slab.c 121.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

501
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
502 503
size_t slab_buffer_size(struct kmem_cache *cachep)
{
504
	return cachep->size;
E
Eduard - Gabriel Munteanu 已提交
505 506 507 508
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
509
/*
510 511
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
512
 */
513 514 515
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
516
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
517

518 519
static inline struct kmem_cache *page_get_cache(struct page *page)
{
520
	page = compound_head(page);
521
	BUG_ON(!PageSlab(page));
522
	return page->slab_cache;
523 524
}

525 526
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
527
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
528
	return page->slab_cache;
529 530 531 532
}

static inline struct slab *virt_to_slab(const void *obj)
{
533
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
534 535 536

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
537 538
}

539 540 541
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
542
	return slab->s_mem + cache->size * idx;
543 544
}

545
/*
546 547 548
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
549 550 551 552
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
553
{
554 555
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
556 557
}

A
Andrew Morton 已提交
558 559 560
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
578
	{NULL,}
L
Linus Torvalds 已提交
579 580 581 582
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
583
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
584
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
585
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
586 587

/* internal cache of cache description objs */
588
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
589
static struct kmem_cache cache_cache = {
590
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
591 592 593
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
594
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
595
	.name = "kmem_cache",
L
Linus Torvalds 已提交
596 597
};

598 599
#define BAD_ALIEN_MAGIC 0x01020304ul

600 601 602 603 604 605 606 607
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
608 609 610 611
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
612
 */
613 614 615
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

661
static void init_node_lock_keys(int q)
662
{
663 664
	struct cache_sizes *s = malloc_sizes;

665
	if (slab_state < UP)
666 667 668 669 670 671 672
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
673
			continue;
674 675 676

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
677 678
	}
}
679 680 681 682 683 684 685 686

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
687
#else
688 689 690 691
static void init_node_lock_keys(int q)
{
}

692
static inline void init_lock_keys(void)
693 694
{
}
695 696 697 698 699 700 701 702

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
703 704
#endif

705
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
706

707
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
708 709 710 711
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
712 713
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
714 715 716 717 718
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
719 720 721
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
722
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
723
#endif
724 725 726
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
727 728 729 730
	while (size > csizep->cs_size)
		csizep++;

	/*
731
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
732 733 734
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
735
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
736 737
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
738
#endif
L
Linus Torvalds 已提交
739 740 741
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
742
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
743 744 745 746
{
	return __find_general_cachep(size, gfpflags);
}

747
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
748
{
749 750
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
751

A
Andrew Morton 已提交
752 753 754
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
755 756 757 758 759 760 761
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
811 812
}

813
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
814

A
Andrew Morton 已提交
815 816
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
817 818
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
819
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
820 821 822
	dump_stack();
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

839 840 841 842 843 844 845 846 847 848 849
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

850 851 852 853 854 855 856
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
857
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
858 859 860 861 862

static void init_reap_node(int cpu)
{
	int node;

863
	node = next_node(cpu_to_mem(cpu), node_online_map);
864
	if (node == MAX_NUMNODES)
865
		node = first_node(node_online_map);
866

867
	per_cpu(slab_reap_node, cpu) = node;
868 869 870 871
}

static void next_reap_node(void)
{
872
	int node = __this_cpu_read(slab_reap_node);
873 874 875 876

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
877
	__this_cpu_write(slab_reap_node, node);
878 879 880 881 882 883 884
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
885 886 887 888 889 890 891
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
892
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
893
{
894
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
895 896 897 898 899 900

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
901
	if (keventd_up() && reap_work->work.func == NULL) {
902
		init_reap_node(cpu);
903
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
904 905
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
906 907 908
	}
}

909
static struct array_cache *alloc_arraycache(int node, int entries,
910
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
911
{
P
Pekka Enberg 已提交
912
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
913 914
	struct array_cache *nc = NULL;

915
	nc = kmalloc_node(memsize, gfp, node);
916 917
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
918
	 * However, when such objects are allocated or transferred to another
919 920 921 922 923
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
924 925 926 927 928
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
929
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
930 931 932 933
	}
	return nc;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

970
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1031 1032 1033 1034 1035 1036 1037 1038 1039
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1040 1041 1042 1043 1044 1045 1046 1047 1048
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1049 1050 1051
	ac->entry[ac->avail++] = objp;
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1062
	int nr = min3(from->avail, max, to->limit - to->avail);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1075 1076 1077 1078 1079
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1080
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1100
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1101 1102 1103 1104 1105 1106 1107
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1108
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1109
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1110

1111
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1112 1113
{
	struct array_cache **ac_ptr;
1114
	int memsize = sizeof(void *) * nr_node_ids;
1115 1116 1117 1118
	int i;

	if (limit > 1)
		limit = 12;
1119
	ac_ptr = kzalloc_node(memsize, gfp, node);
1120 1121
	if (ac_ptr) {
		for_each_node(i) {
1122
			if (i == node || !node_online(i))
1123
				continue;
1124
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1125
			if (!ac_ptr[i]) {
1126
				for (i--; i >= 0; i--)
1127 1128 1129 1130 1131 1132 1133 1134 1135
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1136
static void free_alien_cache(struct array_cache **ac_ptr)
1137 1138 1139 1140 1141 1142
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1143
	    kfree(ac_ptr[i]);
1144 1145 1146
	kfree(ac_ptr);
}

1147
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1148
				struct array_cache *ac, int node)
1149 1150 1151 1152 1153
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1154 1155 1156 1157 1158
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1159 1160
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1161

1162
		free_block(cachep, ac->entry, ac->avail, node);
1163 1164 1165 1166 1167
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1168 1169 1170 1171 1172
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1173
	int node = __this_cpu_read(slab_reap_node);
1174 1175 1176

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1177 1178

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1179 1180 1181 1182 1183 1184
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1185 1186
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1187
{
P
Pekka Enberg 已提交
1188
	int i = 0;
1189 1190 1191 1192
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1193
		ac = alien[i];
1194 1195 1196 1197 1198 1199 1200
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1201

1202
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1203 1204 1205 1206 1207
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1208 1209
	int node;

1210
	node = numa_mem_id();
1211 1212 1213 1214 1215

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1216
	if (likely(slabp->nodeid == node))
1217 1218
		return 0;

P
Pekka Enberg 已提交
1219
	l3 = cachep->nodelists[node];
1220 1221 1222
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1223
		spin_lock(&alien->lock);
1224 1225 1226 1227
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1228
		ac_put_obj(cachep, alien, objp);
1229 1230 1231 1232 1233 1234 1235 1236
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1237 1238
#endif

1239 1240 1241 1242 1243 1244 1245
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1246
 * Must hold slab_mutex.
1247 1248 1249 1250 1251 1252 1253
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1254
	list_for_each_entry(cachep, &slab_caches, list) {
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1270
			 * go.  slab_mutex is sufficient
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1285 1286 1287 1288
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1289
	int node = cpu_to_mem(cpu);
1290
	const struct cpumask *mask = cpumask_of_node(node);
1291

1292
	list_for_each_entry(cachep, &slab_caches, list) {
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1312
		if (!cpumask_empty(mask)) {
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1342
	list_for_each_entry(cachep, &slab_caches, list) {
1343 1344 1345 1346 1347 1348 1349 1350
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1351
{
1352
	struct kmem_cache *cachep;
1353
	struct kmem_list3 *l3 = NULL;
1354
	int node = cpu_to_mem(cpu);
1355
	int err;
L
Linus Torvalds 已提交
1356

1357 1358 1359 1360 1361 1362
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1363 1364 1365
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1366 1367 1368 1369 1370

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1371
	list_for_each_entry(cachep, &slab_caches, list) {
1372 1373 1374 1375 1376
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1377
					cachep->batchcount, GFP_KERNEL);
1378 1379 1380 1381 1382
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1383
				0xbaadf00d, GFP_KERNEL);
1384 1385
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1386
				goto bad;
1387
			}
1388 1389
		}
		if (use_alien_caches) {
1390
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1391 1392 1393
			if (!alien) {
				kfree(shared);
				kfree(nc);
1394
				goto bad;
1395
			}
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1410
#ifdef CONFIG_NUMA
1411 1412 1413
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1414
		}
1415 1416 1417 1418
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1419 1420
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1421
	}
1422 1423
	init_node_lock_keys(node);

1424 1425
	return 0;
bad:
1426
	cpuup_canceled(cpu);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1439
		mutex_lock(&slab_mutex);
1440
		err = cpuup_prepare(cpu);
1441
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1442 1443
		break;
	case CPU_ONLINE:
1444
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1445 1446 1447
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1448
  	case CPU_DOWN_PREPARE:
1449
  	case CPU_DOWN_PREPARE_FROZEN:
1450
		/*
1451
		 * Shutdown cache reaper. Note that the slab_mutex is
1452 1453 1454 1455
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1456
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1457
		/* Now the cache_reaper is guaranteed to be not running. */
1458
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1459 1460
  		break;
  	case CPU_DOWN_FAILED:
1461
  	case CPU_DOWN_FAILED_FROZEN:
1462 1463
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1464
	case CPU_DEAD:
1465
	case CPU_DEAD_FROZEN:
1466 1467 1468 1469 1470 1471 1472 1473
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1474
		/* fall through */
1475
#endif
L
Linus Torvalds 已提交
1476
	case CPU_UP_CANCELED:
1477
	case CPU_UP_CANCELED_FROZEN:
1478
		mutex_lock(&slab_mutex);
1479
		cpuup_canceled(cpu);
1480
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1481 1482
		break;
	}
1483
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1484 1485
}

1486 1487 1488
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1489

1490 1491 1492 1493 1494 1495
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1496
 * Must hold slab_mutex.
1497 1498 1499 1500 1501 1502
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1503
	list_for_each_entry(cachep, &slab_caches, list) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1534
		mutex_lock(&slab_mutex);
1535
		ret = init_cache_nodelists_node(nid);
1536
		mutex_unlock(&slab_mutex);
1537 1538
		break;
	case MEM_GOING_OFFLINE:
1539
		mutex_lock(&slab_mutex);
1540
		ret = drain_cache_nodelists_node(nid);
1541
		mutex_unlock(&slab_mutex);
1542 1543 1544 1545 1546 1547 1548 1549
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1550
	return notifier_from_errno(ret);
1551 1552 1553
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1554 1555 1556
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1557 1558
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1559 1560 1561
{
	struct kmem_list3 *ptr;

1562
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1563 1564 1565
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1566 1567 1568 1569 1570
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1571 1572 1573 1574
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1591 1592 1593
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1600
	int i;
1601
	int order;
P
Pekka Enberg 已提交
1602
	int node;
1603

1604
	if (num_possible_nodes() == 1)
1605 1606
		use_alien_caches = 0;

1607 1608 1609 1610 1611
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1612
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1613 1614 1615

	/*
	 * Fragmentation resistance on low memory - only use bigger
1616 1617
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1618
	 */
1619
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1620
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1621 1622 1623

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1624 1625 1626
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1627 1628 1629
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1630
	 * 2) Create the first kmalloc cache.
1631
	 *    The struct kmem_cache for the new cache is allocated normally.
1632 1633 1634
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1635 1636
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1637 1638 1639
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1640 1641
	 */

1642
	node = numa_mem_id();
P
Pekka Enberg 已提交
1643

L
Linus Torvalds 已提交
1644
	/* 1) create the cache_cache */
1645 1646
	INIT_LIST_HEAD(&slab_caches);
	list_add(&cache_cache.list, &slab_caches);
L
Linus Torvalds 已提交
1647 1648
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1649
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1650

E
Eric Dumazet 已提交
1651
	/*
1652
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1653
	 */
1654
	cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1655
				  nr_node_ids * sizeof(struct kmem_list3 *);
1656 1657
	cache_cache.object_size = cache_cache.size;
	cache_cache.size = ALIGN(cache_cache.size,
A
Andrew Morton 已提交
1658
					cache_line_size());
1659
	cache_cache.reciprocal_buffer_size =
1660
		reciprocal_value(cache_cache.size);
L
Linus Torvalds 已提交
1661

1662
	for (order = 0; order < MAX_ORDER; order++) {
1663
		cache_estimate(order, cache_cache.size,
1664 1665 1666 1667
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1668
	BUG_ON(!cache_cache.num);
1669
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1670 1671 1672
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1678 1679 1680 1681
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1682 1683
	 */

1684
	sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1685 1686 1687
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1688
					NULL);
1689

A
Andrew Morton 已提交
1690
	if (INDEX_AC != INDEX_L3) {
1691
		sizes[INDEX_L3].cs_cachep =
1692
			__kmem_cache_create(names[INDEX_L3].name,
A
Andrew Morton 已提交
1693 1694 1695
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1696
				NULL);
A
Andrew Morton 已提交
1697
	}
1698

1699 1700
	slab_early_init = 0;

L
Linus Torvalds 已提交
1701
	while (sizes->cs_size != ULONG_MAX) {
1702 1703
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1704 1705 1706
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1707 1708
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1709
		if (!sizes->cs_cachep) {
1710
			sizes->cs_cachep = __kmem_cache_create(names->name,
A
Andrew Morton 已提交
1711 1712 1713
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1714
					NULL);
A
Andrew Morton 已提交
1715
		}
1716
#ifdef CONFIG_ZONE_DMA
1717
		sizes->cs_dmacachep = __kmem_cache_create(
1718
					names->name_dma,
A
Andrew Morton 已提交
1719 1720 1721 1722
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1723
					NULL);
1724
#endif
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1730
		struct array_cache *ptr;
1731

1732
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1733

1734 1735
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1736
		       sizeof(struct arraycache_init));
1737 1738 1739 1740 1741
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1742
		cache_cache.array[smp_processor_id()] = ptr;
1743

1744
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1745

1746
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1747
		       != &initarray_generic.cache);
1748
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1749
		       sizeof(struct arraycache_init));
1750 1751 1752 1753 1754
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1755
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1756
		    ptr;
L
Linus Torvalds 已提交
1757
	}
1758 1759
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1760 1761
		int nid;

1762
		for_each_online_node(nid) {
1763
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1764

1765
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1766
				  &initkmem_list3[SIZE_AC + nid], nid);
1767 1768 1769

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1770
					  &initkmem_list3[SIZE_L3 + nid], nid);
1771 1772 1773
			}
		}
	}
L
Linus Torvalds 已提交
1774

1775
	slab_state = UP;
1776 1777 1778 1779 1780 1781
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1782
	slab_state = UP;
P
Peter Zijlstra 已提交
1783

1784 1785 1786
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1787
	/* 6) resize the head arrays to their final sizes */
1788 1789
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1790 1791
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1792
	mutex_unlock(&slab_mutex);
1793

1794 1795 1796
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1797 1798 1799
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1800 1801 1802
	 */
	register_cpu_notifier(&cpucache_notifier);

1803 1804 1805 1806 1807 1808 1809 1810
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1811 1812 1813
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819 1820
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1821 1822
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1823
	 */
1824
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1825
		start_cpu_timer(cpu);
1826 1827

	/* Done! */
1828
	slab_state = FULL;
L
Linus Torvalds 已提交
1829 1830 1831 1832
	return 0;
}
__initcall(cpucache_init);

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1845
		cachep->name, cachep->size, cachep->gfporder);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884 1885
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1886
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1887 1888
{
	struct page *page;
1889
	int nr_pages;
L
Linus Torvalds 已提交
1890 1891
	int i;

1892
#ifndef CONFIG_MMU
1893 1894 1895
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1896
	 */
1897
	flags |= __GFP_COMP;
1898
#endif
1899

1900
	flags |= cachep->allocflags;
1901 1902
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1903

L
Linus Torvalds 已提交
1904
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1905 1906 1907
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1908
		return NULL;
1909
	}
L
Linus Torvalds 已提交
1910

1911
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1912 1913 1914
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1915
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1916
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1917 1918 1919 1920 1921
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1922
	for (i = 0; i < nr_pages; i++) {
1923
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1924

1925 1926 1927 1928
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1929 1930 1931 1932 1933 1934 1935 1936
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1937

1938
	return page_address(page);
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943
}

/*
 * Interface to system's page release.
 */
1944
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1945
{
P
Pekka Enberg 已提交
1946
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1947 1948 1949
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1950
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1951

1952 1953 1954 1955 1956 1957
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1958
	while (i--) {
N
Nick Piggin 已提交
1959
		BUG_ON(!PageSlab(page));
1960
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1961
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1971
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1972
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1982
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1983
			    unsigned long caller)
L
Linus Torvalds 已提交
1984
{
1985
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1986

1987
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1988

P
Pekka Enberg 已提交
1989
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1990 1991
		return;

P
Pekka Enberg 已提交
1992 1993 1994 1995
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
2003
				*addr++ = svalue;
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
2011
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
2012 2013 2014
}
#endif

2015
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2016
{
2017
	int size = cachep->object_size;
2018
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2019 2020

	memset(addr, val, size);
P
Pekka Enberg 已提交
2021
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2027 2028 2029
	unsigned char error = 0;
	int bad_count = 0;

2030
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2031 2032 2033 2034 2035 2036
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2037 2038
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2053 2054 2055 2056 2057
}
#endif

#if DEBUG

2058
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2059 2060 2061 2062 2063
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2064
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2065 2066
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2067 2068 2069 2070
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2071
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2072
		print_symbol("(%s)",
A
Andrew Morton 已提交
2073
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2074 2075
		printk("\n");
	}
2076
	realobj = (char *)objp + obj_offset(cachep);
2077
	size = cachep->object_size;
P
Pekka Enberg 已提交
2078
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2079 2080
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2081 2082
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2083 2084 2085 2086
		dump_line(realobj, i, limit);
	}
}

2087
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092
{
	char *realobj;
	int size, i;
	int lines = 0;

2093
	realobj = (char *)objp + obj_offset(cachep);
2094
	size = cachep->object_size;
L
Linus Torvalds 已提交
2095

P
Pekka Enberg 已提交
2096
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2097
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2098
		if (i == size - 1)
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2105
				printk(KERN_ERR
2106 2107
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2108 2109 2110
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2111
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2112
			limit = 16;
P
Pekka Enberg 已提交
2113 2114
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2127
		struct slab *slabp = virt_to_slab(objp);
2128
		unsigned int objnr;
L
Linus Torvalds 已提交
2129

2130
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2131
		if (objnr) {
2132
			objp = index_to_obj(cachep, slabp, objnr - 1);
2133
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2134
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2135
			       realobj, size);
L
Linus Torvalds 已提交
2136 2137
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2138
		if (objnr + 1 < cachep->num) {
2139
			objp = index_to_obj(cachep, slabp, objnr + 1);
2140
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2141
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2142
			       realobj, size);
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2149
#if DEBUG
R
Rabin Vincent 已提交
2150
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2151 2152 2153
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2154
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2155 2156 2157

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2158
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2159
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2160
				kernel_map_pages(virt_to_page(objp),
2161
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2171
					   "was overwritten");
L
Linus Torvalds 已提交
2172 2173
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2174
					   "was overwritten");
L
Linus Torvalds 已提交
2175 2176
		}
	}
2177
}
L
Linus Torvalds 已提交
2178
#else
R
Rabin Vincent 已提交
2179
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2180 2181
{
}
L
Linus Torvalds 已提交
2182 2183
#endif

2184 2185 2186 2187 2188
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2189
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2190 2191
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2192
 */
2193
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2194 2195 2196
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2197
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2198 2199 2200
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2201
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2207 2208
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2209 2210 2211
	}
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2233
/**
2234 2235 2236 2237 2238 2239 2240
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2241 2242 2243 2244 2245
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2246
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2247
			size_t size, size_t align, unsigned long flags)
2248
{
2249
	unsigned long offslab_limit;
2250
	size_t left_over = 0;
2251
	int gfporder;
2252

2253
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2254 2255 2256
		unsigned int num;
		size_t remainder;

2257
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2258 2259
		if (!num)
			continue;
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2273

2274
		/* Found something acceptable - save it away */
2275
		cachep->num = num;
2276
		cachep->gfporder = gfporder;
2277 2278
		left_over = remainder;

2279 2280 2281 2282 2283 2284 2285 2286
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2287 2288 2289 2290
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2291
		if (gfporder >= slab_max_order)
2292 2293
			break;

2294 2295 2296
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2297
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2298 2299 2300 2301 2302
			break;
	}
	return left_over;
}

2303
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2304
{
2305
	if (slab_state >= FULL)
2306
		return enable_cpucache(cachep, gfp);
2307

2308
	if (slab_state == DOWN) {
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2323
			slab_state = PARTIAL_L3;
2324
		else
2325
			slab_state = PARTIAL_ARRAYCACHE;
2326 2327
	} else {
		cachep->array[smp_processor_id()] =
2328
			kmalloc(sizeof(struct arraycache_init), gfp);
2329

2330
		if (slab_state == PARTIAL_ARRAYCACHE) {
2331
			set_up_list3s(cachep, SIZE_L3);
2332
			slab_state = PARTIAL_L3;
2333 2334
		} else {
			int node;
2335
			for_each_online_node(node) {
2336 2337
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2338
						gfp, node);
2339 2340 2341 2342 2343
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2344
	cachep->nodelists[numa_mem_id()]->next_reap =
2345 2346 2347 2348 2349 2350 2351 2352 2353
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2354
	return 0;
2355 2356
}

L
Linus Torvalds 已提交
2357
/**
2358
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364 2365 2366
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2367
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2368 2369
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2370 2371
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2384
struct kmem_cache *
2385
__kmem_cache_create (const char *name, size_t size, size_t align,
2386
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2387 2388
{
	size_t left_over, slab_size, ralign;
2389
	struct kmem_cache *cachep = NULL;
2390
	gfp_t gfp;
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2400 2401
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2402
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2403 2404 2405 2406 2407 2408 2409
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2410 2411
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2412
	 */
2413
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2414

A
Andrew Morton 已提交
2415 2416
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2417 2418 2419
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2420 2421 2422
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2423 2424
	}

A
Andrew Morton 已提交
2425 2426
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2427 2428
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2429 2430 2431 2432
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2433 2434
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2435
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2436 2437 2438 2439
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2440 2441

	/*
D
David Woodhouse 已提交
2442 2443 2444
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2445
	 */
D
David Woodhouse 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2456

2457
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2458 2459 2460
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2461
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2462 2463 2464
	if (ralign < align) {
		ralign = align;
	}
2465 2466
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2467
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2468
	/*
2469
	 * 4) Store it.
L
Linus Torvalds 已提交
2470 2471 2472
	 */
	align = ralign;

2473 2474 2475 2476 2477
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2478
	/* Get cache's description obj. */
2479
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2480
	if (!cachep)
2481
		return NULL;
L
Linus Torvalds 已提交
2482

2483
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2484 2485
	cachep->object_size = size;
	cachep->align = align;
L
Linus Torvalds 已提交
2486 2487
#if DEBUG

2488 2489 2490 2491
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2492 2493
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2494 2495
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2496 2497
	}
	if (flags & SLAB_STORE_USER) {
2498
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2499 2500
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2501
		 */
D
David Woodhouse 已提交
2502 2503 2504 2505
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2506 2507
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2508
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2509
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2510
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515
		size = PAGE_SIZE;
	}
#endif
#endif

2516 2517 2518
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2519 2520
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2521
	 */
2522 2523
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530 2531
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2532
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2533 2534

	if (!cachep->num) {
2535 2536
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2537
		kmem_cache_free(&cache_cache, cachep);
2538
		return NULL;
L
Linus Torvalds 已提交
2539
	}
P
Pekka Enberg 已提交
2540 2541
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2554 2555
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2556 2557 2558 2559 2560 2561 2562 2563 2564

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2571
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2572 2573
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2574
	cachep->allocflags = 0;
2575
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2576
		cachep->allocflags |= GFP_DMA;
2577
	cachep->size = size;
2578
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2579

2580
	if (flags & CFLGS_OFF_SLAB) {
2581
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2582 2583 2584 2585 2586 2587 2588
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2589
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2590
	}
L
Linus Torvalds 已提交
2591 2592 2593
	cachep->ctor = ctor;
	cachep->name = name;

2594
	if (setup_cpu_cache(cachep, gfp)) {
2595
		__kmem_cache_destroy(cachep);
2596
		return NULL;
2597
	}
L
Linus Torvalds 已提交
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2609
	/* cache setup completed, link it into the list */
2610
	list_add(&cachep->list, &slab_caches);
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	return cachep;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2625
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2626 2627 2628
{
#ifdef CONFIG_SMP
	check_irq_off();
2629
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2630 2631
#endif
}
2632

2633
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2634 2635 2636 2637 2638 2639 2640
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2641 2642 2643 2644
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2645
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2646 2647
#endif

2648 2649 2650 2651
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2652 2653
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2654
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2655
	struct array_cache *ac;
2656
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2657 2658

	check_irq_off();
2659
	ac = cpu_cache_get(cachep);
2660 2661 2662
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2663 2664 2665
	ac->avail = 0;
}

2666
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2667
{
2668 2669 2670
	struct kmem_list3 *l3;
	int node;

2671
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2672
	check_irq_on();
P
Pekka Enberg 已提交
2673
	for_each_online_node(node) {
2674
		l3 = cachep->nodelists[node];
2675 2676 2677 2678 2679 2680 2681
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2682
			drain_array(cachep, l3, l3->shared, 1, node);
2683
	}
L
Linus Torvalds 已提交
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2694
{
2695 2696
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2697 2698
	struct slab *slabp;

2699 2700
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2701

2702
		spin_lock_irq(&l3->list_lock);
2703
		p = l3->slabs_free.prev;
2704 2705 2706 2707
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2708

2709
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2710
#if DEBUG
2711
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2712 2713
#endif
		list_del(&slabp->list);
2714 2715 2716 2717 2718
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2719
		spin_unlock_irq(&l3->list_lock);
2720 2721
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2722
	}
2723 2724
out:
	return nr_freed;
L
Linus Torvalds 已提交
2725 2726
}

2727
/* Called with slab_mutex held to protect against cpu hotplug */
2728
static int __cache_shrink(struct kmem_cache *cachep)
2729 2730 2731 2732 2733 2734 2735 2736 2737
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2738 2739 2740 2741 2742 2743 2744
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2745 2746 2747 2748
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754 2755
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2756
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2757
{
2758
	int ret;
2759
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2760

2761
	get_online_cpus();
2762
	mutex_lock(&slab_mutex);
2763
	ret = __cache_shrink(cachep);
2764
	mutex_unlock(&slab_mutex);
2765
	put_online_cpus();
2766
	return ret;
L
Linus Torvalds 已提交
2767 2768 2769 2770 2771 2772 2773
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2774
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781 2782
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2783
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2784 2785
 * during the kmem_cache_destroy().
 */
2786
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2787
{
2788
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2789 2790

	/* Find the cache in the chain of caches. */
2791
	get_online_cpus();
2792
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
2793 2794 2795
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
2796
	list_del(&cachep->list);
L
Linus Torvalds 已提交
2797 2798
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
2799 2800
		list_add(&cachep->list, &slab_caches);
		mutex_unlock(&slab_mutex);
2801
		put_online_cpus();
2802
		return;
L
Linus Torvalds 已提交
2803 2804 2805
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2806
		rcu_barrier();
L
Linus Torvalds 已提交
2807

2808
	__kmem_cache_destroy(cachep);
2809
	mutex_unlock(&slab_mutex);
2810
	put_online_cpus();
L
Linus Torvalds 已提交
2811 2812 2813
}
EXPORT_SYMBOL(kmem_cache_destroy);

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2825
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2826 2827
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2828 2829
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2830

L
Linus Torvalds 已提交
2831 2832
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2833
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2834
					      local_flags, nodeid);
2835 2836 2837 2838 2839 2840
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2841 2842
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2843 2844 2845
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2846
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2847 2848 2849 2850
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2851
	slabp->s_mem = objp + colour_off;
2852
	slabp->nodeid = nodeid;
2853
	slabp->free = 0;
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2859
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2860 2861
}

2862
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2863
			    struct slab *slabp)
L
Linus Torvalds 已提交
2864 2865 2866 2867
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2868
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2881 2882 2883
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2884 2885
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2886
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2887 2888 2889 2890

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2891
					   " end of an object");
L
Linus Torvalds 已提交
2892 2893
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2894
					   " start of an object");
L
Linus Torvalds 已提交
2895
		}
2896
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2897
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2898
			kernel_map_pages(virt_to_page(objp),
2899
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2900 2901
#else
		if (cachep->ctor)
2902
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2903
#endif
P
Pekka Enberg 已提交
2904
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2905
	}
P
Pekka Enberg 已提交
2906
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2907 2908
}

2909
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2910
{
2911 2912
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2913
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2914
		else
2915
			BUG_ON(cachep->allocflags & GFP_DMA);
2916
	}
L
Linus Torvalds 已提交
2917 2918
}

A
Andrew Morton 已提交
2919 2920
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2921
{
2922
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2936 2937
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2938
{
2939
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2940 2941 2942 2943 2944

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2945
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2946
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2947
				"'%s', objp %p\n", cachep->name, objp);
2948 2949 2950 2951 2952 2953 2954 2955
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2956 2957 2958
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2959
 * virtual address for kfree, ksize, and slab debugging.
2960 2961 2962
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2963
{
2964
	int nr_pages;
L
Linus Torvalds 已提交
2965 2966
	struct page *page;

2967
	page = virt_to_page(addr);
2968

2969
	nr_pages = 1;
2970
	if (likely(!PageCompound(page)))
2971 2972
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2973
	do {
C
Christoph Lameter 已提交
2974 2975
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2976
		page++;
2977
	} while (--nr_pages);
L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2984 2985
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2986
{
P
Pekka Enberg 已提交
2987 2988 2989
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2990
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2991

A
Andrew Morton 已提交
2992 2993 2994
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2995
	 */
C
Christoph Lameter 已提交
2996 2997
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2998

2999
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
3000
	check_irq_off();
3001 3002
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3003 3004

	/* Get colour for the slab, and cal the next value. */
3005 3006 3007 3008 3009
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3010

3011
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
3024 3025 3026
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
3027
	 */
3028
	if (!objp)
3029
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
3030
	if (!objp)
L
Linus Torvalds 已提交
3031 3032 3033
		goto failed;

	/* Get slab management. */
3034
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
3035
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
3036
	if (!slabp)
L
Linus Torvalds 已提交
3037 3038
		goto opps1;

3039
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
3040

C
Christoph Lameter 已提交
3041
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
3042 3043 3044 3045

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
3046
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3047 3048

	/* Make slab active. */
3049
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
3050
	STATS_INC_GROWN(cachep);
3051 3052
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3053
	return 1;
A
Andrew Morton 已提交
3054
opps1:
L
Linus Torvalds 已提交
3055
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
3056
failed:
L
Linus Torvalds 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3073 3074
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3075 3076 3077
	}
}

3078 3079
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3080
	unsigned long long redzone1, redzone2;
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3096
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3097 3098 3099
			obj, redzone1, redzone2);
}

3100
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
3101
				   void *caller)
L
Linus Torvalds 已提交
3102 3103 3104 3105 3106
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3107 3108
	BUG_ON(virt_to_cache(objp) != cachep);

3109
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3110
	kfree_debugcheck(objp);
3111
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3112

C
Christoph Lameter 已提交
3113
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3114 3115

	if (cachep->flags & SLAB_RED_ZONE) {
3116
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3123
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3124 3125

	BUG_ON(objnr >= cachep->num);
3126
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3127

3128 3129 3130
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3131 3132
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3133
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
3134
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
3135
			kernel_map_pages(virt_to_page(objp),
3136
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3147
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3148 3149 3150
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3151

L
Linus Torvalds 已提交
3152 3153 3154 3155 3156 3157 3158
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3159 3160
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3161 3162 3163
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3164 3165 3166
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3176 3177
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3178 3179 3180 3181
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3182 3183
	int node;

L
Linus Torvalds 已提交
3184
	check_irq_off();
3185
	node = numa_mem_id();
3186 3187 3188
	if (unlikely(force_refill))
		goto force_grow;
retry:
3189
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3190 3191
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3192 3193 3194 3195
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3196 3197 3198
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3199
	l3 = cachep->nodelists[node];
3200 3201 3202

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3203

3204
	/* See if we can refill from the shared array */
3205 3206
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3207
		goto alloc_done;
3208
	}
3209

L
Linus Torvalds 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3225 3226 3227 3228 3229 3230

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3231
		BUG_ON(slabp->inuse >= cachep->num);
3232

L
Linus Torvalds 已提交
3233 3234 3235 3236 3237
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3238 3239
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3251
must_grow:
L
Linus Torvalds 已提交
3252
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3253
alloc_done:
3254
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3255 3256 3257

	if (unlikely(!ac->avail)) {
		int x;
3258
force_grow:
3259
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3260

A
Andrew Morton 已提交
3261
		/* cache_grow can reenable interrupts, then ac could change. */
3262
		ac = cpu_cache_get(cachep);
3263 3264 3265

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3266 3267
			return NULL;

A
Andrew Morton 已提交
3268
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3269 3270 3271
			goto retry;
	}
	ac->touched = 1;
3272 3273

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3274 3275
}

A
Andrew Morton 已提交
3276 3277
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3278 3279 3280 3281 3282 3283 3284 3285
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3286 3287
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3288
{
P
Pekka Enberg 已提交
3289
	if (!objp)
L
Linus Torvalds 已提交
3290
		return objp;
P
Pekka Enberg 已提交
3291
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3292
#ifdef CONFIG_DEBUG_PAGEALLOC
3293
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3294
			kernel_map_pages(virt_to_page(objp),
3295
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3307 3308 3309 3310
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3311
			printk(KERN_ERR
3312
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3313 3314
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3315 3316 3317 3318
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3319 3320 3321 3322 3323
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3324
		slabp = virt_to_head_page(objp)->slab_page;
3325
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3326 3327 3328
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3329
	objp += obj_offset(cachep);
3330
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3331
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3332 3333
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3334
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3335
		       objp, (int)ARCH_SLAB_MINALIGN);
3336
	}
L
Linus Torvalds 已提交
3337 3338 3339 3340 3341 3342
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3343
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3344 3345
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3346
		return false;
3347

3348
	return should_failslab(cachep->object_size, flags, cachep->flags);
3349 3350
}

3351
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3352
{
P
Pekka Enberg 已提交
3353
	void *objp;
L
Linus Torvalds 已提交
3354
	struct array_cache *ac;
3355
	bool force_refill = false;
L
Linus Torvalds 已提交
3356

3357
	check_irq_off();
3358

3359
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3360 3361
	if (likely(ac->avail)) {
		ac->touched = 1;
3362 3363
		objp = ac_get_obj(cachep, ac, flags, false);

3364
		/*
3365 3366
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3367
		 */
3368 3369 3370 3371 3372
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3373
	}
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3384 3385 3386 3387 3388
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3389 3390
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3391 3392 3393
	return objp;
}

3394
#ifdef CONFIG_NUMA
3395
/*
3396
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3397 3398 3399 3400 3401 3402 3403 3404
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3405
	if (in_interrupt() || (flags & __GFP_THISNODE))
3406
		return NULL;
3407
	nid_alloc = nid_here = numa_mem_id();
3408
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3409
		nid_alloc = cpuset_slab_spread_node();
3410
	else if (current->mempolicy)
3411
		nid_alloc = slab_node();
3412
	if (nid_alloc != nid_here)
3413
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3414 3415 3416
	return NULL;
}

3417 3418
/*
 * Fallback function if there was no memory available and no objects on a
3419 3420 3421 3422 3423
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3424
 */
3425
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3426
{
3427 3428
	struct zonelist *zonelist;
	gfp_t local_flags;
3429
	struct zoneref *z;
3430 3431
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3432
	void *obj = NULL;
3433
	int nid;
3434
	unsigned int cpuset_mems_cookie;
3435 3436 3437 3438

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3439
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3440

3441 3442
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3443
	zonelist = node_zonelist(slab_node(), flags);
3444

3445 3446 3447 3448 3449
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3450 3451
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3452

3453
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3454
			cache->nodelists[nid] &&
3455
			cache->nodelists[nid]->free_objects) {
3456 3457
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3458 3459 3460
				if (obj)
					break;
		}
3461 3462
	}

3463
	if (!obj) {
3464 3465 3466 3467 3468 3469
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3470 3471 3472
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3473
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3474 3475
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3492
				/* cache_grow already freed obj */
3493 3494 3495
				obj = NULL;
			}
		}
3496
	}
3497 3498 3499

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3500 3501 3502
	return obj;
}

3503 3504
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3505
 */
3506
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3507
				int nodeid)
3508 3509
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3510 3511 3512 3513 3514 3515 3516 3517
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3518
retry:
3519
	check_irq_off();
P
Pekka Enberg 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3539
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3540 3541 3542 3543 3544
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3545
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3546
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3547
	else
P
Pekka Enberg 已提交
3548
		list_add(&slabp->list, &l3->slabs_partial);
3549

P
Pekka Enberg 已提交
3550 3551
	spin_unlock(&l3->list_lock);
	goto done;
3552

A
Andrew Morton 已提交
3553
must_grow:
P
Pekka Enberg 已提交
3554
	spin_unlock(&l3->list_lock);
3555
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3556 3557
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3558

3559
	return fallback_alloc(cachep, flags);
3560

A
Andrew Morton 已提交
3561
done:
P
Pekka Enberg 已提交
3562
	return obj;
3563
}
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3583
	int slab_node = numa_mem_id();
3584

3585
	flags &= gfp_allowed_mask;
3586

3587 3588
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3589
	if (slab_should_failslab(cachep, flags))
3590 3591
		return NULL;

3592 3593 3594
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3595
	if (nodeid == NUMA_NO_NODE)
3596
		nodeid = slab_node;
3597 3598 3599 3600 3601 3602 3603

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3604
	if (nodeid == slab_node) {
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3620
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3621
				 flags);
3622

P
Pekka Enberg 已提交
3623
	if (likely(ptr))
3624
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3625

3626
	if (unlikely((flags & __GFP_ZERO) && ptr))
3627
		memset(ptr, 0, cachep->object_size);
3628

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3648 3649
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3670
	flags &= gfp_allowed_mask;
3671

3672 3673
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3674
	if (slab_should_failslab(cachep, flags))
3675 3676
		return NULL;

3677 3678 3679 3680 3681
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3682
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3683
				 flags);
3684 3685
	prefetchw(objp);

P
Pekka Enberg 已提交
3686
	if (likely(objp))
3687
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3688

3689
	if (unlikely((flags & __GFP_ZERO) && objp))
3690
		memset(objp, 0, cachep->object_size);
3691

3692 3693
	return objp;
}
3694 3695 3696 3697

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3698
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3699
		       int node)
L
Linus Torvalds 已提交
3700 3701
{
	int i;
3702
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3703 3704

	for (i = 0; i < nr_objects; i++) {
3705
		void *objp;
L
Linus Torvalds 已提交
3706 3707
		struct slab *slabp;

3708 3709 3710
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3711
		slabp = virt_to_slab(objp);
3712
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3713
		list_del(&slabp->list);
3714
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3715
		check_slabp(cachep, slabp);
3716
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3717
		STATS_DEC_ACTIVE(cachep);
3718
		l3->free_objects++;
L
Linus Torvalds 已提交
3719 3720 3721 3722
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3723 3724
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3725 3726 3727 3728 3729 3730
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3731 3732
				slab_destroy(cachep, slabp);
			} else {
3733
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3740
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3741 3742 3743 3744
		}
	}
}

3745
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3746 3747
{
	int batchcount;
3748
	struct kmem_list3 *l3;
3749
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3750 3751 3752 3753 3754 3755

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3756
	l3 = cachep->nodelists[node];
3757
	spin_lock(&l3->list_lock);
3758 3759
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3760
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3761 3762 3763
		if (max) {
			if (batchcount > max)
				batchcount = max;
3764
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3765
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3771
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3772
free_done:
L
Linus Torvalds 已提交
3773 3774 3775 3776 3777
#if STATS
	{
		int i = 0;
		struct list_head *p;

3778 3779
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3791
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3792
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3793
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3794 3795 3796
}

/*
A
Andrew Morton 已提交
3797 3798
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3799
 */
3800 3801
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3802
{
3803
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3804 3805

	check_irq_off();
3806
	kmemleak_free_recursive(objp, cachep->flags);
3807
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3808

3809
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3810

3811 3812 3813 3814 3815 3816 3817
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3818
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3819 3820
		return;

L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3827

3828
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3839
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3840
{
E
Eduard - Gabriel Munteanu 已提交
3841 3842
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3843
	trace_kmem_cache_alloc(_RET_IP_, ret,
3844
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3845 3846

	return ret;
L
Linus Torvalds 已提交
3847 3848 3849
}
EXPORT_SYMBOL(kmem_cache_alloc);

3850
#ifdef CONFIG_TRACING
3851 3852
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3853
{
3854 3855 3856 3857 3858 3859 3860
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3861
}
3862
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3863 3864
#endif

L
Linus Torvalds 已提交
3865
#ifdef CONFIG_NUMA
3866 3867
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3868 3869 3870
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3871
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3872
				    cachep->object_size, cachep->size,
3873
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3874 3875

	return ret;
3876
}
L
Linus Torvalds 已提交
3877 3878
EXPORT_SYMBOL(kmem_cache_alloc_node);

3879
#ifdef CONFIG_TRACING
3880 3881 3882 3883
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3884
{
3885 3886 3887
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3888
				  __builtin_return_address(0));
3889 3890 3891 3892
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3893
}
3894
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3895 3896
#endif

3897 3898
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3899
{
3900
	struct kmem_cache *cachep;
3901 3902

	cachep = kmem_find_general_cachep(size, flags);
3903 3904
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3905
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3906
}
3907

3908
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3909 3910 3911 3912 3913
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3914
EXPORT_SYMBOL(__kmalloc_node);
3915 3916

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3917
		int node, unsigned long caller)
3918
{
3919
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3920 3921 3922 3923 3924 3925 3926 3927
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3928
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3929
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3930 3931

/**
3932
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3933
 * @size: how many bytes of memory are required.
3934
 * @flags: the type of memory to allocate (see kmalloc).
3935
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3936
 */
3937 3938
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3939
{
3940
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3941
	void *ret;
L
Linus Torvalds 已提交
3942

3943 3944 3945 3946 3947 3948
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3949 3950
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3951 3952
	ret = __cache_alloc(cachep, flags, caller);

3953
	trace_kmalloc((unsigned long) caller, ret,
3954
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3955 3956

	return ret;
3957 3958 3959
}


3960
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3961 3962
void *__kmalloc(size_t size, gfp_t flags)
{
3963
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3964 3965 3966
}
EXPORT_SYMBOL(__kmalloc);

3967
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3968
{
3969
	return __do_kmalloc(size, flags, (void *)caller);
3970 3971
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3972 3973 3974 3975 3976 3977 3978

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3979 3980
#endif

L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986 3987 3988
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3989
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3990 3991 3992 3993
{
	unsigned long flags;

	local_irq_save(flags);
3994
	debug_check_no_locks_freed(objp, cachep->object_size);
3995
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3996
		debug_check_no_obj_freed(objp, cachep->object_size);
3997
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3998
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3999

4000
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005 4006 4007
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
4008 4009
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
4015
	struct kmem_cache *c;
L
Linus Torvalds 已提交
4016 4017
	unsigned long flags;

4018 4019
	trace_kfree(_RET_IP_, objp);

4020
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
4021 4022 4023
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
4024
	c = virt_to_cache(objp);
4025 4026 4027
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
4028
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
4029 4030 4031 4032
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

4033
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4034
{
4035
	return cachep->object_size;
L
Linus Torvalds 已提交
4036 4037 4038
}
EXPORT_SYMBOL(kmem_cache_size);

4039
/*
S
Simon Arlott 已提交
4040
 * This initializes kmem_list3 or resizes various caches for all nodes.
4041
 */
4042
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4043 4044 4045
{
	int node;
	struct kmem_list3 *l3;
4046
	struct array_cache *new_shared;
4047
	struct array_cache **new_alien = NULL;
4048

4049
	for_each_online_node(node) {
4050

4051
                if (use_alien_caches) {
4052
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4053 4054 4055
                        if (!new_alien)
                                goto fail;
                }
4056

4057 4058 4059
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
4060
				cachep->shared*cachep->batchcount,
4061
					0xbaadf00d, gfp);
4062 4063 4064 4065
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4066
		}
4067

A
Andrew Morton 已提交
4068 4069
		l3 = cachep->nodelists[node];
		if (l3) {
4070 4071
			struct array_cache *shared = l3->shared;

4072 4073
			spin_lock_irq(&l3->list_lock);

4074
			if (shared)
4075 4076
				free_block(cachep, shared->entry,
						shared->avail, node);
4077

4078 4079
			l3->shared = new_shared;
			if (!l3->alien) {
4080 4081 4082
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4083
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4084
					cachep->batchcount + cachep->num;
4085
			spin_unlock_irq(&l3->list_lock);
4086
			kfree(shared);
4087 4088 4089
			free_alien_cache(new_alien);
			continue;
		}
4090
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4091 4092 4093
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4094
			goto fail;
4095
		}
4096 4097 4098

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4099
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4100
		l3->shared = new_shared;
4101
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4102
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4103
					cachep->batchcount + cachep->num;
4104 4105
		cachep->nodelists[node] = l3;
	}
4106
	return 0;
4107

A
Andrew Morton 已提交
4108
fail:
4109
	if (!cachep->list.next) {
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4124
	return -ENOMEM;
4125 4126
}

L
Linus Torvalds 已提交
4127
struct ccupdate_struct {
4128
	struct kmem_cache *cachep;
4129
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4130 4131 4132 4133
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4134
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4135 4136 4137
	struct array_cache *old;

	check_irq_off();
4138
	old = cpu_cache_get(new->cachep);
4139

L
Linus Torvalds 已提交
4140 4141 4142 4143
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4144
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4145
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4146
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4147
{
4148
	struct ccupdate_struct *new;
4149
	int i;
L
Linus Torvalds 已提交
4150

4151 4152
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4153 4154 4155
	if (!new)
		return -ENOMEM;

4156
	for_each_online_cpu(i) {
4157
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4158
						batchcount, gfp);
4159
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4160
			for (i--; i >= 0; i--)
4161 4162
				kfree(new->new[i]);
			kfree(new);
4163
			return -ENOMEM;
L
Linus Torvalds 已提交
4164 4165
		}
	}
4166
	new->cachep = cachep;
L
Linus Torvalds 已提交
4167

4168
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4169

L
Linus Torvalds 已提交
4170 4171 4172
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4173
	cachep->shared = shared;
L
Linus Torvalds 已提交
4174

4175
	for_each_online_cpu(i) {
4176
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4177 4178
		if (!ccold)
			continue;
4179 4180 4181
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4182 4183
		kfree(ccold);
	}
4184
	kfree(new);
4185
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4186 4187
}

4188
/* Called with slab_mutex held always */
4189
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4190 4191 4192 4193
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4194 4195
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4196 4197
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4198
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4199 4200 4201 4202
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4203
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4204
		limit = 1;
4205
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4206
		limit = 8;
4207
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4208
		limit = 24;
4209
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4210 4211 4212 4213
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4214 4215
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4216 4217 4218 4219 4220 4221 4222 4223
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4224
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4225 4226 4227
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4228 4229 4230
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4231 4232 4233 4234
	 */
	if (limit > 32)
		limit = 32;
#endif
4235
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4236 4237
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4238
		       cachep->name, -err);
4239
	return err;
L
Linus Torvalds 已提交
4240 4241
}

4242 4243
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4244 4245
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4246
 */
4247
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4248
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4249 4250 4251
{
	int tofree;

4252 4253
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4254 4255
	if (ac->touched && !force) {
		ac->touched = 0;
4256
	} else {
4257
		spin_lock_irq(&l3->list_lock);
4258 4259 4260 4261 4262 4263 4264 4265 4266
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4267
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4273
 * @w: work descriptor
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4280 4281
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4282
 */
4283
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4284
{
4285
	struct kmem_cache *searchp;
4286
	struct kmem_list3 *l3;
4287
	int node = numa_mem_id();
4288
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4289

4290
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4291
		/* Give up. Setup the next iteration. */
4292
		goto out;
L
Linus Torvalds 已提交
4293

4294
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4295 4296
		check_irq_on();

4297 4298 4299 4300 4301
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4302
		l3 = searchp->nodelists[node];
4303

4304
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4305

4306
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4307

4308 4309 4310 4311
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4312
		if (time_after(l3->next_reap, jiffies))
4313
			goto next;
L
Linus Torvalds 已提交
4314

4315
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4316

4317
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4318

4319
		if (l3->free_touched)
4320
			l3->free_touched = 0;
4321 4322
		else {
			int freed;
L
Linus Torvalds 已提交
4323

4324 4325 4326 4327
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4328
next:
L
Linus Torvalds 已提交
4329 4330 4331
		cond_resched();
	}
	check_irq_on();
4332
	mutex_unlock(&slab_mutex);
4333
	next_reap_node();
4334
out:
A
Andrew Morton 已提交
4335
	/* Set up the next iteration */
4336
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4337 4338
}

4339
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4340

4341
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4342
{
4343 4344 4345 4346
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4347
#if STATS
4348
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4349
#else
4350
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4351
#endif
4352 4353 4354 4355
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4356
#if STATS
4357
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4358
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4359
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4360
#endif
4361 4362 4363 4364 4365 4366 4367
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4368
	mutex_lock(&slab_mutex);
4369 4370
	if (!n)
		print_slabinfo_header(m);
4371

4372
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4373 4374 4375 4376
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4377
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4378 4379 4380 4381
}

static void s_stop(struct seq_file *m, void *p)
{
4382
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4383 4384 4385 4386
}

static int s_show(struct seq_file *m, void *p)
{
4387
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4388 4389 4390 4391 4392
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4393
	const char *name;
L
Linus Torvalds 已提交
4394
	char *error = NULL;
4395 4396
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4397 4398 4399

	active_objs = 0;
	num_slabs = 0;
4400 4401 4402 4403 4404
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4405 4406
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4407

4408
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4409 4410 4411 4412 4413
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4414
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4415 4416 4417 4418 4419 4420 4421
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4422
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4423 4424 4425 4426 4427
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4428 4429
		if (l3->shared)
			shared_avail += l3->shared->avail;
4430

4431
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4432
	}
P
Pekka Enberg 已提交
4433 4434
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4435
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4436 4437
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4438
	name = cachep->name;
L
Linus Torvalds 已提交
4439 4440 4441 4442
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4443
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4444
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4445
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4446
		   cachep->limit, cachep->batchcount, cachep->shared);
4447
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4448
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4449
#if STATS
P
Pekka Enberg 已提交
4450
	{			/* list3 stats */
L
Linus Torvalds 已提交
4451 4452 4453 4454 4455 4456 4457
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4458
		unsigned long node_frees = cachep->node_frees;
4459
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4460

J
Joe Perches 已提交
4461 4462 4463 4464 4465
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4475
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4496
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4497 4498 4499 4500
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4511
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4512
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4513
{
P
Pekka Enberg 已提交
4514
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4515
	int limit, batchcount, shared, res;
4516
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4517

L
Linus Torvalds 已提交
4518 4519 4520 4521
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4522
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4533
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4534
	res = -EINVAL;
4535
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4536
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4537 4538
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4539
				res = 0;
L
Linus Torvalds 已提交
4540
			} else {
4541
				res = do_tune_cpucache(cachep, limit,
4542 4543
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4544 4545 4546 4547
			}
			break;
		}
	}
4548
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4549 4550 4551 4552
	if (res >= 0)
		res = count;
	return res;
}
4553

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4567 4568 4569 4570
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4571 4572
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4611
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4623
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4624

4625
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4626
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4627
		if (modname[0])
4628 4629 4630 4631 4632 4633 4634 4635 4636
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4637
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4662
		list_for_each_entry(slabp, &l3->slabs_full, list)
4663
			handle_slab(n, cachep, slabp);
4664
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4665 4666 4667 4668 4669 4670
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4671
		mutex_unlock(&slab_mutex);
4672 4673 4674 4675
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4676
			mutex_lock(&slab_mutex);
4677 4678 4679 4680
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4681
		mutex_lock(&slab_mutex);
4682 4683 4684 4685 4686 4687 4688 4689 4690
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4691

4692 4693 4694
	return 0;
}

4695
static const struct seq_operations slabstats_op = {
4696 4697 4698 4699 4700
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4729
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4730 4731
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4732
#endif
4733 4734 4735
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4736 4737
#endif

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4750
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4751
{
4752 4753
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4754
		return 0;
L
Linus Torvalds 已提交
4755

4756
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4757
}
K
Kirill A. Shutemov 已提交
4758
EXPORT_SYMBOL(ksize);