slab.c 116.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
208
	void *addr;
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254 255 256 257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
258
			 */
L
Linus Torvalds 已提交
259 260
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287 288
};

/*
289
 * The slab lists for all objects.
L
Linus Torvalds 已提交
290
 */
291
struct kmem_cache_node {
P
Pekka Enberg 已提交
292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
301 302
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
303 304
};

305 306 307
/*
 * Need this for bootstrapping a per node allocator.
 */
308
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309
static struct kmem_cache_node __initdata initkmem_list3[NUM_INIT_LISTS];
310
#define	CACHE_CACHE 0
311 312
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
313

314
static int drain_freelist(struct kmem_cache *cache,
315
			struct kmem_cache_node *l3, int tofree);
316 317
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
318
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319
static void cache_reap(struct work_struct *unused);
320

321 322
static int slab_early_init = 1;

323
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
324
#define INDEX_L3 kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
325

326
static void kmem_list3_init(struct kmem_cache_node *parent)
327 328 329 330 331 332
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
333
	parent->colour_next = 0;
334 335 336 337 338
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
339 340 341
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
342
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
343 344
	} while (0)

A
Andrew Morton 已提交
345 346
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
347 348 349 350
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
351 352 353 354 355

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
356 357 358
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
359
 *
A
Adrian Bunk 已提交
360
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
361 362 363 364 365 366 367 368 369 370
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
371
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
372 373 374 375 376
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
377 378
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
379
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
380
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
381 382 383 384 385
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393 394
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
395
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
396 397 398
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
399
#define	STATS_INC_NODEFREES(x)	do { } while (0)
400
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
401
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
402 403 404 405 406 407 408 409
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
410 411
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
412
 * 0		: objp
413
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
414 415
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
416
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
417
 * 		redzone word.
418
 * cachep->obj_offset: The real object.
419 420
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
421
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
422
 */
423
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
424
{
425
	return cachep->obj_offset;
L
Linus Torvalds 已提交
426 427
}

428
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
429 430
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
431 432
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
433 434
}

435
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
436 437 438
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
439
		return (unsigned long long *)(objp + cachep->size -
440
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
441
					      REDZONE_ALIGN);
442
	return (unsigned long long *) (objp + cachep->size -
443
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
444 445
}

446
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
447 448
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
449
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
450 451 452 453
}

#else

454
#define obj_offset(x)			0
455 456
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
457 458 459 460 461
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
462 463
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
464
 */
465 466 467
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
468
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
469

470 471
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
472
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
473
	return page->slab_cache;
474 475 476 477
}

static inline struct slab *virt_to_slab(const void *obj)
{
478
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
479 480 481

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
482 483
}

484 485 486
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
487
	return slab->s_mem + cache->size * idx;
488 489
}

490
/*
491 492 493
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
494 495 496 497
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
498
{
499 500
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
501 502
}

L
Linus Torvalds 已提交
503
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
504
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
505 506

/* internal cache of cache description objs */
507
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
508 509 510
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
511
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
512
	.name = "kmem_cache",
L
Linus Torvalds 已提交
513 514
};

515 516
#define BAD_ALIEN_MAGIC 0x01020304ul

517 518 519 520 521 522 523 524
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
525 526 527 528
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
529
 */
530 531 532
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

533 534 535 536 537 538 539 540
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
541
	struct kmem_cache_node *l3;
542 543
	int r;

544
	l3 = cachep->node[q];
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

578
static void init_node_lock_keys(int q)
579
{
580
	int i;
581

582
	if (slab_state < UP)
583 584
		return;

585
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
586
		struct kmem_cache_node *l3;
587 588 589 590
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
591

592
		l3 = cache->node[q];
593
		if (!l3 || OFF_SLAB(cache))
594
			continue;
595

596
		slab_set_lock_classes(cache, &on_slab_l3_key,
597
				&on_slab_alc_key, q);
598 599
	}
}
600

601 602
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
603
	if (!cachep->node[q])
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

619 620 621 622 623 624 625
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
626
#else
627 628 629 630
static void init_node_lock_keys(int q)
{
}

631
static inline void init_lock_keys(void)
632 633
{
}
634

635 636 637 638 639 640 641 642
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

643 644 645 646 647 648 649
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
650 651
#endif

652
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
653

654
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
655 656 657 658
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
659 660
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
661
{
662
	int i;
L
Linus Torvalds 已提交
663 664 665

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
666 667 668
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
669
	BUG_ON(kmalloc_caches[INDEX_AC] == NULL);
L
Linus Torvalds 已提交
670
#endif
671 672 673
	if (!size)
		return ZERO_SIZE_PTR;

674
	i = kmalloc_index(size);
L
Linus Torvalds 已提交
675 676

	/*
677
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
678 679 680
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
681
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
682
	if (unlikely(gfpflags & GFP_DMA))
683
		return kmalloc_dma_caches[i];
684
#endif
685
	return kmalloc_caches[i];
L
Linus Torvalds 已提交
686 687
}

A
Adrian Bunk 已提交
688
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
689 690 691 692
{
	return __find_general_cachep(size, gfpflags);
}

693
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
694
{
695 696
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
697

A
Andrew Morton 已提交
698 699 700
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
701 702 703 704 705 706 707
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
757 758
}

759
#if DEBUG
760
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
761

A
Andrew Morton 已提交
762 763
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
764 765
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
766
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
767
	dump_stack();
768
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
769
}
770
#endif
L
Linus Torvalds 已提交
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

788 789 790 791 792 793 794 795 796 797 798
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

799 800 801 802 803 804 805
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
806
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
807 808 809 810 811

static void init_reap_node(int cpu)
{
	int node;

812
	node = next_node(cpu_to_mem(cpu), node_online_map);
813
	if (node == MAX_NUMNODES)
814
		node = first_node(node_online_map);
815

816
	per_cpu(slab_reap_node, cpu) = node;
817 818 819 820
}

static void next_reap_node(void)
{
821
	int node = __this_cpu_read(slab_reap_node);
822 823 824 825

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
826
	__this_cpu_write(slab_reap_node, node);
827 828 829 830 831 832 833
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
834 835 836 837 838 839 840
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
841
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
842
{
843
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
844 845 846 847 848 849

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
850
	if (keventd_up() && reap_work->work.func == NULL) {
851
		init_reap_node(cpu);
852
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
853 854
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
855 856 857
	}
}

858
static struct array_cache *alloc_arraycache(int node, int entries,
859
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
860
{
P
Pekka Enberg 已提交
861
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
862 863
	struct array_cache *nc = NULL;

864
	nc = kmalloc_node(memsize, gfp, node);
865 866
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
867
	 * However, when such objects are allocated or transferred to another
868 869 870 871 872
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
873 874 875 876 877
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
878
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
879 880 881 882
	}
	return nc;
}

883 884 885 886 887 888 889 890 891 892 893
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
894
	struct kmem_cache_node *l3 = cachep->node[numa_mem_id()];
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

919
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
920 921 922 923 924 925 926
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
927
		struct kmem_cache_node *l3;
928 929 930 931 932 933 934

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
935
		for (i = 0; i < ac->avail; i++) {
936 937 938 939 940 941 942 943 944 945 946 947 948
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
949
		l3 = cachep->node[numa_mem_id()];
950 951
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
952
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
953 954 955 956 957 958 959 960 961 962 963 964 965
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
980 981 982 983
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
984
		struct page *page = virt_to_head_page(objp);
985 986 987 988
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

989 990 991 992 993 994 995 996 997
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

998 999 1000
	ac->entry[ac->avail++] = objp;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1011
	int nr = min3(from->avail, max, to->limit - to->avail);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1024 1025 1026 1027 1028
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1029
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1049
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1050 1051 1052 1053 1054 1055 1056
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1057
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1058
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1059

1060
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1061 1062
{
	struct array_cache **ac_ptr;
1063
	int memsize = sizeof(void *) * nr_node_ids;
1064 1065 1066 1067
	int i;

	if (limit > 1)
		limit = 12;
1068
	ac_ptr = kzalloc_node(memsize, gfp, node);
1069 1070
	if (ac_ptr) {
		for_each_node(i) {
1071
			if (i == node || !node_online(i))
1072
				continue;
1073
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1074
			if (!ac_ptr[i]) {
1075
				for (i--; i >= 0; i--)
1076 1077 1078 1079 1080 1081 1082 1083 1084
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1085
static void free_alien_cache(struct array_cache **ac_ptr)
1086 1087 1088 1089 1090 1091
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1092
	    kfree(ac_ptr[i]);
1093 1094 1095
	kfree(ac_ptr);
}

1096
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1097
				struct array_cache *ac, int node)
1098
{
1099
	struct kmem_cache_node *rl3 = cachep->node[node];
1100 1101 1102

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1103 1104 1105 1106 1107
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1108 1109
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1110

1111
		free_block(cachep, ac->entry, ac->avail, node);
1112 1113 1114 1115 1116
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1117 1118 1119
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1120
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *l3)
1121
{
1122
	int node = __this_cpu_read(slab_reap_node);
1123 1124 1125

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1126 1127

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1128 1129 1130 1131 1132 1133
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1134 1135
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1136
{
P
Pekka Enberg 已提交
1137
	int i = 0;
1138 1139 1140 1141
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1142
		ac = alien[i];
1143 1144 1145 1146 1147 1148 1149
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1150

1151
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1152 1153 1154
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
1155
	struct kmem_cache_node *l3;
1156
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1157 1158
	int node;

1159
	node = numa_mem_id();
1160 1161 1162 1163 1164

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1165
	if (likely(slabp->nodeid == node))
1166 1167
		return 0;

1168
	l3 = cachep->node[node];
1169 1170 1171
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1172
		spin_lock(&alien->lock);
1173 1174 1175 1176
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1177
		ac_put_obj(cachep, alien, objp);
1178 1179
		spin_unlock(&alien->lock);
	} else {
1180
		spin_lock(&(cachep->node[nodeid])->list_lock);
1181
		free_block(cachep, &objp, 1, nodeid);
1182
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1183 1184 1185
	}
	return 1;
}
1186 1187
#endif

1188
/*
1189
 * Allocates and initializes node for a node on each slab cache, used for
1190 1191
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
1192
 * When hotplugging memory or a cpu, existing node are not replaced if
1193 1194
 * already in use.
 *
1195
 * Must hold slab_mutex.
1196
 */
1197
static int init_cache_node_node(int node)
1198 1199
{
	struct kmem_cache *cachep;
1200 1201
	struct kmem_cache_node *l3;
	const int memsize = sizeof(struct kmem_cache_node);
1202

1203
	list_for_each_entry(cachep, &slab_caches, list) {
1204 1205 1206 1207 1208
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1209
		if (!cachep->node[node]) {
1210 1211 1212 1213 1214 1215 1216 1217 1218
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1219
			 * go.  slab_mutex is sufficient
1220 1221
			 * protection here.
			 */
1222
			cachep->node[node] = l3;
1223 1224
		}

1225 1226
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1227 1228
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1229
		spin_unlock_irq(&cachep->node[node]->list_lock);
1230 1231 1232 1233
	}
	return 0;
}

1234 1235 1236
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
1237
	struct kmem_cache_node *l3 = NULL;
1238
	int node = cpu_to_mem(cpu);
1239
	const struct cpumask *mask = cpumask_of_node(node);
1240

1241
	list_for_each_entry(cachep, &slab_caches, list) {
1242 1243 1244 1245 1246 1247 1248
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1249
		l3 = cachep->node[node];
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1261
		if (!cpumask_empty(mask)) {
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1291
	list_for_each_entry(cachep, &slab_caches, list) {
1292
		l3 = cachep->node[node];
1293 1294 1295 1296 1297 1298 1299
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1300
{
1301
	struct kmem_cache *cachep;
1302
	struct kmem_cache_node *l3 = NULL;
1303
	int node = cpu_to_mem(cpu);
1304
	int err;
L
Linus Torvalds 已提交
1305

1306 1307 1308 1309 1310 1311
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1312
	err = init_cache_node_node(node);
1313 1314
	if (err < 0)
		goto bad;
1315 1316 1317 1318 1319

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1320
	list_for_each_entry(cachep, &slab_caches, list) {
1321 1322 1323 1324 1325
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1326
					cachep->batchcount, GFP_KERNEL);
1327 1328 1329 1330 1331
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1332
				0xbaadf00d, GFP_KERNEL);
1333 1334
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1335
				goto bad;
1336
			}
1337 1338
		}
		if (use_alien_caches) {
1339
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1340 1341 1342
			if (!alien) {
				kfree(shared);
				kfree(nc);
1343
				goto bad;
1344
			}
1345 1346
		}
		cachep->array[cpu] = nc;
1347
		l3 = cachep->node[node];
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1359
#ifdef CONFIG_NUMA
1360 1361 1362
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1363
		}
1364 1365 1366 1367
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1368 1369
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1370 1371 1372
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1373
	}
1374 1375
	init_node_lock_keys(node);

1376 1377
	return 0;
bad:
1378
	cpuup_canceled(cpu);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1391
		mutex_lock(&slab_mutex);
1392
		err = cpuup_prepare(cpu);
1393
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1394 1395
		break;
	case CPU_ONLINE:
1396
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1397 1398 1399
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1400
  	case CPU_DOWN_PREPARE:
1401
  	case CPU_DOWN_PREPARE_FROZEN:
1402
		/*
1403
		 * Shutdown cache reaper. Note that the slab_mutex is
1404 1405 1406 1407
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1408
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1409
		/* Now the cache_reaper is guaranteed to be not running. */
1410
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1411 1412
  		break;
  	case CPU_DOWN_FAILED:
1413
  	case CPU_DOWN_FAILED_FROZEN:
1414 1415
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1416
	case CPU_DEAD:
1417
	case CPU_DEAD_FROZEN:
1418 1419 1420 1421 1422 1423 1424 1425
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1426
		/* fall through */
1427
#endif
L
Linus Torvalds 已提交
1428
	case CPU_UP_CANCELED:
1429
	case CPU_UP_CANCELED_FROZEN:
1430
		mutex_lock(&slab_mutex);
1431
		cpuup_canceled(cpu);
1432
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1433 1434
		break;
	}
1435
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1436 1437
}

1438 1439 1440
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1441

1442 1443 1444 1445 1446 1447
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1448
 * Must hold slab_mutex.
1449
 */
1450
static int __meminit drain_cache_node_node(int node)
1451 1452 1453 1454
{
	struct kmem_cache *cachep;
	int ret = 0;

1455
	list_for_each_entry(cachep, &slab_caches, list) {
1456
		struct kmem_cache_node *l3;
1457

1458
		l3 = cachep->node[node];
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1486
		mutex_lock(&slab_mutex);
1487
		ret = init_cache_node_node(nid);
1488
		mutex_unlock(&slab_mutex);
1489 1490
		break;
	case MEM_GOING_OFFLINE:
1491
		mutex_lock(&slab_mutex);
1492
		ret = drain_cache_node_node(nid);
1493
		mutex_unlock(&slab_mutex);
1494 1495 1496 1497 1498 1499 1500 1501
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1502
	return notifier_from_errno(ret);
1503 1504 1505
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1506 1507 1508
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1509
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1510
				int nodeid)
1511
{
1512
	struct kmem_cache_node *ptr;
1513

1514
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1515 1516
	BUG_ON(!ptr);

1517
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1518 1519 1520 1521 1522
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1523
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1524
	cachep->node[nodeid] = ptr;
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
1536 1537
		cachep->node[node] = &initkmem_list3[index + node];
		cachep->node[node]->next_reap = jiffies +
1538 1539 1540 1541 1542
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1543 1544
/*
 * The memory after the last cpu cache pointer is used for the
1545
 * the node pointer.
C
Christoph Lameter 已提交
1546
 */
1547
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1548
{
1549
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1550 1551
}

A
Andrew Morton 已提交
1552 1553 1554
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1555 1556 1557
 */
void __init kmem_cache_init(void)
{
1558 1559
	int i;

1560
	kmem_cache = &kmem_cache_boot;
1561
	setup_node_pointer(kmem_cache);
1562

1563
	if (num_possible_nodes() == 1)
1564 1565
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1566
	for (i = 0; i < NUM_INIT_LISTS; i++)
1567
		kmem_list3_init(&initkmem_list3[i]);
C
Christoph Lameter 已提交
1568

1569
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1570 1571 1572

	/*
	 * Fragmentation resistance on low memory - only use bigger
1573 1574
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1575
	 */
1576
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1577
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1578 1579 1580

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1581 1582 1583
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1584 1585 1586
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1587
	 * 2) Create the first kmalloc cache.
1588
	 *    The struct kmem_cache for the new cache is allocated normally.
1589 1590 1591
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1592
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1593
	 *    kmalloc cache with kmalloc allocated arrays.
1594
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1595 1596
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1597 1598
	 */

1599
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1600

E
Eric Dumazet 已提交
1601
	/*
1602
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1603
	 */
1604 1605
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1606
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1607 1608
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1609 1610 1611

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1612 1613 1614 1615
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1616 1617
	 */

1618 1619
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1620 1621

	if (INDEX_AC != INDEX_L3)
1622 1623 1624
		kmalloc_caches[INDEX_L3] =
			create_kmalloc_cache("kmalloc-l3",
				kmalloc_size(INDEX_L3), ARCH_KMALLOC_FLAGS);
1625

1626 1627
	slab_early_init = 0;

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
		size_t cs_size = kmalloc_size(i);

		if (cs_size < KMALLOC_MIN_SIZE)
			continue;

		if (!kmalloc_caches[i]) {
			/*
			 * For performance, all the general caches are L1 aligned.
			 * This should be particularly beneficial on SMP boxes, as it
			 * eliminates "false sharing".
			 * Note for systems short on memory removing the alignment will
			 * allow tighter packing of the smaller caches.
			 */
			kmalloc_caches[i] = create_kmalloc_cache("kmalloc",
					cs_size, ARCH_KMALLOC_FLAGS);
		}
1645

1646
#ifdef CONFIG_ZONE_DMA
1647 1648
		kmalloc_dma_caches[i] = create_kmalloc_cache(
			"kmalloc-dma", cs_size,
1649
			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1650
#endif
L
Linus Torvalds 已提交
1651 1652 1653
	}
	/* 4) Replace the bootstrap head arrays */
	{
1654
		struct array_cache *ptr;
1655

1656
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1657

1658
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1659
		       sizeof(struct arraycache_init));
1660 1661 1662 1663 1664
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1665
		kmem_cache->array[smp_processor_id()] = ptr;
1666

1667
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1668

1669
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1670
		       != &initarray_generic.cache);
1671
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1672
		       sizeof(struct arraycache_init));
1673 1674 1675 1676 1677
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1678
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1679
	}
1680 1681
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1682 1683
		int nid;

1684
		for_each_online_node(nid) {
1685
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1686

1687
			init_list(kmalloc_caches[INDEX_AC],
P
Pekka Enberg 已提交
1688
				  &initkmem_list3[SIZE_AC + nid], nid);
1689 1690

			if (INDEX_AC != INDEX_L3) {
1691
				init_list(kmalloc_caches[INDEX_L3],
P
Pekka Enberg 已提交
1692
					  &initkmem_list3[SIZE_L3 + nid], nid);
1693 1694 1695
			}
		}
	}
L
Linus Torvalds 已提交
1696

1697
	slab_state = UP;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	/* Create the proper names */
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
		char *s;
		struct kmem_cache *c = kmalloc_caches[i];

		if (!c)
			continue;

		s = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));

		BUG_ON(!s);
		c->name = s;

#ifdef CONFIG_ZONE_DMA
		c = kmalloc_dma_caches[i];
		BUG_ON(!c);
		s = kasprintf(GFP_NOWAIT, "dma-kmalloc-%d", kmalloc_size(i));
		BUG_ON(!s);
		c->name = s;
#endif
	}
1720 1721 1722 1723 1724 1725
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1726
	slab_state = UP;
P
Peter Zijlstra 已提交
1727

1728
	/* 6) resize the head arrays to their final sizes */
1729 1730
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1731 1732
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1733
	mutex_unlock(&slab_mutex);
1734

1735 1736 1737
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1738 1739 1740
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1741 1742 1743
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1744 1745 1746
	 */
	register_cpu_notifier(&cpucache_notifier);

1747 1748 1749
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1750
	 * node.
1751 1752 1753 1754
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1755 1756 1757
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763 1764
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1765 1766
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1767
	 */
1768
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1769
		start_cpu_timer(cpu);
1770 1771

	/* Done! */
1772
	slab_state = FULL;
L
Linus Torvalds 已提交
1773 1774 1775 1776
	return 0;
}
__initcall(cpucache_init);

1777 1778 1779
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1780
	struct kmem_cache_node *l3;
1781 1782 1783 1784 1785 1786 1787 1788
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1789
		cachep->name, cachep->size, cachep->gfporder);
1790 1791 1792 1793 1794

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1795
		l3 = cachep->node[node];
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1823 1824 1825 1826 1827 1828 1829
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1830
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1831 1832
{
	struct page *page;
1833
	int nr_pages;
L
Linus Torvalds 已提交
1834 1835
	int i;

1836
#ifndef CONFIG_MMU
1837 1838 1839
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1840
	 */
1841
	flags |= __GFP_COMP;
1842
#endif
1843

1844
	flags |= cachep->allocflags;
1845 1846
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1847

L
Linus Torvalds 已提交
1848
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1849 1850 1851
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1852
		return NULL;
1853
	}
L
Linus Torvalds 已提交
1854

1855
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1856 1857 1858
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1859
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1860
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1861 1862 1863 1864 1865
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1866
	for (i = 0; i < nr_pages; i++) {
1867
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1868

1869 1870 1871
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}
G
Glauber Costa 已提交
1872
	memcg_bind_pages(cachep, cachep->gfporder);
1873

1874 1875 1876 1877 1878 1879 1880 1881
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1882

1883
	return page_address(page);
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888
}

/*
 * Interface to system's page release.
 */
1889
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1890
{
P
Pekka Enberg 已提交
1891
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1892 1893 1894
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1895
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1896

1897 1898 1899 1900 1901 1902
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1903
	while (i--) {
N
Nick Piggin 已提交
1904
		BUG_ON(!PageSlab(page));
1905
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1906
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1907 1908
		page++;
	}
G
Glauber Costa 已提交
1909 1910

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1911 1912
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1913
	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
L
Linus Torvalds 已提交
1914 1915 1916 1917
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1918
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1919
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1929
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1930
			    unsigned long caller)
L
Linus Torvalds 已提交
1931
{
1932
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1933

1934
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1935

P
Pekka Enberg 已提交
1936
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1937 1938
		return;

P
Pekka Enberg 已提交
1939 1940 1941 1942
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1950
				*addr++ = svalue;
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955 1956 1957
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1958
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1959 1960 1961
}
#endif

1962
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1963
{
1964
	int size = cachep->object_size;
1965
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1966 1967

	memset(addr, val, size);
P
Pekka Enberg 已提交
1968
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1974 1975 1976
	unsigned char error = 0;
	int bad_count = 0;

1977
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1978 1979 1980 1981 1982 1983
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1984 1985
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004
}
#endif

#if DEBUG

2005
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2011
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2012 2013
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2014 2015 2016 2017
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2018
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2019
		print_symbol("(%s)",
A
Andrew Morton 已提交
2020
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2021 2022
		printk("\n");
	}
2023
	realobj = (char *)objp + obj_offset(cachep);
2024
	size = cachep->object_size;
P
Pekka Enberg 已提交
2025
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2026 2027
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2028 2029
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2030 2031 2032 2033
		dump_line(realobj, i, limit);
	}
}

2034
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2035 2036 2037 2038 2039
{
	char *realobj;
	int size, i;
	int lines = 0;

2040
	realobj = (char *)objp + obj_offset(cachep);
2041
	size = cachep->object_size;
L
Linus Torvalds 已提交
2042

P
Pekka Enberg 已提交
2043
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2044
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2045
		if (i == size - 1)
L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2052
				printk(KERN_ERR
2053 2054
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2055 2056 2057
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2058
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2059
			limit = 16;
P
Pekka Enberg 已提交
2060 2061
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2074
		struct slab *slabp = virt_to_slab(objp);
2075
		unsigned int objnr;
L
Linus Torvalds 已提交
2076

2077
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2078
		if (objnr) {
2079
			objp = index_to_obj(cachep, slabp, objnr - 1);
2080
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2081
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2082
			       realobj, size);
L
Linus Torvalds 已提交
2083 2084
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2085
		if (objnr + 1 < cachep->num) {
2086
			objp = index_to_obj(cachep, slabp, objnr + 1);
2087
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2088
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2089
			       realobj, size);
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2096
#if DEBUG
R
Rabin Vincent 已提交
2097
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2098 2099 2100
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2101
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2102 2103 2104

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2105
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2106
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2107
				kernel_map_pages(virt_to_page(objp),
2108
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2118
					   "was overwritten");
L
Linus Torvalds 已提交
2119 2120
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2121
					   "was overwritten");
L
Linus Torvalds 已提交
2122 2123
		}
	}
2124
}
L
Linus Torvalds 已提交
2125
#else
R
Rabin Vincent 已提交
2126
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2127 2128
{
}
L
Linus Torvalds 已提交
2129 2130
#endif

2131 2132 2133 2134 2135
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2136
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2137 2138
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2139
 */
2140
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2141 2142 2143
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2144
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2145 2146 2147
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2148
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2149 2150 2151 2152 2153
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2154 2155
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2156 2157 2158
	}
}

2159
/**
2160 2161 2162 2163 2164 2165 2166
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2167 2168 2169 2170 2171
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2172
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2173
			size_t size, size_t align, unsigned long flags)
2174
{
2175
	unsigned long offslab_limit;
2176
	size_t left_over = 0;
2177
	int gfporder;
2178

2179
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2180 2181 2182
		unsigned int num;
		size_t remainder;

2183
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2184 2185
		if (!num)
			continue;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2199

2200
		/* Found something acceptable - save it away */
2201
		cachep->num = num;
2202
		cachep->gfporder = gfporder;
2203 2204
		left_over = remainder;

2205 2206 2207 2208 2209 2210 2211 2212
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2213 2214 2215 2216
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2217
		if (gfporder >= slab_max_order)
2218 2219
			break;

2220 2221 2222
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2223
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2224 2225 2226 2227 2228
			break;
	}
	return left_over;
}

2229
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2230
{
2231
	if (slab_state >= FULL)
2232
		return enable_cpucache(cachep, gfp);
2233

2234
	if (slab_state == DOWN) {
2235
		/*
2236 2237 2238 2239 2240 2241 2242 2243 2244
		 * Note: Creation of first cache (kmem_cache).
		 * The setup_list3s is taken care
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2245 2246 2247 2248 2249 2250 2251
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2252
		 * the second cache, then we need to set up all its list3s,
2253 2254 2255 2256
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2257
			slab_state = PARTIAL_L3;
2258
		else
2259
			slab_state = PARTIAL_ARRAYCACHE;
2260
	} else {
2261
		/* Remaining boot caches */
2262
		cachep->array[smp_processor_id()] =
2263
			kmalloc(sizeof(struct arraycache_init), gfp);
2264

2265
		if (slab_state == PARTIAL_ARRAYCACHE) {
2266
			set_up_list3s(cachep, SIZE_L3);
2267
			slab_state = PARTIAL_L3;
2268 2269
		} else {
			int node;
2270
			for_each_online_node(node) {
2271
				cachep->node[node] =
2272
				    kmalloc_node(sizeof(struct kmem_cache_node),
2273
						gfp, node);
2274 2275
				BUG_ON(!cachep->node[node]);
				kmem_list3_init(cachep->node[node]);
2276 2277 2278
			}
		}
	}
2279
	cachep->node[numa_mem_id()]->next_reap =
2280 2281 2282 2283 2284 2285 2286 2287 2288
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2289
	return 0;
2290 2291
}

L
Linus Torvalds 已提交
2292
/**
2293
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2294
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2295 2296 2297 2298
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2299
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2313
int
2314
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2315 2316
{
	size_t left_over, slab_size, ralign;
2317
	gfp_t gfp;
2318
	int err;
2319
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2329 2330
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2331
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2332 2333 2334 2335 2336 2337 2338
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2339 2340
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2341 2342 2343
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2344 2345 2346
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2347 2348
	}

2349
	/*
D
David Woodhouse 已提交
2350 2351 2352
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2353
	 */
D
David Woodhouse 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2364

2365
	/* 3) caller mandated alignment */
2366 2367
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2368
	}
2369 2370
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2371
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2372
	/*
2373
	 * 4) Store it.
L
Linus Torvalds 已提交
2374
	 */
2375
	cachep->align = ralign;
L
Linus Torvalds 已提交
2376

2377 2378 2379 2380 2381
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2382
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2383 2384
#if DEBUG

2385 2386 2387 2388
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2389 2390
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2391 2392
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2393 2394
	}
	if (flags & SLAB_STORE_USER) {
2395
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2396 2397
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2398
		 */
D
David Woodhouse 已提交
2399 2400 2401 2402
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2403 2404
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2405 2406 2407
	if (size >= kmalloc_size(INDEX_L3 + 1)
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412
		size = PAGE_SIZE;
	}
#endif
#endif

2413 2414 2415
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2416 2417
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2418
	 */
2419 2420
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2427
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2428

2429
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2430

2431
	if (!cachep->num)
2432
		return -E2BIG;
L
Linus Torvalds 已提交
2433

P
Pekka Enberg 已提交
2434
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2435
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2448 2449
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2450 2451 2452 2453 2454 2455 2456 2457 2458

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2459 2460 2461 2462
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2463 2464
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2465
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2466 2467
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2468
	cachep->allocflags = 0;
2469
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2470
		cachep->allocflags |= GFP_DMA;
2471
	cachep->size = size;
2472
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2473

2474
	if (flags & CFLGS_OFF_SLAB) {
2475
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2476 2477 2478 2479 2480 2481 2482
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2483
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2484
	}
L
Linus Torvalds 已提交
2485

2486 2487
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2488
		__kmem_cache_shutdown(cachep);
2489
		return err;
2490
	}
L
Linus Torvalds 已提交
2491

2492 2493 2494 2495 2496 2497 2498 2499
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2500 2501
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2502

2503
	return 0;
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2517
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2518 2519 2520
{
#ifdef CONFIG_SMP
	check_irq_off();
2521
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2522 2523
#endif
}
2524

2525
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2526 2527 2528
{
#ifdef CONFIG_SMP
	check_irq_off();
2529
	assert_spin_locked(&cachep->node[node]->list_lock);
2530 2531 2532
#endif
}

L
Linus Torvalds 已提交
2533 2534 2535 2536
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2537
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2538 2539
#endif

2540
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
2541 2542 2543
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2544 2545
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2546
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2547
	struct array_cache *ac;
2548
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2549 2550

	check_irq_off();
2551
	ac = cpu_cache_get(cachep);
2552
	spin_lock(&cachep->node[node]->list_lock);
2553
	free_block(cachep, ac->entry, ac->avail, node);
2554
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2555 2556 2557
	ac->avail = 0;
}

2558
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2559
{
2560
	struct kmem_cache_node *l3;
2561 2562
	int node;

2563
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2564
	check_irq_on();
P
Pekka Enberg 已提交
2565
	for_each_online_node(node) {
2566
		l3 = cachep->node[node];
2567 2568 2569 2570 2571
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
2572
		l3 = cachep->node[node];
2573
		if (l3)
2574
			drain_array(cachep, l3, l3->shared, 1, node);
2575
	}
L
Linus Torvalds 已提交
2576 2577
}

2578 2579 2580 2581 2582 2583 2584
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2585
			struct kmem_cache_node *l3, int tofree)
L
Linus Torvalds 已提交
2586
{
2587 2588
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2589 2590
	struct slab *slabp;

2591 2592
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2593

2594
		spin_lock_irq(&l3->list_lock);
2595
		p = l3->slabs_free.prev;
2596 2597 2598 2599
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2600

2601
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2602
#if DEBUG
2603
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2604 2605
#endif
		list_del(&slabp->list);
2606 2607 2608 2609 2610
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2611
		spin_unlock_irq(&l3->list_lock);
2612 2613
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2614
	}
2615 2616
out:
	return nr_freed;
L
Linus Torvalds 已提交
2617 2618
}

2619
/* Called with slab_mutex held to protect against cpu hotplug */
2620
static int __cache_shrink(struct kmem_cache *cachep)
2621 2622
{
	int ret = 0, i = 0;
2623
	struct kmem_cache_node *l3;
2624 2625 2626 2627 2628

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2629
		l3 = cachep->node[i];
2630 2631 2632 2633 2634 2635 2636
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2637 2638 2639 2640
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2641 2642 2643 2644 2645 2646 2647
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2648
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2649
{
2650
	int ret;
2651
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2652

2653
	get_online_cpus();
2654
	mutex_lock(&slab_mutex);
2655
	ret = __cache_shrink(cachep);
2656
	mutex_unlock(&slab_mutex);
2657
	put_online_cpus();
2658
	return ret;
L
Linus Torvalds 已提交
2659 2660 2661
}
EXPORT_SYMBOL(kmem_cache_shrink);

2662
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2663
{
2664
	int i;
2665
	struct kmem_cache_node *l3;
2666
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2667

2668 2669
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2670

2671 2672
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2673

2674 2675
	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
2676
		l3 = cachep->node[i];
2677 2678 2679 2680 2681 2682 2683
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2697
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2698 2699
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2700 2701
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2702

L
Linus Torvalds 已提交
2703 2704
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2705
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2706
					      local_flags, nodeid);
2707 2708 2709 2710 2711 2712
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2713 2714
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2715 2716 2717
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2718
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2719 2720 2721 2722
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2723
	slabp->s_mem = objp + colour_off;
2724
	slabp->nodeid = nodeid;
2725
	slabp->free = 0;
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2731
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2732 2733
}

2734
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2735
			    struct slab *slabp)
L
Linus Torvalds 已提交
2736 2737 2738 2739
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2740
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2753 2754 2755
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2756 2757
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2758
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2759 2760 2761 2762

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2763
					   " end of an object");
L
Linus Torvalds 已提交
2764 2765
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2766
					   " start of an object");
L
Linus Torvalds 已提交
2767
		}
2768
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2769
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2770
			kernel_map_pages(virt_to_page(objp),
2771
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2772 2773
#else
		if (cachep->ctor)
2774
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2775
#endif
P
Pekka Enberg 已提交
2776
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2777
	}
P
Pekka Enberg 已提交
2778
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2779 2780
}

2781
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2782
{
2783 2784
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2785
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2786
		else
2787
			BUG_ON(cachep->allocflags & GFP_DMA);
2788
	}
L
Linus Torvalds 已提交
2789 2790
}

A
Andrew Morton 已提交
2791 2792
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2793
{
2794
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2808 2809
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2810
{
2811
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2812 2813 2814 2815 2816

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2817
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2818
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2819
				"'%s', objp %p\n", cachep->name, objp);
2820 2821 2822 2823 2824 2825 2826 2827
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2828 2829 2830
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2831
 * virtual address for kfree, ksize, and slab debugging.
2832 2833 2834
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2835
{
2836
	int nr_pages;
L
Linus Torvalds 已提交
2837 2838
	struct page *page;

2839
	page = virt_to_page(addr);
2840

2841
	nr_pages = 1;
2842
	if (likely(!PageCompound(page)))
2843 2844
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2845
	do {
C
Christoph Lameter 已提交
2846 2847
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2848
		page++;
2849
	} while (--nr_pages);
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2856 2857
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2858
{
P
Pekka Enberg 已提交
2859 2860 2861
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2862
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
2863

A
Andrew Morton 已提交
2864 2865 2866
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2867
	 */
C
Christoph Lameter 已提交
2868 2869
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2870

2871
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2872
	check_irq_off();
2873
	l3 = cachep->node[nodeid];
2874
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2875 2876

	/* Get colour for the slab, and cal the next value. */
2877 2878 2879 2880 2881
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2882

2883
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2896 2897 2898
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2899
	 */
2900
	if (!objp)
2901
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2902
	if (!objp)
L
Linus Torvalds 已提交
2903 2904 2905
		goto failed;

	/* Get slab management. */
2906
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2907
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2908
	if (!slabp)
L
Linus Torvalds 已提交
2909 2910
		goto opps1;

2911
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2912

C
Christoph Lameter 已提交
2913
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2914 2915 2916 2917

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2918
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2919 2920

	/* Make slab active. */
2921
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2922
	STATS_INC_GROWN(cachep);
2923 2924
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2925
	return 1;
A
Andrew Morton 已提交
2926
opps1:
L
Linus Torvalds 已提交
2927
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2928
failed:
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2945 2946
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2947 2948 2949
	}
}

2950 2951
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2952
	unsigned long long redzone1, redzone2;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2968
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2969 2970 2971
			obj, redzone1, redzone2);
}

2972
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2973
				   unsigned long caller)
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2979 2980
	BUG_ON(virt_to_cache(objp) != cachep);

2981
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2982
	kfree_debugcheck(objp);
2983
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2984

C
Christoph Lameter 已提交
2985
	slabp = page->slab_page;
L
Linus Torvalds 已提交
2986 2987

	if (cachep->flags & SLAB_RED_ZONE) {
2988
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2989 2990 2991 2992
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2993
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2994

2995
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2996 2997

	BUG_ON(objnr >= cachep->num);
2998
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2999

3000 3001 3002
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3003 3004
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3005
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3006
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
3007
			kernel_map_pages(virt_to_page(objp),
3008
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3019
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3020 3021 3022
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3023

L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029 3030
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3031 3032
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3033 3034 3035
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3036 3037 3038
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3048 3049
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3050 3051
{
	int batchcount;
3052
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
3053
	struct array_cache *ac;
P
Pekka Enberg 已提交
3054 3055
	int node;

L
Linus Torvalds 已提交
3056
	check_irq_off();
3057
	node = numa_mem_id();
3058 3059 3060
	if (unlikely(force_refill))
		goto force_grow;
retry:
3061
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3062 3063
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3064 3065 3066 3067
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3068 3069 3070
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3071
	l3 = cachep->node[node];
3072 3073 3074

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3075

3076
	/* See if we can refill from the shared array */
3077 3078
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3079
		goto alloc_done;
3080
	}
3081

L
Linus Torvalds 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3097 3098 3099 3100 3101 3102

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3103
		BUG_ON(slabp->inuse >= cachep->num);
3104

L
Linus Torvalds 已提交
3105 3106 3107 3108 3109
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3110 3111
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3123
must_grow:
L
Linus Torvalds 已提交
3124
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3125
alloc_done:
3126
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3127 3128 3129

	if (unlikely(!ac->avail)) {
		int x;
3130
force_grow:
3131
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3132

A
Andrew Morton 已提交
3133
		/* cache_grow can reenable interrupts, then ac could change. */
3134
		ac = cpu_cache_get(cachep);
3135
		node = numa_mem_id();
3136 3137 3138

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3139 3140
			return NULL;

A
Andrew Morton 已提交
3141
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3142 3143 3144
			goto retry;
	}
	ac->touched = 1;
3145 3146

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3147 3148
}

A
Andrew Morton 已提交
3149 3150
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3151 3152 3153 3154 3155 3156 3157 3158
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3159
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3160
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3161
{
P
Pekka Enberg 已提交
3162
	if (!objp)
L
Linus Torvalds 已提交
3163
		return objp;
P
Pekka Enberg 已提交
3164
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3165
#ifdef CONFIG_DEBUG_PAGEALLOC
3166
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3167
			kernel_map_pages(virt_to_page(objp),
3168
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3169 3170 3171 3172 3173 3174 3175 3176
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3177
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3178 3179

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3180 3181 3182 3183
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3184
			printk(KERN_ERR
3185
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3186 3187
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3188 3189 3190 3191
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3192 3193 3194 3195 3196
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3197
		slabp = virt_to_head_page(objp)->slab_page;
3198
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3199 3200 3201
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3202
	objp += obj_offset(cachep);
3203
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3204
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3205 3206
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3207
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3208
		       objp, (int)ARCH_SLAB_MINALIGN);
3209
	}
L
Linus Torvalds 已提交
3210 3211 3212 3213 3214 3215
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3216
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3217
{
3218
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3219
		return false;
3220

3221
	return should_failslab(cachep->object_size, flags, cachep->flags);
3222 3223
}

3224
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3225
{
P
Pekka Enberg 已提交
3226
	void *objp;
L
Linus Torvalds 已提交
3227
	struct array_cache *ac;
3228
	bool force_refill = false;
L
Linus Torvalds 已提交
3229

3230
	check_irq_off();
3231

3232
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3233 3234
	if (likely(ac->avail)) {
		ac->touched = 1;
3235 3236
		objp = ac_get_obj(cachep, ac, flags, false);

3237
		/*
3238 3239
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3240
		 */
3241 3242 3243 3244 3245
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3246
	}
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3257 3258 3259 3260 3261
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3262 3263
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3264 3265 3266
	return objp;
}

3267
#ifdef CONFIG_NUMA
3268
/*
3269
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3270 3271 3272 3273 3274 3275 3276 3277
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3278
	if (in_interrupt() || (flags & __GFP_THISNODE))
3279
		return NULL;
3280
	nid_alloc = nid_here = numa_mem_id();
3281
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3282
		nid_alloc = cpuset_slab_spread_node();
3283
	else if (current->mempolicy)
3284
		nid_alloc = slab_node();
3285
	if (nid_alloc != nid_here)
3286
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3287 3288 3289
	return NULL;
}

3290 3291
/*
 * Fallback function if there was no memory available and no objects on a
3292
 * certain node and fall back is permitted. First we scan all the
3293
 * available node for available objects. If that fails then we
3294 3295 3296
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3297
 */
3298
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3299
{
3300 3301
	struct zonelist *zonelist;
	gfp_t local_flags;
3302
	struct zoneref *z;
3303 3304
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3305
	void *obj = NULL;
3306
	int nid;
3307
	unsigned int cpuset_mems_cookie;
3308 3309 3310 3311

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3312
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3313

3314 3315
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3316
	zonelist = node_zonelist(slab_node(), flags);
3317

3318 3319 3320 3321 3322
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3323 3324
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3325

3326
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3327 3328
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3329 3330
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3331 3332 3333
				if (obj)
					break;
		}
3334 3335
	}

3336
	if (!obj) {
3337 3338 3339 3340 3341 3342
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3343 3344 3345
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3346
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3347 3348
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3365
				/* cache_grow already freed obj */
3366 3367 3368
				obj = NULL;
			}
		}
3369
	}
3370 3371 3372

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3373 3374 3375
	return obj;
}

3376 3377
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3378
 */
3379
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3380
				int nodeid)
3381 3382
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3383
	struct slab *slabp;
3384
	struct kmem_cache_node *l3;
P
Pekka Enberg 已提交
3385 3386 3387
	void *obj;
	int x;

3388
	l3 = cachep->node[nodeid];
P
Pekka Enberg 已提交
3389 3390
	BUG_ON(!l3);

A
Andrew Morton 已提交
3391
retry:
3392
	check_irq_off();
P
Pekka Enberg 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3412
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3413 3414 3415 3416 3417
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3418
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3419
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3420
	else
P
Pekka Enberg 已提交
3421
		list_add(&slabp->list, &l3->slabs_partial);
3422

P
Pekka Enberg 已提交
3423 3424
	spin_unlock(&l3->list_lock);
	goto done;
3425

A
Andrew Morton 已提交
3426
must_grow:
P
Pekka Enberg 已提交
3427
	spin_unlock(&l3->list_lock);
3428
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3429 3430
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3431

3432
	return fallback_alloc(cachep, flags);
3433

A
Andrew Morton 已提交
3434
done:
P
Pekka Enberg 已提交
3435
	return obj;
3436
}
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3451
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3452
		   unsigned long caller)
3453 3454 3455
{
	unsigned long save_flags;
	void *ptr;
3456
	int slab_node = numa_mem_id();
3457

3458
	flags &= gfp_allowed_mask;
3459

3460 3461
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3462
	if (slab_should_failslab(cachep, flags))
3463 3464
		return NULL;

3465 3466
	cachep = memcg_kmem_get_cache(cachep, flags);

3467 3468 3469
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3470
	if (nodeid == NUMA_NO_NODE)
3471
		nodeid = slab_node;
3472

3473
	if (unlikely(!cachep->node[nodeid])) {
3474 3475 3476 3477 3478
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3479
	if (nodeid == slab_node) {
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3495
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3496
				 flags);
3497

P
Pekka Enberg 已提交
3498
	if (likely(ptr))
3499
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3500

3501
	if (unlikely((flags & __GFP_ZERO) && ptr))
3502
		memset(ptr, 0, cachep->object_size);
3503

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3523 3524
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3540
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3541 3542 3543 3544
{
	unsigned long save_flags;
	void *objp;

3545
	flags &= gfp_allowed_mask;
3546

3547 3548
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3549
	if (slab_should_failslab(cachep, flags))
3550 3551
		return NULL;

3552 3553
	cachep = memcg_kmem_get_cache(cachep, flags);

3554 3555 3556 3557 3558
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3559
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3560
				 flags);
3561 3562
	prefetchw(objp);

P
Pekka Enberg 已提交
3563
	if (likely(objp))
3564
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3565

3566
	if (unlikely((flags & __GFP_ZERO) && objp))
3567
		memset(objp, 0, cachep->object_size);
3568

3569 3570
	return objp;
}
3571 3572 3573 3574

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3575
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3576
		       int node)
L
Linus Torvalds 已提交
3577 3578
{
	int i;
3579
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
3580 3581

	for (i = 0; i < nr_objects; i++) {
3582
		void *objp;
L
Linus Torvalds 已提交
3583 3584
		struct slab *slabp;

3585 3586 3587
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3588
		slabp = virt_to_slab(objp);
3589
		l3 = cachep->node[node];
L
Linus Torvalds 已提交
3590
		list_del(&slabp->list);
3591
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3592
		check_slabp(cachep, slabp);
3593
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3594
		STATS_DEC_ACTIVE(cachep);
3595
		l3->free_objects++;
L
Linus Torvalds 已提交
3596 3597 3598 3599
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3600 3601
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3602 3603 3604 3605 3606 3607
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3608 3609
				slab_destroy(cachep, slabp);
			} else {
3610
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3617
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3618 3619 3620 3621
		}
	}
}

3622
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3623 3624
{
	int batchcount;
3625
	struct kmem_cache_node *l3;
3626
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3627 3628 3629 3630 3631 3632

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3633
	l3 = cachep->node[node];
3634
	spin_lock(&l3->list_lock);
3635 3636
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3637
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3638 3639 3640
		if (max) {
			if (batchcount > max)
				batchcount = max;
3641
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3642
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3643 3644 3645 3646 3647
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3648
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3649
free_done:
L
Linus Torvalds 已提交
3650 3651 3652 3653 3654
#if STATS
	{
		int i = 0;
		struct list_head *p;

3655 3656
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3668
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3669
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3670
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3671 3672 3673
}

/*
A
Andrew Morton 已提交
3674 3675
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3676
 */
3677
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3678
				unsigned long caller)
L
Linus Torvalds 已提交
3679
{
3680
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3681 3682

	check_irq_off();
3683
	kmemleak_free_recursive(objp, cachep->flags);
3684
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3685

3686
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3687

3688 3689 3690 3691 3692 3693 3694
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3695
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3696 3697
		return;

L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3704

3705
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3716
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3717
{
3718
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3719

3720
	trace_kmem_cache_alloc(_RET_IP_, ret,
3721
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3722 3723

	return ret;
L
Linus Torvalds 已提交
3724 3725 3726
}
EXPORT_SYMBOL(kmem_cache_alloc);

3727
#ifdef CONFIG_TRACING
3728
void *
3729
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3730
{
3731 3732
	void *ret;

3733
	ret = slab_alloc(cachep, flags, _RET_IP_);
3734 3735

	trace_kmalloc(_RET_IP_, ret,
3736
		      size, cachep->size, flags);
3737
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3738
}
3739
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3740 3741
#endif

L
Linus Torvalds 已提交
3742
#ifdef CONFIG_NUMA
3743 3744
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3745
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3746

3747
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3748
				    cachep->object_size, cachep->size,
3749
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3750 3751

	return ret;
3752
}
L
Linus Torvalds 已提交
3753 3754
EXPORT_SYMBOL(kmem_cache_alloc_node);

3755
#ifdef CONFIG_TRACING
3756
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3757
				  gfp_t flags,
3758 3759
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3760
{
3761 3762
	void *ret;

3763
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3764

3765
	trace_kmalloc_node(_RET_IP_, ret,
3766
			   size, cachep->size,
3767 3768
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3769
}
3770
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3771 3772
#endif

3773
static __always_inline void *
3774
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3775
{
3776
	struct kmem_cache *cachep;
3777 3778

	cachep = kmem_find_general_cachep(size, flags);
3779 3780
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3781
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3782
}
3783

3784
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3785 3786
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3787
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3788
}
3789
EXPORT_SYMBOL(__kmalloc_node);
3790 3791

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3792
		int node, unsigned long caller)
3793
{
3794
	return __do_kmalloc_node(size, flags, node, caller);
3795 3796 3797 3798 3799
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3800
	return __do_kmalloc_node(size, flags, node, 0);
3801 3802
}
EXPORT_SYMBOL(__kmalloc_node);
3803
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3804
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3805 3806

/**
3807
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3808
 * @size: how many bytes of memory are required.
3809
 * @flags: the type of memory to allocate (see kmalloc).
3810
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3811
 */
3812
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3813
					  unsigned long caller)
L
Linus Torvalds 已提交
3814
{
3815
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3816
	void *ret;
L
Linus Torvalds 已提交
3817

3818 3819 3820 3821 3822 3823
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3824 3825
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3826
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3827

3828
	trace_kmalloc(caller, ret,
3829
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3830 3831

	return ret;
3832 3833 3834
}


3835
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3836 3837
void *__kmalloc(size_t size, gfp_t flags)
{
3838
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3839 3840 3841
}
EXPORT_SYMBOL(__kmalloc);

3842
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3843
{
3844
	return __do_kmalloc(size, flags, caller);
3845 3846
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3847 3848 3849 3850

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3851
	return __do_kmalloc(size, flags, 0);
3852 3853
}
EXPORT_SYMBOL(__kmalloc);
3854 3855
#endif

L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861 3862 3863
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3864
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3865 3866
{
	unsigned long flags;
3867 3868 3869
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3870 3871

	local_irq_save(flags);
3872
	debug_check_no_locks_freed(objp, cachep->object_size);
3873
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3874
		debug_check_no_obj_freed(objp, cachep->object_size);
3875
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3876
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3877

3878
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884 3885
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3886 3887
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3893
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3894 3895
	unsigned long flags;

3896 3897
	trace_kfree(_RET_IP_, objp);

3898
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3899 3900 3901
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3902
	c = virt_to_cache(objp);
3903 3904 3905
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3906
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3907 3908 3909 3910
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3911
/*
S
Simon Arlott 已提交
3912
 * This initializes kmem_list3 or resizes various caches for all nodes.
3913
 */
3914
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3915 3916
{
	int node;
3917
	struct kmem_cache_node *l3;
3918
	struct array_cache *new_shared;
3919
	struct array_cache **new_alien = NULL;
3920

3921
	for_each_online_node(node) {
3922

3923
                if (use_alien_caches) {
3924
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3925 3926 3927
                        if (!new_alien)
                                goto fail;
                }
3928

3929 3930 3931
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3932
				cachep->shared*cachep->batchcount,
3933
					0xbaadf00d, gfp);
3934 3935 3936 3937
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3938
		}
3939

3940
		l3 = cachep->node[node];
A
Andrew Morton 已提交
3941
		if (l3) {
3942 3943
			struct array_cache *shared = l3->shared;

3944 3945
			spin_lock_irq(&l3->list_lock);

3946
			if (shared)
3947 3948
				free_block(cachep, shared->entry,
						shared->avail, node);
3949

3950 3951
			l3->shared = new_shared;
			if (!l3->alien) {
3952 3953 3954
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3955
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3956
					cachep->batchcount + cachep->num;
3957
			spin_unlock_irq(&l3->list_lock);
3958
			kfree(shared);
3959 3960 3961
			free_alien_cache(new_alien);
			continue;
		}
3962
		l3 = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3963 3964 3965
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3966
			goto fail;
3967
		}
3968 3969 3970

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3971
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3972
		l3->shared = new_shared;
3973
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3974
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3975
					cachep->batchcount + cachep->num;
3976
		cachep->node[node] = l3;
3977
	}
3978
	return 0;
3979

A
Andrew Morton 已提交
3980
fail:
3981
	if (!cachep->list.next) {
3982 3983 3984
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3985 3986
			if (cachep->node[node]) {
				l3 = cachep->node[node];
3987 3988 3989 3990

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
3991
				cachep->node[node] = NULL;
3992 3993 3994 3995
			}
			node--;
		}
	}
3996
	return -ENOMEM;
3997 3998
}

L
Linus Torvalds 已提交
3999
struct ccupdate_struct {
4000
	struct kmem_cache *cachep;
4001
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4002 4003 4004 4005
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4006
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4007 4008 4009
	struct array_cache *old;

	check_irq_off();
4010
	old = cpu_cache_get(new->cachep);
4011

L
Linus Torvalds 已提交
4012 4013 4014 4015
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4016
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
4017
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
4018
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4019
{
4020
	struct ccupdate_struct *new;
4021
	int i;
L
Linus Torvalds 已提交
4022

4023 4024
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4025 4026 4027
	if (!new)
		return -ENOMEM;

4028
	for_each_online_cpu(i) {
4029
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4030
						batchcount, gfp);
4031
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4032
			for (i--; i >= 0; i--)
4033 4034
				kfree(new->new[i]);
			kfree(new);
4035
			return -ENOMEM;
L
Linus Torvalds 已提交
4036 4037
		}
	}
4038
	new->cachep = cachep;
L
Linus Torvalds 已提交
4039

4040
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4041

L
Linus Torvalds 已提交
4042 4043 4044
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4045
	cachep->shared = shared;
L
Linus Torvalds 已提交
4046

4047
	for_each_online_cpu(i) {
4048
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4049 4050
		if (!ccold)
			continue;
4051
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
4052
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4053
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4054 4055
		kfree(ccold);
	}
4056
	kfree(new);
4057
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4058 4059
}

G
Glauber Costa 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

4075
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

4086
/* Called with slab_mutex held always */
4087
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4088 4089
{
	int err;
G
Glauber Costa 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
4100

G
Glauber Costa 已提交
4101 4102
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
4103 4104
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4105 4106
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4107
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4108 4109 4110 4111
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4112
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4113
		limit = 1;
4114
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4115
		limit = 8;
4116
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4117
		limit = 24;
4118
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4119 4120 4121 4122
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4123 4124
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131 4132
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4133
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4134 4135 4136
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4137 4138 4139
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4140 4141 4142 4143
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4144 4145 4146
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4147 4148
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4149
		       cachep->name, -err);
4150
	return err;
L
Linus Torvalds 已提交
4151 4152
}

4153 4154
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4155 4156
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4157
 */
4158
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
4159
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4160 4161 4162
{
	int tofree;

4163 4164
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4165 4166
	if (ac->touched && !force) {
		ac->touched = 0;
4167
	} else {
4168
		spin_lock_irq(&l3->list_lock);
4169 4170 4171 4172 4173 4174 4175 4176 4177
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4178
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4179 4180 4181 4182 4183
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4184
 * @w: work descriptor
L
Linus Torvalds 已提交
4185 4186 4187 4188 4189 4190
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4191 4192
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4193
 */
4194
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4195
{
4196
	struct kmem_cache *searchp;
4197
	struct kmem_cache_node *l3;
4198
	int node = numa_mem_id();
4199
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4200

4201
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4202
		/* Give up. Setup the next iteration. */
4203
		goto out;
L
Linus Torvalds 已提交
4204

4205
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4206 4207
		check_irq_on();

4208 4209 4210 4211 4212
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4213
		l3 = searchp->node[node];
4214

4215
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4216

4217
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4218

4219 4220 4221 4222
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4223
		if (time_after(l3->next_reap, jiffies))
4224
			goto next;
L
Linus Torvalds 已提交
4225

4226
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4227

4228
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4229

4230
		if (l3->free_touched)
4231
			l3->free_touched = 0;
4232 4233
		else {
			int freed;
L
Linus Torvalds 已提交
4234

4235 4236 4237 4238
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4239
next:
L
Linus Torvalds 已提交
4240 4241 4242
		cond_resched();
	}
	check_irq_on();
4243
	mutex_unlock(&slab_mutex);
4244
	next_reap_node();
4245
out:
A
Andrew Morton 已提交
4246
	/* Set up the next iteration */
4247
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4248 4249
}

4250
#ifdef CONFIG_SLABINFO
4251
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4252
{
P
Pekka Enberg 已提交
4253 4254 4255 4256 4257
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4258
	const char *name;
L
Linus Torvalds 已提交
4259
	char *error = NULL;
4260
	int node;
4261
	struct kmem_cache_node *l3;
L
Linus Torvalds 已提交
4262 4263 4264

	active_objs = 0;
	num_slabs = 0;
4265
	for_each_online_node(node) {
4266
		l3 = cachep->node[node];
4267 4268 4269
		if (!l3)
			continue;

4270 4271
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4272

4273
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4274 4275 4276 4277 4278
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4279
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4280 4281 4282 4283 4284 4285 4286
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4287
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4288 4289 4290 4291 4292
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4293 4294
		if (l3->shared)
			shared_avail += l3->shared->avail;
4295

4296
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4297
	}
P
Pekka Enberg 已提交
4298 4299
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4300
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4301 4302
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4303
	name = cachep->name;
L
Linus Torvalds 已提交
4304 4305 4306
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4321
#if STATS
P
Pekka Enberg 已提交
4322
	{			/* list3 stats */
L
Linus Torvalds 已提交
4323 4324 4325 4326 4327 4328 4329
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4330
		unsigned long node_frees = cachep->node_frees;
4331
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4332

J
Joe Perches 已提交
4333 4334 4335 4336 4337
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4347
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4360
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4361
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4362
{
P
Pekka Enberg 已提交
4363
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4364
	int limit, batchcount, shared, res;
4365
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4366

L
Linus Torvalds 已提交
4367 4368 4369 4370
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4371
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4382
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4383
	res = -EINVAL;
4384
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4385
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4386 4387
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4388
				res = 0;
L
Linus Torvalds 已提交
4389
			} else {
4390
				res = do_tune_cpucache(cachep, limit,
4391 4392
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4393 4394 4395 4396
			}
			break;
		}
	}
4397
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4398 4399 4400 4401
	if (res >= 0)
		res = count;
	return res;
}
4402 4403 4404 4405 4406

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4407 4408
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4447
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4459
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4460

4461
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4462
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4463
		if (modname[0])
4464 4465 4466 4467 4468 4469 4470 4471 4472
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4473
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4474
	struct slab *slabp;
4475
	struct kmem_cache_node *l3;
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
4491
		l3 = cachep->node[node];
4492 4493 4494 4495 4496 4497
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4498
		list_for_each_entry(slabp, &l3->slabs_full, list)
4499
			handle_slab(n, cachep, slabp);
4500
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4501 4502 4503 4504 4505 4506
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4507
		mutex_unlock(&slab_mutex);
4508 4509 4510 4511
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4512
			mutex_lock(&slab_mutex);
4513 4514 4515 4516
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4517
		mutex_lock(&slab_mutex);
4518 4519 4520 4521 4522 4523 4524 4525 4526
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4527

4528 4529 4530
	return 0;
}

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4541
static const struct seq_operations slabstats_op = {
4542 4543 4544 4545 4546
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4577
#endif
4578 4579 4580
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4581 4582
#endif

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4595
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4596
{
4597 4598
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4599
		return 0;
L
Linus Torvalds 已提交
4600

4601
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4602
}
K
Kirill A. Shutemov 已提交
4603
EXPORT_SYMBOL(ksize);