slab.c 109.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
183
	spinlock_t lock;
184
	void *entry[];	/*
A
Andrew Morton 已提交
185 186 187
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
188 189 190 191
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
192
			 */
L
Linus Torvalds 已提交
193 194
};

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
212 213 214
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
215 216 217 218
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
219
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
220 221
};

222 223 224
/*
 * Need this for bootstrapping a per node allocator.
 */
225
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
226
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
227
#define	CACHE_CACHE 0
228
#define	SIZE_AC MAX_NUMNODES
229
#define	SIZE_NODE (2 * MAX_NUMNODES)
230

231
static int drain_freelist(struct kmem_cache *cache,
232
			struct kmem_cache_node *n, int tofree);
233 234
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
235
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
236
static void cache_reap(struct work_struct *unused);
237

238 239
static int slab_early_init = 1;

240
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
241
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
242

243
static void kmem_cache_node_init(struct kmem_cache_node *parent)
244 245 246 247 248 249
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
250
	parent->colour_next = 0;
251 252 253 254 255
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
256 257 258
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
259
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
260 261
	} while (0)

A
Andrew Morton 已提交
262 263
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
264 265 266 267
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
268 269 270 271 272

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
273 274 275
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
276
 *
A
Adrian Bunk 已提交
277
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
288
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
289 290 291 292 293
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
294 295
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
296
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
297
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
298 299 300 301 302
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310 311
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
312
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
313 314 315
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
316
#define	STATS_INC_NODEFREES(x)	do { } while (0)
317
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
318
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
319 320 321 322 323 324 325 326
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
327 328
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
329
 * 0		: objp
330
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
331 332
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
333
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
334
 * 		redzone word.
335
 * cachep->obj_offset: The real object.
336 337
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
338
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
339
 */
340
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
341
{
342
	return cachep->obj_offset;
L
Linus Torvalds 已提交
343 344
}

345
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
346 347
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
348 349
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
350 351
}

352
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
353 354 355
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
356
		return (unsigned long long *)(objp + cachep->size -
357
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
358
					      REDZONE_ALIGN);
359
	return (unsigned long long *) (objp + cachep->size -
360
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
361 362
}

363
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
364 365
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
366
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
367 368 369 370
}

#else

371
#define obj_offset(x)			0
372 373
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
374 375 376 377 378
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
379 380
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
381
 */
382 383 384
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
385
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
386

387 388
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
389
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
390
	return page->slab_cache;
391 392
}

393
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
394 395
				 unsigned int idx)
{
396
	return page->s_mem + cache->size * idx;
397 398
}

399
/*
400 401 402
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
403 404 405
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
406
					const struct page *page, void *obj)
407
{
408
	u32 offset = (obj - page->s_mem);
409
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
410 411
}

L
Linus Torvalds 已提交
412
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
413
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
414 415

/* internal cache of cache description objs */
416
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
417 418 419
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
420
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
421
	.name = "kmem_cache",
L
Linus Torvalds 已提交
422 423
};

424 425
#define BAD_ALIEN_MAGIC 0x01020304ul

426 427 428 429 430 431 432 433
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
434 435 436 437
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
438
 */
439 440 441
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

442 443 444 445 446 447 448 449
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
450
	struct kmem_cache_node *n;
451 452
	int r;

453 454
	n = cachep->node[q];
	if (!n)
455 456
		return;

457 458
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

487
static void init_node_lock_keys(int q)
488
{
489
	int i;
490

491
	if (slab_state < UP)
492 493
		return;

C
Christoph Lameter 已提交
494
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
495
		struct kmem_cache_node *n;
496 497 498 499
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
500

501 502
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
503
			continue;
504

505
		slab_set_lock_classes(cache, &on_slab_l3_key,
506
				&on_slab_alc_key, q);
507 508
	}
}
509

510 511
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
512
	if (!cachep->node[q])
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

528 529 530 531 532 533 534
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
535
#else
536 537 538 539
static void init_node_lock_keys(int q)
{
}

540
static inline void init_lock_keys(void)
541 542
{
}
543

544 545 546 547 548 549 550 551
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

552 553 554 555 556 557 558
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
559 560
#endif

561
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
562

563
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
564 565 566 567
{
	return cachep->array[smp_processor_id()];
}

568 569
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
570
{
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	int nr_objs;
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
	nr_objs = slab_size / (buffer_size + idx_size);

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
	freelist_size = slab_size - nr_objs * buffer_size;
	if (freelist_size < ALIGN(nr_objs * idx_size, align))
		nr_objs--;

	return nr_objs;
593
}
L
Linus Torvalds 已提交
594

A
Andrew Morton 已提交
595 596 597
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
598 599 600 601 602 603 604
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
605

606 607 608 609 610
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
611
	 * - One unsigned int for each object
612 613 614 615 616 617 618 619 620 621 622 623 624
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
625 626 627
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
					sizeof(unsigned int), align);
		mgmt_size = ALIGN(nr_objs * sizeof(unsigned int), align);
628 629 630
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
631 632
}

633
#if DEBUG
634
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
635

A
Andrew Morton 已提交
636 637
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
638 639
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
640
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
641
	dump_stack();
642
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
643
}
644
#endif
L
Linus Torvalds 已提交
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

662 663 664 665 666 667 668 669 670 671 672
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

673 674 675 676 677 678 679
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
680
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
681 682 683 684 685

static void init_reap_node(int cpu)
{
	int node;

686
	node = next_node(cpu_to_mem(cpu), node_online_map);
687
	if (node == MAX_NUMNODES)
688
		node = first_node(node_online_map);
689

690
	per_cpu(slab_reap_node, cpu) = node;
691 692 693 694
}

static void next_reap_node(void)
{
695
	int node = __this_cpu_read(slab_reap_node);
696 697 698 699

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
700
	__this_cpu_write(slab_reap_node, node);
701 702 703 704 705 706 707
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
708 709 710 711 712 713 714
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
715
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
716
{
717
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
718 719 720 721 722 723

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
724
	if (keventd_up() && reap_work->work.func == NULL) {
725
		init_reap_node(cpu);
726
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
727 728
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
729 730 731
	}
}

732
static struct array_cache *alloc_arraycache(int node, int entries,
733
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
734
{
P
Pekka Enberg 已提交
735
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
736 737
	struct array_cache *nc = NULL;

738
	nc = kmalloc_node(memsize, gfp, node);
739 740
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
741
	 * However, when such objects are allocated or transferred to another
742 743 744 745 746
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
747 748 749 750 751
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
752
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
753 754 755 756
	}
	return nc;
}

757
static inline bool is_slab_pfmemalloc(struct page *page)
758 759 760 761 762 763 764 765
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
766
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
767
	struct page *page;
768 769 770 771 772
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

773
	spin_lock_irqsave(&n->list_lock, flags);
774 775
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
776 777
			goto out;

778 779
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
780 781
			goto out;

782 783
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
784 785 786 787
			goto out;

	pfmemalloc_active = false;
out:
788
	spin_unlock_irqrestore(&n->list_lock, flags);
789 790
}

791
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
792 793 794 795 796 797 798
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
799
		struct kmem_cache_node *n;
800 801 802 803 804 805 806

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
807
		for (i = 0; i < ac->avail; i++) {
808 809 810 811 812 813 814 815 816 817 818 819 820
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
821 822
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
823
			struct page *page = virt_to_head_page(objp);
824
			ClearPageSlabPfmemalloc(page);
825 826 827 828 829 830 831 832 833 834 835 836 837
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
852 853 854 855
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
856
		struct page *page = virt_to_head_page(objp);
857 858 859 860
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

861 862 863 864 865 866 867 868 869
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

870 871 872
	ac->entry[ac->avail++] = objp;
}

873 874 875 876 877 878 879 880 881 882
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
883
	int nr = min3(from->avail, max, to->limit - to->avail);
884 885 886 887 888 889 890 891 892 893 894 895

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

896 897 898
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
899
#define reap_alien(cachep, n) do { } while (0)
900

901
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

921
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
922 923 924 925 926 927 928
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

929
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
930
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
931

932
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
933 934
{
	struct array_cache **ac_ptr;
935
	int memsize = sizeof(void *) * nr_node_ids;
936 937 938 939
	int i;

	if (limit > 1)
		limit = 12;
940
	ac_ptr = kzalloc_node(memsize, gfp, node);
941 942
	if (ac_ptr) {
		for_each_node(i) {
943
			if (i == node || !node_online(i))
944
				continue;
945
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
946
			if (!ac_ptr[i]) {
947
				for (i--; i >= 0; i--)
948 949 950 951 952 953 954 955 956
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
957
static void free_alien_cache(struct array_cache **ac_ptr)
958 959 960 961 962 963
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
964
	    kfree(ac_ptr[i]);
965 966 967
	kfree(ac_ptr);
}

968
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
969
				struct array_cache *ac, int node)
970
{
971
	struct kmem_cache_node *n = cachep->node[node];
972 973

	if (ac->avail) {
974
		spin_lock(&n->list_lock);
975 976 977 978 979
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
980 981
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
982

983
		free_block(cachep, ac->entry, ac->avail, node);
984
		ac->avail = 0;
985
		spin_unlock(&n->list_lock);
986 987 988
	}
}

989 990 991
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
992
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
993
{
994
	int node = __this_cpu_read(slab_reap_node);
995

996 997
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
998 999

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1000 1001 1002 1003 1004 1005
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1006 1007
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1008
{
P
Pekka Enberg 已提交
1009
	int i = 0;
1010 1011 1012 1013
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1014
		ac = alien[i];
1015 1016 1017 1018 1019 1020 1021
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1022

1023
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1024
{
J
Joonsoo Kim 已提交
1025
	int nodeid = page_to_nid(virt_to_page(objp));
1026
	struct kmem_cache_node *n;
1027
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1028 1029
	int node;

1030
	node = numa_mem_id();
1031 1032 1033 1034 1035

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1036
	if (likely(nodeid == node))
1037 1038
		return 0;

1039
	n = cachep->node[node];
1040
	STATS_INC_NODEFREES(cachep);
1041 1042
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1043
		spin_lock(&alien->lock);
1044 1045 1046 1047
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1048
		ac_put_obj(cachep, alien, objp);
1049 1050
		spin_unlock(&alien->lock);
	} else {
1051
		spin_lock(&(cachep->node[nodeid])->list_lock);
1052
		free_block(cachep, &objp, 1, nodeid);
1053
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1054 1055 1056
	}
	return 1;
}
1057 1058
#endif

1059
/*
1060
 * Allocates and initializes node for a node on each slab cache, used for
1061
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1062
 * will be allocated off-node since memory is not yet online for the new node.
1063
 * When hotplugging memory or a cpu, existing node are not replaced if
1064 1065
 * already in use.
 *
1066
 * Must hold slab_mutex.
1067
 */
1068
static int init_cache_node_node(int node)
1069 1070
{
	struct kmem_cache *cachep;
1071
	struct kmem_cache_node *n;
1072
	const int memsize = sizeof(struct kmem_cache_node);
1073

1074
	list_for_each_entry(cachep, &slab_caches, list) {
1075 1076 1077 1078 1079
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1080
		if (!cachep->node[node]) {
1081 1082
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1083
				return -ENOMEM;
1084 1085
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1086 1087 1088 1089
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1090
			 * go.  slab_mutex is sufficient
1091 1092
			 * protection here.
			 */
1093
			cachep->node[node] = n;
1094 1095
		}

1096 1097
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1098 1099
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1100
		spin_unlock_irq(&cachep->node[node]->list_lock);
1101 1102 1103 1104
	}
	return 0;
}

1105 1106 1107 1108 1109 1110
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1111
static void cpuup_canceled(long cpu)
1112 1113
{
	struct kmem_cache *cachep;
1114
	struct kmem_cache_node *n = NULL;
1115
	int node = cpu_to_mem(cpu);
1116
	const struct cpumask *mask = cpumask_of_node(node);
1117

1118
	list_for_each_entry(cachep, &slab_caches, list) {
1119 1120 1121 1122 1123 1124 1125
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1126
		n = cachep->node[node];
1127

1128
		if (!n)
1129 1130
			goto free_array_cache;

1131
		spin_lock_irq(&n->list_lock);
1132

1133 1134
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1135 1136 1137
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1138
		if (!cpumask_empty(mask)) {
1139
			spin_unlock_irq(&n->list_lock);
1140 1141 1142
			goto free_array_cache;
		}

1143
		shared = n->shared;
1144 1145 1146
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1147
			n->shared = NULL;
1148 1149
		}

1150 1151
		alien = n->alien;
		n->alien = NULL;
1152

1153
		spin_unlock_irq(&n->list_lock);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1168
	list_for_each_entry(cachep, &slab_caches, list) {
1169 1170
		n = cachep->node[node];
		if (!n)
1171
			continue;
1172
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1173 1174 1175
	}
}

1176
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1177
{
1178
	struct kmem_cache *cachep;
1179
	struct kmem_cache_node *n = NULL;
1180
	int node = cpu_to_mem(cpu);
1181
	int err;
L
Linus Torvalds 已提交
1182

1183 1184 1185 1186
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1187
	 * kmem_cache_node and not this cpu's kmem_cache_node
1188
	 */
1189
	err = init_cache_node_node(node);
1190 1191
	if (err < 0)
		goto bad;
1192 1193 1194 1195 1196

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1197
	list_for_each_entry(cachep, &slab_caches, list) {
1198 1199 1200 1201 1202
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1203
					cachep->batchcount, GFP_KERNEL);
1204 1205 1206 1207 1208
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1209
				0xbaadf00d, GFP_KERNEL);
1210 1211
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1212
				goto bad;
1213
			}
1214 1215
		}
		if (use_alien_caches) {
1216
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1217 1218 1219
			if (!alien) {
				kfree(shared);
				kfree(nc);
1220
				goto bad;
1221
			}
1222 1223
		}
		cachep->array[cpu] = nc;
1224 1225
		n = cachep->node[node];
		BUG_ON(!n);
1226

1227 1228
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1229 1230 1231 1232
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1233
			n->shared = shared;
1234 1235
			shared = NULL;
		}
1236
#ifdef CONFIG_NUMA
1237 1238
		if (!n->alien) {
			n->alien = alien;
1239
			alien = NULL;
L
Linus Torvalds 已提交
1240
		}
1241
#endif
1242
		spin_unlock_irq(&n->list_lock);
1243 1244
		kfree(shared);
		free_alien_cache(alien);
1245 1246
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1247 1248 1249
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1250
	}
1251 1252
	init_node_lock_keys(node);

1253 1254
	return 0;
bad:
1255
	cpuup_canceled(cpu);
1256 1257 1258
	return -ENOMEM;
}

1259
static int cpuup_callback(struct notifier_block *nfb,
1260 1261 1262 1263 1264 1265 1266 1267
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1268
		mutex_lock(&slab_mutex);
1269
		err = cpuup_prepare(cpu);
1270
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1271 1272
		break;
	case CPU_ONLINE:
1273
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1274 1275 1276
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1277
  	case CPU_DOWN_PREPARE:
1278
  	case CPU_DOWN_PREPARE_FROZEN:
1279
		/*
1280
		 * Shutdown cache reaper. Note that the slab_mutex is
1281 1282 1283 1284
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1285
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1286
		/* Now the cache_reaper is guaranteed to be not running. */
1287
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1288 1289
  		break;
  	case CPU_DOWN_FAILED:
1290
  	case CPU_DOWN_FAILED_FROZEN:
1291 1292
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1293
	case CPU_DEAD:
1294
	case CPU_DEAD_FROZEN:
1295 1296
		/*
		 * Even if all the cpus of a node are down, we don't free the
1297
		 * kmem_cache_node of any cache. This to avoid a race between
1298
		 * cpu_down, and a kmalloc allocation from another cpu for
1299
		 * memory from the node of the cpu going down.  The node
1300 1301 1302
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1303
		/* fall through */
1304
#endif
L
Linus Torvalds 已提交
1305
	case CPU_UP_CANCELED:
1306
	case CPU_UP_CANCELED_FROZEN:
1307
		mutex_lock(&slab_mutex);
1308
		cpuup_canceled(cpu);
1309
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1310 1311
		break;
	}
1312
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1313 1314
}

1315
static struct notifier_block cpucache_notifier = {
1316 1317
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1318

1319 1320 1321 1322 1323 1324
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1325
 * Must hold slab_mutex.
1326
 */
1327
static int __meminit drain_cache_node_node(int node)
1328 1329 1330 1331
{
	struct kmem_cache *cachep;
	int ret = 0;

1332
	list_for_each_entry(cachep, &slab_caches, list) {
1333
		struct kmem_cache_node *n;
1334

1335 1336
		n = cachep->node[node];
		if (!n)
1337 1338
			continue;

1339
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1340

1341 1342
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1363
		mutex_lock(&slab_mutex);
1364
		ret = init_cache_node_node(nid);
1365
		mutex_unlock(&slab_mutex);
1366 1367
		break;
	case MEM_GOING_OFFLINE:
1368
		mutex_lock(&slab_mutex);
1369
		ret = drain_cache_node_node(nid);
1370
		mutex_unlock(&slab_mutex);
1371 1372 1373 1374 1375 1376 1377 1378
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1379
	return notifier_from_errno(ret);
1380 1381 1382
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1383
/*
1384
 * swap the static kmem_cache_node with kmalloced memory
1385
 */
1386
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1387
				int nodeid)
1388
{
1389
	struct kmem_cache_node *ptr;
1390

1391
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1392 1393
	BUG_ON(!ptr);

1394
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1395 1396 1397 1398 1399
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1400
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1401
	cachep->node[nodeid] = ptr;
1402 1403
}

1404
/*
1405 1406
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1407
 */
1408
static void __init set_up_node(struct kmem_cache *cachep, int index)
1409 1410 1411 1412
{
	int node;

	for_each_online_node(node) {
1413
		cachep->node[node] = &init_kmem_cache_node[index + node];
1414
		cachep->node[node]->next_reap = jiffies +
1415 1416 1417 1418 1419
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1420 1421
/*
 * The memory after the last cpu cache pointer is used for the
1422
 * the node pointer.
C
Christoph Lameter 已提交
1423
 */
1424
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1425
{
1426
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1427 1428
}

A
Andrew Morton 已提交
1429 1430 1431
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1432 1433 1434
 */
void __init kmem_cache_init(void)
{
1435 1436
	int i;

1437 1438
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1439
	kmem_cache = &kmem_cache_boot;
1440
	setup_node_pointer(kmem_cache);
1441

1442
	if (num_possible_nodes() == 1)
1443 1444
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1445
	for (i = 0; i < NUM_INIT_LISTS; i++)
1446
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1447

1448
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1449 1450 1451

	/*
	 * Fragmentation resistance on low memory - only use bigger
1452 1453
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1454
	 */
1455
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1456
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1457 1458 1459

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1460 1461 1462
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1463
	 *    Initially an __init data area is used for the head array and the
1464
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1465
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1466
	 * 2) Create the first kmalloc cache.
1467
	 *    The struct kmem_cache for the new cache is allocated normally.
1468 1469 1470
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1471
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1472
	 *    kmalloc cache with kmalloc allocated arrays.
1473
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1474 1475
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1476 1477
	 */

1478
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1479

E
Eric Dumazet 已提交
1480
	/*
1481
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1482
	 */
1483 1484
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1485
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1486 1487
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1488 1489 1490

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1491 1492
	/*
	 * Initialize the caches that provide memory for the array cache and the
1493
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1494
	 * bug.
1495 1496
	 */

1497 1498
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1499

1500 1501 1502 1503
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1504

1505 1506
	slab_early_init = 0;

L
Linus Torvalds 已提交
1507 1508
	/* 4) Replace the bootstrap head arrays */
	{
1509
		struct array_cache *ptr;
1510

1511
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1512

1513
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1514
		       sizeof(struct arraycache_init));
1515 1516 1517 1518 1519
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1520
		kmem_cache->array[smp_processor_id()] = ptr;
1521

1522
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523

1524
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1525
		       != &initarray_generic.cache);
1526
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1527
		       sizeof(struct arraycache_init));
1528 1529 1530 1531 1532
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1533
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1534
	}
1535
	/* 5) Replace the bootstrap kmem_cache_node */
1536
	{
P
Pekka Enberg 已提交
1537 1538
		int nid;

1539
		for_each_online_node(nid) {
1540
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1541

1542
			init_list(kmalloc_caches[INDEX_AC],
1543
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1544

1545 1546 1547
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1548 1549 1550
			}
		}
	}
L
Linus Torvalds 已提交
1551

1552
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1553 1554 1555 1556 1557 1558
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1559
	slab_state = UP;
P
Peter Zijlstra 已提交
1560

1561
	/* 6) resize the head arrays to their final sizes */
1562 1563
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1564 1565
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1566
	mutex_unlock(&slab_mutex);
1567

1568 1569 1570
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1571 1572 1573
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1574 1575 1576
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1577 1578 1579
	 */
	register_cpu_notifier(&cpucache_notifier);

1580 1581 1582
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1583
	 * node.
1584 1585 1586 1587
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1588 1589 1590
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595 1596 1597
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1598 1599
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1600
	 */
1601
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1602
		start_cpu_timer(cpu);
1603 1604

	/* Done! */
1605
	slab_state = FULL;
L
Linus Torvalds 已提交
1606 1607 1608 1609
	return 0;
}
__initcall(cpucache_init);

1610 1611 1612
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1613
	struct kmem_cache_node *n;
1614
	struct page *page;
1615 1616 1617 1618 1619 1620 1621
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1622
		cachep->name, cachep->size, cachep->gfporder);
1623 1624 1625 1626 1627

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1628 1629
		n = cachep->node[node];
		if (!n)
1630 1631
			continue;

1632
		spin_lock_irqsave(&n->list_lock, flags);
1633
		list_for_each_entry(page, &n->slabs_full, lru) {
1634 1635 1636
			active_objs += cachep->num;
			active_slabs++;
		}
1637 1638
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1639 1640
			active_slabs++;
		}
1641
		list_for_each_entry(page, &n->slabs_free, lru)
1642 1643
			num_slabs++;

1644 1645
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1663 1664
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1665 1666
{
	struct page *page;
1667
	int nr_pages;
1668

1669
	flags |= cachep->allocflags;
1670 1671
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1672

L
Linus Torvalds 已提交
1673
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1674 1675 1676
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1677
		return NULL;
1678
	}
L
Linus Torvalds 已提交
1679

1680
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1681 1682 1683
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1684
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1685
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1686 1687 1688 1689 1690
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1691 1692 1693
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
G
Glauber Costa 已提交
1694
	memcg_bind_pages(cachep, cachep->gfporder);
1695

1696 1697 1698 1699 1700 1701 1702 1703
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1704

1705
	return page;
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710
}

/*
 * Interface to system's page release.
 */
1711
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1712
{
1713
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1714

1715
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1716

1717 1718 1719 1720 1721 1722
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1723

1724
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1725
	__ClearPageSlabPfmemalloc(page);
1726
	__ClearPageSlab(page);
1727 1728
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1729 1730

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1731 1732
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1733
	__free_memcg_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1734 1735 1736 1737
}

static void kmem_rcu_free(struct rcu_head *head)
{
1738 1739
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1740

1741 1742 1743 1744
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1750
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1751
			    unsigned long caller)
L
Linus Torvalds 已提交
1752
{
1753
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1754

1755
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1756

P
Pekka Enberg 已提交
1757
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1758 1759
		return;

P
Pekka Enberg 已提交
1760 1761 1762 1763
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769 1770
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1771
				*addr++ = svalue;
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776 1777 1778
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1779
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1780 1781 1782
}
#endif

1783
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1784
{
1785
	int size = cachep->object_size;
1786
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1787 1788

	memset(addr, val, size);
P
Pekka Enberg 已提交
1789
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1795 1796 1797
	unsigned char error = 0;
	int bad_count = 0;

1798
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1799 1800 1801 1802 1803 1804
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1805 1806
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825
}
#endif

#if DEBUG

1826
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1827 1828 1829 1830 1831
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1832
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1833 1834
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1835 1836 1837
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1838 1839 1840
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1841
	}
1842
	realobj = (char *)objp + obj_offset(cachep);
1843
	size = cachep->object_size;
P
Pekka Enberg 已提交
1844
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1845 1846
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1847 1848
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1849 1850 1851 1852
		dump_line(realobj, i, limit);
	}
}

1853
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858
{
	char *realobj;
	int size, i;
	int lines = 0;

1859
	realobj = (char *)objp + obj_offset(cachep);
1860
	size = cachep->object_size;
L
Linus Torvalds 已提交
1861

P
Pekka Enberg 已提交
1862
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1863
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1864
		if (i == size - 1)
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1871
				printk(KERN_ERR
1872 1873
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1874 1875 1876
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1877
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1878
			limit = 16;
P
Pekka Enberg 已提交
1879 1880
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1893
		struct page *page = virt_to_head_page(objp);
1894
		unsigned int objnr;
L
Linus Torvalds 已提交
1895

1896
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1897
		if (objnr) {
1898
			objp = index_to_obj(cachep, page, objnr - 1);
1899
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1900
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1901
			       realobj, size);
L
Linus Torvalds 已提交
1902 1903
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1904
		if (objnr + 1 < cachep->num) {
1905
			objp = index_to_obj(cachep, page, objnr + 1);
1906
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1907
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1908
			       realobj, size);
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913 1914
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1915
#if DEBUG
1916 1917
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1918 1919 1920
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1921
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1922 1923 1924

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1925
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1926
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1927
				kernel_map_pages(virt_to_page(objp),
1928
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1938
					   "was overwritten");
L
Linus Torvalds 已提交
1939 1940
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1941
					   "was overwritten");
L
Linus Torvalds 已提交
1942 1943
		}
	}
1944
}
L
Linus Torvalds 已提交
1945
#else
1946 1947
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1948 1949
{
}
L
Linus Torvalds 已提交
1950 1951
#endif

1952 1953 1954
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1955
 * @page: page pointer being destroyed
1956
 *
1957
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1958 1959
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1960
 */
1961
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1962
{
1963
	void *freelist;
1964

1965 1966
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1967
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1978 1979

	} else {
1980
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1981
	}
1982 1983

	/*
1984
	 * From now on, we don't use freelist
1985 1986 1987
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1988
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1989 1990
}

1991
/**
1992 1993 1994 1995 1996 1997 1998
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1999 2000 2001 2002 2003
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2004
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2005
			size_t size, size_t align, unsigned long flags)
2006
{
2007
	unsigned long offslab_limit;
2008
	size_t left_over = 0;
2009
	int gfporder;
2010

2011
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2012 2013 2014
		unsigned int num;
		size_t remainder;

2015
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2016 2017
		if (!num)
			continue;
2018

2019 2020 2021 2022 2023 2024
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2025
			offslab_limit = size;
J
Joonsoo Kim 已提交
2026
			offslab_limit /= sizeof(unsigned int);
2027 2028 2029 2030

 			if (num > offslab_limit)
				break;
		}
2031

2032
		/* Found something acceptable - save it away */
2033
		cachep->num = num;
2034
		cachep->gfporder = gfporder;
2035 2036
		left_over = remainder;

2037 2038 2039 2040 2041 2042 2043 2044
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2045 2046 2047 2048
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2049
		if (gfporder >= slab_max_order)
2050 2051
			break;

2052 2053 2054
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2055
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2056 2057 2058 2059 2060
			break;
	}
	return left_over;
}

2061
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2062
{
2063
	if (slab_state >= FULL)
2064
		return enable_cpucache(cachep, gfp);
2065

2066
	if (slab_state == DOWN) {
2067
		/*
2068
		 * Note: Creation of first cache (kmem_cache).
2069
		 * The setup_node is taken care
2070 2071 2072 2073 2074 2075 2076
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2077 2078 2079 2080 2081 2082
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2083 2084
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2085 2086
		 * otherwise the creation of further caches will BUG().
		 */
2087 2088 2089
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2090
		else
2091
			slab_state = PARTIAL_ARRAYCACHE;
2092
	} else {
2093
		/* Remaining boot caches */
2094
		cachep->array[smp_processor_id()] =
2095
			kmalloc(sizeof(struct arraycache_init), gfp);
2096

2097
		if (slab_state == PARTIAL_ARRAYCACHE) {
2098 2099
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2100 2101
		} else {
			int node;
2102
			for_each_online_node(node) {
2103
				cachep->node[node] =
2104
				    kmalloc_node(sizeof(struct kmem_cache_node),
2105
						gfp, node);
2106
				BUG_ON(!cachep->node[node]);
2107
				kmem_cache_node_init(cachep->node[node]);
2108 2109 2110
			}
		}
	}
2111
	cachep->node[numa_mem_id()]->next_reap =
2112 2113 2114 2115 2116 2117 2118 2119 2120
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2121
	return 0;
2122 2123
}

L
Linus Torvalds 已提交
2124
/**
2125
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2126
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2127 2128 2129 2130
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2131
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2145
int
2146
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2147
{
2148
	size_t left_over, freelist_size, ralign;
2149
	gfp_t gfp;
2150
	int err;
2151
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2161 2162
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2163
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2171 2172
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2173 2174 2175
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2176 2177 2178
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2179 2180
	}

2181
	/*
D
David Woodhouse 已提交
2182 2183 2184
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2185
	 */
D
David Woodhouse 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2196

2197
	/* 3) caller mandated alignment */
2198 2199
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2200
	}
2201 2202
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2203
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2204
	/*
2205
	 * 4) Store it.
L
Linus Torvalds 已提交
2206
	 */
2207
	cachep->align = ralign;
L
Linus Torvalds 已提交
2208

2209 2210 2211 2212 2213
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2214
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2215 2216
#if DEBUG

2217 2218 2219 2220
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2221 2222
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2223 2224
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2225 2226
	}
	if (flags & SLAB_STORE_USER) {
2227
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2228 2229
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2230
		 */
D
David Woodhouse 已提交
2231 2232 2233 2234
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2235 2236
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2237
	if (size >= kmalloc_size(INDEX_NODE + 1)
2238 2239 2240
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245
		size = PAGE_SIZE;
	}
#endif
#endif

2246 2247 2248
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2249 2250
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2251
	 */
2252 2253
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2254 2255 2256 2257 2258 2259
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2260
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2261

2262
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2263

2264
	if (!cachep->num)
2265
		return -E2BIG;
L
Linus Torvalds 已提交
2266

2267 2268
	freelist_size =
		ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2274
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2275
		flags &= ~CFLGS_OFF_SLAB;
2276
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2277 2278 2279 2280
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2281
		freelist_size = cachep->num * sizeof(unsigned int);
2282 2283 2284 2285 2286 2287 2288 2289 2290

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2291 2292 2293 2294
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2295 2296
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2297
	cachep->colour = left_over / cachep->colour_off;
2298
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2299
	cachep->flags = flags;
2300
	cachep->allocflags = __GFP_COMP;
2301
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2302
		cachep->allocflags |= GFP_DMA;
2303
	cachep->size = size;
2304
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2305

2306
	if (flags & CFLGS_OFF_SLAB) {
2307
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2308 2309 2310 2311 2312 2313 2314
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2315
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2316
	}
L
Linus Torvalds 已提交
2317

2318 2319
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2320
		__kmem_cache_shutdown(cachep);
2321
		return err;
2322
	}
L
Linus Torvalds 已提交
2323

2324 2325 2326 2327 2328 2329 2330 2331
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2332 2333
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2334

2335
	return 0;
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2349
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2350 2351 2352
{
#ifdef CONFIG_SMP
	check_irq_off();
2353
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2354 2355
#endif
}
2356

2357
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2358 2359 2360
{
#ifdef CONFIG_SMP
	check_irq_off();
2361
	assert_spin_locked(&cachep->node[node]->list_lock);
2362 2363 2364
#endif
}

L
Linus Torvalds 已提交
2365 2366 2367 2368
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2369
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2370 2371
#endif

2372
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2373 2374 2375
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2376 2377
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2378
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2379
	struct array_cache *ac;
2380
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2381 2382

	check_irq_off();
2383
	ac = cpu_cache_get(cachep);
2384
	spin_lock(&cachep->node[node]->list_lock);
2385
	free_block(cachep, ac->entry, ac->avail, node);
2386
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2387 2388 2389
	ac->avail = 0;
}

2390
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2391
{
2392
	struct kmem_cache_node *n;
2393 2394
	int node;

2395
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2396
	check_irq_on();
P
Pekka Enberg 已提交
2397
	for_each_online_node(node) {
2398 2399 2400
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2401 2402 2403
	}

	for_each_online_node(node) {
2404 2405 2406
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2407
	}
L
Linus Torvalds 已提交
2408 2409
}

2410 2411 2412 2413 2414 2415 2416
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2417
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2418
{
2419 2420
	struct list_head *p;
	int nr_freed;
2421
	struct page *page;
L
Linus Torvalds 已提交
2422

2423
	nr_freed = 0;
2424
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2425

2426 2427 2428 2429
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2430 2431
			goto out;
		}
L
Linus Torvalds 已提交
2432

2433
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2434
#if DEBUG
2435
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2436
#endif
2437
		list_del(&page->lru);
2438 2439 2440 2441
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2442 2443
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2444
		slab_destroy(cache, page);
2445
		nr_freed++;
L
Linus Torvalds 已提交
2446
	}
2447 2448
out:
	return nr_freed;
L
Linus Torvalds 已提交
2449 2450
}

2451
/* Called with slab_mutex held to protect against cpu hotplug */
2452
static int __cache_shrink(struct kmem_cache *cachep)
2453 2454
{
	int ret = 0, i = 0;
2455
	struct kmem_cache_node *n;
2456 2457 2458 2459 2460

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2461 2462
		n = cachep->node[i];
		if (!n)
2463 2464
			continue;

2465
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2466

2467 2468
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2469 2470 2471 2472
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2473 2474 2475 2476 2477 2478 2479
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2480
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2481
{
2482
	int ret;
2483
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2484

2485
	get_online_cpus();
2486
	mutex_lock(&slab_mutex);
2487
	ret = __cache_shrink(cachep);
2488
	mutex_unlock(&slab_mutex);
2489
	put_online_cpus();
2490
	return ret;
L
Linus Torvalds 已提交
2491 2492 2493
}
EXPORT_SYMBOL(kmem_cache_shrink);

2494
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2495
{
2496
	int i;
2497
	struct kmem_cache_node *n;
2498
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2499

2500 2501
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2502

2503 2504
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2505

2506
	/* NUMA: free the node structures */
2507
	for_each_online_node(i) {
2508 2509 2510 2511 2512
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2513 2514 2515
		}
	}
	return 0;
L
Linus Torvalds 已提交
2516 2517
}

2518 2519 2520 2521 2522 2523 2524 2525 2526
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
2527
 * Hence we cannot have freelist_cache same as the original cache.
2528
 */
2529
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2530 2531
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2532
{
2533
	void *freelist;
2534
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2535

L
Linus Torvalds 已提交
2536 2537
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2538
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2539
					      local_flags, nodeid);
2540
		if (!freelist)
L
Linus Torvalds 已提交
2541 2542
			return NULL;
	} else {
2543 2544
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2545
	}
2546 2547 2548
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2549 2550
}

2551
static inline unsigned int *slab_freelist(struct page *page)
L
Linus Torvalds 已提交
2552
{
2553
	return (unsigned int *)(page->freelist);
L
Linus Torvalds 已提交
2554 2555
}

2556
static void cache_init_objs(struct kmem_cache *cachep,
2557
			    struct page *page)
L
Linus Torvalds 已提交
2558 2559 2560 2561
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2562
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2575 2576 2577
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2578 2579
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2580
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2581 2582 2583 2584

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2585
					   " end of an object");
L
Linus Torvalds 已提交
2586 2587
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2588
					   " start of an object");
L
Linus Torvalds 已提交
2589
		}
2590
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2591
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2592
			kernel_map_pages(virt_to_page(objp),
2593
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2594 2595
#else
		if (cachep->ctor)
2596
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2597
#endif
2598
		slab_freelist(page)[i] = i;
L
Linus Torvalds 已提交
2599 2600 2601
	}
}

2602
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2603
{
2604 2605
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2606
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2607
		else
2608
			BUG_ON(cachep->allocflags & GFP_DMA);
2609
	}
L
Linus Torvalds 已提交
2610 2611
}

2612
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2613
				int nodeid)
2614
{
2615
	void *objp;
2616

2617
	objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
2618
	page->active++;
2619
#if DEBUG
J
Joonsoo Kim 已提交
2620
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2621 2622 2623 2624 2625
#endif

	return objp;
}

2626
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2627
				void *objp, int nodeid)
2628
{
2629
	unsigned int objnr = obj_to_index(cachep, page, objp);
2630
#if DEBUG
J
Joonsoo Kim 已提交
2631
	unsigned int i;
2632

2633
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2634
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2635

2636
	/* Verify double free bug */
2637
	for (i = page->active; i < cachep->num; i++) {
2638
		if (slab_freelist(page)[i] == objnr) {
2639 2640 2641 2642
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2643 2644
	}
#endif
2645
	page->active--;
2646
	slab_freelist(page)[page->active] = objnr;
2647 2648
}

2649 2650 2651
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2652
 * virtual address for kfree, ksize, and slab debugging.
2653
 */
2654
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2655
			   void *freelist)
L
Linus Torvalds 已提交
2656
{
2657
	page->slab_cache = cache;
2658
	page->freelist = freelist;
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2665
static int cache_grow(struct kmem_cache *cachep,
2666
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2667
{
2668
	void *freelist;
P
Pekka Enberg 已提交
2669 2670
	size_t offset;
	gfp_t local_flags;
2671
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2672

A
Andrew Morton 已提交
2673 2674 2675
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2676
	 */
C
Christoph Lameter 已提交
2677 2678
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2679

2680
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2681
	check_irq_off();
2682 2683
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2684 2685

	/* Get colour for the slab, and cal the next value. */
2686 2687 2688 2689 2690
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2691

2692
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2705 2706 2707
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2708
	 */
2709 2710 2711
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2712 2713 2714
		goto failed;

	/* Get slab management. */
2715
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2716
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2717
	if (!freelist)
L
Linus Torvalds 已提交
2718 2719
		goto opps1;

2720
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2721

2722
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2723 2724 2725 2726

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2727
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2728 2729

	/* Make slab active. */
2730
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2731
	STATS_INC_GROWN(cachep);
2732 2733
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2734
	return 1;
A
Andrew Morton 已提交
2735
opps1:
2736
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2737
failed:
L
Linus Torvalds 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2754 2755
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2756 2757 2758
	}
}

2759 2760
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2761
	unsigned long long redzone1, redzone2;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2777
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2778 2779 2780
			obj, redzone1, redzone2);
}

2781
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2782
				   unsigned long caller)
L
Linus Torvalds 已提交
2783 2784
{
	unsigned int objnr;
2785
	struct page *page;
L
Linus Torvalds 已提交
2786

2787 2788
	BUG_ON(virt_to_cache(objp) != cachep);

2789
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2790
	kfree_debugcheck(objp);
2791
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2792 2793

	if (cachep->flags & SLAB_RED_ZONE) {
2794
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2795 2796 2797 2798
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2799
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2800

2801
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2802 2803

	BUG_ON(objnr >= cachep->num);
2804
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2805 2806 2807

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2808
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2809
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2810
			kernel_map_pages(virt_to_page(objp),
2811
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2827 2828
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2829 2830
{
	int batchcount;
2831
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2832
	struct array_cache *ac;
P
Pekka Enberg 已提交
2833 2834
	int node;

L
Linus Torvalds 已提交
2835
	check_irq_off();
2836
	node = numa_mem_id();
2837 2838 2839
	if (unlikely(force_refill))
		goto force_grow;
retry:
2840
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2841 2842
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2843 2844 2845 2846
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2847 2848 2849
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2850
	n = cachep->node[node];
2851

2852 2853
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2854

2855
	/* See if we can refill from the shared array */
2856 2857
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2858
		goto alloc_done;
2859
	}
2860

L
Linus Torvalds 已提交
2861 2862
	while (batchcount > 0) {
		struct list_head *entry;
2863
		struct page *page;
L
Linus Torvalds 已提交
2864
		/* Get slab alloc is to come from. */
2865 2866 2867 2868 2869
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2870 2871 2872
				goto must_grow;
		}

2873
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2874
		check_spinlock_acquired(cachep);
2875 2876 2877 2878 2879 2880

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2881
		BUG_ON(page->active >= cachep->num);
2882

2883
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2884 2885 2886 2887
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2888
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2889
									node));
L
Linus Torvalds 已提交
2890 2891 2892
		}

		/* move slabp to correct slabp list: */
2893 2894 2895
		list_del(&page->lru);
		if (page->active == cachep->num)
			list_add(&page->list, &n->slabs_full);
L
Linus Torvalds 已提交
2896
		else
2897
			list_add(&page->list, &n->slabs_partial);
L
Linus Torvalds 已提交
2898 2899
	}

A
Andrew Morton 已提交
2900
must_grow:
2901
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2902
alloc_done:
2903
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2904 2905 2906

	if (unlikely(!ac->avail)) {
		int x;
2907
force_grow:
2908
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2909

A
Andrew Morton 已提交
2910
		/* cache_grow can reenable interrupts, then ac could change. */
2911
		ac = cpu_cache_get(cachep);
2912
		node = numa_mem_id();
2913 2914 2915

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2916 2917
			return NULL;

A
Andrew Morton 已提交
2918
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2919 2920 2921
			goto retry;
	}
	ac->touched = 1;
2922 2923

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2924 2925
}

A
Andrew Morton 已提交
2926 2927
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934 2935
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2936
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2937
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2938
{
P
Pekka Enberg 已提交
2939
	if (!objp)
L
Linus Torvalds 已提交
2940
		return objp;
P
Pekka Enberg 已提交
2941
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2942
#ifdef CONFIG_DEBUG_PAGEALLOC
2943
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2944
			kernel_map_pages(virt_to_page(objp),
2945
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952 2953
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2954
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2955 2956

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2957 2958 2959 2960
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2961
			printk(KERN_ERR
2962
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2963 2964
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2965 2966 2967 2968
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2969
	objp += obj_offset(cachep);
2970
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2971
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2972 2973
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2974
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2975
		       objp, (int)ARCH_SLAB_MINALIGN);
2976
	}
L
Linus Torvalds 已提交
2977 2978 2979 2980 2981 2982
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
2983
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2984
{
2985
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
2986
		return false;
2987

2988
	return should_failslab(cachep->object_size, flags, cachep->flags);
2989 2990
}

2991
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2992
{
P
Pekka Enberg 已提交
2993
	void *objp;
L
Linus Torvalds 已提交
2994
	struct array_cache *ac;
2995
	bool force_refill = false;
L
Linus Torvalds 已提交
2996

2997
	check_irq_off();
2998

2999
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3000 3001
	if (likely(ac->avail)) {
		ac->touched = 1;
3002 3003
		objp = ac_get_obj(cachep, ac, flags, false);

3004
		/*
3005 3006
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3007
		 */
3008 3009 3010 3011 3012
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3013
	}
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3024 3025 3026 3027 3028
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3029 3030
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3031 3032 3033
	return objp;
}

3034
#ifdef CONFIG_NUMA
3035
/*
3036
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3037 3038 3039 3040 3041 3042 3043 3044
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3045
	if (in_interrupt() || (flags & __GFP_THISNODE))
3046
		return NULL;
3047
	nid_alloc = nid_here = numa_mem_id();
3048
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3049
		nid_alloc = cpuset_slab_spread_node();
3050
	else if (current->mempolicy)
3051
		nid_alloc = slab_node();
3052
	if (nid_alloc != nid_here)
3053
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3054 3055 3056
	return NULL;
}

3057 3058
/*
 * Fallback function if there was no memory available and no objects on a
3059
 * certain node and fall back is permitted. First we scan all the
3060
 * available node for available objects. If that fails then we
3061 3062 3063
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3064
 */
3065
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3066
{
3067 3068
	struct zonelist *zonelist;
	gfp_t local_flags;
3069
	struct zoneref *z;
3070 3071
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3072
	void *obj = NULL;
3073
	int nid;
3074
	unsigned int cpuset_mems_cookie;
3075 3076 3077 3078

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3079
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3080

3081 3082
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3083
	zonelist = node_zonelist(slab_node(), flags);
3084

3085 3086 3087 3088 3089
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3090 3091
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3092

3093
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3094 3095
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3096 3097
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3098 3099 3100
				if (obj)
					break;
		}
3101 3102
	}

3103
	if (!obj) {
3104 3105 3106 3107 3108 3109
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3110 3111
		struct page *page;

3112 3113 3114
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3115
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3116 3117
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3118
		if (page) {
3119 3120 3121
			/*
			 * Insert into the appropriate per node queues
			 */
3122 3123
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3134
				/* cache_grow already freed obj */
3135 3136 3137
				obj = NULL;
			}
		}
3138
	}
3139 3140 3141

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3142 3143 3144
	return obj;
}

3145 3146
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3147
 */
3148
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3149
				int nodeid)
3150 3151
{
	struct list_head *entry;
3152
	struct page *page;
3153
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3154 3155 3156
	void *obj;
	int x;

3157
	VM_BUG_ON(nodeid > num_online_nodes());
3158 3159
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3160

A
Andrew Morton 已提交
3161
retry:
3162
	check_irq_off();
3163 3164 3165 3166 3167 3168
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3169 3170 3171
			goto must_grow;
	}

3172
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3173 3174 3175 3176 3177 3178
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3179
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3180

3181
	obj = slab_get_obj(cachep, page, nodeid);
3182
	n->free_objects--;
P
Pekka Enberg 已提交
3183
	/* move slabp to correct slabp list: */
3184
	list_del(&page->lru);
P
Pekka Enberg 已提交
3185

3186 3187
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3188
	else
3189
		list_add(&page->lru, &n->slabs_partial);
3190

3191
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3192
	goto done;
3193

A
Andrew Morton 已提交
3194
must_grow:
3195
	spin_unlock(&n->list_lock);
3196
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3197 3198
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3199

3200
	return fallback_alloc(cachep, flags);
3201

A
Andrew Morton 已提交
3202
done:
P
Pekka Enberg 已提交
3203
	return obj;
3204
}
3205 3206

static __always_inline void *
3207
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3208
		   unsigned long caller)
3209 3210 3211
{
	unsigned long save_flags;
	void *ptr;
3212
	int slab_node = numa_mem_id();
3213

3214
	flags &= gfp_allowed_mask;
3215

3216 3217
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3218
	if (slab_should_failslab(cachep, flags))
3219 3220
		return NULL;

3221 3222
	cachep = memcg_kmem_get_cache(cachep, flags);

3223 3224 3225
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3226
	if (nodeid == NUMA_NO_NODE)
3227
		nodeid = slab_node;
3228

3229
	if (unlikely(!cachep->node[nodeid])) {
3230 3231 3232 3233 3234
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3235
	if (nodeid == slab_node) {
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3251
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3252
				 flags);
3253

P
Pekka Enberg 已提交
3254
	if (likely(ptr))
3255
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3256

3257
	if (unlikely((flags & __GFP_ZERO) && ptr))
3258
		memset(ptr, 0, cachep->object_size);
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3279 3280
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3296
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3297 3298 3299 3300
{
	unsigned long save_flags;
	void *objp;

3301
	flags &= gfp_allowed_mask;
3302

3303 3304
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3305
	if (slab_should_failslab(cachep, flags))
3306 3307
		return NULL;

3308 3309
	cachep = memcg_kmem_get_cache(cachep, flags);

3310 3311 3312 3313 3314
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3315
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3316
				 flags);
3317 3318
	prefetchw(objp);

P
Pekka Enberg 已提交
3319
	if (likely(objp))
3320
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3321

3322
	if (unlikely((flags & __GFP_ZERO) && objp))
3323
		memset(objp, 0, cachep->object_size);
3324

3325 3326
	return objp;
}
3327 3328 3329 3330

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3331
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3332
		       int node)
L
Linus Torvalds 已提交
3333 3334
{
	int i;
3335
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3336 3337

	for (i = 0; i < nr_objects; i++) {
3338
		void *objp;
3339
		struct page *page;
L
Linus Torvalds 已提交
3340

3341 3342 3343
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3344
		page = virt_to_head_page(objp);
3345
		n = cachep->node[node];
3346
		list_del(&page->lru);
3347
		check_spinlock_acquired_node(cachep, node);
3348
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3349
		STATS_DEC_ACTIVE(cachep);
3350
		n->free_objects++;
L
Linus Torvalds 已提交
3351 3352

		/* fixup slab chains */
3353
		if (page->active == 0) {
3354 3355
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3356 3357 3358 3359 3360 3361
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
3362
				slab_destroy(cachep, page);
L
Linus Torvalds 已提交
3363
			} else {
3364
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3365 3366 3367 3368 3369 3370
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3371
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3372 3373 3374 3375
		}
	}
}

3376
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3377 3378
{
	int batchcount;
3379
	struct kmem_cache_node *n;
3380
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385 3386

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3387 3388 3389 3390
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3391
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3392 3393 3394
		if (max) {
			if (batchcount > max)
				batchcount = max;
3395
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3396
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3397 3398 3399 3400 3401
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3402
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3403
free_done:
L
Linus Torvalds 已提交
3404 3405 3406 3407 3408
#if STATS
	{
		int i = 0;
		struct list_head *p;

3409 3410
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3411
			struct page *page;
L
Linus Torvalds 已提交
3412

3413 3414
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3415 3416 3417 3418 3419 3420 3421

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3422
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3423
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3424
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3425 3426 3427
}

/*
A
Andrew Morton 已提交
3428 3429
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3430
 */
3431
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3432
				unsigned long caller)
L
Linus Torvalds 已提交
3433
{
3434
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3435 3436

	check_irq_off();
3437
	kmemleak_free_recursive(objp, cachep->flags);
3438
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3439

3440
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3441

3442 3443 3444 3445 3446 3447 3448
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3449
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3450 3451
		return;

L
Linus Torvalds 已提交
3452 3453 3454 3455 3456 3457
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3458

3459
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3470
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3471
{
3472
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3473

3474
	trace_kmem_cache_alloc(_RET_IP_, ret,
3475
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3476 3477

	return ret;
L
Linus Torvalds 已提交
3478 3479 3480
}
EXPORT_SYMBOL(kmem_cache_alloc);

3481
#ifdef CONFIG_TRACING
3482
void *
3483
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3484
{
3485 3486
	void *ret;

3487
	ret = slab_alloc(cachep, flags, _RET_IP_);
3488 3489

	trace_kmalloc(_RET_IP_, ret,
3490
		      size, cachep->size, flags);
3491
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3492
}
3493
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3494 3495
#endif

L
Linus Torvalds 已提交
3496
#ifdef CONFIG_NUMA
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3508 3509
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3510
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3511

3512
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3513
				    cachep->object_size, cachep->size,
3514
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3515 3516

	return ret;
3517
}
L
Linus Torvalds 已提交
3518 3519
EXPORT_SYMBOL(kmem_cache_alloc_node);

3520
#ifdef CONFIG_TRACING
3521
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3522
				  gfp_t flags,
3523 3524
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3525
{
3526 3527
	void *ret;

3528
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3529

3530
	trace_kmalloc_node(_RET_IP_, ret,
3531
			   size, cachep->size,
3532 3533
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3534
}
3535
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3536 3537
#endif

3538
static __always_inline void *
3539
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3540
{
3541
	struct kmem_cache *cachep;
3542

3543
	cachep = kmalloc_slab(size, flags);
3544 3545
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3546
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3547
}
3548

3549
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3550 3551
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3552
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3553
}
3554
EXPORT_SYMBOL(__kmalloc_node);
3555 3556

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3557
		int node, unsigned long caller)
3558
{
3559
	return __do_kmalloc_node(size, flags, node, caller);
3560 3561 3562 3563 3564
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3565
	return __do_kmalloc_node(size, flags, node, 0);
3566 3567
}
EXPORT_SYMBOL(__kmalloc_node);
3568
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3569
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3570 3571

/**
3572
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3573
 * @size: how many bytes of memory are required.
3574
 * @flags: the type of memory to allocate (see kmalloc).
3575
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3576
 */
3577
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3578
					  unsigned long caller)
L
Linus Torvalds 已提交
3579
{
3580
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3581
	void *ret;
L
Linus Torvalds 已提交
3582

3583 3584 3585 3586 3587
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3588
	cachep = kmalloc_slab(size, flags);
3589 3590
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3591
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3592

3593
	trace_kmalloc(caller, ret,
3594
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3595 3596

	return ret;
3597 3598 3599
}


3600
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3601 3602
void *__kmalloc(size_t size, gfp_t flags)
{
3603
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3604 3605 3606
}
EXPORT_SYMBOL(__kmalloc);

3607
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3608
{
3609
	return __do_kmalloc(size, flags, caller);
3610 3611
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3612 3613 3614 3615

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3616
	return __do_kmalloc(size, flags, 0);
3617 3618
}
EXPORT_SYMBOL(__kmalloc);
3619 3620
#endif

L
Linus Torvalds 已提交
3621 3622 3623 3624 3625 3626 3627 3628
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3629
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3630 3631
{
	unsigned long flags;
3632 3633 3634
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3635 3636

	local_irq_save(flags);
3637
	debug_check_no_locks_freed(objp, cachep->object_size);
3638
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3639
		debug_check_no_obj_freed(objp, cachep->object_size);
3640
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3641
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3642

3643
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3651 3652
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3653 3654 3655 3656 3657
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3658
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3659 3660
	unsigned long flags;

3661 3662
	trace_kfree(_RET_IP_, objp);

3663
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3664 3665 3666
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3667
	c = virt_to_cache(objp);
3668 3669 3670
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3671
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3672 3673 3674 3675
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3676
/*
3677
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3678
 */
3679
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3680 3681
{
	int node;
3682
	struct kmem_cache_node *n;
3683
	struct array_cache *new_shared;
3684
	struct array_cache **new_alien = NULL;
3685

3686
	for_each_online_node(node) {
3687

3688
                if (use_alien_caches) {
3689
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3690 3691 3692
                        if (!new_alien)
                                goto fail;
                }
3693

3694 3695 3696
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3697
				cachep->shared*cachep->batchcount,
3698
					0xbaadf00d, gfp);
3699 3700 3701 3702
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3703
		}
3704

3705 3706 3707
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3708

3709
			spin_lock_irq(&n->list_lock);
3710

3711
			if (shared)
3712 3713
				free_block(cachep, shared->entry,
						shared->avail, node);
3714

3715 3716 3717
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3718 3719
				new_alien = NULL;
			}
3720
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3721
					cachep->batchcount + cachep->num;
3722
			spin_unlock_irq(&n->list_lock);
3723
			kfree(shared);
3724 3725 3726
			free_alien_cache(new_alien);
			continue;
		}
3727 3728
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3729 3730
			free_alien_cache(new_alien);
			kfree(new_shared);
3731
			goto fail;
3732
		}
3733

3734 3735
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3736
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3737 3738 3739
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3740
					cachep->batchcount + cachep->num;
3741
		cachep->node[node] = n;
3742
	}
3743
	return 0;
3744

A
Andrew Morton 已提交
3745
fail:
3746
	if (!cachep->list.next) {
3747 3748 3749
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3750
			if (cachep->node[node]) {
3751
				n = cachep->node[node];
3752

3753 3754 3755
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3756
				cachep->node[node] = NULL;
3757 3758 3759 3760
			}
			node--;
		}
	}
3761
	return -ENOMEM;
3762 3763
}

L
Linus Torvalds 已提交
3764
struct ccupdate_struct {
3765
	struct kmem_cache *cachep;
3766
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3767 3768 3769 3770
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3771
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3772 3773 3774
	struct array_cache *old;

	check_irq_off();
3775
	old = cpu_cache_get(new->cachep);
3776

L
Linus Torvalds 已提交
3777 3778 3779 3780
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3781
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3782
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3783
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3784
{
3785
	struct ccupdate_struct *new;
3786
	int i;
L
Linus Torvalds 已提交
3787

3788 3789
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3790 3791 3792
	if (!new)
		return -ENOMEM;

3793
	for_each_online_cpu(i) {
3794
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3795
						batchcount, gfp);
3796
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3797
			for (i--; i >= 0; i--)
3798 3799
				kfree(new->new[i]);
			kfree(new);
3800
			return -ENOMEM;
L
Linus Torvalds 已提交
3801 3802
		}
	}
3803
	new->cachep = cachep;
L
Linus Torvalds 已提交
3804

3805
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3806

L
Linus Torvalds 已提交
3807 3808 3809
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3810
	cachep->shared = shared;
L
Linus Torvalds 已提交
3811

3812
	for_each_online_cpu(i) {
3813
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3814 3815
		if (!ccold)
			continue;
3816
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3817
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3818
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3819 3820
		kfree(ccold);
	}
3821
	kfree(new);
3822
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3823 3824
}

G
Glauber Costa 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3840
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3841
	for_each_memcg_cache_index(i) {
3842
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3843 3844 3845 3846 3847 3848 3849 3850
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3851
/* Called with slab_mutex held always */
3852
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3853 3854
{
	int err;
G
Glauber Costa 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3865

G
Glauber Costa 已提交
3866 3867
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3868 3869
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3870 3871
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3872
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3873 3874 3875 3876
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3877
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3878
		limit = 1;
3879
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3880
		limit = 8;
3881
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3882
		limit = 24;
3883
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3884 3885 3886 3887
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3888 3889
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895 3896 3897
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3898
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3899 3900 3901
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3902 3903 3904
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3905 3906 3907 3908
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3909 3910 3911
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3912 3913
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3914
		       cachep->name, -err);
3915
	return err;
L
Linus Torvalds 已提交
3916 3917
}

3918
/*
3919 3920
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3921
 * if drain_array() is used on the shared array.
3922
 */
3923
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3924
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3925 3926 3927
{
	int tofree;

3928 3929
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3930 3931
	if (ac->touched && !force) {
		ac->touched = 0;
3932
	} else {
3933
		spin_lock_irq(&n->list_lock);
3934 3935 3936 3937 3938 3939 3940 3941 3942
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3943
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3944 3945 3946 3947 3948
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3949
 * @w: work descriptor
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954 3955
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3956 3957
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3958
 */
3959
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3960
{
3961
	struct kmem_cache *searchp;
3962
	struct kmem_cache_node *n;
3963
	int node = numa_mem_id();
3964
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3965

3966
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3967
		/* Give up. Setup the next iteration. */
3968
		goto out;
L
Linus Torvalds 已提交
3969

3970
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3971 3972
		check_irq_on();

3973
		/*
3974
		 * We only take the node lock if absolutely necessary and we
3975 3976 3977
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3978
		n = searchp->node[node];
3979

3980
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3981

3982
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3983

3984 3985 3986 3987
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3988
		if (time_after(n->next_reap, jiffies))
3989
			goto next;
L
Linus Torvalds 已提交
3990

3991
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3992

3993
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3994

3995 3996
		if (n->free_touched)
			n->free_touched = 0;
3997 3998
		else {
			int freed;
L
Linus Torvalds 已提交
3999

4000
			freed = drain_freelist(searchp, n, (n->free_limit +
4001 4002 4003
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4004
next:
L
Linus Torvalds 已提交
4005 4006 4007
		cond_resched();
	}
	check_irq_on();
4008
	mutex_unlock(&slab_mutex);
4009
	next_reap_node();
4010
out:
A
Andrew Morton 已提交
4011
	/* Set up the next iteration */
4012
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4013 4014
}

4015
#ifdef CONFIG_SLABINFO
4016
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4017
{
4018
	struct page *page;
P
Pekka Enberg 已提交
4019 4020 4021 4022
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4023
	const char *name;
L
Linus Torvalds 已提交
4024
	char *error = NULL;
4025
	int node;
4026
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4027 4028 4029

	active_objs = 0;
	num_slabs = 0;
4030
	for_each_online_node(node) {
4031 4032
		n = cachep->node[node];
		if (!n)
4033 4034
			continue;

4035
		check_irq_on();
4036
		spin_lock_irq(&n->list_lock);
4037

4038 4039
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4040 4041 4042 4043
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4044 4045
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4046
				error = "slabs_partial accounting error";
4047
			if (!page->active && !error)
4048
				error = "slabs_partial accounting error";
4049
			active_objs += page->active;
4050 4051
			active_slabs++;
		}
4052 4053
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4054
				error = "slabs_free accounting error";
4055 4056
			num_slabs++;
		}
4057 4058 4059
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4060

4061
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4062
	}
P
Pekka Enberg 已提交
4063 4064
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4065
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4066 4067
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4068
	name = cachep->name;
L
Linus Torvalds 已提交
4069 4070 4071
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4086
#if STATS
4087
	{			/* node stats */
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4095
		unsigned long node_frees = cachep->node_frees;
4096
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4097

J
Joe Perches 已提交
4098 4099 4100 4101 4102
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4112
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4125
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4126
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4127
{
P
Pekka Enberg 已提交
4128
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4129
	int limit, batchcount, shared, res;
4130
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4131

L
Linus Torvalds 已提交
4132 4133 4134 4135
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4136
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4147
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4148
	res = -EINVAL;
4149
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4150
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4151 4152
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4153
				res = 0;
L
Linus Torvalds 已提交
4154
			} else {
4155
				res = do_tune_cpucache(cachep, limit,
4156 4157
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4158 4159 4160 4161
			}
			break;
		}
	}
4162
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4163 4164 4165 4166
	if (res >= 0)
		res = count;
	return res;
}
4167 4168 4169 4170 4171

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4172 4173
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4206 4207
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4208 4209
{
	void *p;
4210 4211
	int i, j;

4212 4213
	if (n[0] == n[1])
		return;
4214
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4215 4216
		bool active = true;

4217
		for (j = page->active; j < c->num; j++) {
4218
			/* Skip freed item */
4219
			if (slab_freelist(page)[j] == i) {
4220 4221 4222 4223 4224
				active = false;
				break;
			}
		}
		if (!active)
4225
			continue;
4226

4227 4228 4229 4230 4231 4232 4233 4234 4235
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4236
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4237

4238
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4239
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4240
		if (modname[0])
4241 4242 4243 4244 4245 4246 4247 4248 4249
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4250
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4251
	struct page *page;
4252
	struct kmem_cache_node *n;
4253
	const char *name;
4254
	unsigned long *x = m->private;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4265
	x[1] = 0;
4266 4267

	for_each_online_node(node) {
4268 4269
		n = cachep->node[node];
		if (!n)
4270 4271 4272
			continue;

		check_irq_on();
4273
		spin_lock_irq(&n->list_lock);
4274

4275 4276 4277 4278
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4279
		spin_unlock_irq(&n->list_lock);
4280 4281
	}
	name = cachep->name;
4282
	if (x[0] == x[1]) {
4283
		/* Increase the buffer size */
4284
		mutex_unlock(&slab_mutex);
4285
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4286 4287
		if (!m->private) {
			/* Too bad, we are really out */
4288
			m->private = x;
4289
			mutex_lock(&slab_mutex);
4290 4291
			return -ENOMEM;
		}
4292 4293
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4294
		mutex_lock(&slab_mutex);
4295 4296 4297 4298
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4299 4300 4301
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4302 4303
		seq_putc(m, '\n');
	}
4304

4305 4306 4307
	return 0;
}

4308
static const struct seq_operations slabstats_op = {
4309
	.start = leaks_start,
4310 4311
	.next = slab_next,
	.stop = slab_stop,
4312 4313
	.show = leaks_show,
};
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4344
#endif
4345 4346 4347
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4348 4349
#endif

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4362
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4363
{
4364 4365
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4366
		return 0;
L
Linus Torvalds 已提交
4367

4368
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4369
}
K
Kirill A. Shutemov 已提交
4370
EXPORT_SYMBOL(ksize);