slab.c 114.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
208
	void *addr;
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254 255 256 257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
258
			 */
L
Linus Torvalds 已提交
259 260
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287
};

288 289 290
/*
 * Need this for bootstrapping a per node allocator.
 */
291
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293
#define	CACHE_CACHE 0
294
#define	SIZE_AC MAX_NUMNODES
295
#define	SIZE_NODE (2 * MAX_NUMNODES)
296

297
static int drain_freelist(struct kmem_cache *cache,
298
			struct kmem_cache_node *n, int tofree);
299 300
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
301
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302
static void cache_reap(struct work_struct *unused);
303

304 305
static int slab_early_init = 1;

306
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
308

309
static void kmem_cache_node_init(struct kmem_cache_node *parent)
310 311 312 313 314 315
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
316
	parent->colour_next = 0;
317 318 319 320 321
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
322 323 324
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
325
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
326 327
	} while (0)

A
Andrew Morton 已提交
328 329
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
330 331 332 333
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
334 335 336 337 338

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
339 340 341
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
342
 *
A
Adrian Bunk 已提交
343
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352 353
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
354
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
355 356 357 358 359
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
360 361
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
362
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
363
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
364 365 366 367 368
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
369 370 371 372 373 374 375 376 377
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
378
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
379 380 381
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
382
#define	STATS_INC_NODEFREES(x)	do { } while (0)
383
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
384
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
385 386 387 388 389 390 391 392
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
393 394
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
395
 * 0		: objp
396
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
397 398
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
399
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
400
 * 		redzone word.
401
 * cachep->obj_offset: The real object.
402 403
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
404
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
405
 */
406
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
407
{
408
	return cachep->obj_offset;
L
Linus Torvalds 已提交
409 410
}

411
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
412 413
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414 415
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
416 417
}

418
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
419 420 421
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
422
		return (unsigned long long *)(objp + cachep->size -
423
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
424
					      REDZONE_ALIGN);
425
	return (unsigned long long *) (objp + cachep->size -
426
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
427 428
}

429
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
430 431
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
433 434 435 436
}

#else

437
#define obj_offset(x)			0
438 439
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
440 441 442 443 444
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
445 446
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
447
 */
448 449 450
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
451
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
452

453 454
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
455
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
456
	return page->slab_cache;
457 458 459 460
}

static inline struct slab *virt_to_slab(const void *obj)
{
461
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
462 463 464

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
465 466
}

467 468 469
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
470
	return slab->s_mem + cache->size * idx;
471 472
}

473
/*
474 475 476
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
477 478 479 480
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
481
{
482 483
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484 485
}

L
Linus Torvalds 已提交
486
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
487
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
488 489

/* internal cache of cache description objs */
490
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
491 492 493
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
494
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
495
	.name = "kmem_cache",
L
Linus Torvalds 已提交
496 497
};

498 499
#define BAD_ALIEN_MAGIC 0x01020304ul

500 501 502 503 504 505 506 507
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
508 509 510 511
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
512
 */
513 514 515
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

516 517 518 519 520 521 522 523
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
524
	struct kmem_cache_node *n;
525 526
	int r;

527 528
	n = cachep->node[q];
	if (!n)
529 530
		return;

531 532
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

561
static void init_node_lock_keys(int q)
562
{
563
	int i;
564

565
	if (slab_state < UP)
566 567
		return;

568
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
569
		struct kmem_cache_node *n;
570 571 572 573
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
574

575 576
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
577
			continue;
578

579
		slab_set_lock_classes(cache, &on_slab_l3_key,
580
				&on_slab_alc_key, q);
581 582
	}
}
583

584 585
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
586
	if (!cachep->node[q])
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

602 603 604 605 606 607 608
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
609
#else
610 611 612 613
static void init_node_lock_keys(int q)
{
}

614
static inline void init_lock_keys(void)
615 616
{
}
617

618 619 620 621 622 623 624 625
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

626 627 628 629 630 631 632
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
633 634
#endif

635
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
636

637
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
638 639 640 641
{
	return cachep->array[smp_processor_id()];
}

642
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
643
{
644 645
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
646

A
Andrew Morton 已提交
647 648 649
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
650 651 652 653 654 655 656
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
706 707
}

708
#if DEBUG
709
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
710

A
Andrew Morton 已提交
711 712
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
713 714
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
715
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
716
	dump_stack();
717
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
718
}
719
#endif
L
Linus Torvalds 已提交
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

737 738 739 740 741 742 743 744 745 746 747
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

748 749 750 751 752 753 754
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
755
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756 757 758 759 760

static void init_reap_node(int cpu)
{
	int node;

761
	node = next_node(cpu_to_mem(cpu), node_online_map);
762
	if (node == MAX_NUMNODES)
763
		node = first_node(node_online_map);
764

765
	per_cpu(slab_reap_node, cpu) = node;
766 767 768 769
}

static void next_reap_node(void)
{
770
	int node = __this_cpu_read(slab_reap_node);
771 772 773 774

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
775
	__this_cpu_write(slab_reap_node, node);
776 777 778 779 780 781 782
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
783 784 785 786 787 788 789
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
790
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
791
{
792
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
793 794 795 796 797 798

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
799
	if (keventd_up() && reap_work->work.func == NULL) {
800
		init_reap_node(cpu);
801
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802 803
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
804 805 806
	}
}

807
static struct array_cache *alloc_arraycache(int node, int entries,
808
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
809
{
P
Pekka Enberg 已提交
810
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
811 812
	struct array_cache *nc = NULL;

813
	nc = kmalloc_node(memsize, gfp, node);
814 815
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
816
	 * However, when such objects are allocated or transferred to another
817 818 819 820 821
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
822 823 824 825 826
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
827
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
828 829 830 831
	}
	return nc;
}

832 833 834 835 836 837 838 839 840 841 842
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
843
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844 845 846 847 848 849
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

850 851
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
852 853 854
		if (is_slab_pfmemalloc(slabp))
			goto out;

855
	list_for_each_entry(slabp, &n->slabs_partial, list)
856 857 858
		if (is_slab_pfmemalloc(slabp))
			goto out;

859
	list_for_each_entry(slabp, &n->slabs_free, list)
860 861 862 863 864
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
865
	spin_unlock_irqrestore(&n->list_lock, flags);
866 867
}

868
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869 870 871 872 873 874 875
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
876
		struct kmem_cache_node *n;
877 878 879 880 881 882 883

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
884
		for (i = 0; i < ac->avail; i++) {
885 886 887 888 889 890 891 892 893 894 895 896 897
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
898 899
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
900
			struct slab *slabp = virt_to_slab(objp);
901
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902 903 904 905 906 907 908 909 910 911 912 913 914
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 930 931 932
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
933
		struct page *page = virt_to_head_page(objp);
934 935 936 937
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

938 939 940 941 942 943 944 945 946
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

947 948 949
	ac->entry[ac->avail++] = objp;
}

950 951 952 953 954 955 956 957 958 959
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
960
	int nr = min3(from->avail, max, to->limit - to->avail);
961 962 963 964 965 966 967 968 969 970 971 972

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

973 974 975
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
976
#define reap_alien(cachep, n) do { } while (0)
977

978
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

998
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999 1000 1001 1002 1003 1004 1005
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1006
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1007
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1008

1009
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1010 1011
{
	struct array_cache **ac_ptr;
1012
	int memsize = sizeof(void *) * nr_node_ids;
1013 1014 1015 1016
	int i;

	if (limit > 1)
		limit = 12;
1017
	ac_ptr = kzalloc_node(memsize, gfp, node);
1018 1019
	if (ac_ptr) {
		for_each_node(i) {
1020
			if (i == node || !node_online(i))
1021
				continue;
1022
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1023
			if (!ac_ptr[i]) {
1024
				for (i--; i >= 0; i--)
1025 1026 1027 1028 1029 1030 1031 1032 1033
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1034
static void free_alien_cache(struct array_cache **ac_ptr)
1035 1036 1037 1038 1039 1040
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1041
	    kfree(ac_ptr[i]);
1042 1043 1044
	kfree(ac_ptr);
}

1045
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1046
				struct array_cache *ac, int node)
1047
{
1048
	struct kmem_cache_node *n = cachep->node[node];
1049 1050

	if (ac->avail) {
1051
		spin_lock(&n->list_lock);
1052 1053 1054 1055 1056
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1057 1058
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1059

1060
		free_block(cachep, ac->entry, ac->avail, node);
1061
		ac->avail = 0;
1062
		spin_unlock(&n->list_lock);
1063 1064 1065
	}
}

1066 1067 1068
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1069
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1070
{
1071
	int node = __this_cpu_read(slab_reap_node);
1072

1073 1074
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1075 1076

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1077 1078 1079 1080 1081 1082
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1083 1084
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1085
{
P
Pekka Enberg 已提交
1086
	int i = 0;
1087 1088 1089 1090
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1091
		ac = alien[i];
1092 1093 1094 1095 1096 1097 1098
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1099

1100
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1101 1102 1103
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
1104
	struct kmem_cache_node *n;
1105
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1106 1107
	int node;

1108
	node = numa_mem_id();
1109 1110 1111 1112 1113

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1114
	if (likely(slabp->nodeid == node))
1115 1116
		return 0;

1117
	n = cachep->node[node];
1118
	STATS_INC_NODEFREES(cachep);
1119 1120
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1121
		spin_lock(&alien->lock);
1122 1123 1124 1125
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1126
		ac_put_obj(cachep, alien, objp);
1127 1128
		spin_unlock(&alien->lock);
	} else {
1129
		spin_lock(&(cachep->node[nodeid])->list_lock);
1130
		free_block(cachep, &objp, 1, nodeid);
1131
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1132 1133 1134
	}
	return 1;
}
1135 1136
#endif

1137
/*
1138
 * Allocates and initializes node for a node on each slab cache, used for
1139
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1140
 * will be allocated off-node since memory is not yet online for the new node.
1141
 * When hotplugging memory or a cpu, existing node are not replaced if
1142 1143
 * already in use.
 *
1144
 * Must hold slab_mutex.
1145
 */
1146
static int init_cache_node_node(int node)
1147 1148
{
	struct kmem_cache *cachep;
1149
	struct kmem_cache_node *n;
1150
	const int memsize = sizeof(struct kmem_cache_node);
1151

1152
	list_for_each_entry(cachep, &slab_caches, list) {
1153 1154 1155 1156 1157
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1158
		if (!cachep->node[node]) {
1159 1160
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1161
				return -ENOMEM;
1162 1163
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1164 1165 1166 1167
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1168
			 * go.  slab_mutex is sufficient
1169 1170
			 * protection here.
			 */
1171
			cachep->node[node] = n;
1172 1173
		}

1174 1175
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1176 1177
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1178
		spin_unlock_irq(&cachep->node[node]->list_lock);
1179 1180 1181 1182
	}
	return 0;
}

1183 1184 1185
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
1186
	struct kmem_cache_node *n = NULL;
1187
	int node = cpu_to_mem(cpu);
1188
	const struct cpumask *mask = cpumask_of_node(node);
1189

1190
	list_for_each_entry(cachep, &slab_caches, list) {
1191 1192 1193 1194 1195 1196 1197
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1198
		n = cachep->node[node];
1199

1200
		if (!n)
1201 1202
			goto free_array_cache;

1203
		spin_lock_irq(&n->list_lock);
1204

1205 1206
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1207 1208 1209
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1210
		if (!cpumask_empty(mask)) {
1211
			spin_unlock_irq(&n->list_lock);
1212 1213 1214
			goto free_array_cache;
		}

1215
		shared = n->shared;
1216 1217 1218
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1219
			n->shared = NULL;
1220 1221
		}

1222 1223
		alien = n->alien;
		n->alien = NULL;
1224

1225
		spin_unlock_irq(&n->list_lock);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1240
	list_for_each_entry(cachep, &slab_caches, list) {
1241 1242
		n = cachep->node[node];
		if (!n)
1243
			continue;
1244
		drain_freelist(cachep, n, n->free_objects);
1245 1246 1247 1248
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1249
{
1250
	struct kmem_cache *cachep;
1251
	struct kmem_cache_node *n = NULL;
1252
	int node = cpu_to_mem(cpu);
1253
	int err;
L
Linus Torvalds 已提交
1254

1255 1256 1257 1258
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1259
	 * kmem_cache_node and not this cpu's kmem_cache_node
1260
	 */
1261
	err = init_cache_node_node(node);
1262 1263
	if (err < 0)
		goto bad;
1264 1265 1266 1267 1268

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1269
	list_for_each_entry(cachep, &slab_caches, list) {
1270 1271 1272 1273 1274
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1275
					cachep->batchcount, GFP_KERNEL);
1276 1277 1278 1279 1280
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1281
				0xbaadf00d, GFP_KERNEL);
1282 1283
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1284
				goto bad;
1285
			}
1286 1287
		}
		if (use_alien_caches) {
1288
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1289 1290 1291
			if (!alien) {
				kfree(shared);
				kfree(nc);
1292
				goto bad;
1293
			}
1294 1295
		}
		cachep->array[cpu] = nc;
1296 1297
		n = cachep->node[node];
		BUG_ON(!n);
1298

1299 1300
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1301 1302 1303 1304
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1305
			n->shared = shared;
1306 1307
			shared = NULL;
		}
1308
#ifdef CONFIG_NUMA
1309 1310
		if (!n->alien) {
			n->alien = alien;
1311
			alien = NULL;
L
Linus Torvalds 已提交
1312
		}
1313
#endif
1314
		spin_unlock_irq(&n->list_lock);
1315 1316
		kfree(shared);
		free_alien_cache(alien);
1317 1318
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1319 1320 1321
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1322
	}
1323 1324
	init_node_lock_keys(node);

1325 1326
	return 0;
bad:
1327
	cpuup_canceled(cpu);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1340
		mutex_lock(&slab_mutex);
1341
		err = cpuup_prepare(cpu);
1342
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1343 1344
		break;
	case CPU_ONLINE:
1345
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1346 1347 1348
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1349
  	case CPU_DOWN_PREPARE:
1350
  	case CPU_DOWN_PREPARE_FROZEN:
1351
		/*
1352
		 * Shutdown cache reaper. Note that the slab_mutex is
1353 1354 1355 1356
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1357
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1358
		/* Now the cache_reaper is guaranteed to be not running. */
1359
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1360 1361
  		break;
  	case CPU_DOWN_FAILED:
1362
  	case CPU_DOWN_FAILED_FROZEN:
1363 1364
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1365
	case CPU_DEAD:
1366
	case CPU_DEAD_FROZEN:
1367 1368
		/*
		 * Even if all the cpus of a node are down, we don't free the
1369
		 * kmem_cache_node of any cache. This to avoid a race between
1370
		 * cpu_down, and a kmalloc allocation from another cpu for
1371
		 * memory from the node of the cpu going down.  The node
1372 1373 1374
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1375
		/* fall through */
1376
#endif
L
Linus Torvalds 已提交
1377
	case CPU_UP_CANCELED:
1378
	case CPU_UP_CANCELED_FROZEN:
1379
		mutex_lock(&slab_mutex);
1380
		cpuup_canceled(cpu);
1381
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1382 1383
		break;
	}
1384
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1385 1386
}

1387 1388 1389
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1390

1391 1392 1393 1394 1395 1396
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1397
 * Must hold slab_mutex.
1398
 */
1399
static int __meminit drain_cache_node_node(int node)
1400 1401 1402 1403
{
	struct kmem_cache *cachep;
	int ret = 0;

1404
	list_for_each_entry(cachep, &slab_caches, list) {
1405
		struct kmem_cache_node *n;
1406

1407 1408
		n = cachep->node[node];
		if (!n)
1409 1410
			continue;

1411
		drain_freelist(cachep, n, n->free_objects);
1412

1413 1414
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1435
		mutex_lock(&slab_mutex);
1436
		ret = init_cache_node_node(nid);
1437
		mutex_unlock(&slab_mutex);
1438 1439
		break;
	case MEM_GOING_OFFLINE:
1440
		mutex_lock(&slab_mutex);
1441
		ret = drain_cache_node_node(nid);
1442
		mutex_unlock(&slab_mutex);
1443 1444 1445 1446 1447 1448 1449 1450
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1451
	return notifier_from_errno(ret);
1452 1453 1454
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1455
/*
1456
 * swap the static kmem_cache_node with kmalloced memory
1457
 */
1458
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1459
				int nodeid)
1460
{
1461
	struct kmem_cache_node *ptr;
1462

1463
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1464 1465
	BUG_ON(!ptr);

1466
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1467 1468 1469 1470 1471
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1472
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1473
	cachep->node[nodeid] = ptr;
1474 1475
}

1476
/*
1477 1478
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1479
 */
1480
static void __init set_up_node(struct kmem_cache *cachep, int index)
1481 1482 1483 1484
{
	int node;

	for_each_online_node(node) {
1485
		cachep->node[node] = &init_kmem_cache_node[index + node];
1486
		cachep->node[node]->next_reap = jiffies +
1487 1488 1489 1490 1491
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1492 1493
/*
 * The memory after the last cpu cache pointer is used for the
1494
 * the node pointer.
C
Christoph Lameter 已提交
1495
 */
1496
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1497
{
1498
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1499 1500
}

A
Andrew Morton 已提交
1501 1502 1503
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1504 1505 1506
 */
void __init kmem_cache_init(void)
{
1507 1508
	int i;

1509
	kmem_cache = &kmem_cache_boot;
1510
	setup_node_pointer(kmem_cache);
1511

1512
	if (num_possible_nodes() == 1)
1513 1514
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1515
	for (i = 0; i < NUM_INIT_LISTS; i++)
1516
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1517

1518
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1519 1520 1521

	/*
	 * Fragmentation resistance on low memory - only use bigger
1522 1523
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1524
	 */
1525
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1526
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1527 1528 1529

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1530 1531 1532
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1533
	 *    Initially an __init data area is used for the head array and the
1534
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1535
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1536
	 * 2) Create the first kmalloc cache.
1537
	 *    The struct kmem_cache for the new cache is allocated normally.
1538 1539 1540
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1541
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1542
	 *    kmalloc cache with kmalloc allocated arrays.
1543
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1544 1545
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1546 1547
	 */

1548
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1549

E
Eric Dumazet 已提交
1550
	/*
1551
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1552
	 */
1553 1554
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1555
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1556 1557
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1558 1559 1560

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1561 1562
	/*
	 * Initialize the caches that provide memory for the array cache and the
1563
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1564
	 * bug.
1565 1566
	 */

1567 1568
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1569

1570 1571 1572 1573
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1574

1575 1576
	slab_early_init = 0;

L
Linus Torvalds 已提交
1577 1578
	/* 4) Replace the bootstrap head arrays */
	{
1579
		struct array_cache *ptr;
1580

1581
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1582

1583
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1584
		       sizeof(struct arraycache_init));
1585 1586 1587 1588 1589
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1590
		kmem_cache->array[smp_processor_id()] = ptr;
1591

1592
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1593

1594
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1595
		       != &initarray_generic.cache);
1596
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1597
		       sizeof(struct arraycache_init));
1598 1599 1600 1601 1602
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1603
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1604
	}
1605
	/* 5) Replace the bootstrap kmem_cache_node */
1606
	{
P
Pekka Enberg 已提交
1607 1608
		int nid;

1609
		for_each_online_node(nid) {
1610
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1611

1612
			init_list(kmalloc_caches[INDEX_AC],
1613
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1614

1615 1616 1617
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1618 1619 1620
			}
		}
	}
L
Linus Torvalds 已提交
1621

1622
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1623 1624 1625 1626 1627 1628
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1629
	slab_state = UP;
P
Peter Zijlstra 已提交
1630

1631
	/* 6) resize the head arrays to their final sizes */
1632 1633
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1634 1635
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1636
	mutex_unlock(&slab_mutex);
1637

1638 1639 1640
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1641 1642 1643
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1644 1645 1646
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1647 1648 1649
	 */
	register_cpu_notifier(&cpucache_notifier);

1650 1651 1652
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1653
	 * node.
1654 1655 1656 1657
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1658 1659 1660
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665 1666 1667
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1668 1669
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1670
	 */
1671
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1672
		start_cpu_timer(cpu);
1673 1674

	/* Done! */
1675
	slab_state = FULL;
L
Linus Torvalds 已提交
1676 1677 1678 1679
	return 0;
}
__initcall(cpucache_init);

1680 1681 1682
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1683
	struct kmem_cache_node *n;
1684 1685 1686 1687 1688 1689 1690 1691
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1692
		cachep->name, cachep->size, cachep->gfporder);
1693 1694 1695 1696 1697

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1698 1699
		n = cachep->node[node];
		if (!n)
1700 1701
			continue;

1702 1703
		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(slabp, &n->slabs_full, list) {
1704 1705 1706
			active_objs += cachep->num;
			active_slabs++;
		}
1707
		list_for_each_entry(slabp, &n->slabs_partial, list) {
1708 1709 1710
			active_objs += slabp->inuse;
			active_slabs++;
		}
1711
		list_for_each_entry(slabp, &n->slabs_free, list)
1712 1713
			num_slabs++;

1714 1715
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1726 1727 1728 1729 1730 1731 1732
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1733
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1734 1735
{
	struct page *page;
1736
	int nr_pages;
L
Linus Torvalds 已提交
1737 1738
	int i;

1739
#ifndef CONFIG_MMU
1740 1741 1742
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1743
	 */
1744
	flags |= __GFP_COMP;
1745
#endif
1746

1747
	flags |= cachep->allocflags;
1748 1749
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1750

L
Linus Torvalds 已提交
1751
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1752 1753 1754
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1755
		return NULL;
1756
	}
L
Linus Torvalds 已提交
1757

1758
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1759 1760 1761
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1762
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1763
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1764 1765 1766 1767 1768
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1769
	for (i = 0; i < nr_pages; i++) {
1770
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1771

1772 1773 1774
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}
G
Glauber Costa 已提交
1775
	memcg_bind_pages(cachep, cachep->gfporder);
1776

1777 1778 1779 1780 1781 1782 1783 1784
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1785

1786
	return page_address(page);
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791
}

/*
 * Interface to system's page release.
 */
1792
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1793
{
P
Pekka Enberg 已提交
1794
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1795 1796 1797
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1798
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1799

1800 1801 1802 1803 1804 1805
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1806
	while (i--) {
N
Nick Piggin 已提交
1807
		BUG_ON(!PageSlab(page));
1808
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1809
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1810 1811
		page++;
	}
G
Glauber Costa 已提交
1812 1813

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1814 1815
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1816
	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
L
Linus Torvalds 已提交
1817 1818 1819 1820
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1821
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1822
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1832
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1833
			    unsigned long caller)
L
Linus Torvalds 已提交
1834
{
1835
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1836

1837
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1838

P
Pekka Enberg 已提交
1839
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1840 1841
		return;

P
Pekka Enberg 已提交
1842 1843 1844 1845
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1853
				*addr++ = svalue;
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1861
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1862 1863 1864
}
#endif

1865
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1866
{
1867
	int size = cachep->object_size;
1868
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1869 1870

	memset(addr, val, size);
P
Pekka Enberg 已提交
1871
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1877 1878 1879
	unsigned char error = 0;
	int bad_count = 0;

1880
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1881 1882 1883 1884 1885 1886
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1887 1888
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907
}
#endif

#if DEBUG

1908
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1914
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1915 1916
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1917 1918 1919 1920
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1921
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1922
		print_symbol("(%s)",
A
Andrew Morton 已提交
1923
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1924 1925
		printk("\n");
	}
1926
	realobj = (char *)objp + obj_offset(cachep);
1927
	size = cachep->object_size;
P
Pekka Enberg 已提交
1928
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1929 1930
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1931 1932
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1933 1934 1935 1936
		dump_line(realobj, i, limit);
	}
}

1937
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942
{
	char *realobj;
	int size, i;
	int lines = 0;

1943
	realobj = (char *)objp + obj_offset(cachep);
1944
	size = cachep->object_size;
L
Linus Torvalds 已提交
1945

P
Pekka Enberg 已提交
1946
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1947
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1948
		if (i == size - 1)
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1955
				printk(KERN_ERR
1956 1957
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1958 1959 1960
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1961
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1962
			limit = 16;
P
Pekka Enberg 已提交
1963 1964
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1977
		struct slab *slabp = virt_to_slab(objp);
1978
		unsigned int objnr;
L
Linus Torvalds 已提交
1979

1980
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1981
		if (objnr) {
1982
			objp = index_to_obj(cachep, slabp, objnr - 1);
1983
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1984
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1985
			       realobj, size);
L
Linus Torvalds 已提交
1986 1987
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1988
		if (objnr + 1 < cachep->num) {
1989
			objp = index_to_obj(cachep, slabp, objnr + 1);
1990
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1991
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1992
			       realobj, size);
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1999
#if DEBUG
R
Rabin Vincent 已提交
2000
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2001 2002 2003
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2004
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2005 2006 2007

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2008
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2009
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2010
				kernel_map_pages(virt_to_page(objp),
2011
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2021
					   "was overwritten");
L
Linus Torvalds 已提交
2022 2023
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2024
					   "was overwritten");
L
Linus Torvalds 已提交
2025 2026
		}
	}
2027
}
L
Linus Torvalds 已提交
2028
#else
R
Rabin Vincent 已提交
2029
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2030 2031
{
}
L
Linus Torvalds 已提交
2032 2033
#endif

2034 2035 2036 2037 2038
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2039
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2040 2041
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2042
 */
2043
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2044 2045 2046
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2047
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2048 2049 2050
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2051
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2057 2058
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2059 2060 2061
	}
}

2062
/**
2063 2064 2065 2066 2067 2068 2069
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2070 2071 2072 2073 2074
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2075
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2076
			size_t size, size_t align, unsigned long flags)
2077
{
2078
	unsigned long offslab_limit;
2079
	size_t left_over = 0;
2080
	int gfporder;
2081

2082
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2083 2084 2085
		unsigned int num;
		size_t remainder;

2086
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2087 2088
		if (!num)
			continue;
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2102

2103
		/* Found something acceptable - save it away */
2104
		cachep->num = num;
2105
		cachep->gfporder = gfporder;
2106 2107
		left_over = remainder;

2108 2109 2110 2111 2112 2113 2114 2115
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2116 2117 2118 2119
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2120
		if (gfporder >= slab_max_order)
2121 2122
			break;

2123 2124 2125
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2126
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2127 2128 2129 2130 2131
			break;
	}
	return left_over;
}

2132
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2133
{
2134
	if (slab_state >= FULL)
2135
		return enable_cpucache(cachep, gfp);
2136

2137
	if (slab_state == DOWN) {
2138
		/*
2139
		 * Note: Creation of first cache (kmem_cache).
2140
		 * The setup_node is taken care
2141 2142 2143 2144 2145 2146 2147
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2148 2149 2150 2151 2152 2153
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2154 2155
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2156 2157
		 * otherwise the creation of further caches will BUG().
		 */
2158 2159 2160
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2161
		else
2162
			slab_state = PARTIAL_ARRAYCACHE;
2163
	} else {
2164
		/* Remaining boot caches */
2165
		cachep->array[smp_processor_id()] =
2166
			kmalloc(sizeof(struct arraycache_init), gfp);
2167

2168
		if (slab_state == PARTIAL_ARRAYCACHE) {
2169 2170
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2171 2172
		} else {
			int node;
2173
			for_each_online_node(node) {
2174
				cachep->node[node] =
2175
				    kmalloc_node(sizeof(struct kmem_cache_node),
2176
						gfp, node);
2177
				BUG_ON(!cachep->node[node]);
2178
				kmem_cache_node_init(cachep->node[node]);
2179 2180 2181
			}
		}
	}
2182
	cachep->node[numa_mem_id()]->next_reap =
2183 2184 2185 2186 2187 2188 2189 2190 2191
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2192
	return 0;
2193 2194
}

L
Linus Torvalds 已提交
2195
/**
2196
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2197
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2198 2199 2200 2201
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2202
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2216
int
2217
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2218 2219
{
	size_t left_over, slab_size, ralign;
2220
	gfp_t gfp;
2221
	int err;
2222
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2232 2233
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2234
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240 2241
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2242 2243
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2244 2245 2246
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2247 2248 2249
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2250 2251
	}

2252
	/*
D
David Woodhouse 已提交
2253 2254 2255
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2256
	 */
D
David Woodhouse 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2267

2268
	/* 3) caller mandated alignment */
2269 2270
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2271
	}
2272 2273
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2274
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2275
	/*
2276
	 * 4) Store it.
L
Linus Torvalds 已提交
2277
	 */
2278
	cachep->align = ralign;
L
Linus Torvalds 已提交
2279

2280 2281 2282 2283 2284
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2285
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2286 2287
#if DEBUG

2288 2289 2290 2291
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2292 2293
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2294 2295
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2296 2297
	}
	if (flags & SLAB_STORE_USER) {
2298
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2299 2300
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2301
		 */
D
David Woodhouse 已提交
2302 2303 2304 2305
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2306 2307
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2308
	if (size >= kmalloc_size(INDEX_NODE + 1)
2309 2310 2311
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2312 2313 2314 2315 2316
		size = PAGE_SIZE;
	}
#endif
#endif

2317 2318 2319
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2320 2321
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2322
	 */
2323 2324
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329 2330
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2331
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2332

2333
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2334

2335
	if (!cachep->num)
2336
		return -E2BIG;
L
Linus Torvalds 已提交
2337

P
Pekka Enberg 已提交
2338
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2339
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2352 2353
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2354 2355 2356 2357 2358 2359 2360 2361 2362

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2363 2364 2365 2366
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2367 2368
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2369
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2370 2371
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2372
	cachep->allocflags = 0;
2373
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2374
		cachep->allocflags |= GFP_DMA;
2375
	cachep->size = size;
2376
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2377

2378
	if (flags & CFLGS_OFF_SLAB) {
2379
		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2380 2381 2382 2383 2384 2385 2386
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2387
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2388
	}
L
Linus Torvalds 已提交
2389

2390 2391
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2392
		__kmem_cache_shutdown(cachep);
2393
		return err;
2394
	}
L
Linus Torvalds 已提交
2395

2396 2397 2398 2399 2400 2401 2402 2403
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2404 2405
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2406

2407
	return 0;
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2421
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2422 2423 2424
{
#ifdef CONFIG_SMP
	check_irq_off();
2425
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2426 2427
#endif
}
2428

2429
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2430 2431 2432
{
#ifdef CONFIG_SMP
	check_irq_off();
2433
	assert_spin_locked(&cachep->node[node]->list_lock);
2434 2435 2436
#endif
}

L
Linus Torvalds 已提交
2437 2438 2439 2440
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2441
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2442 2443
#endif

2444
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2445 2446 2447
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2448 2449
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2450
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2451
	struct array_cache *ac;
2452
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2453 2454

	check_irq_off();
2455
	ac = cpu_cache_get(cachep);
2456
	spin_lock(&cachep->node[node]->list_lock);
2457
	free_block(cachep, ac->entry, ac->avail, node);
2458
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2459 2460 2461
	ac->avail = 0;
}

2462
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2463
{
2464
	struct kmem_cache_node *n;
2465 2466
	int node;

2467
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2468
	check_irq_on();
P
Pekka Enberg 已提交
2469
	for_each_online_node(node) {
2470 2471 2472
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2473 2474 2475
	}

	for_each_online_node(node) {
2476 2477 2478
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2479
	}
L
Linus Torvalds 已提交
2480 2481
}

2482 2483 2484 2485 2486 2487 2488
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2489
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2490
{
2491 2492
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2493 2494
	struct slab *slabp;

2495
	nr_freed = 0;
2496
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2497

2498 2499 2500 2501
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2502 2503
			goto out;
		}
L
Linus Torvalds 已提交
2504

2505
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2506
#if DEBUG
2507
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2508 2509
#endif
		list_del(&slabp->list);
2510 2511 2512 2513
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2514 2515
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2516 2517
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2518
	}
2519 2520
out:
	return nr_freed;
L
Linus Torvalds 已提交
2521 2522
}

2523
/* Called with slab_mutex held to protect against cpu hotplug */
2524
static int __cache_shrink(struct kmem_cache *cachep)
2525 2526
{
	int ret = 0, i = 0;
2527
	struct kmem_cache_node *n;
2528 2529 2530 2531 2532

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2533 2534
		n = cachep->node[i];
		if (!n)
2535 2536
			continue;

2537
		drain_freelist(cachep, n, n->free_objects);
2538

2539 2540
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2541 2542 2543 2544
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2552
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2553
{
2554
	int ret;
2555
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2556

2557
	get_online_cpus();
2558
	mutex_lock(&slab_mutex);
2559
	ret = __cache_shrink(cachep);
2560
	mutex_unlock(&slab_mutex);
2561
	put_online_cpus();
2562
	return ret;
L
Linus Torvalds 已提交
2563 2564 2565
}
EXPORT_SYMBOL(kmem_cache_shrink);

2566
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2567
{
2568
	int i;
2569
	struct kmem_cache_node *n;
2570
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2571

2572 2573
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2574

2575 2576
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2577

2578
	/* NUMA: free the node structures */
2579
	for_each_online_node(i) {
2580 2581 2582 2583 2584
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2585 2586 2587
		}
	}
	return 0;
L
Linus Torvalds 已提交
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2601
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2602 2603
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2604 2605
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2606

L
Linus Torvalds 已提交
2607 2608
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2609
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2610
					      local_flags, nodeid);
2611 2612 2613 2614 2615 2616
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2617 2618
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2619 2620 2621
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2622
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2623 2624 2625 2626
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2627
	slabp->s_mem = objp + colour_off;
2628
	slabp->nodeid = nodeid;
2629
	slabp->free = 0;
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2635
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2636 2637
}

2638
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2639
			    struct slab *slabp)
L
Linus Torvalds 已提交
2640 2641 2642 2643
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2644
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2657 2658 2659
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2660 2661
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2662
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2663 2664 2665 2666

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2667
					   " end of an object");
L
Linus Torvalds 已提交
2668 2669
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2670
					   " start of an object");
L
Linus Torvalds 已提交
2671
		}
2672
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2673
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2674
			kernel_map_pages(virt_to_page(objp),
2675
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2676 2677
#else
		if (cachep->ctor)
2678
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2679
#endif
P
Pekka Enberg 已提交
2680
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2681
	}
P
Pekka Enberg 已提交
2682
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2683 2684
}

2685
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2686
{
2687 2688
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2689
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2690
		else
2691
			BUG_ON(cachep->allocflags & GFP_DMA);
2692
	}
L
Linus Torvalds 已提交
2693 2694
}

A
Andrew Morton 已提交
2695 2696
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2697
{
2698
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2712 2713
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2714
{
2715
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2716 2717 2718 2719 2720

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2721
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2722
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2723
				"'%s', objp %p\n", cachep->name, objp);
2724 2725 2726 2727 2728 2729 2730 2731
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2732 2733 2734
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2735
 * virtual address for kfree, ksize, and slab debugging.
2736 2737 2738
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2739
{
2740
	int nr_pages;
L
Linus Torvalds 已提交
2741 2742
	struct page *page;

2743
	page = virt_to_page(addr);
2744

2745
	nr_pages = 1;
2746
	if (likely(!PageCompound(page)))
2747 2748
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2749
	do {
C
Christoph Lameter 已提交
2750 2751
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2752
		page++;
2753
	} while (--nr_pages);
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2760 2761
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2762
{
P
Pekka Enberg 已提交
2763 2764 2765
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2766
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2767

A
Andrew Morton 已提交
2768 2769 2770
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2771
	 */
C
Christoph Lameter 已提交
2772 2773
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2774

2775
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2776
	check_irq_off();
2777 2778
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2779 2780

	/* Get colour for the slab, and cal the next value. */
2781 2782 2783 2784 2785
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2786

2787
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2800 2801 2802
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2803
	 */
2804
	if (!objp)
2805
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2806
	if (!objp)
L
Linus Torvalds 已提交
2807 2808 2809
		goto failed;

	/* Get slab management. */
2810
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2811
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2812
	if (!slabp)
L
Linus Torvalds 已提交
2813 2814
		goto opps1;

2815
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2816

C
Christoph Lameter 已提交
2817
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2818 2819 2820 2821

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2822
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2823 2824

	/* Make slab active. */
2825
	list_add_tail(&slabp->list, &(n->slabs_free));
L
Linus Torvalds 已提交
2826
	STATS_INC_GROWN(cachep);
2827 2828
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2829
	return 1;
A
Andrew Morton 已提交
2830
opps1:
L
Linus Torvalds 已提交
2831
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2832
failed:
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2849 2850
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2851 2852 2853
	}
}

2854 2855
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2856
	unsigned long long redzone1, redzone2;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2872
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2873 2874 2875
			obj, redzone1, redzone2);
}

2876
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2877
				   unsigned long caller)
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2883 2884
	BUG_ON(virt_to_cache(objp) != cachep);

2885
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2886
	kfree_debugcheck(objp);
2887
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2888

C
Christoph Lameter 已提交
2889
	slabp = page->slab_page;
L
Linus Torvalds 已提交
2890 2891

	if (cachep->flags & SLAB_RED_ZONE) {
2892
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2893 2894 2895 2896
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2897
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2898

2899
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2900 2901

	BUG_ON(objnr >= cachep->num);
2902
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2903

2904 2905 2906
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2907 2908
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2909
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2910
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2911
			kernel_map_pages(virt_to_page(objp),
2912
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2923
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2924 2925 2926
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2927

L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2935 2936
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
2937 2938 2939
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
2940 2941 2942
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2952 2953
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2954 2955
{
	int batchcount;
2956
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2957
	struct array_cache *ac;
P
Pekka Enberg 已提交
2958 2959
	int node;

L
Linus Torvalds 已提交
2960
	check_irq_off();
2961
	node = numa_mem_id();
2962 2963 2964
	if (unlikely(force_refill))
		goto force_grow;
retry:
2965
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2966 2967
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2968 2969 2970 2971
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2972 2973 2974
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2975
	n = cachep->node[node];
2976

2977 2978
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2979

2980
	/* See if we can refill from the shared array */
2981 2982
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2983
		goto alloc_done;
2984
	}
2985

L
Linus Torvalds 已提交
2986 2987 2988 2989
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
2990 2991 2992 2993 2994
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3001 3002 3003 3004 3005 3006

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3007
		BUG_ON(slabp->inuse >= cachep->num);
3008

L
Linus Torvalds 已提交
3009 3010 3011 3012 3013
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3014 3015
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
3022
			list_add(&slabp->list, &n->slabs_full);
L
Linus Torvalds 已提交
3023
		else
3024
			list_add(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3025 3026
	}

A
Andrew Morton 已提交
3027
must_grow:
3028
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3029
alloc_done:
3030
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3031 3032 3033

	if (unlikely(!ac->avail)) {
		int x;
3034
force_grow:
3035
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3036

A
Andrew Morton 已提交
3037
		/* cache_grow can reenable interrupts, then ac could change. */
3038
		ac = cpu_cache_get(cachep);
3039
		node = numa_mem_id();
3040 3041 3042

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3043 3044
			return NULL;

A
Andrew Morton 已提交
3045
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3046 3047 3048
			goto retry;
	}
	ac->touched = 1;
3049 3050

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3051 3052
}

A
Andrew Morton 已提交
3053 3054
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3055 3056 3057 3058 3059 3060 3061 3062
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3063
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3064
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3065
{
P
Pekka Enberg 已提交
3066
	if (!objp)
L
Linus Torvalds 已提交
3067
		return objp;
P
Pekka Enberg 已提交
3068
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3069
#ifdef CONFIG_DEBUG_PAGEALLOC
3070
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3071
			kernel_map_pages(virt_to_page(objp),
3072
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3081
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3082 3083

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3084 3085 3086 3087
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3088
			printk(KERN_ERR
3089
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3090 3091
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3092 3093 3094 3095
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3096 3097 3098 3099 3100
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3101
		slabp = virt_to_head_page(objp)->slab_page;
3102
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3103 3104 3105
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3106
	objp += obj_offset(cachep);
3107
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3108
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3109 3110
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3111
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3112
		       objp, (int)ARCH_SLAB_MINALIGN);
3113
	}
L
Linus Torvalds 已提交
3114 3115 3116 3117 3118 3119
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3120
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3121
{
3122
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3123
		return false;
3124

3125
	return should_failslab(cachep->object_size, flags, cachep->flags);
3126 3127
}

3128
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3129
{
P
Pekka Enberg 已提交
3130
	void *objp;
L
Linus Torvalds 已提交
3131
	struct array_cache *ac;
3132
	bool force_refill = false;
L
Linus Torvalds 已提交
3133

3134
	check_irq_off();
3135

3136
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3137 3138
	if (likely(ac->avail)) {
		ac->touched = 1;
3139 3140
		objp = ac_get_obj(cachep, ac, flags, false);

3141
		/*
3142 3143
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3144
		 */
3145 3146 3147 3148 3149
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3150
	}
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3161 3162 3163 3164 3165
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3166 3167
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3168 3169 3170
	return objp;
}

3171
#ifdef CONFIG_NUMA
3172
/*
3173
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3174 3175 3176 3177 3178 3179 3180 3181
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3182
	if (in_interrupt() || (flags & __GFP_THISNODE))
3183
		return NULL;
3184
	nid_alloc = nid_here = numa_mem_id();
3185
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3186
		nid_alloc = cpuset_slab_spread_node();
3187
	else if (current->mempolicy)
3188
		nid_alloc = slab_node();
3189
	if (nid_alloc != nid_here)
3190
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3191 3192 3193
	return NULL;
}

3194 3195
/*
 * Fallback function if there was no memory available and no objects on a
3196
 * certain node and fall back is permitted. First we scan all the
3197
 * available node for available objects. If that fails then we
3198 3199 3200
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3201
 */
3202
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3203
{
3204 3205
	struct zonelist *zonelist;
	gfp_t local_flags;
3206
	struct zoneref *z;
3207 3208
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3209
	void *obj = NULL;
3210
	int nid;
3211
	unsigned int cpuset_mems_cookie;
3212 3213 3214 3215

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3216
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3217

3218 3219
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3220
	zonelist = node_zonelist(slab_node(), flags);
3221

3222 3223 3224 3225 3226
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3227 3228
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3229

3230
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3231 3232
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3233 3234
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3235 3236 3237
				if (obj)
					break;
		}
3238 3239
	}

3240
	if (!obj) {
3241 3242 3243 3244 3245 3246
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3247 3248 3249
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3250
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3251 3252
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3269
				/* cache_grow already freed obj */
3270 3271 3272
				obj = NULL;
			}
		}
3273
	}
3274 3275 3276

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3277 3278 3279
	return obj;
}

3280 3281
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3282
 */
3283
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3284
				int nodeid)
3285 3286
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3287
	struct slab *slabp;
3288
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3289 3290 3291
	void *obj;
	int x;

3292 3293
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3294

A
Andrew Morton 已提交
3295
retry:
3296
	check_irq_off();
3297 3298 3299 3300 3301 3302
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3316
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3317
	check_slabp(cachep, slabp);
3318
	n->free_objects--;
P
Pekka Enberg 已提交
3319 3320 3321
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3322
	if (slabp->free == BUFCTL_END)
3323
		list_add(&slabp->list, &n->slabs_full);
A
Andrew Morton 已提交
3324
	else
3325
		list_add(&slabp->list, &n->slabs_partial);
3326

3327
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3328
	goto done;
3329

A
Andrew Morton 已提交
3330
must_grow:
3331
	spin_unlock(&n->list_lock);
3332
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3333 3334
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3335

3336
	return fallback_alloc(cachep, flags);
3337

A
Andrew Morton 已提交
3338
done:
P
Pekka Enberg 已提交
3339
	return obj;
3340
}
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3355
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3356
		   unsigned long caller)
3357 3358 3359
{
	unsigned long save_flags;
	void *ptr;
3360
	int slab_node = numa_mem_id();
3361

3362
	flags &= gfp_allowed_mask;
3363

3364 3365
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3366
	if (slab_should_failslab(cachep, flags))
3367 3368
		return NULL;

3369 3370
	cachep = memcg_kmem_get_cache(cachep, flags);

3371 3372 3373
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3374
	if (nodeid == NUMA_NO_NODE)
3375
		nodeid = slab_node;
3376

3377
	if (unlikely(!cachep->node[nodeid])) {
3378 3379 3380 3381 3382
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3383
	if (nodeid == slab_node) {
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3399
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3400
				 flags);
3401

P
Pekka Enberg 已提交
3402
	if (likely(ptr))
3403
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3404

3405
	if (unlikely((flags & __GFP_ZERO) && ptr))
3406
		memset(ptr, 0, cachep->object_size);
3407

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3427 3428
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3444
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3445 3446 3447 3448
{
	unsigned long save_flags;
	void *objp;

3449
	flags &= gfp_allowed_mask;
3450

3451 3452
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3453
	if (slab_should_failslab(cachep, flags))
3454 3455
		return NULL;

3456 3457
	cachep = memcg_kmem_get_cache(cachep, flags);

3458 3459 3460 3461 3462
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3463
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3464
				 flags);
3465 3466
	prefetchw(objp);

P
Pekka Enberg 已提交
3467
	if (likely(objp))
3468
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3469

3470
	if (unlikely((flags & __GFP_ZERO) && objp))
3471
		memset(objp, 0, cachep->object_size);
3472

3473 3474
	return objp;
}
3475 3476 3477 3478

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3479
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3480
		       int node)
L
Linus Torvalds 已提交
3481 3482
{
	int i;
3483
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3484 3485

	for (i = 0; i < nr_objects; i++) {
3486
		void *objp;
L
Linus Torvalds 已提交
3487 3488
		struct slab *slabp;

3489 3490 3491
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3492
		slabp = virt_to_slab(objp);
3493
		n = cachep->node[node];
L
Linus Torvalds 已提交
3494
		list_del(&slabp->list);
3495
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3496
		check_slabp(cachep, slabp);
3497
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3498
		STATS_DEC_ACTIVE(cachep);
3499
		n->free_objects++;
L
Linus Torvalds 已提交
3500 3501 3502 3503
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3504 3505
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3506 3507 3508 3509 3510 3511
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3512 3513
				slab_destroy(cachep, slabp);
			} else {
3514
				list_add(&slabp->list, &n->slabs_free);
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519 3520
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3521
			list_add_tail(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3522 3523 3524 3525
		}
	}
}

3526
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3527 3528
{
	int batchcount;
3529
	struct kmem_cache_node *n;
3530
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3537 3538 3539 3540
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3541
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3542 3543 3544
		if (max) {
			if (batchcount > max)
				batchcount = max;
3545
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3546
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3552
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3553
free_done:
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558
#if STATS
	{
		int i = 0;
		struct list_head *p;

3559 3560
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3572
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3573
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3574
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3575 3576 3577
}

/*
A
Andrew Morton 已提交
3578 3579
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3580
 */
3581
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3582
				unsigned long caller)
L
Linus Torvalds 已提交
3583
{
3584
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3585 3586

	check_irq_off();
3587
	kmemleak_free_recursive(objp, cachep->flags);
3588
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3589

3590
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3591

3592 3593 3594 3595 3596 3597 3598
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3599
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3600 3601
		return;

L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3608

3609
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3620
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3621
{
3622
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3623

3624
	trace_kmem_cache_alloc(_RET_IP_, ret,
3625
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3626 3627

	return ret;
L
Linus Torvalds 已提交
3628 3629 3630
}
EXPORT_SYMBOL(kmem_cache_alloc);

3631
#ifdef CONFIG_TRACING
3632
void *
3633
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3634
{
3635 3636
	void *ret;

3637
	ret = slab_alloc(cachep, flags, _RET_IP_);
3638 3639

	trace_kmalloc(_RET_IP_, ret,
3640
		      size, cachep->size, flags);
3641
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3642
}
3643
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3644 3645
#endif

L
Linus Torvalds 已提交
3646
#ifdef CONFIG_NUMA
3647 3648
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3649
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3650

3651
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652
				    cachep->object_size, cachep->size,
3653
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3654 3655

	return ret;
3656
}
L
Linus Torvalds 已提交
3657 3658
EXPORT_SYMBOL(kmem_cache_alloc_node);

3659
#ifdef CONFIG_TRACING
3660
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661
				  gfp_t flags,
3662 3663
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3664
{
3665 3666
	void *ret;

3667
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668

3669
	trace_kmalloc_node(_RET_IP_, ret,
3670
			   size, cachep->size,
3671 3672
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3673
}
3674
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3675 3676
#endif

3677
static __always_inline void *
3678
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3679
{
3680
	struct kmem_cache *cachep;
3681

3682
	cachep = kmalloc_slab(size, flags);
3683 3684
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3685
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3686
}
3687

3688
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3689 3690
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3691
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3692
}
3693
EXPORT_SYMBOL(__kmalloc_node);
3694 3695

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3696
		int node, unsigned long caller)
3697
{
3698
	return __do_kmalloc_node(size, flags, node, caller);
3699 3700 3701 3702 3703
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3704
	return __do_kmalloc_node(size, flags, node, 0);
3705 3706
}
EXPORT_SYMBOL(__kmalloc_node);
3707
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3708
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3709 3710

/**
3711
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3712
 * @size: how many bytes of memory are required.
3713
 * @flags: the type of memory to allocate (see kmalloc).
3714
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3715
 */
3716
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3717
					  unsigned long caller)
L
Linus Torvalds 已提交
3718
{
3719
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3720
	void *ret;
L
Linus Torvalds 已提交
3721

3722 3723 3724 3725 3726
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3727
	cachep = kmalloc_slab(size, flags);
3728 3729
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3730
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3731

3732
	trace_kmalloc(caller, ret,
3733
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3734 3735

	return ret;
3736 3737 3738
}


3739
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3740 3741
void *__kmalloc(size_t size, gfp_t flags)
{
3742
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3743 3744 3745
}
EXPORT_SYMBOL(__kmalloc);

3746
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747
{
3748
	return __do_kmalloc(size, flags, caller);
3749 3750
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3751 3752 3753 3754

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3755
	return __do_kmalloc(size, flags, 0);
3756 3757
}
EXPORT_SYMBOL(__kmalloc);
3758 3759
#endif

L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765 3766 3767
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3768
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3769 3770
{
	unsigned long flags;
3771 3772 3773
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3774 3775

	local_irq_save(flags);
3776
	debug_check_no_locks_freed(objp, cachep->object_size);
3777
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3778
		debug_check_no_obj_freed(objp, cachep->object_size);
3779
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3780
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3781

3782
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3783 3784 3785 3786 3787 3788 3789
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3790 3791
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3792 3793 3794 3795 3796
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3797
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3798 3799
	unsigned long flags;

3800 3801
	trace_kfree(_RET_IP_, objp);

3802
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3803 3804 3805
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3806
	c = virt_to_cache(objp);
3807 3808 3809
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3810
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3811 3812 3813 3814
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3815
/*
3816
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3817
 */
3818
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3819 3820
{
	int node;
3821
	struct kmem_cache_node *n;
3822
	struct array_cache *new_shared;
3823
	struct array_cache **new_alien = NULL;
3824

3825
	for_each_online_node(node) {
3826

3827
                if (use_alien_caches) {
3828
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3829 3830 3831
                        if (!new_alien)
                                goto fail;
                }
3832

3833 3834 3835
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3836
				cachep->shared*cachep->batchcount,
3837
					0xbaadf00d, gfp);
3838 3839 3840 3841
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3842
		}
3843

3844 3845 3846
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3847

3848
			spin_lock_irq(&n->list_lock);
3849

3850
			if (shared)
3851 3852
				free_block(cachep, shared->entry,
						shared->avail, node);
3853

3854 3855 3856
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3857 3858
				new_alien = NULL;
			}
3859
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3860
					cachep->batchcount + cachep->num;
3861
			spin_unlock_irq(&n->list_lock);
3862
			kfree(shared);
3863 3864 3865
			free_alien_cache(new_alien);
			continue;
		}
3866 3867
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3868 3869
			free_alien_cache(new_alien);
			kfree(new_shared);
3870
			goto fail;
3871
		}
3872

3873 3874
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3875
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3876 3877 3878
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3879
					cachep->batchcount + cachep->num;
3880
		cachep->node[node] = n;
3881
	}
3882
	return 0;
3883

A
Andrew Morton 已提交
3884
fail:
3885
	if (!cachep->list.next) {
3886 3887 3888
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3889
			if (cachep->node[node]) {
3890
				n = cachep->node[node];
3891

3892 3893 3894
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3895
				cachep->node[node] = NULL;
3896 3897 3898 3899
			}
			node--;
		}
	}
3900
	return -ENOMEM;
3901 3902
}

L
Linus Torvalds 已提交
3903
struct ccupdate_struct {
3904
	struct kmem_cache *cachep;
3905
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3906 3907 3908 3909
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3910
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3911 3912 3913
	struct array_cache *old;

	check_irq_off();
3914
	old = cpu_cache_get(new->cachep);
3915

L
Linus Torvalds 已提交
3916 3917 3918 3919
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3920
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3921
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3922
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3923
{
3924
	struct ccupdate_struct *new;
3925
	int i;
L
Linus Torvalds 已提交
3926

3927 3928
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3929 3930 3931
	if (!new)
		return -ENOMEM;

3932
	for_each_online_cpu(i) {
3933
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3934
						batchcount, gfp);
3935
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3936
			for (i--; i >= 0; i--)
3937 3938
				kfree(new->new[i]);
			kfree(new);
3939
			return -ENOMEM;
L
Linus Torvalds 已提交
3940 3941
		}
	}
3942
	new->cachep = cachep;
L
Linus Torvalds 已提交
3943

3944
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3945

L
Linus Torvalds 已提交
3946 3947 3948
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3949
	cachep->shared = shared;
L
Linus Torvalds 已提交
3950

3951
	for_each_online_cpu(i) {
3952
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3953 3954
		if (!ccold)
			continue;
3955
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3956
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3957
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3958 3959
		kfree(ccold);
	}
3960
	kfree(new);
3961
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3962 3963
}

G
Glauber Costa 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3979
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3990
/* Called with slab_mutex held always */
3991
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3992 3993
{
	int err;
G
Glauber Costa 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
4004

G
Glauber Costa 已提交
4005 4006
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
4007 4008
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4009 4010
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4011
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4012 4013 4014 4015
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4016
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4017
		limit = 1;
4018
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4019
		limit = 8;
4020
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4021
		limit = 24;
4022
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4023 4024 4025 4026
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4027 4028
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035 4036
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4037
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4038 4039 4040
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4041 4042 4043
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4044 4045 4046 4047
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4048 4049 4050
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4051 4052
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4053
		       cachep->name, -err);
4054
	return err;
L
Linus Torvalds 已提交
4055 4056
}

4057
/*
4058 4059
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4060
 * if drain_array() is used on the shared array.
4061
 */
4062
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4063
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4064 4065 4066
{
	int tofree;

4067 4068
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4069 4070
	if (ac->touched && !force) {
		ac->touched = 0;
4071
	} else {
4072
		spin_lock_irq(&n->list_lock);
4073 4074 4075 4076 4077 4078 4079 4080 4081
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4082
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4083 4084 4085 4086 4087
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4088
 * @w: work descriptor
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4095 4096
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4097
 */
4098
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4099
{
4100
	struct kmem_cache *searchp;
4101
	struct kmem_cache_node *n;
4102
	int node = numa_mem_id();
4103
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4104

4105
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4106
		/* Give up. Setup the next iteration. */
4107
		goto out;
L
Linus Torvalds 已提交
4108

4109
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4110 4111
		check_irq_on();

4112
		/*
4113
		 * We only take the node lock if absolutely necessary and we
4114 4115 4116
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4117
		n = searchp->node[node];
4118

4119
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4120

4121
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4122

4123 4124 4125 4126
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4127
		if (time_after(n->next_reap, jiffies))
4128
			goto next;
L
Linus Torvalds 已提交
4129

4130
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4131

4132
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4133

4134 4135
		if (n->free_touched)
			n->free_touched = 0;
4136 4137
		else {
			int freed;
L
Linus Torvalds 已提交
4138

4139
			freed = drain_freelist(searchp, n, (n->free_limit +
4140 4141 4142
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4143
next:
L
Linus Torvalds 已提交
4144 4145 4146
		cond_resched();
	}
	check_irq_on();
4147
	mutex_unlock(&slab_mutex);
4148
	next_reap_node();
4149
out:
A
Andrew Morton 已提交
4150
	/* Set up the next iteration */
4151
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4152 4153
}

4154
#ifdef CONFIG_SLABINFO
4155
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4156
{
P
Pekka Enberg 已提交
4157 4158 4159 4160 4161
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4162
	const char *name;
L
Linus Torvalds 已提交
4163
	char *error = NULL;
4164
	int node;
4165
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4166 4167 4168

	active_objs = 0;
	num_slabs = 0;
4169
	for_each_online_node(node) {
4170 4171
		n = cachep->node[node];
		if (!n)
4172 4173
			continue;

4174
		check_irq_on();
4175
		spin_lock_irq(&n->list_lock);
4176

4177
		list_for_each_entry(slabp, &n->slabs_full, list) {
4178 4179 4180 4181 4182
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4183
		list_for_each_entry(slabp, &n->slabs_partial, list) {
4184 4185 4186 4187 4188 4189 4190
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4191
		list_for_each_entry(slabp, &n->slabs_free, list) {
4192 4193 4194 4195
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
4196 4197 4198
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4199

4200
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4201
	}
P
Pekka Enberg 已提交
4202 4203
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4204
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4205 4206
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4207
	name = cachep->name;
L
Linus Torvalds 已提交
4208 4209 4210
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4225
#if STATS
4226
	{			/* node stats */
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232 4233
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4234
		unsigned long node_frees = cachep->node_frees;
4235
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4236

J
Joe Perches 已提交
4237 4238 4239 4240 4241
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4251
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4264
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4265
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4266
{
P
Pekka Enberg 已提交
4267
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4268
	int limit, batchcount, shared, res;
4269
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4270

L
Linus Torvalds 已提交
4271 4272 4273 4274
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4275
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4286
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4287
	res = -EINVAL;
4288
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4289
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4290 4291
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4292
				res = 0;
L
Linus Torvalds 已提交
4293
			} else {
4294
				res = do_tune_cpucache(cachep, limit,
4295 4296
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4297 4298 4299 4300
			}
			break;
		}
	}
4301
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4302 4303 4304 4305
	if (res >= 0)
		res = count;
	return res;
}
4306 4307 4308 4309 4310

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4311 4312
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4351
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4363
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4364

4365
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4366
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4367
		if (modname[0])
4368 4369 4370 4371 4372 4373 4374 4375 4376
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4377
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4378
	struct slab *slabp;
4379
	struct kmem_cache_node *n;
4380
	const char *name;
4381
	unsigned long *x = m->private;
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4392
	x[1] = 0;
4393 4394

	for_each_online_node(node) {
4395 4396
		n = cachep->node[node];
		if (!n)
4397 4398 4399
			continue;

		check_irq_on();
4400
		spin_lock_irq(&n->list_lock);
4401

4402
		list_for_each_entry(slabp, &n->slabs_full, list)
4403
			handle_slab(x, cachep, slabp);
4404
		list_for_each_entry(slabp, &n->slabs_partial, list)
4405
			handle_slab(x, cachep, slabp);
4406
		spin_unlock_irq(&n->list_lock);
4407 4408
	}
	name = cachep->name;
4409
	if (x[0] == x[1]) {
4410
		/* Increase the buffer size */
4411
		mutex_unlock(&slab_mutex);
4412
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4413 4414
		if (!m->private) {
			/* Too bad, we are really out */
4415
			m->private = x;
4416
			mutex_lock(&slab_mutex);
4417 4418
			return -ENOMEM;
		}
4419 4420
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4421
		mutex_lock(&slab_mutex);
4422 4423 4424 4425
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4426 4427 4428
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4429 4430
		seq_putc(m, '\n');
	}
4431

4432 4433 4434
	return 0;
}

4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4445
static const struct seq_operations slabstats_op = {
4446 4447 4448 4449 4450
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4481
#endif
4482 4483 4484
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4485 4486
#endif

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4499
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4500
{
4501 4502
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4503
		return 0;
L
Linus Torvalds 已提交
4504

4505
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4506
}
K
Kirill A. Shutemov 已提交
4507
EXPORT_SYMBOL(ksize);