slab.c 117.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
208
	void *addr;
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254 255 256 257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
258
			 */
L
Linus Torvalds 已提交
259 260
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287 288
};

/*
289
 * The slab lists for all objects.
L
Linus Torvalds 已提交
290
 */
291
struct kmem_cache_node {
P
Pekka Enberg 已提交
292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
301 302
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
303 304
};

305 306 307
/*
 * Need this for bootstrapping a per node allocator.
 */
308
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309
static struct kmem_cache_node __initdata initkmem_list3[NUM_INIT_LISTS];
310
#define	CACHE_CACHE 0
311 312
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
313

314
static int drain_freelist(struct kmem_cache *cache,
315
			struct kmem_cache_node *l3, int tofree);
316 317
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
318
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319
static void cache_reap(struct work_struct *unused);
320

321 322 323 324 325 326 327
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif
328

329 330
static int slab_early_init = 1;

331
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
332
#define INDEX_L3 kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
333

334
static void kmem_list3_init(struct kmem_cache_node *parent)
335 336 337 338 339 340
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
341
	parent->colour_next = 0;
342 343 344 345 346
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
347 348 349 350
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
351 352
	} while (0)

A
Andrew Morton 已提交
353 354
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
355 356 357 358
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
359 360 361 362 363

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
364 365 366
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
367
 *
A
Adrian Bunk 已提交
368
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
369 370 371 372 373 374 375 376 377 378
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
379
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
380 381 382 383 384
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
385 386
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
387
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
388
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
389 390 391 392 393
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
394 395 396 397 398 399 400 401 402
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
403
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
404 405 406
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
407
#define	STATS_INC_NODEFREES(x)	do { } while (0)
408
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
409
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
418 419
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
420
 * 0		: objp
421
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
422 423
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
424
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
425
 * 		redzone word.
426
 * cachep->obj_offset: The real object.
427 428
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
429
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
430
 */
431
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
432
{
433
	return cachep->obj_offset;
L
Linus Torvalds 已提交
434 435
}

436
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
437 438
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
439 440
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
441 442
}

443
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
444 445 446
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
447
		return (unsigned long long *)(objp + cachep->size -
448
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
449
					      REDZONE_ALIGN);
450
	return (unsigned long long *) (objp + cachep->size -
451
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
452 453
}

454
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
455 456
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
457
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
458 459 460 461
}

#else

462
#define obj_offset(x)			0
463 464
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
465 466 467 468 469
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
470 471
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
472
 */
473 474 475
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
476
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
477

478 479
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
480
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
481
	return page->slab_cache;
482 483 484 485
}

static inline struct slab *virt_to_slab(const void *obj)
{
486
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
487 488 489

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
490 491
}

492 493 494
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
495
	return slab->s_mem + cache->size * idx;
496 497
}

498
/*
499 500 501
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
502 503 504 505
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
506
{
507 508
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
509 510
}

L
Linus Torvalds 已提交
511
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
512
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
513 514

/* internal cache of cache description objs */
515
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
516 517 518
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
519
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
520
	.name = "kmem_cache",
L
Linus Torvalds 已提交
521 522
};

523 524
#define BAD_ALIEN_MAGIC 0x01020304ul

525 526 527 528 529 530 531 532
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
533 534 535 536
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
537
 */
538 539 540
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

541 542 543 544 545 546 547 548
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
549
	struct kmem_cache_node *l3;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

586
static void init_node_lock_keys(int q)
587
{
588
	int i;
589

590
	if (slab_state < UP)
591 592
		return;

593
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
594
		struct kmem_cache_node *l3;
595 596 597 598
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
599

600 601
		l3 = cache->nodelists[q];
		if (!l3 || OFF_SLAB(cache))
602
			continue;
603

604
		slab_set_lock_classes(cache, &on_slab_l3_key,
605
				&on_slab_alc_key, q);
606 607
	}
}
608

609 610
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
611 612

	if (!cachep->nodelists[q])
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

628 629 630 631 632 633 634
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
635
#else
636 637 638 639
static void init_node_lock_keys(int q)
{
}

640
static inline void init_lock_keys(void)
641 642
{
}
643

644 645 646 647 648 649 650 651
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

652 653 654 655 656 657 658
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
659 660
#endif

661
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
662

663
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
664 665 666 667
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
668 669
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
670
{
671
	int i;
L
Linus Torvalds 已提交
672 673 674

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
675 676 677
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
678
	BUG_ON(kmalloc_caches[INDEX_AC] == NULL);
L
Linus Torvalds 已提交
679
#endif
680 681 682
	if (!size)
		return ZERO_SIZE_PTR;

683
	i = kmalloc_index(size);
L
Linus Torvalds 已提交
684 685

	/*
686
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
687 688 689
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
690
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
691
	if (unlikely(gfpflags & GFP_DMA))
692
		return kmalloc_dma_caches[i];
693
#endif
694
	return kmalloc_caches[i];
L
Linus Torvalds 已提交
695 696
}

A
Adrian Bunk 已提交
697
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
698 699 700 701
{
	return __find_general_cachep(size, gfpflags);
}

702
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
703
{
704 705
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
706

A
Andrew Morton 已提交
707 708 709
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
710 711 712 713 714 715 716
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
766 767
}

768
#if DEBUG
769
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
770

A
Andrew Morton 已提交
771 772
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
773 774
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
775
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
776
	dump_stack();
777
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
778
}
779
#endif
L
Linus Torvalds 已提交
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

797 798 799 800 801 802 803 804 805 806 807
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

808 809 810 811 812 813 814
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
815
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
816 817 818 819 820

static void init_reap_node(int cpu)
{
	int node;

821
	node = next_node(cpu_to_mem(cpu), node_online_map);
822
	if (node == MAX_NUMNODES)
823
		node = first_node(node_online_map);
824

825
	per_cpu(slab_reap_node, cpu) = node;
826 827 828 829
}

static void next_reap_node(void)
{
830
	int node = __this_cpu_read(slab_reap_node);
831 832 833 834

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
835
	__this_cpu_write(slab_reap_node, node);
836 837 838 839 840 841 842
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
843 844 845 846 847 848 849
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
850
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
851
{
852
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
853 854 855 856 857 858

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
859
	if (keventd_up() && reap_work->work.func == NULL) {
860
		init_reap_node(cpu);
861
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
862 863
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
864 865 866
	}
}

867
static struct array_cache *alloc_arraycache(int node, int entries,
868
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
869
{
P
Pekka Enberg 已提交
870
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
871 872
	struct array_cache *nc = NULL;

873
	nc = kmalloc_node(memsize, gfp, node);
874 875
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
876
	 * However, when such objects are allocated or transferred to another
877 878 879 880 881
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
882 883 884 885 886
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
887
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
888 889 890 891
	}
	return nc;
}

892 893 894 895 896 897 898 899 900 901 902
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
903
	struct kmem_cache_node *l3 = cachep->nodelists[numa_mem_id()];
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

928
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 930 931 932 933 934 935
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
936
		struct kmem_cache_node *l3;
937 938 939 940 941 942 943

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
944
		for (i = 0; i < ac->avail; i++) {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
961
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
962 963 964 965 966 967 968 969 970 971 972 973 974
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
989 990 991 992
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
993
		struct page *page = virt_to_head_page(objp);
994 995 996 997
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

998 999 1000 1001 1002 1003 1004 1005 1006
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1007 1008 1009
	ac->entry[ac->avail++] = objp;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1020
	int nr = min3(from->avail, max, to->limit - to->avail);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1033 1034 1035 1036 1037
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1038
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1058
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1059 1060 1061 1062 1063 1064 1065
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1066
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1067
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1068

1069
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1070 1071
{
	struct array_cache **ac_ptr;
1072
	int memsize = sizeof(void *) * nr_node_ids;
1073 1074 1075 1076
	int i;

	if (limit > 1)
		limit = 12;
1077
	ac_ptr = kzalloc_node(memsize, gfp, node);
1078 1079
	if (ac_ptr) {
		for_each_node(i) {
1080
			if (i == node || !node_online(i))
1081
				continue;
1082
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1083
			if (!ac_ptr[i]) {
1084
				for (i--; i >= 0; i--)
1085 1086 1087 1088 1089 1090 1091 1092 1093
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1094
static void free_alien_cache(struct array_cache **ac_ptr)
1095 1096 1097 1098 1099 1100
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1101
	    kfree(ac_ptr[i]);
1102 1103 1104
	kfree(ac_ptr);
}

1105
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1106
				struct array_cache *ac, int node)
1107
{
1108
	struct kmem_cache_node *rl3 = cachep->nodelists[node];
1109 1110 1111

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1112 1113 1114 1115 1116
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1117 1118
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1119

1120
		free_block(cachep, ac->entry, ac->avail, node);
1121 1122 1123 1124 1125
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1126 1127 1128
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1129
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *l3)
1130
{
1131
	int node = __this_cpu_read(slab_reap_node);
1132 1133 1134

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1135 1136

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1137 1138 1139 1140 1141 1142
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1143 1144
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1145
{
P
Pekka Enberg 已提交
1146
	int i = 0;
1147 1148 1149 1150
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1151
		ac = alien[i];
1152 1153 1154 1155 1156 1157 1158
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1159

1160
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1161 1162 1163
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
1164
	struct kmem_cache_node *l3;
1165
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1166 1167
	int node;

1168
	node = numa_mem_id();
1169 1170 1171 1172 1173

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1174
	if (likely(slabp->nodeid == node))
1175 1176
		return 0;

P
Pekka Enberg 已提交
1177
	l3 = cachep->nodelists[node];
1178 1179 1180
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1181
		spin_lock(&alien->lock);
1182 1183 1184 1185
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1186
		ac_put_obj(cachep, alien, objp);
1187 1188 1189 1190 1191 1192 1193 1194
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1195 1196
#endif

1197 1198 1199 1200 1201 1202 1203
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1204
 * Must hold slab_mutex.
1205 1206 1207 1208
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
1209 1210
	struct kmem_cache_node *l3;
	const int memsize = sizeof(struct kmem_cache_node);
1211

1212
	list_for_each_entry(cachep, &slab_caches, list) {
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1228
			 * go.  slab_mutex is sufficient
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1243 1244 1245
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
1246
	struct kmem_cache_node *l3 = NULL;
1247
	int node = cpu_to_mem(cpu);
1248
	const struct cpumask *mask = cpumask_of_node(node);
1249

1250
	list_for_each_entry(cachep, &slab_caches, list) {
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1270
		if (!cpumask_empty(mask)) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1300
	list_for_each_entry(cachep, &slab_caches, list) {
1301 1302 1303 1304 1305 1306 1307 1308
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1309
{
1310
	struct kmem_cache *cachep;
1311
	struct kmem_cache_node *l3 = NULL;
1312
	int node = cpu_to_mem(cpu);
1313
	int err;
L
Linus Torvalds 已提交
1314

1315 1316 1317 1318 1319 1320
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1321 1322 1323
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1324 1325 1326 1327 1328

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1329
	list_for_each_entry(cachep, &slab_caches, list) {
1330 1331 1332 1333 1334
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1335
					cachep->batchcount, GFP_KERNEL);
1336 1337 1338 1339 1340
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1341
				0xbaadf00d, GFP_KERNEL);
1342 1343
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1344
				goto bad;
1345
			}
1346 1347
		}
		if (use_alien_caches) {
1348
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1349 1350 1351
			if (!alien) {
				kfree(shared);
				kfree(nc);
1352
				goto bad;
1353
			}
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1368
#ifdef CONFIG_NUMA
1369 1370 1371
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1372
		}
1373 1374 1375 1376
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1377 1378
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1379 1380 1381
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1382
	}
1383 1384
	init_node_lock_keys(node);

1385 1386
	return 0;
bad:
1387
	cpuup_canceled(cpu);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1400
		mutex_lock(&slab_mutex);
1401
		err = cpuup_prepare(cpu);
1402
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1403 1404
		break;
	case CPU_ONLINE:
1405
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1406 1407 1408
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1409
  	case CPU_DOWN_PREPARE:
1410
  	case CPU_DOWN_PREPARE_FROZEN:
1411
		/*
1412
		 * Shutdown cache reaper. Note that the slab_mutex is
1413 1414 1415 1416
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1417
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1418
		/* Now the cache_reaper is guaranteed to be not running. */
1419
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1420 1421
  		break;
  	case CPU_DOWN_FAILED:
1422
  	case CPU_DOWN_FAILED_FROZEN:
1423 1424
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1425
	case CPU_DEAD:
1426
	case CPU_DEAD_FROZEN:
1427 1428 1429 1430 1431 1432 1433 1434
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1435
		/* fall through */
1436
#endif
L
Linus Torvalds 已提交
1437
	case CPU_UP_CANCELED:
1438
	case CPU_UP_CANCELED_FROZEN:
1439
		mutex_lock(&slab_mutex);
1440
		cpuup_canceled(cpu);
1441
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1442 1443
		break;
	}
1444
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1445 1446
}

1447 1448 1449
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1450

1451 1452 1453 1454 1455 1456
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1457
 * Must hold slab_mutex.
1458 1459 1460 1461 1462 1463
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1464
	list_for_each_entry(cachep, &slab_caches, list) {
1465
		struct kmem_cache_node *l3;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1495
		mutex_lock(&slab_mutex);
1496
		ret = init_cache_nodelists_node(nid);
1497
		mutex_unlock(&slab_mutex);
1498 1499
		break;
	case MEM_GOING_OFFLINE:
1500
		mutex_lock(&slab_mutex);
1501
		ret = drain_cache_nodelists_node(nid);
1502
		mutex_unlock(&slab_mutex);
1503 1504 1505 1506 1507 1508 1509 1510
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1511
	return notifier_from_errno(ret);
1512 1513 1514
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1515 1516 1517
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1518
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1519
				int nodeid)
1520
{
1521
	struct kmem_cache_node *ptr;
1522

1523
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1524 1525
	BUG_ON(!ptr);

1526
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1527 1528 1529 1530 1531
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1532 1533 1534 1535
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1552 1553 1554 1555 1556 1557
/*
 * The memory after the last cpu cache pointer is used for the
 * the nodelists pointer.
 */
static void setup_nodelists_pointer(struct kmem_cache *cachep)
{
1558
	cachep->nodelists = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1559 1560
}

A
Andrew Morton 已提交
1561 1562 1563
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1564 1565 1566
 */
void __init kmem_cache_init(void)
{
1567 1568
	int i;

1569
	kmem_cache = &kmem_cache_boot;
C
Christoph Lameter 已提交
1570
	setup_nodelists_pointer(kmem_cache);
1571

1572
	if (num_possible_nodes() == 1)
1573 1574
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1575
	for (i = 0; i < NUM_INIT_LISTS; i++)
1576
		kmem_list3_init(&initkmem_list3[i]);
C
Christoph Lameter 已提交
1577

1578
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1579 1580 1581

	/*
	 * Fragmentation resistance on low memory - only use bigger
1582 1583
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1584
	 */
1585
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1586
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1587 1588 1589

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1590 1591 1592
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1593 1594 1595
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1596
	 * 2) Create the first kmalloc cache.
1597
	 *    The struct kmem_cache for the new cache is allocated normally.
1598 1599 1600
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1601
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1602
	 *    kmalloc cache with kmalloc allocated arrays.
1603
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1604 1605
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1606 1607
	 */

1608
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1609

E
Eric Dumazet 已提交
1610
	/*
1611
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1612
	 */
1613 1614
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1615
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1616 1617
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1618 1619 1620

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1621 1622 1623 1624
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1625 1626
	 */

1627 1628
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1629 1630

	if (INDEX_AC != INDEX_L3)
1631 1632 1633
		kmalloc_caches[INDEX_L3] =
			create_kmalloc_cache("kmalloc-l3",
				kmalloc_size(INDEX_L3), ARCH_KMALLOC_FLAGS);
1634

1635 1636
	slab_early_init = 0;

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
		size_t cs_size = kmalloc_size(i);

		if (cs_size < KMALLOC_MIN_SIZE)
			continue;

		if (!kmalloc_caches[i]) {
			/*
			 * For performance, all the general caches are L1 aligned.
			 * This should be particularly beneficial on SMP boxes, as it
			 * eliminates "false sharing".
			 * Note for systems short on memory removing the alignment will
			 * allow tighter packing of the smaller caches.
			 */
			kmalloc_caches[i] = create_kmalloc_cache("kmalloc",
					cs_size, ARCH_KMALLOC_FLAGS);
		}
1654

1655
#ifdef CONFIG_ZONE_DMA
1656 1657
		kmalloc_dma_caches[i] = create_kmalloc_cache(
			"kmalloc-dma", cs_size,
1658
			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1659
#endif
L
Linus Torvalds 已提交
1660 1661 1662
	}
	/* 4) Replace the bootstrap head arrays */
	{
1663
		struct array_cache *ptr;
1664

1665
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1666

1667
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1668
		       sizeof(struct arraycache_init));
1669 1670 1671 1672 1673
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1674
		kmem_cache->array[smp_processor_id()] = ptr;
1675

1676
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1677

1678
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1679
		       != &initarray_generic.cache);
1680
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1681
		       sizeof(struct arraycache_init));
1682 1683 1684 1685 1686
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1687
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1688
	}
1689 1690
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1691 1692
		int nid;

1693
		for_each_online_node(nid) {
1694
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1695

1696
			init_list(kmalloc_caches[INDEX_AC],
P
Pekka Enberg 已提交
1697
				  &initkmem_list3[SIZE_AC + nid], nid);
1698 1699

			if (INDEX_AC != INDEX_L3) {
1700
				init_list(kmalloc_caches[INDEX_L3],
P
Pekka Enberg 已提交
1701
					  &initkmem_list3[SIZE_L3 + nid], nid);
1702 1703 1704
			}
		}
	}
L
Linus Torvalds 已提交
1705

1706
	slab_state = UP;
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

	/* Create the proper names */
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
		char *s;
		struct kmem_cache *c = kmalloc_caches[i];

		if (!c)
			continue;

		s = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));

		BUG_ON(!s);
		c->name = s;

#ifdef CONFIG_ZONE_DMA
		c = kmalloc_dma_caches[i];
		BUG_ON(!c);
		s = kasprintf(GFP_NOWAIT, "dma-kmalloc-%d", kmalloc_size(i));
		BUG_ON(!s);
		c->name = s;
#endif
	}
1729 1730 1731 1732 1733 1734
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1735
	slab_state = UP;
P
Peter Zijlstra 已提交
1736

1737
	/* 6) resize the head arrays to their final sizes */
1738 1739
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1740 1741
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1742
	mutex_unlock(&slab_mutex);
1743

1744 1745 1746
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1747 1748 1749
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1750 1751 1752
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1753 1754 1755
	 */
	register_cpu_notifier(&cpucache_notifier);

1756 1757 1758 1759 1760 1761 1762 1763
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1764 1765 1766
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1767 1768 1769 1770 1771 1772 1773
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1774 1775
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1776
	 */
1777
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1778
		start_cpu_timer(cpu);
1779 1780

	/* Done! */
1781
	slab_state = FULL;
L
Linus Torvalds 已提交
1782 1783 1784 1785
	return 0;
}
__initcall(cpucache_init);

1786 1787 1788
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1789
	struct kmem_cache_node *l3;
1790 1791 1792 1793 1794 1795 1796 1797
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1798
		cachep->name, cachep->size, cachep->gfporder);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1839
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1840 1841
{
	struct page *page;
1842
	int nr_pages;
L
Linus Torvalds 已提交
1843 1844
	int i;

1845
#ifndef CONFIG_MMU
1846 1847 1848
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1849
	 */
1850
	flags |= __GFP_COMP;
1851
#endif
1852

1853
	flags |= cachep->allocflags;
1854 1855
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1856

L
Linus Torvalds 已提交
1857
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1858 1859 1860
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1861
		return NULL;
1862
	}
L
Linus Torvalds 已提交
1863

1864
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1865 1866 1867
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1868
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1869
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1870 1871 1872 1873 1874
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1875
	for (i = 0; i < nr_pages; i++) {
1876
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1877

1878 1879 1880
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}
G
Glauber Costa 已提交
1881
	memcg_bind_pages(cachep, cachep->gfporder);
1882

1883 1884 1885 1886 1887 1888 1889 1890
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1891

1892
	return page_address(page);
L
Linus Torvalds 已提交
1893 1894 1895 1896 1897
}

/*
 * Interface to system's page release.
 */
1898
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1899
{
P
Pekka Enberg 已提交
1900
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1901 1902 1903
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1904
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1905

1906 1907 1908 1909 1910 1911
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1912
	while (i--) {
N
Nick Piggin 已提交
1913
		BUG_ON(!PageSlab(page));
1914
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1915
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1916 1917
		page++;
	}
G
Glauber Costa 已提交
1918 1919

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1920 1921
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1922
	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
L
Linus Torvalds 已提交
1923 1924 1925 1926
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1927
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1928
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1938
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1939
			    unsigned long caller)
L
Linus Torvalds 已提交
1940
{
1941
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1942

1943
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1944

P
Pekka Enberg 已提交
1945
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1946 1947
		return;

P
Pekka Enberg 已提交
1948 1949 1950 1951
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1959
				*addr++ = svalue;
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964 1965 1966
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1967
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1968 1969 1970
}
#endif

1971
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1972
{
1973
	int size = cachep->object_size;
1974
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1975 1976

	memset(addr, val, size);
P
Pekka Enberg 已提交
1977
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1983 1984 1985
	unsigned char error = 0;
	int bad_count = 0;

1986
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1987 1988 1989 1990 1991 1992
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1993 1994
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013
}
#endif

#if DEBUG

2014
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2020
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2021 2022
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2023 2024 2025 2026
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2027
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2028
		print_symbol("(%s)",
A
Andrew Morton 已提交
2029
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2030 2031
		printk("\n");
	}
2032
	realobj = (char *)objp + obj_offset(cachep);
2033
	size = cachep->object_size;
P
Pekka Enberg 已提交
2034
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2035 2036
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2037 2038
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2039 2040 2041 2042
		dump_line(realobj, i, limit);
	}
}

2043
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2044 2045 2046 2047 2048
{
	char *realobj;
	int size, i;
	int lines = 0;

2049
	realobj = (char *)objp + obj_offset(cachep);
2050
	size = cachep->object_size;
L
Linus Torvalds 已提交
2051

P
Pekka Enberg 已提交
2052
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2053
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2054
		if (i == size - 1)
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059 2060
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2061
				printk(KERN_ERR
2062 2063
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2064 2065 2066
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2067
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2068
			limit = 16;
P
Pekka Enberg 已提交
2069 2070
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2083
		struct slab *slabp = virt_to_slab(objp);
2084
		unsigned int objnr;
L
Linus Torvalds 已提交
2085

2086
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2087
		if (objnr) {
2088
			objp = index_to_obj(cachep, slabp, objnr - 1);
2089
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2090
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2091
			       realobj, size);
L
Linus Torvalds 已提交
2092 2093
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2094
		if (objnr + 1 < cachep->num) {
2095
			objp = index_to_obj(cachep, slabp, objnr + 1);
2096
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2097
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2098
			       realobj, size);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2105
#if DEBUG
R
Rabin Vincent 已提交
2106
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2107 2108 2109
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2110
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2111 2112 2113

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2114
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2115
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2116
				kernel_map_pages(virt_to_page(objp),
2117
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2127
					   "was overwritten");
L
Linus Torvalds 已提交
2128 2129
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2130
					   "was overwritten");
L
Linus Torvalds 已提交
2131 2132
		}
	}
2133
}
L
Linus Torvalds 已提交
2134
#else
R
Rabin Vincent 已提交
2135
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2136 2137
{
}
L
Linus Torvalds 已提交
2138 2139
#endif

2140 2141 2142 2143 2144
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2145
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2146 2147
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2148
 */
2149
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2150 2151 2152
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2153
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2154 2155 2156
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2157
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2163 2164
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2165 2166 2167
	}
}

2168
/**
2169 2170 2171 2172 2173 2174 2175
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2176 2177 2178 2179 2180
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2181
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2182
			size_t size, size_t align, unsigned long flags)
2183
{
2184
	unsigned long offslab_limit;
2185
	size_t left_over = 0;
2186
	int gfporder;
2187

2188
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2189 2190 2191
		unsigned int num;
		size_t remainder;

2192
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2193 2194
		if (!num)
			continue;
2195

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2208

2209
		/* Found something acceptable - save it away */
2210
		cachep->num = num;
2211
		cachep->gfporder = gfporder;
2212 2213
		left_over = remainder;

2214 2215 2216 2217 2218 2219 2220 2221
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2222 2223 2224 2225
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2226
		if (gfporder >= slab_max_order)
2227 2228
			break;

2229 2230 2231
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2232
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2233 2234 2235 2236 2237
			break;
	}
	return left_over;
}

2238
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2239
{
2240
	if (slab_state >= FULL)
2241
		return enable_cpucache(cachep, gfp);
2242

2243
	if (slab_state == DOWN) {
2244
		/*
2245 2246 2247 2248 2249 2250 2251 2252 2253
		 * Note: Creation of first cache (kmem_cache).
		 * The setup_list3s is taken care
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2254 2255 2256 2257 2258 2259 2260
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2261
		 * the second cache, then we need to set up all its list3s,
2262 2263 2264 2265
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2266
			slab_state = PARTIAL_L3;
2267
		else
2268
			slab_state = PARTIAL_ARRAYCACHE;
2269
	} else {
2270
		/* Remaining boot caches */
2271
		cachep->array[smp_processor_id()] =
2272
			kmalloc(sizeof(struct arraycache_init), gfp);
2273

2274
		if (slab_state == PARTIAL_ARRAYCACHE) {
2275
			set_up_list3s(cachep, SIZE_L3);
2276
			slab_state = PARTIAL_L3;
2277 2278
		} else {
			int node;
2279
			for_each_online_node(node) {
2280
				cachep->nodelists[node] =
2281
				    kmalloc_node(sizeof(struct kmem_cache_node),
2282
						gfp, node);
2283 2284 2285 2286 2287
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2288
	cachep->nodelists[numa_mem_id()]->next_reap =
2289 2290 2291 2292 2293 2294 2295 2296 2297
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2298
	return 0;
2299 2300
}

L
Linus Torvalds 已提交
2301
/**
2302
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2303
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2304 2305 2306 2307
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2308
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2322
int
2323
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2324 2325
{
	size_t left_over, slab_size, ralign;
2326
	gfp_t gfp;
2327
	int err;
2328
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2338 2339
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2340
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2348 2349
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2350 2351 2352
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2353 2354 2355
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2356 2357
	}

2358
	/*
D
David Woodhouse 已提交
2359 2360 2361
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2362
	 */
D
David Woodhouse 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2373

2374
	/* 3) caller mandated alignment */
2375 2376
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2377
	}
2378 2379
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2380
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2381
	/*
2382
	 * 4) Store it.
L
Linus Torvalds 已提交
2383
	 */
2384
	cachep->align = ralign;
L
Linus Torvalds 已提交
2385

2386 2387 2388 2389 2390
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

C
Christoph Lameter 已提交
2391
	setup_nodelists_pointer(cachep);
L
Linus Torvalds 已提交
2392 2393
#if DEBUG

2394 2395 2396 2397
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2398 2399
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2400 2401
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2402 2403
	}
	if (flags & SLAB_STORE_USER) {
2404
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2405 2406
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2407
		 */
D
David Woodhouse 已提交
2408 2409 2410 2411
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2412 2413
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2414 2415 2416
	if (size >= kmalloc_size(INDEX_L3 + 1)
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2417 2418 2419 2420 2421
		size = PAGE_SIZE;
	}
#endif
#endif

2422 2423 2424
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2425 2426
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2427
	 */
2428 2429
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2436
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2437

2438
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2439

2440
	if (!cachep->num)
2441
		return -E2BIG;
L
Linus Torvalds 已提交
2442

P
Pekka Enberg 已提交
2443
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2444
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2457 2458
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2459 2460 2461 2462 2463 2464 2465 2466 2467

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2468 2469 2470 2471
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2472 2473
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2474
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2475 2476
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2477
	cachep->allocflags = 0;
2478
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2479
		cachep->allocflags |= GFP_DMA;
2480
	cachep->size = size;
2481
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2482

2483
	if (flags & CFLGS_OFF_SLAB) {
2484
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2485 2486 2487 2488 2489 2490 2491
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2492
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2493
	}
L
Linus Torvalds 已提交
2494

2495 2496
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2497
		__kmem_cache_shutdown(cachep);
2498
		return err;
2499
	}
L
Linus Torvalds 已提交
2500

2501 2502 2503 2504 2505 2506 2507 2508
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2509 2510
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2511

2512
	return 0;
L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2526
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2527 2528 2529
{
#ifdef CONFIG_SMP
	check_irq_off();
2530
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2531 2532
#endif
}
2533

2534
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2535 2536 2537 2538 2539 2540 2541
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2542 2543 2544 2545
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2546
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2547 2548
#endif

2549
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
2550 2551 2552
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2553 2554
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2555
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2556
	struct array_cache *ac;
2557
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2558 2559

	check_irq_off();
2560
	ac = cpu_cache_get(cachep);
2561 2562 2563
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2564 2565 2566
	ac->avail = 0;
}

2567
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2568
{
2569
	struct kmem_cache_node *l3;
2570 2571
	int node;

2572
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2573
	check_irq_on();
P
Pekka Enberg 已提交
2574
	for_each_online_node(node) {
2575
		l3 = cachep->nodelists[node];
2576 2577 2578 2579 2580 2581 2582
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2583
			drain_array(cachep, l3, l3->shared, 1, node);
2584
	}
L
Linus Torvalds 已提交
2585 2586
}

2587 2588 2589 2590 2591 2592 2593
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2594
			struct kmem_cache_node *l3, int tofree)
L
Linus Torvalds 已提交
2595
{
2596 2597
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2598 2599
	struct slab *slabp;

2600 2601
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2602

2603
		spin_lock_irq(&l3->list_lock);
2604
		p = l3->slabs_free.prev;
2605 2606 2607 2608
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2609

2610
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2611
#if DEBUG
2612
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2613 2614
#endif
		list_del(&slabp->list);
2615 2616 2617 2618 2619
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2620
		spin_unlock_irq(&l3->list_lock);
2621 2622
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2623
	}
2624 2625
out:
	return nr_freed;
L
Linus Torvalds 已提交
2626 2627
}

2628
/* Called with slab_mutex held to protect against cpu hotplug */
2629
static int __cache_shrink(struct kmem_cache *cachep)
2630 2631
{
	int ret = 0, i = 0;
2632
	struct kmem_cache_node *l3;
2633 2634 2635 2636 2637 2638

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2639 2640 2641 2642 2643 2644 2645
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2646 2647 2648 2649
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2650 2651 2652 2653 2654 2655 2656
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2657
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2658
{
2659
	int ret;
2660
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2661

2662
	get_online_cpus();
2663
	mutex_lock(&slab_mutex);
2664
	ret = __cache_shrink(cachep);
2665
	mutex_unlock(&slab_mutex);
2666
	put_online_cpus();
2667
	return ret;
L
Linus Torvalds 已提交
2668 2669 2670
}
EXPORT_SYMBOL(kmem_cache_shrink);

2671
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2672
{
2673
	int i;
2674
	struct kmem_cache_node *l3;
2675
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2676

2677 2678
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2679

2680 2681
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2682

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2693 2694
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2706
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2707 2708
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2709 2710
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2711

L
Linus Torvalds 已提交
2712 2713
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2714
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2715
					      local_flags, nodeid);
2716 2717 2718 2719 2720 2721
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2722 2723
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2724 2725 2726
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2727
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2728 2729 2730 2731
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2732
	slabp->s_mem = objp + colour_off;
2733
	slabp->nodeid = nodeid;
2734
	slabp->free = 0;
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2740
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2741 2742
}

2743
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2744
			    struct slab *slabp)
L
Linus Torvalds 已提交
2745 2746 2747 2748
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2749
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2762 2763 2764
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2765 2766
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2767
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2768 2769 2770 2771

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2772
					   " end of an object");
L
Linus Torvalds 已提交
2773 2774
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2775
					   " start of an object");
L
Linus Torvalds 已提交
2776
		}
2777
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2778
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2779
			kernel_map_pages(virt_to_page(objp),
2780
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2781 2782
#else
		if (cachep->ctor)
2783
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2784
#endif
P
Pekka Enberg 已提交
2785
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2786
	}
P
Pekka Enberg 已提交
2787
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2788 2789
}

2790
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2791
{
2792 2793
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2794
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2795
		else
2796
			BUG_ON(cachep->allocflags & GFP_DMA);
2797
	}
L
Linus Torvalds 已提交
2798 2799
}

A
Andrew Morton 已提交
2800 2801
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2802
{
2803
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2817 2818
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2819
{
2820
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2821 2822 2823 2824 2825

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2826
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2827
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2828
				"'%s', objp %p\n", cachep->name, objp);
2829 2830 2831 2832 2833 2834 2835 2836
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2837 2838 2839
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2840
 * virtual address for kfree, ksize, and slab debugging.
2841 2842 2843
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2844
{
2845
	int nr_pages;
L
Linus Torvalds 已提交
2846 2847
	struct page *page;

2848
	page = virt_to_page(addr);
2849

2850
	nr_pages = 1;
2851
	if (likely(!PageCompound(page)))
2852 2853
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2854
	do {
C
Christoph Lameter 已提交
2855 2856
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2857
		page++;
2858
	} while (--nr_pages);
L
Linus Torvalds 已提交
2859 2860 2861 2862 2863 2864
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2865 2866
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2867
{
P
Pekka Enberg 已提交
2868 2869 2870
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2871
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
2872

A
Andrew Morton 已提交
2873 2874 2875
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2876
	 */
C
Christoph Lameter 已提交
2877 2878
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2879

2880
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2881
	check_irq_off();
2882 2883
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2884 2885

	/* Get colour for the slab, and cal the next value. */
2886 2887 2888 2889 2890
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2891

2892
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2905 2906 2907
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2908
	 */
2909
	if (!objp)
2910
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2911
	if (!objp)
L
Linus Torvalds 已提交
2912 2913 2914
		goto failed;

	/* Get slab management. */
2915
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2916
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2917
	if (!slabp)
L
Linus Torvalds 已提交
2918 2919
		goto opps1;

2920
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2921

C
Christoph Lameter 已提交
2922
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2923 2924 2925 2926

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2927
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2928 2929

	/* Make slab active. */
2930
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2931
	STATS_INC_GROWN(cachep);
2932 2933
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2934
	return 1;
A
Andrew Morton 已提交
2935
opps1:
L
Linus Torvalds 已提交
2936
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2937
failed:
L
Linus Torvalds 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2954 2955
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2956 2957 2958
	}
}

2959 2960
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2961
	unsigned long long redzone1, redzone2;
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2977
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2978 2979 2980
			obj, redzone1, redzone2);
}

2981
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2982
				   unsigned long caller)
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2988 2989
	BUG_ON(virt_to_cache(objp) != cachep);

2990
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2991
	kfree_debugcheck(objp);
2992
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2993

C
Christoph Lameter 已提交
2994
	slabp = page->slab_page;
L
Linus Torvalds 已提交
2995 2996

	if (cachep->flags & SLAB_RED_ZONE) {
2997
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2998 2999 3000 3001
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
3002
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3003

3004
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3005 3006

	BUG_ON(objnr >= cachep->num);
3007
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3008

3009 3010 3011
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3012 3013
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3014
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3015
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
3016
			kernel_map_pages(virt_to_page(objp),
3017
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3028
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3029 3030 3031
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3032

L
Linus Torvalds 已提交
3033 3034 3035 3036 3037 3038 3039
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3040 3041
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3042 3043 3044
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3045 3046 3047
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3057 3058
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3059 3060
{
	int batchcount;
3061
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
3062
	struct array_cache *ac;
P
Pekka Enberg 已提交
3063 3064
	int node;

L
Linus Torvalds 已提交
3065
	check_irq_off();
3066
	node = numa_mem_id();
3067 3068 3069
	if (unlikely(force_refill))
		goto force_grow;
retry:
3070
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3071 3072
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3073 3074 3075 3076
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3077 3078 3079
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3080
	l3 = cachep->nodelists[node];
3081 3082 3083

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3084

3085
	/* See if we can refill from the shared array */
3086 3087
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3088
		goto alloc_done;
3089
	}
3090

L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3106 3107 3108 3109 3110 3111

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3112
		BUG_ON(slabp->inuse >= cachep->num);
3113

L
Linus Torvalds 已提交
3114 3115 3116 3117 3118
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3119 3120
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3132
must_grow:
L
Linus Torvalds 已提交
3133
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3134
alloc_done:
3135
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3136 3137 3138

	if (unlikely(!ac->avail)) {
		int x;
3139
force_grow:
3140
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3141

A
Andrew Morton 已提交
3142
		/* cache_grow can reenable interrupts, then ac could change. */
3143
		ac = cpu_cache_get(cachep);
3144
		node = numa_mem_id();
3145 3146 3147

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3148 3149
			return NULL;

A
Andrew Morton 已提交
3150
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3151 3152 3153
			goto retry;
	}
	ac->touched = 1;
3154 3155

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3156 3157
}

A
Andrew Morton 已提交
3158 3159
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3160 3161 3162 3163 3164 3165 3166 3167
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3168
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3169
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3170
{
P
Pekka Enberg 已提交
3171
	if (!objp)
L
Linus Torvalds 已提交
3172
		return objp;
P
Pekka Enberg 已提交
3173
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3174
#ifdef CONFIG_DEBUG_PAGEALLOC
3175
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3176
			kernel_map_pages(virt_to_page(objp),
3177
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184 3185
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3186
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3187 3188

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3189 3190 3191 3192
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3193
			printk(KERN_ERR
3194
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3195 3196
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3197 3198 3199 3200
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3201 3202 3203 3204 3205
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3206
		slabp = virt_to_head_page(objp)->slab_page;
3207
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3208 3209 3210
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3211
	objp += obj_offset(cachep);
3212
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3213
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3214 3215
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3216
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3217
		       objp, (int)ARCH_SLAB_MINALIGN);
3218
	}
L
Linus Torvalds 已提交
3219 3220 3221 3222 3223 3224
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3225
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3226
{
3227
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3228
		return false;
3229

3230
	return should_failslab(cachep->object_size, flags, cachep->flags);
3231 3232
}

3233
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3234
{
P
Pekka Enberg 已提交
3235
	void *objp;
L
Linus Torvalds 已提交
3236
	struct array_cache *ac;
3237
	bool force_refill = false;
L
Linus Torvalds 已提交
3238

3239
	check_irq_off();
3240

3241
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3242 3243
	if (likely(ac->avail)) {
		ac->touched = 1;
3244 3245
		objp = ac_get_obj(cachep, ac, flags, false);

3246
		/*
3247 3248
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3249
		 */
3250 3251 3252 3253 3254
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3255
	}
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3266 3267 3268 3269 3270
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3271 3272
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3273 3274 3275
	return objp;
}

3276
#ifdef CONFIG_NUMA
3277
/*
3278
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3279 3280 3281 3282 3283 3284 3285 3286
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3287
	if (in_interrupt() || (flags & __GFP_THISNODE))
3288
		return NULL;
3289
	nid_alloc = nid_here = numa_mem_id();
3290
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3291
		nid_alloc = cpuset_slab_spread_node();
3292
	else if (current->mempolicy)
3293
		nid_alloc = slab_node();
3294
	if (nid_alloc != nid_here)
3295
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3296 3297 3298
	return NULL;
}

3299 3300
/*
 * Fallback function if there was no memory available and no objects on a
3301 3302 3303 3304 3305
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3306
 */
3307
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3308
{
3309 3310
	struct zonelist *zonelist;
	gfp_t local_flags;
3311
	struct zoneref *z;
3312 3313
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3314
	void *obj = NULL;
3315
	int nid;
3316
	unsigned int cpuset_mems_cookie;
3317 3318 3319 3320

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3321
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3322

3323 3324
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3325
	zonelist = node_zonelist(slab_node(), flags);
3326

3327 3328 3329 3330 3331
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3332 3333
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3334

3335
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3336
			cache->nodelists[nid] &&
3337
			cache->nodelists[nid]->free_objects) {
3338 3339
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3340 3341 3342
				if (obj)
					break;
		}
3343 3344
	}

3345
	if (!obj) {
3346 3347 3348 3349 3350 3351
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3352 3353 3354
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3355
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3356 3357
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3374
				/* cache_grow already freed obj */
3375 3376 3377
				obj = NULL;
			}
		}
3378
	}
3379 3380 3381

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3382 3383 3384
	return obj;
}

3385 3386
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3387
 */
3388
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3389
				int nodeid)
3390 3391
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3392
	struct slab *slabp;
3393
	struct kmem_cache_node *l3;
P
Pekka Enberg 已提交
3394 3395 3396 3397 3398 3399
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3400
retry:
3401
	check_irq_off();
P
Pekka Enberg 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3421
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3422 3423 3424 3425 3426
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3427
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3428
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3429
	else
P
Pekka Enberg 已提交
3430
		list_add(&slabp->list, &l3->slabs_partial);
3431

P
Pekka Enberg 已提交
3432 3433
	spin_unlock(&l3->list_lock);
	goto done;
3434

A
Andrew Morton 已提交
3435
must_grow:
P
Pekka Enberg 已提交
3436
	spin_unlock(&l3->list_lock);
3437
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3438 3439
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3440

3441
	return fallback_alloc(cachep, flags);
3442

A
Andrew Morton 已提交
3443
done:
P
Pekka Enberg 已提交
3444
	return obj;
3445
}
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3460
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3461
		   unsigned long caller)
3462 3463 3464
{
	unsigned long save_flags;
	void *ptr;
3465
	int slab_node = numa_mem_id();
3466

3467
	flags &= gfp_allowed_mask;
3468

3469 3470
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3471
	if (slab_should_failslab(cachep, flags))
3472 3473
		return NULL;

3474 3475
	cachep = memcg_kmem_get_cache(cachep, flags);

3476 3477 3478
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3479
	if (nodeid == NUMA_NO_NODE)
3480
		nodeid = slab_node;
3481 3482 3483 3484 3485 3486 3487

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3488
	if (nodeid == slab_node) {
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3504
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3505
				 flags);
3506

P
Pekka Enberg 已提交
3507
	if (likely(ptr))
3508
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3509

3510
	if (unlikely((flags & __GFP_ZERO) && ptr))
3511
		memset(ptr, 0, cachep->object_size);
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3532 3533
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3549
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3550 3551 3552 3553
{
	unsigned long save_flags;
	void *objp;

3554
	flags &= gfp_allowed_mask;
3555

3556 3557
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3558
	if (slab_should_failslab(cachep, flags))
3559 3560
		return NULL;

3561 3562
	cachep = memcg_kmem_get_cache(cachep, flags);

3563 3564 3565 3566 3567
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3568
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3569
				 flags);
3570 3571
	prefetchw(objp);

P
Pekka Enberg 已提交
3572
	if (likely(objp))
3573
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3574

3575
	if (unlikely((flags & __GFP_ZERO) && objp))
3576
		memset(objp, 0, cachep->object_size);
3577

3578 3579
	return objp;
}
3580 3581 3582 3583

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3584
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3585
		       int node)
L
Linus Torvalds 已提交
3586 3587
{
	int i;
3588
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
3589 3590

	for (i = 0; i < nr_objects; i++) {
3591
		void *objp;
L
Linus Torvalds 已提交
3592 3593
		struct slab *slabp;

3594 3595 3596
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3597
		slabp = virt_to_slab(objp);
3598
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3599
		list_del(&slabp->list);
3600
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3601
		check_slabp(cachep, slabp);
3602
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3603
		STATS_DEC_ACTIVE(cachep);
3604
		l3->free_objects++;
L
Linus Torvalds 已提交
3605 3606 3607 3608
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3609 3610
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3611 3612 3613 3614 3615 3616
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3617 3618
				slab_destroy(cachep, slabp);
			} else {
3619
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3626
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3627 3628 3629 3630
		}
	}
}

3631
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3632 3633
{
	int batchcount;
3634
	struct kmem_cache_node *l3;
3635
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3636 3637 3638 3639 3640 3641

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3642
	l3 = cachep->nodelists[node];
3643
	spin_lock(&l3->list_lock);
3644 3645
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3646
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3647 3648 3649
		if (max) {
			if (batchcount > max)
				batchcount = max;
3650
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3651
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3652 3653 3654 3655 3656
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3657
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3658
free_done:
L
Linus Torvalds 已提交
3659 3660 3661 3662 3663
#if STATS
	{
		int i = 0;
		struct list_head *p;

3664 3665
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3677
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3678
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3679
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3680 3681 3682
}

/*
A
Andrew Morton 已提交
3683 3684
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3685
 */
3686
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3687
				unsigned long caller)
L
Linus Torvalds 已提交
3688
{
3689
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3690 3691

	check_irq_off();
3692
	kmemleak_free_recursive(objp, cachep->flags);
3693
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3694

3695
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3696

3697 3698 3699 3700 3701 3702 3703
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3704
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3705 3706
		return;

L
Linus Torvalds 已提交
3707 3708 3709 3710 3711 3712
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3713

3714
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3725
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3726
{
3727
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3728

3729
	trace_kmem_cache_alloc(_RET_IP_, ret,
3730
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3731 3732

	return ret;
L
Linus Torvalds 已提交
3733 3734 3735
}
EXPORT_SYMBOL(kmem_cache_alloc);

3736
#ifdef CONFIG_TRACING
3737
void *
3738
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3739
{
3740 3741
	void *ret;

3742
	ret = slab_alloc(cachep, flags, _RET_IP_);
3743 3744

	trace_kmalloc(_RET_IP_, ret,
3745
		      size, cachep->size, flags);
3746
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3747
}
3748
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3749 3750
#endif

L
Linus Torvalds 已提交
3751
#ifdef CONFIG_NUMA
3752 3753
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3754
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3755

3756
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3757
				    cachep->object_size, cachep->size,
3758
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3759 3760

	return ret;
3761
}
L
Linus Torvalds 已提交
3762 3763
EXPORT_SYMBOL(kmem_cache_alloc_node);

3764
#ifdef CONFIG_TRACING
3765
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3766
				  gfp_t flags,
3767 3768
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3769
{
3770 3771
	void *ret;

3772
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3773

3774
	trace_kmalloc_node(_RET_IP_, ret,
3775
			   size, cachep->size,
3776 3777
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3778
}
3779
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3780 3781
#endif

3782
static __always_inline void *
3783
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3784
{
3785
	struct kmem_cache *cachep;
3786 3787

	cachep = kmem_find_general_cachep(size, flags);
3788 3789
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3790
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3791
}
3792

3793
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3794 3795
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3796
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3797
}
3798
EXPORT_SYMBOL(__kmalloc_node);
3799 3800

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3801
		int node, unsigned long caller)
3802
{
3803
	return __do_kmalloc_node(size, flags, node, caller);
3804 3805 3806 3807 3808
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3809
	return __do_kmalloc_node(size, flags, node, 0);
3810 3811
}
EXPORT_SYMBOL(__kmalloc_node);
3812
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3813
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3814 3815

/**
3816
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3817
 * @size: how many bytes of memory are required.
3818
 * @flags: the type of memory to allocate (see kmalloc).
3819
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3820
 */
3821
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3822
					  unsigned long caller)
L
Linus Torvalds 已提交
3823
{
3824
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3825
	void *ret;
L
Linus Torvalds 已提交
3826

3827 3828 3829 3830 3831 3832
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3833 3834
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3835
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3836

3837
	trace_kmalloc(caller, ret,
3838
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3839 3840

	return ret;
3841 3842 3843
}


3844
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3845 3846
void *__kmalloc(size_t size, gfp_t flags)
{
3847
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3848 3849 3850
}
EXPORT_SYMBOL(__kmalloc);

3851
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3852
{
3853
	return __do_kmalloc(size, flags, caller);
3854 3855
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3856 3857 3858 3859

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3860
	return __do_kmalloc(size, flags, 0);
3861 3862
}
EXPORT_SYMBOL(__kmalloc);
3863 3864
#endif

L
Linus Torvalds 已提交
3865 3866 3867 3868 3869 3870 3871 3872
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3873
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3874 3875
{
	unsigned long flags;
3876 3877 3878
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3879 3880

	local_irq_save(flags);
3881
	debug_check_no_locks_freed(objp, cachep->object_size);
3882
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3883
		debug_check_no_obj_freed(objp, cachep->object_size);
3884
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3885
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3886

3887
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892 3893 3894
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3895 3896
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3902
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3903 3904
	unsigned long flags;

3905 3906
	trace_kfree(_RET_IP_, objp);

3907
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3908 3909 3910
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3911
	c = virt_to_cache(objp);
3912 3913 3914
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3915
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3916 3917 3918 3919
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3920
/*
S
Simon Arlott 已提交
3921
 * This initializes kmem_list3 or resizes various caches for all nodes.
3922
 */
3923
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3924 3925
{
	int node;
3926
	struct kmem_cache_node *l3;
3927
	struct array_cache *new_shared;
3928
	struct array_cache **new_alien = NULL;
3929

3930
	for_each_online_node(node) {
3931

3932
                if (use_alien_caches) {
3933
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3934 3935 3936
                        if (!new_alien)
                                goto fail;
                }
3937

3938 3939 3940
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3941
				cachep->shared*cachep->batchcount,
3942
					0xbaadf00d, gfp);
3943 3944 3945 3946
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3947
		}
3948

A
Andrew Morton 已提交
3949 3950
		l3 = cachep->nodelists[node];
		if (l3) {
3951 3952
			struct array_cache *shared = l3->shared;

3953 3954
			spin_lock_irq(&l3->list_lock);

3955
			if (shared)
3956 3957
				free_block(cachep, shared->entry,
						shared->avail, node);
3958

3959 3960
			l3->shared = new_shared;
			if (!l3->alien) {
3961 3962 3963
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3964
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3965
					cachep->batchcount + cachep->num;
3966
			spin_unlock_irq(&l3->list_lock);
3967
			kfree(shared);
3968 3969 3970
			free_alien_cache(new_alien);
			continue;
		}
3971
		l3 = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3972 3973 3974
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3975
			goto fail;
3976
		}
3977 3978 3979

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3980
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3981
		l3->shared = new_shared;
3982
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3983
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3984
					cachep->batchcount + cachep->num;
3985 3986
		cachep->nodelists[node] = l3;
	}
3987
	return 0;
3988

A
Andrew Morton 已提交
3989
fail:
3990
	if (!cachep->list.next) {
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4005
	return -ENOMEM;
4006 4007
}

L
Linus Torvalds 已提交
4008
struct ccupdate_struct {
4009
	struct kmem_cache *cachep;
4010
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4011 4012 4013 4014
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4015
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4016 4017 4018
	struct array_cache *old;

	check_irq_off();
4019
	old = cpu_cache_get(new->cachep);
4020

L
Linus Torvalds 已提交
4021 4022 4023 4024
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4025
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
4026
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
4027
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4028
{
4029
	struct ccupdate_struct *new;
4030
	int i;
L
Linus Torvalds 已提交
4031

4032 4033
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4034 4035 4036
	if (!new)
		return -ENOMEM;

4037
	for_each_online_cpu(i) {
4038
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4039
						batchcount, gfp);
4040
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4041
			for (i--; i >= 0; i--)
4042 4043
				kfree(new->new[i]);
			kfree(new);
4044
			return -ENOMEM;
L
Linus Torvalds 已提交
4045 4046
		}
	}
4047
	new->cachep = cachep;
L
Linus Torvalds 已提交
4048

4049
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4050

L
Linus Torvalds 已提交
4051 4052 4053
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4054
	cachep->shared = shared;
L
Linus Torvalds 已提交
4055

4056
	for_each_online_cpu(i) {
4057
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4058 4059
		if (!ccold)
			continue;
4060 4061 4062
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4063 4064
		kfree(ccold);
	}
4065
	kfree(new);
4066
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4067 4068
}

G
Glauber Costa 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

4084
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

4095
/* Called with slab_mutex held always */
4096
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4097 4098
{
	int err;
G
Glauber Costa 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
4109

G
Glauber Costa 已提交
4110 4111
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
4112 4113
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4114 4115
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4116
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4117 4118 4119 4120
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4121
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4122
		limit = 1;
4123
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4124
		limit = 8;
4125
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4126
		limit = 24;
4127
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4128 4129 4130 4131
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4132 4133
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138 4139 4140 4141
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4142
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4143 4144 4145
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4146 4147 4148
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4149 4150 4151 4152
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4153 4154 4155
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4156 4157
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4158
		       cachep->name, -err);
4159
	return err;
L
Linus Torvalds 已提交
4160 4161
}

4162 4163
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4164 4165
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4166
 */
4167
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
4168
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4169 4170 4171
{
	int tofree;

4172 4173
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4174 4175
	if (ac->touched && !force) {
		ac->touched = 0;
4176
	} else {
4177
		spin_lock_irq(&l3->list_lock);
4178 4179 4180 4181 4182 4183 4184 4185 4186
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4187
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4188 4189 4190 4191 4192
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4193
 * @w: work descriptor
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4200 4201
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4202
 */
4203
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4204
{
4205
	struct kmem_cache *searchp;
4206
	struct kmem_cache_node *l3;
4207
	int node = numa_mem_id();
4208
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4209

4210
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4211
		/* Give up. Setup the next iteration. */
4212
		goto out;
L
Linus Torvalds 已提交
4213

4214
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4215 4216
		check_irq_on();

4217 4218 4219 4220 4221
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4222
		l3 = searchp->nodelists[node];
4223

4224
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4225

4226
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4227

4228 4229 4230 4231
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4232
		if (time_after(l3->next_reap, jiffies))
4233
			goto next;
L
Linus Torvalds 已提交
4234

4235
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4236

4237
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4238

4239
		if (l3->free_touched)
4240
			l3->free_touched = 0;
4241 4242
		else {
			int freed;
L
Linus Torvalds 已提交
4243

4244 4245 4246 4247
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4248
next:
L
Linus Torvalds 已提交
4249 4250 4251
		cond_resched();
	}
	check_irq_on();
4252
	mutex_unlock(&slab_mutex);
4253
	next_reap_node();
4254
out:
A
Andrew Morton 已提交
4255
	/* Set up the next iteration */
4256
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4257 4258
}

4259
#ifdef CONFIG_SLABINFO
4260
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4261
{
P
Pekka Enberg 已提交
4262 4263 4264 4265 4266
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4267
	const char *name;
L
Linus Torvalds 已提交
4268
	char *error = NULL;
4269
	int node;
4270
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
4271 4272 4273

	active_objs = 0;
	num_slabs = 0;
4274 4275 4276 4277 4278
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4279 4280
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4281

4282
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4283 4284 4285 4286 4287
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4288
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4289 4290 4291 4292 4293 4294 4295
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4296
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4297 4298 4299 4300 4301
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4302 4303
		if (l3->shared)
			shared_avail += l3->shared->avail;
4304

4305
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4306
	}
P
Pekka Enberg 已提交
4307 4308
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4309
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4310 4311
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4312
	name = cachep->name;
L
Linus Torvalds 已提交
4313 4314 4315
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4330
#if STATS
P
Pekka Enberg 已提交
4331
	{			/* list3 stats */
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336 4337 4338
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4339
		unsigned long node_frees = cachep->node_frees;
4340
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4341

J
Joe Perches 已提交
4342 4343 4344 4345 4346
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4356
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4369
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4370
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4371
{
P
Pekka Enberg 已提交
4372
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4373
	int limit, batchcount, shared, res;
4374
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4375

L
Linus Torvalds 已提交
4376 4377 4378 4379
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4380
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4391
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4392
	res = -EINVAL;
4393
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4394
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4395 4396
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4397
				res = 0;
L
Linus Torvalds 已提交
4398
			} else {
4399
				res = do_tune_cpucache(cachep, limit,
4400 4401
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4402 4403 4404 4405
			}
			break;
		}
	}
4406
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4407 4408 4409 4410
	if (res >= 0)
		res = count;
	return res;
}
4411 4412 4413 4414 4415

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4416 4417
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4456
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4468
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4469

4470
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4471
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4472
		if (modname[0])
4473 4474 4475 4476 4477 4478 4479 4480 4481
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4482
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4483
	struct slab *slabp;
4484
	struct kmem_cache_node *l3;
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4507
		list_for_each_entry(slabp, &l3->slabs_full, list)
4508
			handle_slab(n, cachep, slabp);
4509
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4510 4511 4512 4513 4514 4515
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4516
		mutex_unlock(&slab_mutex);
4517 4518 4519 4520
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4521
			mutex_lock(&slab_mutex);
4522 4523 4524 4525
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4526
		mutex_lock(&slab_mutex);
4527 4528 4529 4530 4531 4532 4533 4534 4535
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4536

4537 4538 4539
	return 0;
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4550
static const struct seq_operations slabstats_op = {
4551 4552 4553 4554 4555
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4586
#endif
4587 4588 4589
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4590 4591
#endif

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4604
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4605
{
4606 4607
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4608
		return 0;
L
Linus Torvalds 已提交
4609

4610
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4611
}
K
Kirill A. Shutemov 已提交
4612
EXPORT_SYMBOL(ksize);