slab.c 121.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

501
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
502 503
size_t slab_buffer_size(struct kmem_cache *cachep)
{
504
	return cachep->size;
E
Eduard - Gabriel Munteanu 已提交
505 506 507 508
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
509
/*
510 511
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
512
 */
513 514 515
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
516
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
517

518 519
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
520
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
521
	return page->slab_cache;
522 523 524 525
}

static inline struct slab *virt_to_slab(const void *obj)
{
526
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
527 528 529

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
530 531
}

532 533 534
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
535
	return slab->s_mem + cache->size * idx;
536 537
}

538
/*
539 540 541
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
542 543 544 545
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
546
{
547 548
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 550
}

A
Andrew Morton 已提交
551 552 553
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
571
	{NULL,}
L
Linus Torvalds 已提交
572 573 574 575
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
576
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
577
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
578
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
579 580

/* internal cache of cache description objs */
581
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582
static struct kmem_cache cache_cache = {
583
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
584 585 586
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
587
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
588
	.name = "kmem_cache",
L
Linus Torvalds 已提交
589 590
};

591 592
#define BAD_ALIEN_MAGIC 0x01020304ul

593 594 595 596 597 598 599 600
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
601 602 603 604
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
605
 */
606 607 608
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

654
static void init_node_lock_keys(int q)
655
{
656 657
	struct cache_sizes *s = malloc_sizes;

658
	if (slab_state < UP)
659 660 661 662 663 664 665
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
666
			continue;
667 668 669

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
670 671
	}
}
672 673 674 675 676 677 678 679

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
680
#else
681 682 683 684
static void init_node_lock_keys(int q)
{
}

685
static inline void init_lock_keys(void)
686 687
{
}
688 689 690 691 692 693 694 695

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696 697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
701 702 703 704
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
705 706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
707 708 709 710 711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
712 713 714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
716
#endif
717 718 719
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
720 721 722 723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
725 726 727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
729 730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
L
Linus Torvalds 已提交
732 733 734
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 737 738 739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
741
{
742 743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
744

A
Andrew Morton 已提交
745 746 747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748 749 750 751 752 753 754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
804 805
}

806
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
807

A
Andrew Morton 已提交
808 809
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
810 811
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
812
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
813
	dump_stack();
814
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

833 834 835 836 837 838 839 840 841 842 843
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

844 845 846 847 848 849 850
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
851
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
852 853 854 855 856

static void init_reap_node(int cpu)
{
	int node;

857
	node = next_node(cpu_to_mem(cpu), node_online_map);
858
	if (node == MAX_NUMNODES)
859
		node = first_node(node_online_map);
860

861
	per_cpu(slab_reap_node, cpu) = node;
862 863 864 865
}

static void next_reap_node(void)
{
866
	int node = __this_cpu_read(slab_reap_node);
867 868 869 870

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
871
	__this_cpu_write(slab_reap_node, node);
872 873 874 875 876 877 878
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
879 880 881 882 883 884 885
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
886
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
887
{
888
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
889 890 891 892 893 894

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
895
	if (keventd_up() && reap_work->work.func == NULL) {
896
		init_reap_node(cpu);
897
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
898 899
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
900 901 902
	}
}

903
static struct array_cache *alloc_arraycache(int node, int entries,
904
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
905
{
P
Pekka Enberg 已提交
906
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
907 908
	struct array_cache *nc = NULL;

909
	nc = kmalloc_node(memsize, gfp, node);
910 911
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
912
	 * However, when such objects are allocated or transferred to another
913 914 915 916 917
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
918 919 920 921 922
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
923
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
924 925 926 927
	}
	return nc;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

964
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1025 1026 1027 1028 1029 1030 1031 1032 1033
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1034 1035 1036 1037 1038 1039 1040 1041 1042
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1043 1044 1045
	ac->entry[ac->avail++] = objp;
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1056
	int nr = min3(from->avail, max, to->limit - to->avail);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1069 1070 1071 1072 1073
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1074
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1094
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1095 1096 1097 1098 1099 1100 1101
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1102
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1103
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1104

1105
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1106 1107
{
	struct array_cache **ac_ptr;
1108
	int memsize = sizeof(void *) * nr_node_ids;
1109 1110 1111 1112
	int i;

	if (limit > 1)
		limit = 12;
1113
	ac_ptr = kzalloc_node(memsize, gfp, node);
1114 1115
	if (ac_ptr) {
		for_each_node(i) {
1116
			if (i == node || !node_online(i))
1117
				continue;
1118
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1119
			if (!ac_ptr[i]) {
1120
				for (i--; i >= 0; i--)
1121 1122 1123 1124 1125 1126 1127 1128 1129
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1130
static void free_alien_cache(struct array_cache **ac_ptr)
1131 1132 1133 1134 1135 1136
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1137
	    kfree(ac_ptr[i]);
1138 1139 1140
	kfree(ac_ptr);
}

1141
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1142
				struct array_cache *ac, int node)
1143 1144 1145 1146 1147
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1148 1149 1150 1151 1152
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1153 1154
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1155

1156
		free_block(cachep, ac->entry, ac->avail, node);
1157 1158 1159 1160 1161
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1162 1163 1164 1165 1166
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1167
	int node = __this_cpu_read(slab_reap_node);
1168 1169 1170

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1171 1172

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1173 1174 1175 1176 1177 1178
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1179 1180
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1181
{
P
Pekka Enberg 已提交
1182
	int i = 0;
1183 1184 1185 1186
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1187
		ac = alien[i];
1188 1189 1190 1191 1192 1193 1194
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1195

1196
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1197 1198 1199 1200 1201
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1202 1203
	int node;

1204
	node = numa_mem_id();
1205 1206 1207 1208 1209

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1210
	if (likely(slabp->nodeid == node))
1211 1212
		return 0;

P
Pekka Enberg 已提交
1213
	l3 = cachep->nodelists[node];
1214 1215 1216
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1217
		spin_lock(&alien->lock);
1218 1219 1220 1221
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1222
		ac_put_obj(cachep, alien, objp);
1223 1224 1225 1226 1227 1228 1229 1230
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1231 1232
#endif

1233 1234 1235 1236 1237 1238 1239
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1240
 * Must hold slab_mutex.
1241 1242 1243 1244 1245 1246 1247
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1248
	list_for_each_entry(cachep, &slab_caches, list) {
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1264
			 * go.  slab_mutex is sufficient
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1279 1280 1281 1282
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1283
	int node = cpu_to_mem(cpu);
1284
	const struct cpumask *mask = cpumask_of_node(node);
1285

1286
	list_for_each_entry(cachep, &slab_caches, list) {
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1306
		if (!cpumask_empty(mask)) {
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1336
	list_for_each_entry(cachep, &slab_caches, list) {
1337 1338 1339 1340 1341 1342 1343 1344
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1345
{
1346
	struct kmem_cache *cachep;
1347
	struct kmem_list3 *l3 = NULL;
1348
	int node = cpu_to_mem(cpu);
1349
	int err;
L
Linus Torvalds 已提交
1350

1351 1352 1353 1354 1355 1356
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1357 1358 1359
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1360 1361 1362 1363 1364

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1365
	list_for_each_entry(cachep, &slab_caches, list) {
1366 1367 1368 1369 1370
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1371
					cachep->batchcount, GFP_KERNEL);
1372 1373 1374 1375 1376
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1377
				0xbaadf00d, GFP_KERNEL);
1378 1379
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1380
				goto bad;
1381
			}
1382 1383
		}
		if (use_alien_caches) {
1384
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1385 1386 1387
			if (!alien) {
				kfree(shared);
				kfree(nc);
1388
				goto bad;
1389
			}
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1404
#ifdef CONFIG_NUMA
1405 1406 1407
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1408
		}
1409 1410 1411 1412
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1413 1414
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1415
	}
1416 1417
	init_node_lock_keys(node);

1418 1419
	return 0;
bad:
1420
	cpuup_canceled(cpu);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1433
		mutex_lock(&slab_mutex);
1434
		err = cpuup_prepare(cpu);
1435
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1436 1437
		break;
	case CPU_ONLINE:
1438
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1439 1440 1441
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1442
  	case CPU_DOWN_PREPARE:
1443
  	case CPU_DOWN_PREPARE_FROZEN:
1444
		/*
1445
		 * Shutdown cache reaper. Note that the slab_mutex is
1446 1447 1448 1449
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1450
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1451
		/* Now the cache_reaper is guaranteed to be not running. */
1452
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1453 1454
  		break;
  	case CPU_DOWN_FAILED:
1455
  	case CPU_DOWN_FAILED_FROZEN:
1456 1457
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1458
	case CPU_DEAD:
1459
	case CPU_DEAD_FROZEN:
1460 1461 1462 1463 1464 1465 1466 1467
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1468
		/* fall through */
1469
#endif
L
Linus Torvalds 已提交
1470
	case CPU_UP_CANCELED:
1471
	case CPU_UP_CANCELED_FROZEN:
1472
		mutex_lock(&slab_mutex);
1473
		cpuup_canceled(cpu);
1474
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1475 1476
		break;
	}
1477
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1478 1479
}

1480 1481 1482
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1483

1484 1485 1486 1487 1488 1489
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1490
 * Must hold slab_mutex.
1491 1492 1493 1494 1495 1496
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1497
	list_for_each_entry(cachep, &slab_caches, list) {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1528
		mutex_lock(&slab_mutex);
1529
		ret = init_cache_nodelists_node(nid);
1530
		mutex_unlock(&slab_mutex);
1531 1532
		break;
	case MEM_GOING_OFFLINE:
1533
		mutex_lock(&slab_mutex);
1534
		ret = drain_cache_nodelists_node(nid);
1535
		mutex_unlock(&slab_mutex);
1536 1537 1538 1539 1540 1541 1542 1543
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1544
	return notifier_from_errno(ret);
1545 1546 1547
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1548 1549 1550
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1551 1552
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1553 1554 1555
{
	struct kmem_list3 *ptr;

1556
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1557 1558 1559
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1560 1561 1562 1563 1564
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1565 1566 1567 1568
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1585 1586 1587
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1594
	int i;
1595
	int order;
P
Pekka Enberg 已提交
1596
	int node;
1597

1598
	if (num_possible_nodes() == 1)
1599 1600
		use_alien_caches = 0;

1601 1602 1603 1604 1605
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1606
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1607 1608 1609

	/*
	 * Fragmentation resistance on low memory - only use bigger
1610 1611
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1612
	 */
1613
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1614
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1615 1616 1617

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1618 1619 1620
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1621 1622 1623
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1624
	 * 2) Create the first kmalloc cache.
1625
	 *    The struct kmem_cache for the new cache is allocated normally.
1626 1627 1628
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1629 1630
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1631 1632 1633
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1634 1635
	 */

1636
	node = numa_mem_id();
P
Pekka Enberg 已提交
1637

L
Linus Torvalds 已提交
1638
	/* 1) create the cache_cache */
1639 1640
	INIT_LIST_HEAD(&slab_caches);
	list_add(&cache_cache.list, &slab_caches);
L
Linus Torvalds 已提交
1641 1642
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1643
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1644

E
Eric Dumazet 已提交
1645
	/*
1646
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1647
	 */
1648
	cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1649
				  nr_node_ids * sizeof(struct kmem_list3 *);
1650 1651
	cache_cache.object_size = cache_cache.size;
	cache_cache.size = ALIGN(cache_cache.size,
A
Andrew Morton 已提交
1652
					cache_line_size());
1653
	cache_cache.reciprocal_buffer_size =
1654
		reciprocal_value(cache_cache.size);
L
Linus Torvalds 已提交
1655

1656
	for (order = 0; order < MAX_ORDER; order++) {
1657
		cache_estimate(order, cache_cache.size,
1658 1659 1660 1661
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1662
	BUG_ON(!cache_cache.num);
1663
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1664 1665 1666
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1672 1673 1674 1675
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1676 1677
	 */

1678
	sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1679 1680 1681
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1682
					NULL);
1683

A
Andrew Morton 已提交
1684
	if (INDEX_AC != INDEX_L3) {
1685
		sizes[INDEX_L3].cs_cachep =
1686
			__kmem_cache_create(names[INDEX_L3].name,
A
Andrew Morton 已提交
1687 1688 1689
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1690
				NULL);
A
Andrew Morton 已提交
1691
	}
1692

1693 1694
	slab_early_init = 0;

L
Linus Torvalds 已提交
1695
	while (sizes->cs_size != ULONG_MAX) {
1696 1697
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1698 1699 1700
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1701 1702
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1703
		if (!sizes->cs_cachep) {
1704
			sizes->cs_cachep = __kmem_cache_create(names->name,
A
Andrew Morton 已提交
1705 1706 1707
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1708
					NULL);
A
Andrew Morton 已提交
1709
		}
1710
#ifdef CONFIG_ZONE_DMA
1711
		sizes->cs_dmacachep = __kmem_cache_create(
1712
					names->name_dma,
A
Andrew Morton 已提交
1713 1714 1715 1716
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1717
					NULL);
1718
#endif
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1724
		struct array_cache *ptr;
1725

1726
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1727

1728 1729
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1730
		       sizeof(struct arraycache_init));
1731 1732 1733 1734 1735
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1736
		cache_cache.array[smp_processor_id()] = ptr;
1737

1738
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1739

1740
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1741
		       != &initarray_generic.cache);
1742
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1743
		       sizeof(struct arraycache_init));
1744 1745 1746 1747 1748
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1749
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1750
		    ptr;
L
Linus Torvalds 已提交
1751
	}
1752 1753
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1754 1755
		int nid;

1756
		for_each_online_node(nid) {
1757
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1758

1759
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1760
				  &initkmem_list3[SIZE_AC + nid], nid);
1761 1762 1763

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1764
					  &initkmem_list3[SIZE_L3 + nid], nid);
1765 1766 1767
			}
		}
	}
L
Linus Torvalds 已提交
1768

1769
	slab_state = UP;
1770 1771 1772 1773 1774 1775
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1776
	slab_state = UP;
P
Peter Zijlstra 已提交
1777

1778
	/* 6) resize the head arrays to their final sizes */
1779 1780
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1781 1782
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1783
	mutex_unlock(&slab_mutex);
1784

1785 1786 1787
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1788 1789 1790
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1791 1792 1793
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1794 1795 1796
	 */
	register_cpu_notifier(&cpucache_notifier);

1797 1798 1799 1800 1801 1802 1803 1804
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1805 1806 1807
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1808 1809 1810 1811 1812 1813 1814
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1815 1816
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1817
	 */
1818
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1819
		start_cpu_timer(cpu);
1820 1821

	/* Done! */
1822
	slab_state = FULL;
L
Linus Torvalds 已提交
1823 1824 1825 1826
	return 0;
}
__initcall(cpucache_init);

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1839
		cachep->name, cachep->size, cachep->gfporder);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1880
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1881 1882
{
	struct page *page;
1883
	int nr_pages;
L
Linus Torvalds 已提交
1884 1885
	int i;

1886
#ifndef CONFIG_MMU
1887 1888 1889
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1890
	 */
1891
	flags |= __GFP_COMP;
1892
#endif
1893

1894
	flags |= cachep->allocflags;
1895 1896
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1897

L
Linus Torvalds 已提交
1898
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1899 1900 1901
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1902
		return NULL;
1903
	}
L
Linus Torvalds 已提交
1904

1905
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1906 1907 1908
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1909
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1910
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1911 1912 1913 1914 1915
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1916
	for (i = 0; i < nr_pages; i++) {
1917
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1918

1919 1920 1921 1922
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1923 1924 1925 1926 1927 1928 1929 1930
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1931

1932
	return page_address(page);
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937
}

/*
 * Interface to system's page release.
 */
1938
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1939
{
P
Pekka Enberg 已提交
1940
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1941 1942 1943
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1944
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1945

1946 1947 1948 1949 1950 1951
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1952
	while (i--) {
N
Nick Piggin 已提交
1953
		BUG_ON(!PageSlab(page));
1954
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1955
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1965
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1966
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1976
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1977
			    unsigned long caller)
L
Linus Torvalds 已提交
1978
{
1979
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1980

1981
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1982

P
Pekka Enberg 已提交
1983
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1984 1985
		return;

P
Pekka Enberg 已提交
1986 1987 1988 1989
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995 1996
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1997
				*addr++ = svalue;
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002 2003 2004
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
2005
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
2006 2007 2008
}
#endif

2009
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2010
{
2011
	int size = cachep->object_size;
2012
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2013 2014

	memset(addr, val, size);
P
Pekka Enberg 已提交
2015
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2016 2017 2018 2019 2020
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2021 2022 2023
	unsigned char error = 0;
	int bad_count = 0;

2024
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2025 2026 2027 2028 2029 2030
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2031 2032
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051
}
#endif

#if DEBUG

2052
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2053 2054 2055 2056 2057
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2058
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2059 2060
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2061 2062 2063 2064
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2065
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2066
		print_symbol("(%s)",
A
Andrew Morton 已提交
2067
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2068 2069
		printk("\n");
	}
2070
	realobj = (char *)objp + obj_offset(cachep);
2071
	size = cachep->object_size;
P
Pekka Enberg 已提交
2072
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2073 2074
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2075 2076
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2077 2078 2079 2080
		dump_line(realobj, i, limit);
	}
}

2081
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086
{
	char *realobj;
	int size, i;
	int lines = 0;

2087
	realobj = (char *)objp + obj_offset(cachep);
2088
	size = cachep->object_size;
L
Linus Torvalds 已提交
2089

P
Pekka Enberg 已提交
2090
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2091
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2092
		if (i == size - 1)
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2099
				printk(KERN_ERR
2100 2101
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2102 2103 2104
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2105
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2106
			limit = 16;
P
Pekka Enberg 已提交
2107 2108
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2121
		struct slab *slabp = virt_to_slab(objp);
2122
		unsigned int objnr;
L
Linus Torvalds 已提交
2123

2124
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2125
		if (objnr) {
2126
			objp = index_to_obj(cachep, slabp, objnr - 1);
2127
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2128
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2129
			       realobj, size);
L
Linus Torvalds 已提交
2130 2131
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2132
		if (objnr + 1 < cachep->num) {
2133
			objp = index_to_obj(cachep, slabp, objnr + 1);
2134
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2135
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2136
			       realobj, size);
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2143
#if DEBUG
R
Rabin Vincent 已提交
2144
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2145 2146 2147
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2148
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2149 2150 2151

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2152
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2153
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2154
				kernel_map_pages(virt_to_page(objp),
2155
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2165
					   "was overwritten");
L
Linus Torvalds 已提交
2166 2167
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2168
					   "was overwritten");
L
Linus Torvalds 已提交
2169 2170
		}
	}
2171
}
L
Linus Torvalds 已提交
2172
#else
R
Rabin Vincent 已提交
2173
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2174 2175
{
}
L
Linus Torvalds 已提交
2176 2177
#endif

2178 2179 2180 2181 2182
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2183
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2184 2185
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2186
 */
2187
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2188 2189 2190
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2191
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2192 2193 2194
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2195
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2201 2202
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2203 2204 2205
	}
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2227
/**
2228 2229 2230 2231 2232 2233 2234
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2235 2236 2237 2238 2239
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2240
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2241
			size_t size, size_t align, unsigned long flags)
2242
{
2243
	unsigned long offslab_limit;
2244
	size_t left_over = 0;
2245
	int gfporder;
2246

2247
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2248 2249 2250
		unsigned int num;
		size_t remainder;

2251
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2252 2253
		if (!num)
			continue;
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2267

2268
		/* Found something acceptable - save it away */
2269
		cachep->num = num;
2270
		cachep->gfporder = gfporder;
2271 2272
		left_over = remainder;

2273 2274 2275 2276 2277 2278 2279 2280
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2281 2282 2283 2284
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2285
		if (gfporder >= slab_max_order)
2286 2287
			break;

2288 2289 2290
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2291
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2292 2293 2294 2295 2296
			break;
	}
	return left_over;
}

2297
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2298
{
2299
	if (slab_state >= FULL)
2300
		return enable_cpucache(cachep, gfp);
2301

2302
	if (slab_state == DOWN) {
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2317
			slab_state = PARTIAL_L3;
2318
		else
2319
			slab_state = PARTIAL_ARRAYCACHE;
2320 2321
	} else {
		cachep->array[smp_processor_id()] =
2322
			kmalloc(sizeof(struct arraycache_init), gfp);
2323

2324
		if (slab_state == PARTIAL_ARRAYCACHE) {
2325
			set_up_list3s(cachep, SIZE_L3);
2326
			slab_state = PARTIAL_L3;
2327 2328
		} else {
			int node;
2329
			for_each_online_node(node) {
2330 2331
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2332
						gfp, node);
2333 2334 2335 2336 2337
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2338
	cachep->nodelists[numa_mem_id()]->next_reap =
2339 2340 2341 2342 2343 2344 2345 2346 2347
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2348
	return 0;
2349 2350
}

L
Linus Torvalds 已提交
2351
/**
2352
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359 2360
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2361
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2362 2363
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2364 2365
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2378
struct kmem_cache *
2379
__kmem_cache_create (const char *name, size_t size, size_t align,
2380
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2381 2382
{
	size_t left_over, slab_size, ralign;
2383
	struct kmem_cache *cachep = NULL;
2384
	gfp_t gfp;
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2394 2395
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2396
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401 2402 2403
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2404 2405
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2406
	 */
2407
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2408

A
Andrew Morton 已提交
2409 2410
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2411 2412 2413
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2414 2415 2416
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2417 2418
	}

A
Andrew Morton 已提交
2419 2420
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2421 2422
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2423 2424 2425 2426
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2427 2428
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2429
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2430 2431 2432 2433
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2434 2435

	/*
D
David Woodhouse 已提交
2436 2437 2438
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2439
	 */
D
David Woodhouse 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2450

2451
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2452 2453 2454
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2455
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2456 2457 2458
	if (ralign < align) {
		ralign = align;
	}
2459 2460
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2461
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2462
	/*
2463
	 * 4) Store it.
L
Linus Torvalds 已提交
2464 2465 2466
	 */
	align = ralign;

2467 2468 2469 2470 2471
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2472
	/* Get cache's description obj. */
2473
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2474
	if (!cachep)
2475
		return NULL;
L
Linus Torvalds 已提交
2476

2477
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2478 2479
	cachep->object_size = size;
	cachep->align = align;
L
Linus Torvalds 已提交
2480 2481
#if DEBUG

2482 2483 2484 2485
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2486 2487
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2488 2489
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2490 2491
	}
	if (flags & SLAB_STORE_USER) {
2492
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2493 2494
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2495
		 */
D
David Woodhouse 已提交
2496 2497 2498 2499
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2500 2501
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2502
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2503
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2504
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509
		size = PAGE_SIZE;
	}
#endif
#endif

2510 2511 2512
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2513 2514
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2515
	 */
2516 2517
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524 2525
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2526
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2527 2528

	if (!cachep->num) {
2529 2530
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2531
		kmem_cache_free(&cache_cache, cachep);
2532
		return NULL;
L
Linus Torvalds 已提交
2533
	}
P
Pekka Enberg 已提交
2534 2535
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2548 2549
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2550 2551 2552 2553 2554 2555 2556 2557 2558

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2559 2560 2561 2562 2563 2564
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2565
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2566 2567
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2568
	cachep->allocflags = 0;
2569
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2570
		cachep->allocflags |= GFP_DMA;
2571
	cachep->size = size;
2572
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2573

2574
	if (flags & CFLGS_OFF_SLAB) {
2575
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2576 2577 2578 2579 2580 2581 2582
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2583
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2584
	}
L
Linus Torvalds 已提交
2585 2586 2587
	cachep->ctor = ctor;
	cachep->name = name;

2588
	if (setup_cpu_cache(cachep, gfp)) {
2589
		__kmem_cache_destroy(cachep);
2590
		return NULL;
2591
	}
L
Linus Torvalds 已提交
2592

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2603
	/* cache setup completed, link it into the list */
2604
	list_add(&cachep->list, &slab_caches);
L
Linus Torvalds 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	return cachep;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2619
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2620 2621 2622
{
#ifdef CONFIG_SMP
	check_irq_off();
2623
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2624 2625
#endif
}
2626

2627
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2628 2629 2630 2631 2632 2633 2634
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2635 2636 2637 2638
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2639
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2640 2641
#endif

2642 2643 2644 2645
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2646 2647
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2648
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2649
	struct array_cache *ac;
2650
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2651 2652

	check_irq_off();
2653
	ac = cpu_cache_get(cachep);
2654 2655 2656
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2657 2658 2659
	ac->avail = 0;
}

2660
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2661
{
2662 2663 2664
	struct kmem_list3 *l3;
	int node;

2665
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2666
	check_irq_on();
P
Pekka Enberg 已提交
2667
	for_each_online_node(node) {
2668
		l3 = cachep->nodelists[node];
2669 2670 2671 2672 2673 2674 2675
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2676
			drain_array(cachep, l3, l3->shared, 1, node);
2677
	}
L
Linus Torvalds 已提交
2678 2679
}

2680 2681 2682 2683 2684 2685 2686 2687
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2688
{
2689 2690
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2691 2692
	struct slab *slabp;

2693 2694
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2695

2696
		spin_lock_irq(&l3->list_lock);
2697
		p = l3->slabs_free.prev;
2698 2699 2700 2701
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2702

2703
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2704
#if DEBUG
2705
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2706 2707
#endif
		list_del(&slabp->list);
2708 2709 2710 2711 2712
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2713
		spin_unlock_irq(&l3->list_lock);
2714 2715
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2716
	}
2717 2718
out:
	return nr_freed;
L
Linus Torvalds 已提交
2719 2720
}

2721
/* Called with slab_mutex held to protect against cpu hotplug */
2722
static int __cache_shrink(struct kmem_cache *cachep)
2723 2724 2725 2726 2727 2728 2729 2730 2731
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2732 2733 2734 2735 2736 2737 2738
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2739 2740 2741 2742
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748 2749
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2750
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2751
{
2752
	int ret;
2753
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2754

2755
	get_online_cpus();
2756
	mutex_lock(&slab_mutex);
2757
	ret = __cache_shrink(cachep);
2758
	mutex_unlock(&slab_mutex);
2759
	put_online_cpus();
2760
	return ret;
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766 2767
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2768
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774 2775 2776
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2777
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2778 2779
 * during the kmem_cache_destroy().
 */
2780
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2781
{
2782
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2783 2784

	/* Find the cache in the chain of caches. */
2785
	get_online_cpus();
2786
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
2787 2788 2789
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
2790
	list_del(&cachep->list);
L
Linus Torvalds 已提交
2791 2792
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
2793 2794
		list_add(&cachep->list, &slab_caches);
		mutex_unlock(&slab_mutex);
2795
		put_online_cpus();
2796
		return;
L
Linus Torvalds 已提交
2797 2798 2799
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2800
		rcu_barrier();
L
Linus Torvalds 已提交
2801

2802
	__kmem_cache_destroy(cachep);
2803
	mutex_unlock(&slab_mutex);
2804
	put_online_cpus();
L
Linus Torvalds 已提交
2805 2806 2807
}
EXPORT_SYMBOL(kmem_cache_destroy);

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2819
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2820 2821
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2822 2823
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2824

L
Linus Torvalds 已提交
2825 2826
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2827
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2828
					      local_flags, nodeid);
2829 2830 2831 2832 2833 2834
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2835 2836
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2837 2838 2839
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2840
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2841 2842 2843 2844
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2845
	slabp->s_mem = objp + colour_off;
2846
	slabp->nodeid = nodeid;
2847
	slabp->free = 0;
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2853
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2854 2855
}

2856
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2857
			    struct slab *slabp)
L
Linus Torvalds 已提交
2858 2859 2860 2861
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2862
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2875 2876 2877
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2878 2879
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2880
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2881 2882 2883 2884

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2885
					   " end of an object");
L
Linus Torvalds 已提交
2886 2887
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2888
					   " start of an object");
L
Linus Torvalds 已提交
2889
		}
2890
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2891
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2892
			kernel_map_pages(virt_to_page(objp),
2893
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2894 2895
#else
		if (cachep->ctor)
2896
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2897
#endif
P
Pekka Enberg 已提交
2898
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2899
	}
P
Pekka Enberg 已提交
2900
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2901 2902
}

2903
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2904
{
2905 2906
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2907
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2908
		else
2909
			BUG_ON(cachep->allocflags & GFP_DMA);
2910
	}
L
Linus Torvalds 已提交
2911 2912
}

A
Andrew Morton 已提交
2913 2914
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2915
{
2916
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2930 2931
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2932
{
2933
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2934 2935 2936 2937 2938

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2939
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2940
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2941
				"'%s', objp %p\n", cachep->name, objp);
2942 2943 2944 2945 2946 2947 2948 2949
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2950 2951 2952
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2953
 * virtual address for kfree, ksize, and slab debugging.
2954 2955 2956
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2957
{
2958
	int nr_pages;
L
Linus Torvalds 已提交
2959 2960
	struct page *page;

2961
	page = virt_to_page(addr);
2962

2963
	nr_pages = 1;
2964
	if (likely(!PageCompound(page)))
2965 2966
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2967
	do {
C
Christoph Lameter 已提交
2968 2969
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2970
		page++;
2971
	} while (--nr_pages);
L
Linus Torvalds 已提交
2972 2973 2974 2975 2976 2977
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2978 2979
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2980
{
P
Pekka Enberg 已提交
2981 2982 2983
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2984
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2985

A
Andrew Morton 已提交
2986 2987 2988
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2989
	 */
C
Christoph Lameter 已提交
2990 2991
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2992

2993
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2994
	check_irq_off();
2995 2996
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2997 2998

	/* Get colour for the slab, and cal the next value. */
2999 3000 3001 3002 3003
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3004

3005
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
3018 3019 3020
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
3021
	 */
3022
	if (!objp)
3023
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
3024
	if (!objp)
L
Linus Torvalds 已提交
3025 3026 3027
		goto failed;

	/* Get slab management. */
3028
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
3029
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
3030
	if (!slabp)
L
Linus Torvalds 已提交
3031 3032
		goto opps1;

3033
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
3034

C
Christoph Lameter 已提交
3035
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
3036 3037 3038 3039

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
3040
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3041 3042

	/* Make slab active. */
3043
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
3044
	STATS_INC_GROWN(cachep);
3045 3046
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3047
	return 1;
A
Andrew Morton 已提交
3048
opps1:
L
Linus Torvalds 已提交
3049
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
3050
failed:
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3067 3068
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3069 3070 3071
	}
}

3072 3073
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3074
	unsigned long long redzone1, redzone2;
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3090
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3091 3092 3093
			obj, redzone1, redzone2);
}

3094
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
3095
				   void *caller)
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3101 3102
	BUG_ON(virt_to_cache(objp) != cachep);

3103
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3104
	kfree_debugcheck(objp);
3105
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3106

C
Christoph Lameter 已提交
3107
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3108 3109

	if (cachep->flags & SLAB_RED_ZONE) {
3110
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3117
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3118 3119

	BUG_ON(objnr >= cachep->num);
3120
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3121

3122 3123 3124
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3125 3126
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3127
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
3128
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
3129
			kernel_map_pages(virt_to_page(objp),
3130
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3141
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3142 3143 3144
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3145

L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151 3152
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3153 3154
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3155 3156 3157
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3158 3159 3160
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3170 3171
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3172 3173 3174 3175
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3176 3177
	int node;

L
Linus Torvalds 已提交
3178
	check_irq_off();
3179
	node = numa_mem_id();
3180 3181 3182
	if (unlikely(force_refill))
		goto force_grow;
retry:
3183
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3184 3185
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3186 3187 3188 3189
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3190 3191 3192
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3193
	l3 = cachep->nodelists[node];
3194 3195 3196

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3197

3198
	/* See if we can refill from the shared array */
3199 3200
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3201
		goto alloc_done;
3202
	}
3203

L
Linus Torvalds 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3219 3220 3221 3222 3223 3224

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3225
		BUG_ON(slabp->inuse >= cachep->num);
3226

L
Linus Torvalds 已提交
3227 3228 3229 3230 3231
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3232 3233
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3245
must_grow:
L
Linus Torvalds 已提交
3246
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3247
alloc_done:
3248
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3249 3250 3251

	if (unlikely(!ac->avail)) {
		int x;
3252
force_grow:
3253
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3254

A
Andrew Morton 已提交
3255
		/* cache_grow can reenable interrupts, then ac could change. */
3256
		ac = cpu_cache_get(cachep);
3257 3258 3259

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3260 3261
			return NULL;

A
Andrew Morton 已提交
3262
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3263 3264 3265
			goto retry;
	}
	ac->touched = 1;
3266 3267

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3268 3269
}

A
Andrew Morton 已提交
3270 3271
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3272 3273 3274 3275 3276 3277 3278 3279
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3280 3281
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3282
{
P
Pekka Enberg 已提交
3283
	if (!objp)
L
Linus Torvalds 已提交
3284
		return objp;
P
Pekka Enberg 已提交
3285
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3286
#ifdef CONFIG_DEBUG_PAGEALLOC
3287
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3288
			kernel_map_pages(virt_to_page(objp),
3289
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3301 3302 3303 3304
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3305
			printk(KERN_ERR
3306
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3307 3308
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3309 3310 3311 3312
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3313 3314 3315 3316 3317
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3318
		slabp = virt_to_head_page(objp)->slab_page;
3319
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3320 3321 3322
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3323
	objp += obj_offset(cachep);
3324
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3325
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3326 3327
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3328
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3329
		       objp, (int)ARCH_SLAB_MINALIGN);
3330
	}
L
Linus Torvalds 已提交
3331 3332 3333 3334 3335 3336
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3337
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3338 3339
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3340
		return false;
3341

3342
	return should_failslab(cachep->object_size, flags, cachep->flags);
3343 3344
}

3345
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3346
{
P
Pekka Enberg 已提交
3347
	void *objp;
L
Linus Torvalds 已提交
3348
	struct array_cache *ac;
3349
	bool force_refill = false;
L
Linus Torvalds 已提交
3350

3351
	check_irq_off();
3352

3353
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3354 3355
	if (likely(ac->avail)) {
		ac->touched = 1;
3356 3357
		objp = ac_get_obj(cachep, ac, flags, false);

3358
		/*
3359 3360
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3361
		 */
3362 3363 3364 3365 3366
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3367
	}
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3378 3379 3380 3381 3382
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3383 3384
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3385 3386 3387
	return objp;
}

3388
#ifdef CONFIG_NUMA
3389
/*
3390
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3391 3392 3393 3394 3395 3396 3397 3398
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3399
	if (in_interrupt() || (flags & __GFP_THISNODE))
3400
		return NULL;
3401
	nid_alloc = nid_here = numa_mem_id();
3402
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3403
		nid_alloc = cpuset_slab_spread_node();
3404
	else if (current->mempolicy)
3405
		nid_alloc = slab_node();
3406
	if (nid_alloc != nid_here)
3407
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3408 3409 3410
	return NULL;
}

3411 3412
/*
 * Fallback function if there was no memory available and no objects on a
3413 3414 3415 3416 3417
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3418
 */
3419
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3420
{
3421 3422
	struct zonelist *zonelist;
	gfp_t local_flags;
3423
	struct zoneref *z;
3424 3425
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3426
	void *obj = NULL;
3427
	int nid;
3428
	unsigned int cpuset_mems_cookie;
3429 3430 3431 3432

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3433
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3434

3435 3436
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3437
	zonelist = node_zonelist(slab_node(), flags);
3438

3439 3440 3441 3442 3443
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3444 3445
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3446

3447
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3448
			cache->nodelists[nid] &&
3449
			cache->nodelists[nid]->free_objects) {
3450 3451
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3452 3453 3454
				if (obj)
					break;
		}
3455 3456
	}

3457
	if (!obj) {
3458 3459 3460 3461 3462 3463
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3464 3465 3466
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3467
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3468 3469
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3486
				/* cache_grow already freed obj */
3487 3488 3489
				obj = NULL;
			}
		}
3490
	}
3491 3492 3493

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3494 3495 3496
	return obj;
}

3497 3498
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3499
 */
3500
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3501
				int nodeid)
3502 3503
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3504 3505 3506 3507 3508 3509 3510 3511
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3512
retry:
3513
	check_irq_off();
P
Pekka Enberg 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3533
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3534 3535 3536 3537 3538
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3539
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3540
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3541
	else
P
Pekka Enberg 已提交
3542
		list_add(&slabp->list, &l3->slabs_partial);
3543

P
Pekka Enberg 已提交
3544 3545
	spin_unlock(&l3->list_lock);
	goto done;
3546

A
Andrew Morton 已提交
3547
must_grow:
P
Pekka Enberg 已提交
3548
	spin_unlock(&l3->list_lock);
3549
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3550 3551
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3552

3553
	return fallback_alloc(cachep, flags);
3554

A
Andrew Morton 已提交
3555
done:
P
Pekka Enberg 已提交
3556
	return obj;
3557
}
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3577
	int slab_node = numa_mem_id();
3578

3579
	flags &= gfp_allowed_mask;
3580

3581 3582
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3583
	if (slab_should_failslab(cachep, flags))
3584 3585
		return NULL;

3586 3587 3588
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3589
	if (nodeid == NUMA_NO_NODE)
3590
		nodeid = slab_node;
3591 3592 3593 3594 3595 3596 3597

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3598
	if (nodeid == slab_node) {
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3614
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3615
				 flags);
3616

P
Pekka Enberg 已提交
3617
	if (likely(ptr))
3618
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3619

3620
	if (unlikely((flags & __GFP_ZERO) && ptr))
3621
		memset(ptr, 0, cachep->object_size);
3622

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3642 3643
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3664
	flags &= gfp_allowed_mask;
3665

3666 3667
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3668
	if (slab_should_failslab(cachep, flags))
3669 3670
		return NULL;

3671 3672 3673 3674 3675
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3676
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3677
				 flags);
3678 3679
	prefetchw(objp);

P
Pekka Enberg 已提交
3680
	if (likely(objp))
3681
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3682

3683
	if (unlikely((flags & __GFP_ZERO) && objp))
3684
		memset(objp, 0, cachep->object_size);
3685

3686 3687
	return objp;
}
3688 3689 3690 3691

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3692
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3693
		       int node)
L
Linus Torvalds 已提交
3694 3695
{
	int i;
3696
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3697 3698

	for (i = 0; i < nr_objects; i++) {
3699
		void *objp;
L
Linus Torvalds 已提交
3700 3701
		struct slab *slabp;

3702 3703 3704
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3705
		slabp = virt_to_slab(objp);
3706
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3707
		list_del(&slabp->list);
3708
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3709
		check_slabp(cachep, slabp);
3710
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3711
		STATS_DEC_ACTIVE(cachep);
3712
		l3->free_objects++;
L
Linus Torvalds 已提交
3713 3714 3715 3716
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3717 3718
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3719 3720 3721 3722 3723 3724
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3725 3726
				slab_destroy(cachep, slabp);
			} else {
3727
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3728 3729 3730 3731 3732 3733
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3734
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3735 3736 3737 3738
		}
	}
}

3739
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3740 3741
{
	int batchcount;
3742
	struct kmem_list3 *l3;
3743
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3744 3745 3746 3747 3748 3749

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3750
	l3 = cachep->nodelists[node];
3751
	spin_lock(&l3->list_lock);
3752 3753
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3754
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3755 3756 3757
		if (max) {
			if (batchcount > max)
				batchcount = max;
3758
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3759
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3765
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3766
free_done:
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771
#if STATS
	{
		int i = 0;
		struct list_head *p;

3772 3773
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3785
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3786
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3787
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3788 3789 3790
}

/*
A
Andrew Morton 已提交
3791 3792
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3793
 */
3794 3795
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3796
{
3797
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3798 3799

	check_irq_off();
3800
	kmemleak_free_recursive(objp, cachep->flags);
3801
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3802

3803
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3804

3805 3806 3807 3808 3809 3810 3811
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3812
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3813 3814
		return;

L
Linus Torvalds 已提交
3815 3816 3817 3818 3819 3820
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3821

3822
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3833
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3834
{
E
Eduard - Gabriel Munteanu 已提交
3835 3836
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3837
	trace_kmem_cache_alloc(_RET_IP_, ret,
3838
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3839 3840

	return ret;
L
Linus Torvalds 已提交
3841 3842 3843
}
EXPORT_SYMBOL(kmem_cache_alloc);

3844
#ifdef CONFIG_TRACING
3845 3846
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3847
{
3848 3849 3850 3851 3852 3853 3854
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3855
}
3856
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3857 3858
#endif

L
Linus Torvalds 已提交
3859
#ifdef CONFIG_NUMA
3860 3861
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3862 3863 3864
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3865
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3866
				    cachep->object_size, cachep->size,
3867
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3868 3869

	return ret;
3870
}
L
Linus Torvalds 已提交
3871 3872
EXPORT_SYMBOL(kmem_cache_alloc_node);

3873
#ifdef CONFIG_TRACING
3874 3875 3876 3877
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3878
{
3879 3880 3881
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3882
				  __builtin_return_address(0));
3883 3884 3885 3886
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3887
}
3888
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3889 3890
#endif

3891 3892
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3893
{
3894
	struct kmem_cache *cachep;
3895 3896

	cachep = kmem_find_general_cachep(size, flags);
3897 3898
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3899
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3900
}
3901

3902
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3903 3904 3905 3906 3907
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3908
EXPORT_SYMBOL(__kmalloc_node);
3909 3910

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3911
		int node, unsigned long caller)
3912
{
3913
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3914 3915 3916 3917 3918 3919 3920 3921
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3922
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3923
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3924 3925

/**
3926
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3927
 * @size: how many bytes of memory are required.
3928
 * @flags: the type of memory to allocate (see kmalloc).
3929
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3930
 */
3931 3932
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3933
{
3934
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3935
	void *ret;
L
Linus Torvalds 已提交
3936

3937 3938 3939 3940 3941 3942
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3943 3944
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3945 3946
	ret = __cache_alloc(cachep, flags, caller);

3947
	trace_kmalloc((unsigned long) caller, ret,
3948
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3949 3950

	return ret;
3951 3952 3953
}


3954
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3955 3956
void *__kmalloc(size_t size, gfp_t flags)
{
3957
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3958 3959 3960
}
EXPORT_SYMBOL(__kmalloc);

3961
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3962
{
3963
	return __do_kmalloc(size, flags, (void *)caller);
3964 3965
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3966 3967 3968 3969 3970 3971 3972

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3973 3974
#endif

L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980 3981 3982
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3983
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3984 3985 3986 3987
{
	unsigned long flags;

	local_irq_save(flags);
3988
	debug_check_no_locks_freed(objp, cachep->object_size);
3989
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3990
		debug_check_no_obj_freed(objp, cachep->object_size);
3991
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3992
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3993

3994
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
4002 4003
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
4004 4005 4006 4007 4008
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
4009
	struct kmem_cache *c;
L
Linus Torvalds 已提交
4010 4011
	unsigned long flags;

4012 4013
	trace_kfree(_RET_IP_, objp);

4014
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
4015 4016 4017
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
4018
	c = virt_to_cache(objp);
4019 4020 4021
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
4022
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
4023 4024 4025 4026
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

4027
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4028
{
4029
	return cachep->object_size;
L
Linus Torvalds 已提交
4030 4031 4032
}
EXPORT_SYMBOL(kmem_cache_size);

4033
/*
S
Simon Arlott 已提交
4034
 * This initializes kmem_list3 or resizes various caches for all nodes.
4035
 */
4036
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4037 4038 4039
{
	int node;
	struct kmem_list3 *l3;
4040
	struct array_cache *new_shared;
4041
	struct array_cache **new_alien = NULL;
4042

4043
	for_each_online_node(node) {
4044

4045
                if (use_alien_caches) {
4046
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4047 4048 4049
                        if (!new_alien)
                                goto fail;
                }
4050

4051 4052 4053
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
4054
				cachep->shared*cachep->batchcount,
4055
					0xbaadf00d, gfp);
4056 4057 4058 4059
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4060
		}
4061

A
Andrew Morton 已提交
4062 4063
		l3 = cachep->nodelists[node];
		if (l3) {
4064 4065
			struct array_cache *shared = l3->shared;

4066 4067
			spin_lock_irq(&l3->list_lock);

4068
			if (shared)
4069 4070
				free_block(cachep, shared->entry,
						shared->avail, node);
4071

4072 4073
			l3->shared = new_shared;
			if (!l3->alien) {
4074 4075 4076
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4077
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4078
					cachep->batchcount + cachep->num;
4079
			spin_unlock_irq(&l3->list_lock);
4080
			kfree(shared);
4081 4082 4083
			free_alien_cache(new_alien);
			continue;
		}
4084
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4085 4086 4087
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4088
			goto fail;
4089
		}
4090 4091 4092

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4093
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4094
		l3->shared = new_shared;
4095
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4096
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4097
					cachep->batchcount + cachep->num;
4098 4099
		cachep->nodelists[node] = l3;
	}
4100
	return 0;
4101

A
Andrew Morton 已提交
4102
fail:
4103
	if (!cachep->list.next) {
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4118
	return -ENOMEM;
4119 4120
}

L
Linus Torvalds 已提交
4121
struct ccupdate_struct {
4122
	struct kmem_cache *cachep;
4123
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4124 4125 4126 4127
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4128
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4129 4130 4131
	struct array_cache *old;

	check_irq_off();
4132
	old = cpu_cache_get(new->cachep);
4133

L
Linus Torvalds 已提交
4134 4135 4136 4137
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4138
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4139
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4140
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4141
{
4142
	struct ccupdate_struct *new;
4143
	int i;
L
Linus Torvalds 已提交
4144

4145 4146
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4147 4148 4149
	if (!new)
		return -ENOMEM;

4150
	for_each_online_cpu(i) {
4151
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4152
						batchcount, gfp);
4153
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4154
			for (i--; i >= 0; i--)
4155 4156
				kfree(new->new[i]);
			kfree(new);
4157
			return -ENOMEM;
L
Linus Torvalds 已提交
4158 4159
		}
	}
4160
	new->cachep = cachep;
L
Linus Torvalds 已提交
4161

4162
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4163

L
Linus Torvalds 已提交
4164 4165 4166
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4167
	cachep->shared = shared;
L
Linus Torvalds 已提交
4168

4169
	for_each_online_cpu(i) {
4170
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4171 4172
		if (!ccold)
			continue;
4173 4174 4175
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4176 4177
		kfree(ccold);
	}
4178
	kfree(new);
4179
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4180 4181
}

4182
/* Called with slab_mutex held always */
4183
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4184 4185 4186 4187
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4188 4189
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4190 4191
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4192
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4193 4194 4195 4196
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4197
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4198
		limit = 1;
4199
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4200
		limit = 8;
4201
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4202
		limit = 24;
4203
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4204 4205 4206 4207
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4208 4209
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215 4216 4217
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4218
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4219 4220 4221
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4222 4223 4224
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4225 4226 4227 4228
	 */
	if (limit > 32)
		limit = 32;
#endif
4229
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4230 4231
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4232
		       cachep->name, -err);
4233
	return err;
L
Linus Torvalds 已提交
4234 4235
}

4236 4237
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4238 4239
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4240
 */
4241
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4242
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4243 4244 4245
{
	int tofree;

4246 4247
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4248 4249
	if (ac->touched && !force) {
		ac->touched = 0;
4250
	} else {
4251
		spin_lock_irq(&l3->list_lock);
4252 4253 4254 4255 4256 4257 4258 4259 4260
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4261
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4267
 * @w: work descriptor
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4274 4275
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4276
 */
4277
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4278
{
4279
	struct kmem_cache *searchp;
4280
	struct kmem_list3 *l3;
4281
	int node = numa_mem_id();
4282
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4283

4284
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4285
		/* Give up. Setup the next iteration. */
4286
		goto out;
L
Linus Torvalds 已提交
4287

4288
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4289 4290
		check_irq_on();

4291 4292 4293 4294 4295
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4296
		l3 = searchp->nodelists[node];
4297

4298
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4299

4300
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4301

4302 4303 4304 4305
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4306
		if (time_after(l3->next_reap, jiffies))
4307
			goto next;
L
Linus Torvalds 已提交
4308

4309
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4310

4311
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4312

4313
		if (l3->free_touched)
4314
			l3->free_touched = 0;
4315 4316
		else {
			int freed;
L
Linus Torvalds 已提交
4317

4318 4319 4320 4321
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4322
next:
L
Linus Torvalds 已提交
4323 4324 4325
		cond_resched();
	}
	check_irq_on();
4326
	mutex_unlock(&slab_mutex);
4327
	next_reap_node();
4328
out:
A
Andrew Morton 已提交
4329
	/* Set up the next iteration */
4330
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4331 4332
}

4333
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4334

4335
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4336
{
4337 4338 4339 4340
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4341
#if STATS
4342
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4343
#else
4344
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4345
#endif
4346 4347 4348 4349
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4350
#if STATS
4351
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4352
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4353
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4354
#endif
4355 4356 4357 4358 4359 4360 4361
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4362
	mutex_lock(&slab_mutex);
4363 4364
	if (!n)
		print_slabinfo_header(m);
4365

4366
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4367 4368 4369 4370
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4371
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4372 4373 4374 4375
}

static void s_stop(struct seq_file *m, void *p)
{
4376
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4377 4378 4379 4380
}

static int s_show(struct seq_file *m, void *p)
{
4381
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4382 4383 4384 4385 4386
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4387
	const char *name;
L
Linus Torvalds 已提交
4388
	char *error = NULL;
4389 4390
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4391 4392 4393

	active_objs = 0;
	num_slabs = 0;
4394 4395 4396 4397 4398
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4399 4400
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4401

4402
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4403 4404 4405 4406 4407
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4408
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4409 4410 4411 4412 4413 4414 4415
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4416
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4417 4418 4419 4420 4421
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4422 4423
		if (l3->shared)
			shared_avail += l3->shared->avail;
4424

4425
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4426
	}
P
Pekka Enberg 已提交
4427 4428
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4429
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4430 4431
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4432
	name = cachep->name;
L
Linus Torvalds 已提交
4433 4434 4435 4436
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4437
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4438
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4439
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4440
		   cachep->limit, cachep->batchcount, cachep->shared);
4441
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4442
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4443
#if STATS
P
Pekka Enberg 已提交
4444
	{			/* list3 stats */
L
Linus Torvalds 已提交
4445 4446 4447 4448 4449 4450 4451
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4452
		unsigned long node_frees = cachep->node_frees;
4453
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4454

J
Joe Perches 已提交
4455 4456 4457 4458 4459
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4469
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4490
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4491 4492 4493 4494
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4505
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4506
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4507
{
P
Pekka Enberg 已提交
4508
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4509
	int limit, batchcount, shared, res;
4510
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4511

L
Linus Torvalds 已提交
4512 4513 4514 4515
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4516
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4527
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4528
	res = -EINVAL;
4529
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4530
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4531 4532
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4533
				res = 0;
L
Linus Torvalds 已提交
4534
			} else {
4535
				res = do_tune_cpucache(cachep, limit,
4536 4537
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4538 4539 4540 4541
			}
			break;
		}
	}
4542
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4543 4544 4545 4546
	if (res >= 0)
		res = count;
	return res;
}
4547

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4561 4562 4563 4564
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4565 4566
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4605
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4617
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4618

4619
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4620
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4621
		if (modname[0])
4622 4623 4624 4625 4626 4627 4628 4629 4630
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4631
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4656
		list_for_each_entry(slabp, &l3->slabs_full, list)
4657
			handle_slab(n, cachep, slabp);
4658
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4659 4660 4661 4662 4663 4664
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4665
		mutex_unlock(&slab_mutex);
4666 4667 4668 4669
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4670
			mutex_lock(&slab_mutex);
4671 4672 4673 4674
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4675
		mutex_lock(&slab_mutex);
4676 4677 4678 4679 4680 4681 4682 4683 4684
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4685

4686 4687 4688
	return 0;
}

4689
static const struct seq_operations slabstats_op = {
4690 4691 4692 4693 4694
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4723
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4724 4725
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4726
#endif
4727 4728 4729
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4730 4731
#endif

4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4744
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4745
{
4746 4747
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4748
		return 0;
L
Linus Torvalds 已提交
4749

4750
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4751
}
K
Kirill A. Shutemov 已提交
4752
EXPORT_SYMBOL(ksize);