhouse 已提交
2345 2346 2347 2348
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2349 2350
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2351
	if (size >= kmalloc_size(INDEX_NODE + 1)
2352 2353 2354
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359
		size = PAGE_SIZE;
	}
#endif
#endif

2360 2361 2362
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2363 2364
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2365
	 */
2366
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2367
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2374
	size = ALIGN(size, cachep->align);
2375 2376 2377 2378 2379 2380
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2381

2382
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2383

2384
	if (!cachep->num)
2385
		return -E2BIG;
L
Linus Torvalds 已提交
2386

2387
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2393
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2394
		flags &= ~CFLGS_OFF_SLAB;
2395
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2396 2397 2398 2399
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2400
		freelist_size = calculate_freelist_size(cachep->num, 0);
2401 2402 2403 2404 2405 2406 2407 2408 2409

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2410 2411 2412 2413
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2414 2415
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2416
	cachep->colour = left_over / cachep->colour_off;
2417
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2418
	cachep->flags = flags;
2419
	cachep->allocflags = __GFP_COMP;
2420
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2421
		cachep->allocflags |= GFP_DMA;
2422
	cachep->size = size;
2423
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2424

2425
	if (flags & CFLGS_OFF_SLAB) {
2426
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2427
		/*
2428
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2429
		 * But since we go off slab only for object size greater than
2430 2431
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2432 2433
		 * But leave a BUG_ON for some lucky dude.
		 */
2434
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2435
	}
L
Linus Torvalds 已提交
2436

2437 2438
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2439
		__kmem_cache_shutdown(cachep);
2440
		return err;
2441
	}
L
Linus Torvalds 已提交
2442

2443 2444 2445 2446 2447 2448 2449 2450
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2451 2452
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2453

2454
	return 0;
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2468
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2469 2470 2471
{
#ifdef CONFIG_SMP
	check_irq_off();
2472
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2473 2474
#endif
}
2475

2476
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2477 2478 2479
{
#ifdef CONFIG_SMP
	check_irq_off();
2480
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2481 2482 2483
#endif
}

L
Linus Torvalds 已提交
2484 2485 2486 2487
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2488
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2489 2490
#endif

2491
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2492 2493 2494
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2495 2496
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2497
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2498
	struct array_cache *ac;
2499
	int node = numa_mem_id();
2500
	struct kmem_cache_node *n;
2501
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2502 2503

	check_irq_off();
2504
	ac = cpu_cache_get(cachep);
2505 2506
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2507
	free_block(cachep, ac->entry, ac->avail, node, &list);
2508
	spin_unlock(&n->list_lock);
2509
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2510 2511 2512
	ac->avail = 0;
}

2513
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2514
{
2515
	struct kmem_cache_node *n;
2516 2517
	int node;

2518
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2519
	check_irq_on();
2520 2521
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2522
			drain_alien_cache(cachep, n->alien);
2523

2524 2525
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2526 2527
}

2528 2529 2530 2531 2532 2533 2534
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2535
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2536
{
2537 2538
	struct list_head *p;
	int nr_freed;
2539
	struct page *page;
L
Linus Torvalds 已提交
2540

2541
	nr_freed = 0;
2542
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2543

2544 2545 2546 2547
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2548 2549
			goto out;
		}
L
Linus Torvalds 已提交
2550

2551
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2552
#if DEBUG
2553
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2554
#endif
2555
		list_del(&page->lru);
2556 2557 2558 2559
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2560 2561
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2562
		slab_destroy(cache, page);
2563
		nr_freed++;
L
Linus Torvalds 已提交
2564
	}
2565 2566
out:
	return nr_freed;
L
Linus Torvalds 已提交
2567 2568
}

2569
int __kmem_cache_shrink(struct kmem_cache *cachep)
2570
{
2571 2572
	int ret = 0;
	int node;
2573
	struct kmem_cache_node *n;
2574 2575 2576 2577

	drain_cpu_caches(cachep);

	check_irq_on();
2578
	for_each_kmem_cache_node(cachep, node, n) {
2579
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2580

2581 2582
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2583 2584 2585 2586
	}
	return (ret ? 1 : 0);
}

2587
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2588
{
2589
	int i;
2590
	struct kmem_cache_node *n;
2591
	int rc = __kmem_cache_shrink(cachep);
L
Linus Torvalds 已提交
2592

2593 2594
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2595

2596 2597
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2598

2599
	/* NUMA: free the node structures */
2600 2601 2602 2603 2604
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2605 2606
	}
	return 0;
L
Linus Torvalds 已提交
2607 2608
}

2609 2610
/*
 * Get the memory for a slab management obj.
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2622
 */
2623
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2624 2625
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2626
{
2627
	void *freelist;
2628
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2629

L
Linus Torvalds 已提交
2630 2631
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2632
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2633
					      local_flags, nodeid);
2634
		if (!freelist)
L
Linus Torvalds 已提交
2635 2636
			return NULL;
	} else {
2637 2638
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2639
	}
2640 2641 2642
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2643 2644
}

2645
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2646
{
2647
	return ((freelist_idx_t *)page->freelist)[idx];
2648 2649 2650
}

static inline void set_free_obj(struct page *page,
2651
					unsigned int idx, freelist_idx_t val)
2652
{
2653
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2654 2655
}

2656
static void cache_init_objs(struct kmem_cache *cachep,
2657
			    struct page *page)
L
Linus Torvalds 已提交
2658 2659 2660 2661
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2662
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2675 2676 2677
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2678 2679
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2680
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2681 2682 2683 2684

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2685
					   " end of an object");
L
Linus Torvalds 已提交
2686 2687
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2688
					   " start of an object");
L
Linus Torvalds 已提交
2689
		}
2690
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2691
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2692
			kernel_map_pages(virt_to_page(objp),
2693
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2694 2695
#else
		if (cachep->ctor)
2696
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2697
#endif
2698
		set_obj_status(page, i, OBJECT_FREE);
2699
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2700 2701 2702
	}
}

2703
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2704
{
2705 2706
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2707
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2708
		else
2709
			BUG_ON(cachep->allocflags & GFP_DMA);
2710
	}
L
Linus Torvalds 已提交
2711 2712
}

2713
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2714
				int nodeid)
2715
{
2716
	void *objp;
2717

2718
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2719
	page->active++;
2720
#if DEBUG
J
Joonsoo Kim 已提交
2721
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2722 2723 2724 2725 2726
#endif

	return objp;
}

2727
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2728
				void *objp, int nodeid)
2729
{
2730
	unsigned int objnr = obj_to_index(cachep, page, objp);
2731
#if DEBUG
J
Joonsoo Kim 已提交
2732
	unsigned int i;
2733

2734
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2735
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2736

2737
	/* Verify double free bug */
2738
	for (i = page->active; i < cachep->num; i++) {
2739
		if (get_free_obj(page, i) == objnr) {
2740 2741 2742 2743
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2744 2745
	}
#endif
2746
	page->active--;
2747
	set_free_obj(page, page->active, objnr);
2748 2749
}

2750 2751 2752
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2753
 * virtual address for kfree, ksize, and slab debugging.
2754
 */
2755
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2756
			   void *freelist)
L
Linus Torvalds 已提交
2757
{
2758
	page->slab_cache = cache;
2759
	page->freelist = freelist;
L
Linus Torvalds 已提交
2760 2761 2762 2763 2764 2765
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2766
static int cache_grow(struct kmem_cache *cachep,
2767
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2768
{
2769
	void *freelist;
P
Pekka Enberg 已提交
2770 2771
	size_t offset;
	gfp_t local_flags;
2772
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2773

A
Andrew Morton 已提交
2774 2775 2776
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2777
	 */
C
Christoph Lameter 已提交
2778 2779
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2780

2781
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2782
	check_irq_off();
2783
	n = get_node(cachep, nodeid);
2784
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2785 2786

	/* Get colour for the slab, and cal the next value. */
2787 2788 2789 2790 2791
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2792

2793
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2806 2807 2808
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2809
	 */
2810 2811 2812
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2813 2814 2815
		goto failed;

	/* Get slab management. */
2816
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2817
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2818
	if (!freelist)
L
Linus Torvalds 已提交
2819 2820
		goto opps1;

2821
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2822

2823
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2824 2825 2826 2827

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2828
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2829 2830

	/* Make slab active. */
2831
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2832
	STATS_INC_GROWN(cachep);
2833 2834
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2835
	return 1;
A
Andrew Morton 已提交
2836
opps1:
2837
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2838
failed:
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2855 2856
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2857 2858 2859
	}
}

2860 2861
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2862
	unsigned long long redzone1, redzone2;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2878
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2879 2880 2881
			obj, redzone1, redzone2);
}

2882
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2883
				   unsigned long caller)
L
Linus Torvalds 已提交
2884 2885
{
	unsigned int objnr;
2886
	struct page *page;
L
Linus Torvalds 已提交
2887

2888 2889
	BUG_ON(virt_to_cache(objp) != cachep);

2890
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2891
	kfree_debugcheck(objp);
2892
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2893 2894

	if (cachep->flags & SLAB_RED_ZONE) {
2895
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2896 2897 2898 2899
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2900
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2901

2902
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2903 2904

	BUG_ON(objnr >= cachep->num);
2905
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2906

2907
	set_obj_status(page, objnr, OBJECT_FREE);
L
Linus Torvalds 已提交
2908 2909
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2910
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2911
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2912
			kernel_map_pages(virt_to_page(objp),
2913
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2929 2930
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2931 2932
{
	int batchcount;
2933
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2934
	struct array_cache *ac;
P
Pekka Enberg 已提交
2935 2936
	int node;

L
Linus Torvalds 已提交
2937
	check_irq_off();
2938
	node = numa_mem_id();
2939 2940 2941
	if (unlikely(force_refill))
		goto force_grow;
retry:
2942
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2943 2944
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2945 2946 2947 2948
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2949 2950 2951
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2952
	n = get_node(cachep, node);
2953

2954 2955
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2956

2957
	/* See if we can refill from the shared array */
2958 2959
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2960
		goto alloc_done;
2961
	}
2962

L
Linus Torvalds 已提交
2963 2964
	while (batchcount > 0) {
		struct list_head *entry;
2965
		struct page *page;
L
Linus Torvalds 已提交
2966
		/* Get slab alloc is to come from. */
2967 2968 2969 2970 2971
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2972 2973 2974
				goto must_grow;
		}

2975
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2976
		check_spinlock_acquired(cachep);
2977 2978 2979 2980 2981 2982

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2983
		BUG_ON(page->active >= cachep->num);
2984

2985
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2986 2987 2988 2989
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2990
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2991
									node));
L
Linus Torvalds 已提交
2992 2993 2994
		}

		/* move slabp to correct slabp list: */
2995 2996
		list_del(&page->lru);
		if (page->active == cachep->num)
2997
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2998
		else
2999
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3000 3001
	}

A
Andrew Morton 已提交
3002
must_grow:
3003
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3004
alloc_done:
3005
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3006 3007 3008

	if (unlikely(!ac->avail)) {
		int x;
3009
force_grow:
3010
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3011

A
Andrew Morton 已提交
3012
		/* cache_grow can reenable interrupts, then ac could change. */
3013
		ac = cpu_cache_get(cachep);
3014
		node = numa_mem_id();
3015 3016 3017

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3018 3019
			return NULL;

A
Andrew Morton 已提交
3020
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3021 3022 3023
			goto retry;
	}
	ac->touched = 1;
3024 3025

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3026 3027
}

A
Andrew Morton 已提交
3028 3029
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3030 3031 3032 3033 3034 3035 3036 3037
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3038
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3039
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3040
{
3041 3042
	struct page *page;

P
Pekka Enberg 已提交
3043
	if (!objp)
L
Linus Torvalds 已提交
3044
		return objp;
P
Pekka Enberg 已提交
3045
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3046
#ifdef CONFIG_DEBUG_PAGEALLOC
3047
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3048
			kernel_map_pages(virt_to_page(objp),
3049
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3050 3051 3052 3053 3054 3055 3056 3057
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3058
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3059 3060

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3061 3062 3063 3064
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3065
			printk(KERN_ERR
3066
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3067 3068
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3069 3070 3071 3072
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3073 3074 3075

	page = virt_to_head_page(objp);
	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3076
	objp += obj_offset(cachep);
3077
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3078
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3079 3080
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3081
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3082
		       objp, (int)ARCH_SLAB_MINALIGN);
3083
	}
L
Linus Torvalds 已提交
3084 3085 3086 3087 3088 3089
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3090
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3091
{
3092
	if (unlikely(cachep == kmem_cache))
A
Akinobu Mita 已提交
3093
		return false;
3094

3095
	return should_failslab(cachep->object_size, flags, cachep->flags);
3096 3097
}

3098
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3099
{
P
Pekka Enberg 已提交
3100
	void *objp;
L
Linus Torvalds 已提交
3101
	struct array_cache *ac;
3102
	bool force_refill = false;
L
Linus Torvalds 已提交
3103

3104
	check_irq_off();
3105

3106
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3107 3108
	if (likely(ac->avail)) {
		ac->touched = 1;
3109 3110
		objp = ac_get_obj(cachep, ac, flags, false);

3111
		/*
3112 3113
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3114
		 */
3115 3116 3117 3118 3119
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3120
	}
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3131 3132 3133 3134 3135
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3136 3137
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3138 3139 3140
	return objp;
}

3141
#ifdef CONFIG_NUMA
3142
/*
3143
 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3144 3145 3146 3147 3148 3149 3150 3151
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3152
	if (in_interrupt() || (flags & __GFP_THISNODE))
3153
		return NULL;
3154
	nid_alloc = nid_here = numa_mem_id();
3155
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3156
		nid_alloc = cpuset_slab_spread_node();
3157
	else if (current->mempolicy)
3158
		nid_alloc = mempolicy_slab_node();
3159
	if (nid_alloc != nid_here)
3160
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3161 3162 3163
	return NULL;
}

3164 3165
/*
 * Fallback function if there was no memory available and no objects on a
3166
 * certain node and fall back is permitted. First we scan all the
3167
 * available node for available objects. If that fails then we
3168 3169 3170
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3171
 */
3172
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3173
{
3174 3175
	struct zonelist *zonelist;
	gfp_t local_flags;
3176
	struct zoneref *z;
3177 3178
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3179
	void *obj = NULL;
3180
	int nid;
3181
	unsigned int cpuset_mems_cookie;
3182 3183 3184 3185

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3186
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3187

3188
retry_cpuset:
3189
	cpuset_mems_cookie = read_mems_allowed_begin();
3190
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3191

3192 3193 3194 3195 3196
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3197 3198
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3199

3200
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3201 3202
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3203 3204
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3205 3206 3207
				if (obj)
					break;
		}
3208 3209
	}

3210
	if (!obj) {
3211 3212 3213 3214 3215 3216
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3217 3218
		struct page *page;

3219 3220 3221
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3222
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3223 3224
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3225
		if (page) {
3226 3227 3228
			/*
			 * Insert into the appropriate per node queues
			 */
3229 3230
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3241
				/* cache_grow already freed obj */
3242 3243 3244
				obj = NULL;
			}
		}
3245
	}
3246

3247
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3248
		goto retry_cpuset;
3249 3250 3251
	return obj;
}

3252 3253
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3254
 */
3255
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3256
				int nodeid)
3257 3258
{
	struct list_head *entry;
3259
	struct page *page;
3260
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3261 3262 3263
	void *obj;
	int x;

3264
	VM_BUG_ON(nodeid > num_online_nodes());
3265
	n = get_node(cachep, nodeid);
3266
	BUG_ON(!n);
P
Pekka Enberg 已提交
3267

A
Andrew Morton 已提交
3268
retry:
3269
	check_irq_off();
3270 3271 3272 3273 3274 3275
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3276 3277 3278
			goto must_grow;
	}

3279
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3280 3281 3282 3283 3284 3285
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3286
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3287

3288
	obj = slab_get_obj(cachep, page, nodeid);
3289
	n->free_objects--;
P
Pekka Enberg 已提交
3290
	/* move slabp to correct slabp list: */
3291
	list_del(&page->lru);
P
Pekka Enberg 已提交
3292

3293 3294
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3295
	else
3296
		list_add(&page->lru, &n->slabs_partial);
3297

3298
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3299
	goto done;
3300

A
Andrew Morton 已提交
3301
must_grow:
3302
	spin_unlock(&n->list_lock);
3303
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3304 3305
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3306

3307
	return fallback_alloc(cachep, flags);
3308

A
Andrew Morton 已提交
3309
done:
P
Pekka Enberg 已提交
3310
	return obj;
3311
}
3312 3313

static __always_inline void *
3314
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3315
		   unsigned long caller)
3316 3317 3318
{
	unsigned long save_flags;
	void *ptr;
3319
	int slab_node = numa_mem_id();
3320

3321
	flags &= gfp_allowed_mask;
3322

3323 3324
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3325
	if (slab_should_failslab(cachep, flags))
3326 3327
		return NULL;

3328 3329
	cachep = memcg_kmem_get_cache(cachep, flags);

3330 3331 3332
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3333
	if (nodeid == NUMA_NO_NODE)
3334
		nodeid = slab_node;
3335

3336
	if (unlikely(!get_node(cachep, nodeid))) {
3337 3338 3339 3340 3341
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3342
	if (nodeid == slab_node) {
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3358
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3359
				 flags);
3360

3361
	if (likely(ptr)) {
3362
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3363 3364 3365
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3366

3367 3368 3369 3370 3371 3372 3373 3374
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3375
	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3386 3387
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3403
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3404 3405 3406 3407
{
	unsigned long save_flags;
	void *objp;

3408
	flags &= gfp_allowed_mask;
3409

3410 3411
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3412
	if (slab_should_failslab(cachep, flags))
3413 3414
		return NULL;

3415 3416
	cachep = memcg_kmem_get_cache(cachep, flags);

3417 3418 3419 3420 3421
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3422
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3423
				 flags);
3424 3425
	prefetchw(objp);

3426
	if (likely(objp)) {
3427
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3428 3429 3430
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3431

3432 3433
	return objp;
}
3434 3435

/*
3436
 * Caller needs to acquire correct kmem_cache_node's list_lock
3437
 * @list: List of detached free slabs should be freed by caller
3438
 */
3439 3440
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3441 3442
{
	int i;
3443
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3444 3445

	for (i = 0; i < nr_objects; i++) {
3446
		void *objp;
3447
		struct page *page;
L
Linus Torvalds 已提交
3448

3449 3450 3451
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3452 3453
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3454
		check_spinlock_acquired_node(cachep, node);
3455
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3456
		STATS_DEC_ACTIVE(cachep);
3457
		n->free_objects++;
L
Linus Torvalds 已提交
3458 3459

		/* fixup slab chains */
3460
		if (page->active == 0) {
3461 3462
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3463
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3464
			} else {
3465
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3466 3467 3468 3469 3470 3471
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3472
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3473 3474 3475 3476
		}
	}
}

3477
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3478 3479
{
	int batchcount;
3480
	struct kmem_cache_node *n;
3481
	int node = numa_mem_id();
3482
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3489
	n = get_node(cachep, node);
3490 3491 3492
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3493
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3494 3495 3496
		if (max) {
			if (batchcount > max)
				batchcount = max;
3497
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3498
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3499 3500 3501 3502 3503
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3504
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3505
free_done:
L
Linus Torvalds 已提交
3506 3507 3508 3509 3510
#if STATS
	{
		int i = 0;
		struct list_head *p;

3511 3512
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3513
			struct page *page;
L
Linus Torvalds 已提交
3514

3515 3516
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3524
	spin_unlock(&n->list_lock);
3525
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3526
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3527
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3528 3529 3530
}

/*
A
Andrew Morton 已提交
3531 3532
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3533
 */
3534
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3535
				unsigned long caller)
L
Linus Torvalds 已提交
3536
{
3537
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3538 3539

	check_irq_off();
3540
	kmemleak_free_recursive(objp, cachep->flags);
3541
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3542

3543
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3544

3545 3546 3547 3548 3549 3550 3551
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3552
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3553 3554
		return;

L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3561

3562
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3573
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3574
{
3575
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3576

3577
	trace_kmem_cache_alloc(_RET_IP_, ret,
3578
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3579 3580

	return ret;
L
Linus Torvalds 已提交
3581 3582 3583
}
EXPORT_SYMBOL(kmem_cache_alloc);

3584
#ifdef CONFIG_TRACING
3585
void *
3586
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3587
{
3588 3589
	void *ret;

3590
	ret = slab_alloc(cachep, flags, _RET_IP_);
3591 3592

	trace_kmalloc(_RET_IP_, ret,
3593
		      size, cachep->size, flags);
3594
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3595
}
3596
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3597 3598
#endif

L
Linus Torvalds 已提交
3599
#ifdef CONFIG_NUMA
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3611 3612
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3613
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3614

3615
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3616
				    cachep->object_size, cachep->size,
3617
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3618 3619

	return ret;
3620
}
L
Linus Torvalds 已提交
3621 3622
EXPORT_SYMBOL(kmem_cache_alloc_node);

3623
#ifdef CONFIG_TRACING
3624
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3625
				  gfp_t flags,
3626 3627
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3628
{
3629 3630
	void *ret;

3631
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3632

3633
	trace_kmalloc_node(_RET_IP_, ret,
3634
			   size, cachep->size,
3635 3636
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3637
}
3638
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3639 3640
#endif

3641
static __always_inline void *
3642
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3643
{
3644
	struct kmem_cache *cachep;
3645

3646
	cachep = kmalloc_slab(size, flags);
3647 3648
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3649
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3650
}
3651

3652
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3653 3654
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3655
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3656
}
3657
EXPORT_SYMBOL(__kmalloc_node);
3658 3659

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3660
		int node, unsigned long caller)
3661
{
3662
	return __do_kmalloc_node(size, flags, node, caller);
3663 3664 3665 3666 3667
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3668
	return __do_kmalloc_node(size, flags, node, 0);
3669 3670
}
EXPORT_SYMBOL(__kmalloc_node);
3671
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3672
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3673 3674

/**
3675
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3676
 * @size: how many bytes of memory are required.
3677
 * @flags: the type of memory to allocate (see kmalloc).
3678
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3679
 */
3680
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3681
					  unsigned long caller)
L
Linus Torvalds 已提交
3682
{
3683
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3684
	void *ret;
L
Linus Torvalds 已提交
3685

3686
	cachep = kmalloc_slab(size, flags);
3687 3688
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3689
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3690

3691
	trace_kmalloc(caller, ret,
3692
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3693 3694

	return ret;
3695 3696 3697
}


3698
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3699 3700
void *__kmalloc(size_t size, gfp_t flags)
{
3701
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3702 3703 3704
}
EXPORT_SYMBOL(__kmalloc);

3705
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3706
{
3707
	return __do_kmalloc(size, flags, caller);
3708 3709
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3710 3711 3712 3713

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3714
	return __do_kmalloc(size, flags, 0);
3715 3716
}
EXPORT_SYMBOL(__kmalloc);
3717 3718
#endif

L
Linus Torvalds 已提交
3719 3720 3721 3722 3723 3724 3725 3726
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3727
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3728 3729
{
	unsigned long flags;
3730 3731 3732
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3733 3734

	local_irq_save(flags);
3735
	debug_check_no_locks_freed(objp, cachep->object_size);
3736
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3737
		debug_check_no_obj_freed(objp, cachep->object_size);
3738
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3739
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3740

3741
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3742 3743 3744 3745 3746 3747 3748
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3749 3750
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3751 3752 3753 3754 3755
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3756
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3757 3758
	unsigned long flags;

3759 3760
	trace_kfree(_RET_IP_, objp);

3761
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3762 3763 3764
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3765
	c = virt_to_cache(objp);
3766 3767 3768
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3769
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3770 3771 3772 3773
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3774
/*
3775
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3776
 */
3777
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3778 3779
{
	int node;
3780
	struct kmem_cache_node *n;
3781
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3782
	struct alien_cache **new_alien = NULL;
3783

3784
	for_each_online_node(node) {
3785

3786
                if (use_alien_caches) {
3787
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3788 3789 3790
                        if (!new_alien)
                                goto fail;
                }
3791

3792 3793 3794
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3795
				cachep->shared*cachep->batchcount,
3796
					0xbaadf00d, gfp);
3797 3798 3799 3800
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3801
		}
3802

3803
		n = get_node(cachep, node);
3804 3805
		if (n) {
			struct array_cache *shared = n->shared;
3806
			LIST_HEAD(list);
3807

3808
			spin_lock_irq(&n->list_lock);
3809

3810
			if (shared)
3811
				free_block(cachep, shared->entry,
3812
						shared->avail, node, &list);
3813

3814 3815 3816
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3817 3818
				new_alien = NULL;
			}
3819
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3820
					cachep->batchcount + cachep->num;
3821
			spin_unlock_irq(&n->list_lock);
3822
			slabs_destroy(cachep, &list);
3823
			kfree(shared);
3824 3825 3826
			free_alien_cache(new_alien);
			continue;
		}
3827 3828
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3829 3830
			free_alien_cache(new_alien);
			kfree(new_shared);
3831
			goto fail;
3832
		}
3833

3834
		kmem_cache_node_init(n);
3835 3836
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3837 3838 3839
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3840
					cachep->batchcount + cachep->num;
3841
		cachep->node[node] = n;
3842
	}
3843
	return 0;
3844

A
Andrew Morton 已提交
3845
fail:
3846
	if (!cachep->list.next) {
3847 3848 3849
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3850 3851
			n = get_node(cachep, node);
			if (n) {
3852 3853 3854
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3855
				cachep->node[node] = NULL;
3856 3857 3858 3859
			}
			node--;
		}
	}
3860
	return -ENOMEM;
3861 3862
}

L
Linus Torvalds 已提交
3863
struct ccupdate_struct {
3864
	struct kmem_cache *cachep;
3865
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3866 3867 3868 3869
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3870
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3871 3872 3873
	struct array_cache *old;

	check_irq_off();
3874
	old = cpu_cache_get(new->cachep);
3875

L
Linus Torvalds 已提交
3876 3877 3878 3879
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3880
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3881
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3882
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3883
{
3884
	struct ccupdate_struct *new;
3885
	int i;
L
Linus Torvalds 已提交
3886

3887 3888
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3889 3890 3891
	if (!new)
		return -ENOMEM;

3892
	for_each_online_cpu(i) {
3893
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3894
						batchcount, gfp);
3895
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3896
			for (i--; i >= 0; i--)
3897 3898
				kfree(new->new[i]);
			kfree(new);
3899
			return -ENOMEM;
L
Linus Torvalds 已提交
3900 3901
		}
	}
3902
	new->cachep = cachep;
L
Linus Torvalds 已提交
3903

3904
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3905

L
Linus Torvalds 已提交
3906 3907 3908
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3909
	cachep->shared = shared;
L
Linus Torvalds 已提交
3910

3911
	for_each_online_cpu(i) {
3912
		LIST_HEAD(list);
3913
		struct array_cache *ccold = new->new[i];
3914 3915 3916
		int node;
		struct kmem_cache_node *n;

L
Linus Torvalds 已提交
3917 3918
		if (!ccold)
			continue;
3919 3920 3921 3922

		node = cpu_to_mem(i);
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3923
		free_block(cachep, ccold->entry, ccold->avail, node, &list);
3924
		spin_unlock_irq(&n->list_lock);
3925
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3926 3927
		kfree(ccold);
	}
3928
	kfree(new);
3929
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3930 3931
}

G
Glauber Costa 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3947
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3948
	for_each_memcg_cache_index(i) {
3949
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3950 3951 3952 3953 3954 3955 3956 3957
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3958
/* Called with slab_mutex held always */
3959
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3960 3961
{
	int err;
G
Glauber Costa 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3972

G
Glauber Costa 已提交
3973 3974
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3975 3976
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3977 3978
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3979
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3980 3981 3982 3983
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3984
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3985
		limit = 1;
3986
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3987
		limit = 8;
3988
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3989
		limit = 24;
3990
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3991 3992 3993 3994
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3995 3996
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002 4003 4004
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4005
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4006 4007 4008
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4009 4010 4011
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4012 4013 4014 4015
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4016 4017 4018
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4019 4020
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4021
		       cachep->name, -err);
4022
	return err;
L
Linus Torvalds 已提交
4023 4024
}

4025
/*
4026 4027
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4028
 * if drain_array() is used on the shared array.
4029
 */
4030
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4031
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4032
{
4033
	LIST_HEAD(list);
L
Linus Torvalds 已提交
4034 4035
	int tofree;

4036 4037
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4038 4039
	if (ac->touched && !force) {
		ac->touched = 0;
4040
	} else {
4041
		spin_lock_irq(&n->list_lock);
4042 4043 4044 4045
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
4046
			free_block(cachep, ac->entry, tofree, node, &list);
4047 4048 4049 4050
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4051
		spin_unlock_irq(&n->list_lock);
4052
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4058
 * @w: work descriptor
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4065 4066
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4067
 */
4068
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4069
{
4070
	struct kmem_cache *searchp;
4071
	struct kmem_cache_node *n;
4072
	int node = numa_mem_id();
4073
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4074

4075
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4076
		/* Give up. Setup the next iteration. */
4077
		goto out;
L
Linus Torvalds 已提交
4078

4079
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4080 4081
		check_irq_on();

4082
		/*
4083
		 * We only take the node lock if absolutely necessary and we
4084 4085 4086
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4087
		n = get_node(searchp, node);
4088

4089
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4090

4091
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4092

4093 4094 4095 4096
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4097
		if (time_after(n->next_reap, jiffies))
4098
			goto next;
L
Linus Torvalds 已提交
4099

4100
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4101

4102
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4103

4104 4105
		if (n->free_touched)
			n->free_touched = 0;
4106 4107
		else {
			int freed;
L
Linus Torvalds 已提交
4108

4109
			freed = drain_freelist(searchp, n, (n->free_limit +
4110 4111 4112
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4113
next:
L
Linus Torvalds 已提交
4114 4115 4116
		cond_resched();
	}
	check_irq_on();
4117
	mutex_unlock(&slab_mutex);
4118
	next_reap_node();
4119
out:
A
Andrew Morton 已提交
4120
	/* Set up the next iteration */
4121
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4122 4123
}

4124
#ifdef CONFIG_SLABINFO
4125
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4126
{
4127
	struct page *page;
P
Pekka Enberg 已提交
4128 4129 4130 4131
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4132
	const char *name;
L
Linus Torvalds 已提交
4133
	char *error = NULL;
4134
	int node;
4135
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4136 4137 4138

	active_objs = 0;
	num_slabs = 0;
4139
	for_each_kmem_cache_node(cachep, node, n) {
4140

4141
		check_irq_on();
4142
		spin_lock_irq(&n->list_lock);
4143

4144 4145
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4146 4147 4148 4149
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4150 4151
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4152
				error = "slabs_partial accounting error";
4153
			if (!page->active && !error)
4154
				error = "slabs_partial accounting error";
4155
			active_objs += page->active;
4156 4157
			active_slabs++;
		}
4158 4159
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4160
				error = "slabs_free accounting error";
4161 4162
			num_slabs++;
		}
4163 4164 4165
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4166

4167
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4168
	}
P
Pekka Enberg 已提交
4169 4170
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4171
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4172 4173
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4174
	name = cachep->name;
L
Linus Torvalds 已提交
4175 4176 4177
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4192
#if STATS
4193
	{			/* node stats */
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199 4200
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4201
		unsigned long node_frees = cachep->node_frees;
4202
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4203

J
Joe Perches 已提交
4204 4205 4206 4207 4208
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4218
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4231
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4232
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4233
{
P
Pekka Enberg 已提交
4234
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4235
	int limit, batchcount, shared, res;
4236
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4237

L
Linus Torvalds 已提交
4238 4239 4240 4241
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4242
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4253
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4254
	res = -EINVAL;
4255
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4256
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4257 4258
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4259
				res = 0;
L
Linus Torvalds 已提交
4260
			} else {
4261
				res = do_tune_cpucache(cachep, limit,
4262 4263
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4264 4265 4266 4267
			}
			break;
		}
	}
4268
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4269 4270 4271 4272
	if (res >= 0)
		res = count;
	return res;
}
4273 4274 4275 4276 4277

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4278 4279
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4312 4313
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4314 4315
{
	void *p;
4316
	int i;
4317

4318 4319
	if (n[0] == n[1])
		return;
4320
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4321
		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4322
			continue;
4323

4324 4325 4326 4327 4328 4329 4330 4331 4332
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4333
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4334

4335
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4336
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4337
		if (modname[0])
4338 4339 4340 4341 4342 4343 4344 4345 4346
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4347
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4348
	struct page *page;
4349
	struct kmem_cache_node *n;
4350
	const char *name;
4351
	unsigned long *x = m->private;
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4362
	x[1] = 0;
4363

4364
	for_each_kmem_cache_node(cachep, node, n) {
4365 4366

		check_irq_on();
4367
		spin_lock_irq(&n->list_lock);
4368

4369 4370 4371 4372
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4373
		spin_unlock_irq(&n->list_lock);
4374 4375
	}
	name = cachep->name;
4376
	if (x[0] == x[1]) {
4377
		/* Increase the buffer size */
4378
		mutex_unlock(&slab_mutex);
4379
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4380 4381
		if (!m->private) {
			/* Too bad, we are really out */
4382
			m->private = x;
4383
			mutex_lock(&slab_mutex);
4384 4385
			return -ENOMEM;
		}
4386 4387
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4388
		mutex_lock(&slab_mutex);
4389 4390 4391 4392
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4393 4394 4395
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4396 4397
		seq_putc(m, '\n');
	}
4398

4399 4400 4401
	return 0;
}

4402
static const struct seq_operations slabstats_op = {
4403
	.start = leaks_start,
4404 4405
	.next = slab_next,
	.stop = slab_stop,
4406 4407
	.show = leaks_show,
};
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4438
#endif
4439 4440 4441
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4442 4443
#endif

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4456
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4457
{
4458 4459
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4460
		return 0;
L
Linus Torvalds 已提交
4461

4462
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4463
}
K
Kirill A. Shutemov 已提交
4464
EXPORT_SYMBOL(ksize);