slab.c 121.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500 501
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
502 503
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
504
 */
505 506 507
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
508
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
509

510 511
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
512
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
513
	return page->slab_cache;
514 515 516 517
}

static inline struct slab *virt_to_slab(const void *obj)
{
518
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
519 520 521

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
522 523
}

524 525 526
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
527
	return slab->s_mem + cache->size * idx;
528 529
}

530
/*
531 532 533
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
534 535 536 537
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
538
{
539 540
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
541 542
}

A
Andrew Morton 已提交
543 544 545
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
563
	{NULL,}
L
Linus Torvalds 已提交
564 565 566 567
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
568
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
569
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
570
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
571 572

/* internal cache of cache description objs */
573
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
574
static struct kmem_cache cache_cache = {
575
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
576 577 578
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
579
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
580
	.name = "kmem_cache",
L
Linus Torvalds 已提交
581 582
};

583 584
#define BAD_ALIEN_MAGIC 0x01020304ul

585 586 587 588 589 590 591 592
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
593 594 595 596
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
597
 */
598 599 600
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

646
static void init_node_lock_keys(int q)
647
{
648 649
	struct cache_sizes *s = malloc_sizes;

650
	if (slab_state < UP)
651 652 653 654 655 656 657
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
658
			continue;
659 660 661

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
662 663
	}
}
664 665 666 667 668 669 670 671

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
672
#else
673 674 675 676
static void init_node_lock_keys(int q)
{
}

677
static inline void init_lock_keys(void)
678 679
{
}
680 681 682 683 684 685 686 687

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
688 689
#endif

690
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
691

692
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
693 694 695 696
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
697 698
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
699 700 701 702 703
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
704 705 706
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
707
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
708
#endif
709 710 711
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
712 713 714 715
	while (size > csizep->cs_size)
		csizep++;

	/*
716
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
717 718 719
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
720
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
721 722
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
723
#endif
L
Linus Torvalds 已提交
724 725 726
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
727
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
728 729 730 731
{
	return __find_general_cachep(size, gfpflags);
}

732
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
733
{
734 735
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
736

A
Andrew Morton 已提交
737 738 739
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
740 741 742 743 744 745 746
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
796 797
}

798
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
799

A
Andrew Morton 已提交
800 801
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
802 803
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
804
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
805
	dump_stack();
806
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

825 826 827 828 829 830 831 832 833 834 835
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

836 837 838 839 840 841 842
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
843
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
844 845 846 847 848

static void init_reap_node(int cpu)
{
	int node;

849
	node = next_node(cpu_to_mem(cpu), node_online_map);
850
	if (node == MAX_NUMNODES)
851
		node = first_node(node_online_map);
852

853
	per_cpu(slab_reap_node, cpu) = node;
854 855 856 857
}

static void next_reap_node(void)
{
858
	int node = __this_cpu_read(slab_reap_node);
859 860 861 862

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
863
	__this_cpu_write(slab_reap_node, node);
864 865 866 867 868 869 870
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
871 872 873 874 875 876 877
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
878
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
879
{
880
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
881 882 883 884 885 886

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
887
	if (keventd_up() && reap_work->work.func == NULL) {
888
		init_reap_node(cpu);
889
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
890 891
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
892 893 894
	}
}

895
static struct array_cache *alloc_arraycache(int node, int entries,
896
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
897
{
P
Pekka Enberg 已提交
898
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
899 900
	struct array_cache *nc = NULL;

901
	nc = kmalloc_node(memsize, gfp, node);
902 903
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
904
	 * However, when such objects are allocated or transferred to another
905 906 907 908 909
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
910 911 912 913 914
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
915
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
916 917 918 919
	}
	return nc;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

956
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1017 1018 1019 1020 1021 1022 1023 1024 1025
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1026 1027 1028 1029 1030 1031 1032 1033 1034
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1035 1036 1037
	ac->entry[ac->avail++] = objp;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1048
	int nr = min3(from->avail, max, to->limit - to->avail);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1061 1062 1063 1064 1065
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1066
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1086
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1087 1088 1089 1090 1091 1092 1093
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1094
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1095
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1096

1097
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1098 1099
{
	struct array_cache **ac_ptr;
1100
	int memsize = sizeof(void *) * nr_node_ids;
1101 1102 1103 1104
	int i;

	if (limit > 1)
		limit = 12;
1105
	ac_ptr = kzalloc_node(memsize, gfp, node);
1106 1107
	if (ac_ptr) {
		for_each_node(i) {
1108
			if (i == node || !node_online(i))
1109
				continue;
1110
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1111
			if (!ac_ptr[i]) {
1112
				for (i--; i >= 0; i--)
1113 1114 1115 1116 1117 1118 1119 1120 1121
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1122
static void free_alien_cache(struct array_cache **ac_ptr)
1123 1124 1125 1126 1127 1128
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1129
	    kfree(ac_ptr[i]);
1130 1131 1132
	kfree(ac_ptr);
}

1133
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1134
				struct array_cache *ac, int node)
1135 1136 1137 1138 1139
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1140 1141 1142 1143 1144
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1145 1146
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1147

1148
		free_block(cachep, ac->entry, ac->avail, node);
1149 1150 1151 1152 1153
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1154 1155 1156 1157 1158
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1159
	int node = __this_cpu_read(slab_reap_node);
1160 1161 1162

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1163 1164

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1165 1166 1167 1168 1169 1170
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1171 1172
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1173
{
P
Pekka Enberg 已提交
1174
	int i = 0;
1175 1176 1177 1178
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1179
		ac = alien[i];
1180 1181 1182 1183 1184 1185 1186
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1187

1188
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1189 1190 1191 1192 1193
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1194 1195
	int node;

1196
	node = numa_mem_id();
1197 1198 1199 1200 1201

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1202
	if (likely(slabp->nodeid == node))
1203 1204
		return 0;

P
Pekka Enberg 已提交
1205
	l3 = cachep->nodelists[node];
1206 1207 1208
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1209
		spin_lock(&alien->lock);
1210 1211 1212 1213
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1214
		ac_put_obj(cachep, alien, objp);
1215 1216 1217 1218 1219 1220 1221 1222
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1223 1224
#endif

1225 1226 1227 1228 1229 1230 1231
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1232
 * Must hold slab_mutex.
1233 1234 1235 1236 1237 1238 1239
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1240
	list_for_each_entry(cachep, &slab_caches, list) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1256
			 * go.  slab_mutex is sufficient
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1271 1272 1273 1274
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1275
	int node = cpu_to_mem(cpu);
1276
	const struct cpumask *mask = cpumask_of_node(node);
1277

1278
	list_for_each_entry(cachep, &slab_caches, list) {
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1298
		if (!cpumask_empty(mask)) {
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1328
	list_for_each_entry(cachep, &slab_caches, list) {
1329 1330 1331 1332 1333 1334 1335 1336
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1337
{
1338
	struct kmem_cache *cachep;
1339
	struct kmem_list3 *l3 = NULL;
1340
	int node = cpu_to_mem(cpu);
1341
	int err;
L
Linus Torvalds 已提交
1342

1343 1344 1345 1346 1347 1348
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1349 1350 1351
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1352 1353 1354 1355 1356

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1357
	list_for_each_entry(cachep, &slab_caches, list) {
1358 1359 1360 1361 1362
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1363
					cachep->batchcount, GFP_KERNEL);
1364 1365 1366 1367 1368
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1369
				0xbaadf00d, GFP_KERNEL);
1370 1371
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1372
				goto bad;
1373
			}
1374 1375
		}
		if (use_alien_caches) {
1376
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1377 1378 1379
			if (!alien) {
				kfree(shared);
				kfree(nc);
1380
				goto bad;
1381
			}
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1396
#ifdef CONFIG_NUMA
1397 1398 1399
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1400
		}
1401 1402 1403 1404
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1405 1406
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1407
	}
1408 1409
	init_node_lock_keys(node);

1410 1411
	return 0;
bad:
1412
	cpuup_canceled(cpu);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1425
		mutex_lock(&slab_mutex);
1426
		err = cpuup_prepare(cpu);
1427
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1428 1429
		break;
	case CPU_ONLINE:
1430
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1431 1432 1433
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1434
  	case CPU_DOWN_PREPARE:
1435
  	case CPU_DOWN_PREPARE_FROZEN:
1436
		/*
1437
		 * Shutdown cache reaper. Note that the slab_mutex is
1438 1439 1440 1441
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1442
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1443
		/* Now the cache_reaper is guaranteed to be not running. */
1444
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1445 1446
  		break;
  	case CPU_DOWN_FAILED:
1447
  	case CPU_DOWN_FAILED_FROZEN:
1448 1449
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1450
	case CPU_DEAD:
1451
	case CPU_DEAD_FROZEN:
1452 1453 1454 1455 1456 1457 1458 1459
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1460
		/* fall through */
1461
#endif
L
Linus Torvalds 已提交
1462
	case CPU_UP_CANCELED:
1463
	case CPU_UP_CANCELED_FROZEN:
1464
		mutex_lock(&slab_mutex);
1465
		cpuup_canceled(cpu);
1466
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1467 1468
		break;
	}
1469
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1470 1471
}

1472 1473 1474
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1475

1476 1477 1478 1479 1480 1481
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1482
 * Must hold slab_mutex.
1483 1484 1485 1486 1487 1488
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1489
	list_for_each_entry(cachep, &slab_caches, list) {
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1520
		mutex_lock(&slab_mutex);
1521
		ret = init_cache_nodelists_node(nid);
1522
		mutex_unlock(&slab_mutex);
1523 1524
		break;
	case MEM_GOING_OFFLINE:
1525
		mutex_lock(&slab_mutex);
1526
		ret = drain_cache_nodelists_node(nid);
1527
		mutex_unlock(&slab_mutex);
1528 1529 1530 1531 1532 1533 1534 1535
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1536
	return notifier_from_errno(ret);
1537 1538 1539
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1540 1541 1542
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1543 1544
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1545 1546 1547
{
	struct kmem_list3 *ptr;

1548
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1549 1550 1551
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1552 1553 1554 1555 1556
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1557 1558 1559 1560
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1577 1578 1579
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1586
	int i;
1587
	int order;
P
Pekka Enberg 已提交
1588
	int node;
1589

1590
	if (num_possible_nodes() == 1)
1591 1592
		use_alien_caches = 0;

1593 1594 1595 1596 1597
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1598
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1599 1600 1601

	/*
	 * Fragmentation resistance on low memory - only use bigger
1602 1603
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1604
	 */
1605
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1606
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1607 1608 1609

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1610 1611 1612
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1613 1614 1615
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1616
	 * 2) Create the first kmalloc cache.
1617
	 *    The struct kmem_cache for the new cache is allocated normally.
1618 1619 1620
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1621 1622
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1623 1624 1625
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1626 1627
	 */

1628
	node = numa_mem_id();
P
Pekka Enberg 已提交
1629

L
Linus Torvalds 已提交
1630
	/* 1) create the cache_cache */
1631 1632
	INIT_LIST_HEAD(&slab_caches);
	list_add(&cache_cache.list, &slab_caches);
L
Linus Torvalds 已提交
1633 1634
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1635
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1636

E
Eric Dumazet 已提交
1637
	/*
1638
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1639
	 */
1640
	cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1641
				  nr_node_ids * sizeof(struct kmem_list3 *);
1642 1643
	cache_cache.object_size = cache_cache.size;
	cache_cache.size = ALIGN(cache_cache.size,
A
Andrew Morton 已提交
1644
					cache_line_size());
1645
	cache_cache.reciprocal_buffer_size =
1646
		reciprocal_value(cache_cache.size);
L
Linus Torvalds 已提交
1647

1648
	for (order = 0; order < MAX_ORDER; order++) {
1649
		cache_estimate(order, cache_cache.size,
1650 1651 1652 1653
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1654
	BUG_ON(!cache_cache.num);
1655
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1656 1657 1658
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1664 1665 1666 1667
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1668 1669
	 */

1670
	sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1671 1672 1673
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1674
					NULL);
1675

A
Andrew Morton 已提交
1676
	if (INDEX_AC != INDEX_L3) {
1677
		sizes[INDEX_L3].cs_cachep =
1678
			__kmem_cache_create(names[INDEX_L3].name,
A
Andrew Morton 已提交
1679 1680 1681
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1682
				NULL);
A
Andrew Morton 已提交
1683
	}
1684

1685 1686
	slab_early_init = 0;

L
Linus Torvalds 已提交
1687
	while (sizes->cs_size != ULONG_MAX) {
1688 1689
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1690 1691 1692
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1693 1694
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1695
		if (!sizes->cs_cachep) {
1696
			sizes->cs_cachep = __kmem_cache_create(names->name,
A
Andrew Morton 已提交
1697 1698 1699
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1700
					NULL);
A
Andrew Morton 已提交
1701
		}
1702
#ifdef CONFIG_ZONE_DMA
1703
		sizes->cs_dmacachep = __kmem_cache_create(
1704
					names->name_dma,
A
Andrew Morton 已提交
1705 1706 1707 1708
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1709
					NULL);
1710
#endif
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1716
		struct array_cache *ptr;
1717

1718
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1719

1720 1721
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1722
		       sizeof(struct arraycache_init));
1723 1724 1725 1726 1727
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1728
		cache_cache.array[smp_processor_id()] = ptr;
1729

1730
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1731

1732
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1733
		       != &initarray_generic.cache);
1734
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1735
		       sizeof(struct arraycache_init));
1736 1737 1738 1739 1740
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1741
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1742
		    ptr;
L
Linus Torvalds 已提交
1743
	}
1744 1745
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1746 1747
		int nid;

1748
		for_each_online_node(nid) {
1749
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1750

1751
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1752
				  &initkmem_list3[SIZE_AC + nid], nid);
1753 1754 1755

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1756
					  &initkmem_list3[SIZE_L3 + nid], nid);
1757 1758 1759
			}
		}
	}
L
Linus Torvalds 已提交
1760

1761
	slab_state = UP;
1762 1763 1764 1765 1766 1767
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1768
	slab_state = UP;
P
Peter Zijlstra 已提交
1769

1770
	/* 6) resize the head arrays to their final sizes */
1771 1772
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1773 1774
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1775
	mutex_unlock(&slab_mutex);
1776

1777 1778 1779
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1780 1781 1782
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1783 1784 1785
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1786 1787 1788
	 */
	register_cpu_notifier(&cpucache_notifier);

1789 1790 1791 1792 1793 1794 1795 1796
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1797 1798 1799
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804 1805 1806
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1807 1808
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1809
	 */
1810
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1811
		start_cpu_timer(cpu);
1812 1813

	/* Done! */
1814
	slab_state = FULL;
L
Linus Torvalds 已提交
1815 1816 1817 1818
	return 0;
}
__initcall(cpucache_init);

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1831
		cachep->name, cachep->size, cachep->gfporder);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870 1871
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1872
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1873 1874
{
	struct page *page;
1875
	int nr_pages;
L
Linus Torvalds 已提交
1876 1877
	int i;

1878
#ifndef CONFIG_MMU
1879 1880 1881
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1882
	 */
1883
	flags |= __GFP_COMP;
1884
#endif
1885

1886
	flags |= cachep->allocflags;
1887 1888
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1889

L
Linus Torvalds 已提交
1890
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1891 1892 1893
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1894
		return NULL;
1895
	}
L
Linus Torvalds 已提交
1896

1897
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1898 1899 1900
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1901
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1902
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1903 1904 1905 1906 1907
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1908
	for (i = 0; i < nr_pages; i++) {
1909
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1910

1911 1912 1913 1914
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1915 1916 1917 1918 1919 1920 1921 1922
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1923

1924
	return page_address(page);
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
}

/*
 * Interface to system's page release.
 */
1930
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1931
{
P
Pekka Enberg 已提交
1932
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1933 1934 1935
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1936
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1937

1938 1939 1940 1941 1942 1943
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1944
	while (i--) {
N
Nick Piggin 已提交
1945
		BUG_ON(!PageSlab(page));
1946
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1947
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1957
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1958
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1968
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1969
			    unsigned long caller)
L
Linus Torvalds 已提交
1970
{
1971
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1972

1973
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1974

P
Pekka Enberg 已提交
1975
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1976 1977
		return;

P
Pekka Enberg 已提交
1978 1979 1980 1981
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1989
				*addr++ = svalue;
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995 1996
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1997
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1998 1999 2000
}
#endif

2001
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2002
{
2003
	int size = cachep->object_size;
2004
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2005 2006

	memset(addr, val, size);
P
Pekka Enberg 已提交
2007
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2013 2014 2015
	unsigned char error = 0;
	int bad_count = 0;

2016
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2017 2018 2019 2020 2021 2022
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2023 2024
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043
}
#endif

#if DEBUG

2044
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2050
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2051 2052
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2053 2054 2055 2056
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2057
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2058
		print_symbol("(%s)",
A
Andrew Morton 已提交
2059
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2060 2061
		printk("\n");
	}
2062
	realobj = (char *)objp + obj_offset(cachep);
2063
	size = cachep->object_size;
P
Pekka Enberg 已提交
2064
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2065 2066
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2067 2068
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2069 2070 2071 2072
		dump_line(realobj, i, limit);
	}
}

2073
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078
{
	char *realobj;
	int size, i;
	int lines = 0;

2079
	realobj = (char *)objp + obj_offset(cachep);
2080
	size = cachep->object_size;
L
Linus Torvalds 已提交
2081

P
Pekka Enberg 已提交
2082
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2083
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2084
		if (i == size - 1)
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2091
				printk(KERN_ERR
2092 2093
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2094 2095 2096
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2097
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2098
			limit = 16;
P
Pekka Enberg 已提交
2099 2100
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2113
		struct slab *slabp = virt_to_slab(objp);
2114
		unsigned int objnr;
L
Linus Torvalds 已提交
2115

2116
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2117
		if (objnr) {
2118
			objp = index_to_obj(cachep, slabp, objnr - 1);
2119
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2120
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2121
			       realobj, size);
L
Linus Torvalds 已提交
2122 2123
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2124
		if (objnr + 1 < cachep->num) {
2125
			objp = index_to_obj(cachep, slabp, objnr + 1);
2126
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2127
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2128
			       realobj, size);
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133 2134
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2135
#if DEBUG
R
Rabin Vincent 已提交
2136
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2137 2138 2139
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2140
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2141 2142 2143

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2144
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2145
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2146
				kernel_map_pages(virt_to_page(objp),
2147
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2157
					   "was overwritten");
L
Linus Torvalds 已提交
2158 2159
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2160
					   "was overwritten");
L
Linus Torvalds 已提交
2161 2162
		}
	}
2163
}
L
Linus Torvalds 已提交
2164
#else
R
Rabin Vincent 已提交
2165
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2166 2167
{
}
L
Linus Torvalds 已提交
2168 2169
#endif

2170 2171 2172 2173 2174
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2175
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2176 2177
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2178
 */
2179
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2180 2181 2182
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2183
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2184 2185 2186
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2187
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2188 2189 2190 2191 2192
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2193 2194
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2195 2196 2197
	}
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2219
/**
2220 2221 2222 2223 2224 2225 2226
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2227 2228 2229 2230 2231
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2232
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2233
			size_t size, size_t align, unsigned long flags)
2234
{
2235
	unsigned long offslab_limit;
2236
	size_t left_over = 0;
2237
	int gfporder;
2238

2239
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2240 2241 2242
		unsigned int num;
		size_t remainder;

2243
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2244 2245
		if (!num)
			continue;
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2259

2260
		/* Found something acceptable - save it away */
2261
		cachep->num = num;
2262
		cachep->gfporder = gfporder;
2263 2264
		left_over = remainder;

2265 2266 2267 2268 2269 2270 2271 2272
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2273 2274 2275 2276
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2277
		if (gfporder >= slab_max_order)
2278 2279
			break;

2280 2281 2282
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2283
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2284 2285 2286 2287 2288
			break;
	}
	return left_over;
}

2289
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2290
{
2291
	if (slab_state >= FULL)
2292
		return enable_cpucache(cachep, gfp);
2293

2294
	if (slab_state == DOWN) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2309
			slab_state = PARTIAL_L3;
2310
		else
2311
			slab_state = PARTIAL_ARRAYCACHE;
2312 2313
	} else {
		cachep->array[smp_processor_id()] =
2314
			kmalloc(sizeof(struct arraycache_init), gfp);
2315

2316
		if (slab_state == PARTIAL_ARRAYCACHE) {
2317
			set_up_list3s(cachep, SIZE_L3);
2318
			slab_state = PARTIAL_L3;
2319 2320
		} else {
			int node;
2321
			for_each_online_node(node) {
2322 2323
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2324
						gfp, node);
2325 2326 2327 2328 2329
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2330
	cachep->nodelists[numa_mem_id()]->next_reap =
2331 2332 2333 2334 2335 2336 2337 2338 2339
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2340
	return 0;
2341 2342
}

L
Linus Torvalds 已提交
2343
/**
2344
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351 2352
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2353
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2354 2355
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2356 2357
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2370
struct kmem_cache *
2371
__kmem_cache_create (const char *name, size_t size, size_t align,
2372
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2373 2374
{
	size_t left_over, slab_size, ralign;
2375
	struct kmem_cache *cachep = NULL;
2376
	gfp_t gfp;
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2386 2387
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2388
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2389 2390 2391 2392 2393 2394 2395
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2396 2397
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2398
	 */
2399
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2400

A
Andrew Morton 已提交
2401 2402
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2403 2404 2405
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2406 2407 2408
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2409 2410
	}

A
Andrew Morton 已提交
2411 2412
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2413 2414
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2415 2416 2417 2418
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2419 2420
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2421
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2422 2423 2424 2425
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2426 2427

	/*
D
David Woodhouse 已提交
2428 2429 2430
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2431
	 */
D
David Woodhouse 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2442

2443
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2444 2445 2446
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2447
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2448 2449 2450
	if (ralign < align) {
		ralign = align;
	}
2451 2452
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2453
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2454
	/*
2455
	 * 4) Store it.
L
Linus Torvalds 已提交
2456 2457 2458
	 */
	align = ralign;

2459 2460 2461 2462 2463
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2464
	/* Get cache's description obj. */
2465
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2466
	if (!cachep)
2467
		return NULL;
L
Linus Torvalds 已提交
2468

2469
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2470 2471
	cachep->object_size = size;
	cachep->align = align;
L
Linus Torvalds 已提交
2472 2473
#if DEBUG

2474 2475 2476 2477
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2478 2479
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2480 2481
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2482 2483
	}
	if (flags & SLAB_STORE_USER) {
2484
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2485 2486
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2487
		 */
D
David Woodhouse 已提交
2488 2489 2490 2491
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2492 2493
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2494
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2495
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2496
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501
		size = PAGE_SIZE;
	}
#endif
#endif

2502 2503 2504
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2505 2506
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2507
	 */
2508 2509
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514 2515 2516 2517
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2518
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2519 2520

	if (!cachep->num) {
2521 2522
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2523
		kmem_cache_free(&cache_cache, cachep);
2524
		return NULL;
L
Linus Torvalds 已提交
2525
	}
P
Pekka Enberg 已提交
2526 2527
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2540 2541
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2542 2543 2544 2545 2546 2547 2548 2549 2550

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2557
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2558 2559
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2560
	cachep->allocflags = 0;
2561
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2562
		cachep->allocflags |= GFP_DMA;
2563
	cachep->size = size;
2564
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2565

2566
	if (flags & CFLGS_OFF_SLAB) {
2567
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2568 2569 2570 2571 2572 2573 2574
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2575
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2576
	}
L
Linus Torvalds 已提交
2577 2578 2579
	cachep->ctor = ctor;
	cachep->name = name;

2580
	if (setup_cpu_cache(cachep, gfp)) {
2581
		__kmem_cache_destroy(cachep);
2582
		return NULL;
2583
	}
L
Linus Torvalds 已提交
2584

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2595
	/* cache setup completed, link it into the list */
2596
	list_add(&cachep->list, &slab_caches);
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	return cachep;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2611
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2612 2613 2614
{
#ifdef CONFIG_SMP
	check_irq_off();
2615
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2616 2617
#endif
}
2618

2619
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2620 2621 2622 2623 2624 2625 2626
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2627 2628 2629 2630
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2631
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2632 2633
#endif

2634 2635 2636 2637
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2638 2639
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2640
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2641
	struct array_cache *ac;
2642
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2643 2644

	check_irq_off();
2645
	ac = cpu_cache_get(cachep);
2646 2647 2648
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2649 2650 2651
	ac->avail = 0;
}

2652
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2653
{
2654 2655 2656
	struct kmem_list3 *l3;
	int node;

2657
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2658
	check_irq_on();
P
Pekka Enberg 已提交
2659
	for_each_online_node(node) {
2660
		l3 = cachep->nodelists[node];
2661 2662 2663 2664 2665 2666 2667
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2668
			drain_array(cachep, l3, l3->shared, 1, node);
2669
	}
L
Linus Torvalds 已提交
2670 2671
}

2672 2673 2674 2675 2676 2677 2678 2679
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2680
{
2681 2682
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2683 2684
	struct slab *slabp;

2685 2686
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2687

2688
		spin_lock_irq(&l3->list_lock);
2689
		p = l3->slabs_free.prev;
2690 2691 2692 2693
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2694

2695
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2696
#if DEBUG
2697
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2698 2699
#endif
		list_del(&slabp->list);
2700 2701 2702 2703 2704
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2705
		spin_unlock_irq(&l3->list_lock);
2706 2707
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2708
	}
2709 2710
out:
	return nr_freed;
L
Linus Torvalds 已提交
2711 2712
}

2713
/* Called with slab_mutex held to protect against cpu hotplug */
2714
static int __cache_shrink(struct kmem_cache *cachep)
2715 2716 2717 2718 2719 2720 2721 2722 2723
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2724 2725 2726 2727 2728 2729 2730
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2731 2732 2733 2734
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2742
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2743
{
2744
	int ret;
2745
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2746

2747
	get_online_cpus();
2748
	mutex_lock(&slab_mutex);
2749
	ret = __cache_shrink(cachep);
2750
	mutex_unlock(&slab_mutex);
2751
	put_online_cpus();
2752
	return ret;
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2760
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766 2767 2768
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2769
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2770 2771
 * during the kmem_cache_destroy().
 */
2772
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2773
{
2774
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2775 2776

	/* Find the cache in the chain of caches. */
2777
	get_online_cpus();
2778
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
2779 2780 2781
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
2782
	list_del(&cachep->list);
L
Linus Torvalds 已提交
2783 2784
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
2785 2786
		list_add(&cachep->list, &slab_caches);
		mutex_unlock(&slab_mutex);
2787
		put_online_cpus();
2788
		return;
L
Linus Torvalds 已提交
2789 2790 2791
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2792
		rcu_barrier();
L
Linus Torvalds 已提交
2793

2794
	__kmem_cache_destroy(cachep);
2795
	mutex_unlock(&slab_mutex);
2796
	put_online_cpus();
L
Linus Torvalds 已提交
2797 2798 2799
}
EXPORT_SYMBOL(kmem_cache_destroy);

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2811
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2812 2813
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2814 2815
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2816

L
Linus Torvalds 已提交
2817 2818
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2819
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2820
					      local_flags, nodeid);
2821 2822 2823 2824 2825 2826
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2827 2828
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2829 2830 2831
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2832
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2833 2834 2835 2836
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2837
	slabp->s_mem = objp + colour_off;
2838
	slabp->nodeid = nodeid;
2839
	slabp->free = 0;
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2845
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2846 2847
}

2848
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2849
			    struct slab *slabp)
L
Linus Torvalds 已提交
2850 2851 2852 2853
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2854
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2867 2868 2869
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2870 2871
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2872
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2873 2874 2875 2876

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2877
					   " end of an object");
L
Linus Torvalds 已提交
2878 2879
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2880
					   " start of an object");
L
Linus Torvalds 已提交
2881
		}
2882
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2883
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2884
			kernel_map_pages(virt_to_page(objp),
2885
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2886 2887
#else
		if (cachep->ctor)
2888
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2889
#endif
P
Pekka Enberg 已提交
2890
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2891
	}
P
Pekka Enberg 已提交
2892
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2893 2894
}

2895
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2896
{
2897 2898
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2899
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2900
		else
2901
			BUG_ON(cachep->allocflags & GFP_DMA);
2902
	}
L
Linus Torvalds 已提交
2903 2904
}

A
Andrew Morton 已提交
2905 2906
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2907
{
2908
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2922 2923
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2924
{
2925
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2926 2927 2928 2929 2930

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2931
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2932
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2933
				"'%s', objp %p\n", cachep->name, objp);
2934 2935 2936 2937 2938 2939 2940 2941
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2942 2943 2944
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2945
 * virtual address for kfree, ksize, and slab debugging.
2946 2947 2948
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2949
{
2950
	int nr_pages;
L
Linus Torvalds 已提交
2951 2952
	struct page *page;

2953
	page = virt_to_page(addr);
2954

2955
	nr_pages = 1;
2956
	if (likely(!PageCompound(page)))
2957 2958
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2959
	do {
C
Christoph Lameter 已提交
2960 2961
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2962
		page++;
2963
	} while (--nr_pages);
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2970 2971
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2972
{
P
Pekka Enberg 已提交
2973 2974 2975
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2976
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2977

A
Andrew Morton 已提交
2978 2979 2980
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2981
	 */
C
Christoph Lameter 已提交
2982 2983
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2984

2985
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2986
	check_irq_off();
2987 2988
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2989 2990

	/* Get colour for the slab, and cal the next value. */
2991 2992 2993 2994 2995
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2996

2997
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
3010 3011 3012
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
3013
	 */
3014
	if (!objp)
3015
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
3016
	if (!objp)
L
Linus Torvalds 已提交
3017 3018 3019
		goto failed;

	/* Get slab management. */
3020
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
3021
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
3022
	if (!slabp)
L
Linus Torvalds 已提交
3023 3024
		goto opps1;

3025
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
3026

C
Christoph Lameter 已提交
3027
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
3028 3029 3030 3031

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
3032
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3033 3034

	/* Make slab active. */
3035
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
3036
	STATS_INC_GROWN(cachep);
3037 3038
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3039
	return 1;
A
Andrew Morton 已提交
3040
opps1:
L
Linus Torvalds 已提交
3041
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
3042
failed:
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3059 3060
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3061 3062 3063
	}
}

3064 3065
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3066
	unsigned long long redzone1, redzone2;
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3082
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3083 3084 3085
			obj, redzone1, redzone2);
}

3086
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3087
				   unsigned long caller)
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3093 3094
	BUG_ON(virt_to_cache(objp) != cachep);

3095
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3096
	kfree_debugcheck(objp);
3097
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3098

C
Christoph Lameter 已提交
3099
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3100 3101

	if (cachep->flags & SLAB_RED_ZONE) {
3102
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3103 3104 3105 3106
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
3107
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3108

3109
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3110 3111

	BUG_ON(objnr >= cachep->num);
3112
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3113

3114 3115 3116
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3117 3118
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3119
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3120
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
3121
			kernel_map_pages(virt_to_page(objp),
3122
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3133
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3134 3135 3136
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3137

L
Linus Torvalds 已提交
3138 3139 3140 3141 3142 3143 3144
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3145 3146
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3147 3148 3149
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3150 3151 3152
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3162 3163
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3164 3165 3166 3167
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3168 3169
	int node;

L
Linus Torvalds 已提交
3170
	check_irq_off();
3171
	node = numa_mem_id();
3172 3173 3174
	if (unlikely(force_refill))
		goto force_grow;
retry:
3175
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3176 3177
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3178 3179 3180 3181
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3182 3183 3184
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3185
	l3 = cachep->nodelists[node];
3186 3187 3188

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3189

3190
	/* See if we can refill from the shared array */
3191 3192
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3193
		goto alloc_done;
3194
	}
3195

L
Linus Torvalds 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3211 3212 3213 3214 3215 3216

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3217
		BUG_ON(slabp->inuse >= cachep->num);
3218

L
Linus Torvalds 已提交
3219 3220 3221 3222 3223
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3224 3225
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3237
must_grow:
L
Linus Torvalds 已提交
3238
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3239
alloc_done:
3240
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3241 3242 3243

	if (unlikely(!ac->avail)) {
		int x;
3244
force_grow:
3245
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3246

A
Andrew Morton 已提交
3247
		/* cache_grow can reenable interrupts, then ac could change. */
3248
		ac = cpu_cache_get(cachep);
3249 3250 3251

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3252 3253
			return NULL;

A
Andrew Morton 已提交
3254
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3255 3256 3257
			goto retry;
	}
	ac->touched = 1;
3258 3259

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3260 3261
}

A
Andrew Morton 已提交
3262 3263
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3264 3265 3266 3267 3268 3269 3270 3271
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3272
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3273
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3274
{
P
Pekka Enberg 已提交
3275
	if (!objp)
L
Linus Torvalds 已提交
3276
		return objp;
P
Pekka Enberg 已提交
3277
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3278
#ifdef CONFIG_DEBUG_PAGEALLOC
3279
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3280
			kernel_map_pages(virt_to_page(objp),
3281
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3282 3283 3284 3285 3286 3287 3288 3289
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3290
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3291 3292

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3293 3294 3295 3296
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3297
			printk(KERN_ERR
3298
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3299 3300
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3301 3302 3303 3304
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3305 3306 3307 3308 3309
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3310
		slabp = virt_to_head_page(objp)->slab_page;
3311
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3312 3313 3314
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3315
	objp += obj_offset(cachep);
3316
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3317
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3318 3319
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3320
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3321
		       objp, (int)ARCH_SLAB_MINALIGN);
3322
	}
L
Linus Torvalds 已提交
3323 3324 3325 3326 3327 3328
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3329
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3330 3331
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3332
		return false;
3333

3334
	return should_failslab(cachep->object_size, flags, cachep->flags);
3335 3336
}

3337
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3338
{
P
Pekka Enberg 已提交
3339
	void *objp;
L
Linus Torvalds 已提交
3340
	struct array_cache *ac;
3341
	bool force_refill = false;
L
Linus Torvalds 已提交
3342

3343
	check_irq_off();
3344

3345
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3346 3347
	if (likely(ac->avail)) {
		ac->touched = 1;
3348 3349
		objp = ac_get_obj(cachep, ac, flags, false);

3350
		/*
3351 3352
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3353
		 */
3354 3355 3356 3357 3358
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3359
	}
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3370 3371 3372 3373 3374
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3375 3376
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3377 3378 3379
	return objp;
}

3380
#ifdef CONFIG_NUMA
3381
/*
3382
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3383 3384 3385 3386 3387 3388 3389 3390
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3391
	if (in_interrupt() || (flags & __GFP_THISNODE))
3392
		return NULL;
3393
	nid_alloc = nid_here = numa_mem_id();
3394
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3395
		nid_alloc = cpuset_slab_spread_node();
3396
	else if (current->mempolicy)
3397
		nid_alloc = slab_node();
3398
	if (nid_alloc != nid_here)
3399
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3400 3401 3402
	return NULL;
}

3403 3404
/*
 * Fallback function if there was no memory available and no objects on a
3405 3406 3407 3408 3409
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3410
 */
3411
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3412
{
3413 3414
	struct zonelist *zonelist;
	gfp_t local_flags;
3415
	struct zoneref *z;
3416 3417
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3418
	void *obj = NULL;
3419
	int nid;
3420
	unsigned int cpuset_mems_cookie;
3421 3422 3423 3424

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3425
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3426

3427 3428
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3429
	zonelist = node_zonelist(slab_node(), flags);
3430

3431 3432 3433 3434 3435
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3436 3437
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3438

3439
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3440
			cache->nodelists[nid] &&
3441
			cache->nodelists[nid]->free_objects) {
3442 3443
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3444 3445 3446
				if (obj)
					break;
		}
3447 3448
	}

3449
	if (!obj) {
3450 3451 3452 3453 3454 3455
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3456 3457 3458
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3459
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3460 3461
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3478
				/* cache_grow already freed obj */
3479 3480 3481
				obj = NULL;
			}
		}
3482
	}
3483 3484 3485

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3486 3487 3488
	return obj;
}

3489 3490
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3491
 */
3492
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3493
				int nodeid)
3494 3495
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3496 3497 3498 3499 3500 3501 3502 3503
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3504
retry:
3505
	check_irq_off();
P
Pekka Enberg 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3525
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3526 3527 3528 3529 3530
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3531
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3532
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3533
	else
P
Pekka Enberg 已提交
3534
		list_add(&slabp->list, &l3->slabs_partial);
3535

P
Pekka Enberg 已提交
3536 3537
	spin_unlock(&l3->list_lock);
	goto done;
3538

A
Andrew Morton 已提交
3539
must_grow:
P
Pekka Enberg 已提交
3540
	spin_unlock(&l3->list_lock);
3541
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3542 3543
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3544

3545
	return fallback_alloc(cachep, flags);
3546

A
Andrew Morton 已提交
3547
done:
P
Pekka Enberg 已提交
3548
	return obj;
3549
}
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3565
		   unsigned long caller)
3566 3567 3568
{
	unsigned long save_flags;
	void *ptr;
3569
	int slab_node = numa_mem_id();
3570

3571
	flags &= gfp_allowed_mask;
3572

3573 3574
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3575
	if (slab_should_failslab(cachep, flags))
3576 3577
		return NULL;

3578 3579 3580
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3581
	if (nodeid == NUMA_NO_NODE)
3582
		nodeid = slab_node;
3583 3584 3585 3586 3587 3588 3589

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3590
	if (nodeid == slab_node) {
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3606
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3607
				 flags);
3608

P
Pekka Enberg 已提交
3609
	if (likely(ptr))
3610
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3611

3612
	if (unlikely((flags & __GFP_ZERO) && ptr))
3613
		memset(ptr, 0, cachep->object_size);
3614

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3634 3635
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3651
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3652 3653 3654 3655
{
	unsigned long save_flags;
	void *objp;

3656
	flags &= gfp_allowed_mask;
3657

3658 3659
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3660
	if (slab_should_failslab(cachep, flags))
3661 3662
		return NULL;

3663 3664 3665 3666 3667
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3668
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3669
				 flags);
3670 3671
	prefetchw(objp);

P
Pekka Enberg 已提交
3672
	if (likely(objp))
3673
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3674

3675
	if (unlikely((flags & __GFP_ZERO) && objp))
3676
		memset(objp, 0, cachep->object_size);
3677

3678 3679
	return objp;
}
3680 3681 3682 3683

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3684
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3685
		       int node)
L
Linus Torvalds 已提交
3686 3687
{
	int i;
3688
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3689 3690

	for (i = 0; i < nr_objects; i++) {
3691
		void *objp;
L
Linus Torvalds 已提交
3692 3693
		struct slab *slabp;

3694 3695 3696
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3697
		slabp = virt_to_slab(objp);
3698
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3699
		list_del(&slabp->list);
3700
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3701
		check_slabp(cachep, slabp);
3702
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3703
		STATS_DEC_ACTIVE(cachep);
3704
		l3->free_objects++;
L
Linus Torvalds 已提交
3705 3706 3707 3708
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3709 3710
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3711 3712 3713 3714 3715 3716
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3717 3718
				slab_destroy(cachep, slabp);
			} else {
3719
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3720 3721 3722 3723 3724 3725
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3726
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3727 3728 3729 3730
		}
	}
}

3731
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3732 3733
{
	int batchcount;
3734
	struct kmem_list3 *l3;
3735
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3736 3737 3738 3739 3740 3741

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3742
	l3 = cachep->nodelists[node];
3743
	spin_lock(&l3->list_lock);
3744 3745
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3746
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3747 3748 3749
		if (max) {
			if (batchcount > max)
				batchcount = max;
3750
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3751
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3757
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3758
free_done:
L
Linus Torvalds 已提交
3759 3760 3761 3762 3763
#if STATS
	{
		int i = 0;
		struct list_head *p;

3764 3765
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3777
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3778
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3779
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3780 3781 3782
}

/*
A
Andrew Morton 已提交
3783 3784
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3785
 */
3786
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3787
				unsigned long caller)
L
Linus Torvalds 已提交
3788
{
3789
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3790 3791

	check_irq_off();
3792
	kmemleak_free_recursive(objp, cachep->flags);
3793
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3794

3795
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3796

3797 3798 3799 3800 3801 3802 3803
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3804
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3805 3806
		return;

L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3813

3814
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3825
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3826
{
3827
	void *ret = __cache_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3828

3829
	trace_kmem_cache_alloc(_RET_IP_, ret,
3830
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3831 3832

	return ret;
L
Linus Torvalds 已提交
3833 3834 3835
}
EXPORT_SYMBOL(kmem_cache_alloc);

3836
#ifdef CONFIG_TRACING
3837
void *
3838
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3839
{
3840 3841
	void *ret;

3842
	ret = __cache_alloc(cachep, flags, _RET_IP_);
3843 3844

	trace_kmalloc(_RET_IP_, ret,
3845
		      size, cachep->size, flags);
3846
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3847
}
3848
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3849 3850
#endif

L
Linus Torvalds 已提交
3851
#ifdef CONFIG_NUMA
3852 3853
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3854
	void *ret = __cache_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3855

3856
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3857
				    cachep->object_size, cachep->size,
3858
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3859 3860

	return ret;
3861
}
L
Linus Torvalds 已提交
3862 3863
EXPORT_SYMBOL(kmem_cache_alloc_node);

3864
#ifdef CONFIG_TRACING
3865
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3866
				  gfp_t flags,
3867 3868
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3869
{
3870 3871
	void *ret;

3872 3873
	ret = __cache_alloc_node(cachep, flags, nodeid, _RET_IP);

3874
	trace_kmalloc_node(_RET_IP_, ret,
3875
			   size, cachep->size,
3876 3877
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3878
}
3879
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3880 3881
#endif

3882
static __always_inline void *
3883
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3884
{
3885
	struct kmem_cache *cachep;
3886 3887

	cachep = kmem_find_general_cachep(size, flags);
3888 3889
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3890
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3891
}
3892

3893
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3894 3895
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3896
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3897
}
3898
EXPORT_SYMBOL(__kmalloc_node);
3899 3900

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3901
		int node, unsigned long caller)
3902
{
3903
	return __do_kmalloc_node(size, flags, node, caller);
3904 3905 3906 3907 3908
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3909
	return __do_kmalloc_node(size, flags, node, 0);
3910 3911
}
EXPORT_SYMBOL(__kmalloc_node);
3912
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3913
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3914 3915

/**
3916
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3917
 * @size: how many bytes of memory are required.
3918
 * @flags: the type of memory to allocate (see kmalloc).
3919
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3920
 */
3921
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3922
					  unsigned long caller)
L
Linus Torvalds 已提交
3923
{
3924
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3925
	void *ret;
L
Linus Torvalds 已提交
3926

3927 3928 3929 3930 3931 3932
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3933 3934
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3935 3936
	ret = __cache_alloc(cachep, flags, caller);

3937
	trace_kmalloc(caller, ret,
3938
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3939 3940

	return ret;
3941 3942 3943
}


3944
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3945 3946
void *__kmalloc(size_t size, gfp_t flags)
{
3947
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3948 3949 3950
}
EXPORT_SYMBOL(__kmalloc);

3951
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3952
{
3953
	return __do_kmalloc(size, flags, caller);
3954 3955
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3956 3957 3958 3959

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3960
	return __do_kmalloc(size, flags, 0);
3961 3962
}
EXPORT_SYMBOL(__kmalloc);
3963 3964
#endif

L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971 3972
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3973
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3974 3975 3976 3977
{
	unsigned long flags;

	local_irq_save(flags);
3978
	debug_check_no_locks_freed(objp, cachep->object_size);
3979
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3980
		debug_check_no_obj_freed(objp, cachep->object_size);
3981
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3982
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3983

3984
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989 3990 3991
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3992 3993
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3999
	struct kmem_cache *c;
L
Linus Torvalds 已提交
4000 4001
	unsigned long flags;

4002 4003
	trace_kfree(_RET_IP_, objp);

4004
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
4005 4006 4007
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
4008
	c = virt_to_cache(objp);
4009 4010 4011
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
4012
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
4013 4014 4015 4016
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

4017
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4018
{
4019
	return cachep->object_size;
L
Linus Torvalds 已提交
4020 4021 4022
}
EXPORT_SYMBOL(kmem_cache_size);

4023
/*
S
Simon Arlott 已提交
4024
 * This initializes kmem_list3 or resizes various caches for all nodes.
4025
 */
4026
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4027 4028 4029
{
	int node;
	struct kmem_list3 *l3;
4030
	struct array_cache *new_shared;
4031
	struct array_cache **new_alien = NULL;
4032

4033
	for_each_online_node(node) {
4034

4035
                if (use_alien_caches) {
4036
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4037 4038 4039
                        if (!new_alien)
                                goto fail;
                }
4040

4041 4042 4043
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
4044
				cachep->shared*cachep->batchcount,
4045
					0xbaadf00d, gfp);
4046 4047 4048 4049
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4050
		}
4051

A
Andrew Morton 已提交
4052 4053
		l3 = cachep->nodelists[node];
		if (l3) {
4054 4055
			struct array_cache *shared = l3->shared;

4056 4057
			spin_lock_irq(&l3->list_lock);

4058
			if (shared)
4059 4060
				free_block(cachep, shared->entry,
						shared->avail, node);
4061

4062 4063
			l3->shared = new_shared;
			if (!l3->alien) {
4064 4065 4066
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4067
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4068
					cachep->batchcount + cachep->num;
4069
			spin_unlock_irq(&l3->list_lock);
4070
			kfree(shared);
4071 4072 4073
			free_alien_cache(new_alien);
			continue;
		}
4074
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4075 4076 4077
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4078
			goto fail;
4079
		}
4080 4081 4082

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4083
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4084
		l3->shared = new_shared;
4085
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4086
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4087
					cachep->batchcount + cachep->num;
4088 4089
		cachep->nodelists[node] = l3;
	}
4090
	return 0;
4091

A
Andrew Morton 已提交
4092
fail:
4093
	if (!cachep->list.next) {
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4108
	return -ENOMEM;
4109 4110
}

L
Linus Torvalds 已提交
4111
struct ccupdate_struct {
4112
	struct kmem_cache *cachep;
4113
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4114 4115 4116 4117
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4118
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4119 4120 4121
	struct array_cache *old;

	check_irq_off();
4122
	old = cpu_cache_get(new->cachep);
4123

L
Linus Torvalds 已提交
4124 4125 4126 4127
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4128
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4129
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4130
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4131
{
4132
	struct ccupdate_struct *new;
4133
	int i;
L
Linus Torvalds 已提交
4134

4135 4136
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4137 4138 4139
	if (!new)
		return -ENOMEM;

4140
	for_each_online_cpu(i) {
4141
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4142
						batchcount, gfp);
4143
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4144
			for (i--; i >= 0; i--)
4145 4146
				kfree(new->new[i]);
			kfree(new);
4147
			return -ENOMEM;
L
Linus Torvalds 已提交
4148 4149
		}
	}
4150
	new->cachep = cachep;
L
Linus Torvalds 已提交
4151

4152
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4153

L
Linus Torvalds 已提交
4154 4155 4156
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4157
	cachep->shared = shared;
L
Linus Torvalds 已提交
4158

4159
	for_each_online_cpu(i) {
4160
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4161 4162
		if (!ccold)
			continue;
4163 4164 4165
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4166 4167
		kfree(ccold);
	}
4168
	kfree(new);
4169
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4170 4171
}

4172
/* Called with slab_mutex held always */
4173
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4174 4175 4176 4177
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4178 4179
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4180 4181
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4182
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4183 4184 4185 4186
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4187
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4188
		limit = 1;
4189
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4190
		limit = 8;
4191
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4192
		limit = 24;
4193
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4194 4195 4196 4197
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4198 4199
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4200 4201 4202 4203 4204 4205 4206 4207
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4208
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4209 4210 4211
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4212 4213 4214
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4215 4216 4217 4218
	 */
	if (limit > 32)
		limit = 32;
#endif
4219
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4220 4221
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4222
		       cachep->name, -err);
4223
	return err;
L
Linus Torvalds 已提交
4224 4225
}

4226 4227
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4228 4229
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4230
 */
4231
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4232
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4233 4234 4235
{
	int tofree;

4236 4237
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4238 4239
	if (ac->touched && !force) {
		ac->touched = 0;
4240
	} else {
4241
		spin_lock_irq(&l3->list_lock);
4242 4243 4244 4245 4246 4247 4248 4249 4250
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4251
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4252 4253 4254 4255 4256
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4257
 * @w: work descriptor
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4264 4265
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4266
 */
4267
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4268
{
4269
	struct kmem_cache *searchp;
4270
	struct kmem_list3 *l3;
4271
	int node = numa_mem_id();
4272
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4273

4274
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4275
		/* Give up. Setup the next iteration. */
4276
		goto out;
L
Linus Torvalds 已提交
4277

4278
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4279 4280
		check_irq_on();

4281 4282 4283 4284 4285
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4286
		l3 = searchp->nodelists[node];
4287

4288
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4289

4290
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4291

4292 4293 4294 4295
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4296
		if (time_after(l3->next_reap, jiffies))
4297
			goto next;
L
Linus Torvalds 已提交
4298

4299
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4300

4301
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4302

4303
		if (l3->free_touched)
4304
			l3->free_touched = 0;
4305 4306
		else {
			int freed;
L
Linus Torvalds 已提交
4307

4308 4309 4310 4311
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4312
next:
L
Linus Torvalds 已提交
4313 4314 4315
		cond_resched();
	}
	check_irq_on();
4316
	mutex_unlock(&slab_mutex);
4317
	next_reap_node();
4318
out:
A
Andrew Morton 已提交
4319
	/* Set up the next iteration */
4320
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4321 4322
}

4323
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4324

4325
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4326
{
4327 4328 4329 4330
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4331
#if STATS
4332
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4333
#else
4334
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4335
#endif
4336 4337 4338 4339
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4340
#if STATS
4341
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4342
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4343
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4344
#endif
4345 4346 4347 4348 4349 4350 4351
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4352
	mutex_lock(&slab_mutex);
4353 4354
	if (!n)
		print_slabinfo_header(m);
4355

4356
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4357 4358 4359 4360
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4361
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4362 4363 4364 4365
}

static void s_stop(struct seq_file *m, void *p)
{
4366
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4367 4368 4369 4370
}

static int s_show(struct seq_file *m, void *p)
{
4371
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4372 4373 4374 4375 4376
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4377
	const char *name;
L
Linus Torvalds 已提交
4378
	char *error = NULL;
4379 4380
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4381 4382 4383

	active_objs = 0;
	num_slabs = 0;
4384 4385 4386 4387 4388
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4389 4390
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4391

4392
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4393 4394 4395 4396 4397
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4398
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4399 4400 4401 4402 4403 4404 4405
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4406
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4407 4408 4409 4410 4411
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4412 4413
		if (l3->shared)
			shared_avail += l3->shared->avail;
4414

4415
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4416
	}
P
Pekka Enberg 已提交
4417 4418
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4419
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4420 4421
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4422
	name = cachep->name;
L
Linus Torvalds 已提交
4423 4424 4425 4426
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4427
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4428
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4429
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4430
		   cachep->limit, cachep->batchcount, cachep->shared);
4431
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4432
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4433
#if STATS
P
Pekka Enberg 已提交
4434
	{			/* list3 stats */
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4442
		unsigned long node_frees = cachep->node_frees;
4443
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4444

J
Joe Perches 已提交
4445 4446 4447 4448 4449
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4459
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4480
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4481 4482 4483 4484
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4495
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4496
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4497
{
P
Pekka Enberg 已提交
4498
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4499
	int limit, batchcount, shared, res;
4500
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4501

L
Linus Torvalds 已提交
4502 4503 4504 4505
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4506
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4517
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4518
	res = -EINVAL;
4519
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4520
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4521 4522
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4523
				res = 0;
L
Linus Torvalds 已提交
4524
			} else {
4525
				res = do_tune_cpucache(cachep, limit,
4526 4527
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4528 4529 4530 4531
			}
			break;
		}
	}
4532
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4533 4534 4535 4536
	if (res >= 0)
		res = count;
	return res;
}
4537

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4551 4552 4553 4554
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4555 4556
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4595
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4607
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4608

4609
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4610
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4611
		if (modname[0])
4612 4613 4614 4615 4616 4617 4618 4619 4620
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4621
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4646
		list_for_each_entry(slabp, &l3->slabs_full, list)
4647
			handle_slab(n, cachep, slabp);
4648
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4649 4650 4651 4652 4653 4654
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4655
		mutex_unlock(&slab_mutex);
4656 4657 4658 4659
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4660
			mutex_lock(&slab_mutex);
4661 4662 4663 4664
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4665
		mutex_lock(&slab_mutex);
4666 4667 4668 4669 4670 4671 4672 4673 4674
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4675

4676 4677 4678
	return 0;
}

4679
static const struct seq_operations slabstats_op = {
4680 4681 4682 4683 4684
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4713
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4714 4715
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4716
#endif
4717 4718 4719
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4720 4721
#endif

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4734
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4735
{
4736 4737
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4738
		return 0;
L
Linus Torvalds 已提交
4739

4740
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4741
}
K
Kirill A. Shutemov 已提交
4742
EXPORT_SYMBOL(ksize);