slab.c 110.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168 169 170
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

#define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	spinlock_t lock;
195
	void *entry[];	/*
A
Andrew Morton 已提交
196 197 198
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
199 200 201 202
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
203
			 */
L
Linus Torvalds 已提交
204 205
};

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
223 224 225
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
226 227 228 229
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
230
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
231 232
};

233 234 235
/*
 * Need this for bootstrapping a per node allocator.
 */
236
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238
#define	CACHE_CACHE 0
239
#define	SIZE_AC MAX_NUMNODES
240
#define	SIZE_NODE (2 * MAX_NUMNODES)
241

242
static int drain_freelist(struct kmem_cache *cache,
243
			struct kmem_cache_node *n, int tofree);
244 245
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
246
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247
static void cache_reap(struct work_struct *unused);
248

249 250
static int slab_early_init = 1;

251
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
253

254
static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 256 257 258 259 260
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
261
	parent->colour_next = 0;
262 263 264 265 266
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
267 268 269
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
270
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
271 272
	} while (0)

A
Andrew Morton 已提交
273 274
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
275 276 277 278
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
279 280 281 282 283

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
284 285 286
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
287
 *
A
Adrian Bunk 已提交
288
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
299
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
300 301 302 303 304
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
305 306
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
307
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
308
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
309 310 311 312 313
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
323
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
324 325 326
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
327
#define	STATS_INC_NODEFREES(x)	do { } while (0)
328
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
329
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
338 339
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
340
 * 0		: objp
341
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
342 343
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
344
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
345
 * 		redzone word.
346
 * cachep->obj_offset: The real object.
347 348
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
349
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
350
 */
351
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
352
{
353
	return cachep->obj_offset;
L
Linus Torvalds 已提交
354 355
}

356
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
357 358
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 360
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
361 362
}

363
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
364 365 366
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
367
		return (unsigned long long *)(objp + cachep->size -
368
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
369
					      REDZONE_ALIGN);
370
	return (unsigned long long *) (objp + cachep->size -
371
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
372 373
}

374
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
375 376
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
378 379 380 381
}

#else

382
#define obj_offset(x)			0
383 384
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
385 386 387 388 389
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
390 391
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
392
 */
393 394 395
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
396
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
397

398 399
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
400
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
401
	return page->slab_cache;
402 403
}

404
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 406
				 unsigned int idx)
{
407
	return page->s_mem + cache->size * idx;
408 409
}

410
/*
411 412 413
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
414 415 416
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417
					const struct page *page, void *obj)
418
{
419
	u32 offset = (obj - page->s_mem);
420
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 422
}

L
Linus Torvalds 已提交
423
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
424
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
425 426

/* internal cache of cache description objs */
427
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
428 429 430
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
431
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
432
	.name = "kmem_cache",
L
Linus Torvalds 已提交
433 434
};

435 436
#define BAD_ALIEN_MAGIC 0x01020304ul

437 438 439 440 441 442 443 444
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
445 446 447 448
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
449
 */
450 451 452
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

453 454 455 456 457 458 459 460
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
461
	struct kmem_cache_node *n;
462 463
	int r;

464 465
	n = cachep->node[q];
	if (!n)
466 467
		return;

468 469
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

498
static void init_node_lock_keys(int q)
499
{
500
	int i;
501

502
	if (slab_state < UP)
503 504
		return;

C
Christoph Lameter 已提交
505
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506
		struct kmem_cache_node *n;
507 508 509 510
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
511

512 513
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
514
			continue;
515

516
		slab_set_lock_classes(cache, &on_slab_l3_key,
517
				&on_slab_alc_key, q);
518 519
	}
}
520

521 522
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
523
	if (!cachep->node[q])
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

539 540 541 542 543 544 545
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
546
#else
547 548 549 550
static void init_node_lock_keys(int q)
{
}

551
static inline void init_lock_keys(void)
552 553
{
}
554

555 556 557 558 559 560 561 562
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

563 564 565 566 567 568 569
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
570 571
#endif

572
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
573

574
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
575 576 577 578
{
	return cachep->array[smp_processor_id()];
}

579 580
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
581
{
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int nr_objs;
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
	nr_objs = slab_size / (buffer_size + idx_size);

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
	freelist_size = slab_size - nr_objs * buffer_size;
	if (freelist_size < ALIGN(nr_objs * idx_size, align))
		nr_objs--;

	return nr_objs;
604
}
L
Linus Torvalds 已提交
605

A
Andrew Morton 已提交
606 607 608
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
609 610 611 612 613 614 615
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
616

617 618 619 620 621
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
622
	 * - One unsigned int for each object
623 624 625 626 627 628 629 630 631 632 633 634 635
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
636 637 638
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
					sizeof(unsigned int), align);
		mgmt_size = ALIGN(nr_objs * sizeof(unsigned int), align);
639 640 641
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
642 643
}

644
#if DEBUG
645
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
646

A
Andrew Morton 已提交
647 648
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
649 650
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
651
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
652
	dump_stack();
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
654
}
655
#endif
L
Linus Torvalds 已提交
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

673 674 675 676 677 678 679 680 681 682 683
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

684 685 686 687 688 689 690
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
691
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
692 693 694 695 696

static void init_reap_node(int cpu)
{
	int node;

697
	node = next_node(cpu_to_mem(cpu), node_online_map);
698
	if (node == MAX_NUMNODES)
699
		node = first_node(node_online_map);
700

701
	per_cpu(slab_reap_node, cpu) = node;
702 703 704 705
}

static void next_reap_node(void)
{
706
	int node = __this_cpu_read(slab_reap_node);
707 708 709 710

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
711
	__this_cpu_write(slab_reap_node, node);
712 713 714 715 716 717 718
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
719 720 721 722 723 724 725
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
726
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
727
{
728
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
729 730 731 732 733 734

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
735
	if (keventd_up() && reap_work->work.func == NULL) {
736
		init_reap_node(cpu);
737
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 739
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
740 741 742
	}
}

743
static struct array_cache *alloc_arraycache(int node, int entries,
744
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
745
{
P
Pekka Enberg 已提交
746
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
747 748
	struct array_cache *nc = NULL;

749
	nc = kmalloc_node(memsize, gfp, node);
750 751
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
752
	 * However, when such objects are allocated or transferred to another
753 754 755 756 757
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
758 759 760 761 762
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
763
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
764 765 766 767
	}
	return nc;
}

768
static inline bool is_slab_pfmemalloc(struct page *page)
769 770 771 772 773 774 775 776
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
777
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778
	struct page *page;
779 780 781 782 783
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

784
	spin_lock_irqsave(&n->list_lock, flags);
785 786
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
787 788
			goto out;

789 790
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
791 792
			goto out;

793 794
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
795 796 797 798
			goto out;

	pfmemalloc_active = false;
out:
799
	spin_unlock_irqrestore(&n->list_lock, flags);
800 801
}

802
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 804 805 806 807 808 809
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
810
		struct kmem_cache_node *n;
811 812 813 814 815 816 817

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
818
		for (i = 0; i < ac->avail; i++) {
819 820 821 822 823 824 825 826 827 828 829 830 831
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
832 833
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
834
			struct page *page = virt_to_head_page(objp);
835
			ClearPageSlabPfmemalloc(page);
836 837 838 839 840 841 842 843 844 845 846 847 848
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 864 865 866
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
867
		struct page *page = virt_to_head_page(objp);
868 869 870 871
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

872 873 874 875 876 877 878 879 880
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

881 882 883
	ac->entry[ac->avail++] = objp;
}

884 885 886 887 888 889 890 891 892 893
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
894
	int nr = min3(from->avail, max, to->limit - to->avail);
895 896 897 898 899 900 901 902 903 904 905 906

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

907 908 909
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
910
#define reap_alien(cachep, n) do { } while (0)
911

912
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

932
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 934 935 936 937 938 939
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

940
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
942

943
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
944 945
{
	struct array_cache **ac_ptr;
946
	int memsize = sizeof(void *) * nr_node_ids;
947 948 949 950
	int i;

	if (limit > 1)
		limit = 12;
951
	ac_ptr = kzalloc_node(memsize, gfp, node);
952 953
	if (ac_ptr) {
		for_each_node(i) {
954
			if (i == node || !node_online(i))
955
				continue;
956
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957
			if (!ac_ptr[i]) {
958
				for (i--; i >= 0; i--)
959 960 961 962 963 964 965 966 967
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
968
static void free_alien_cache(struct array_cache **ac_ptr)
969 970 971 972 973 974
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
975
	    kfree(ac_ptr[i]);
976 977 978
	kfree(ac_ptr);
}

979
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
980
				struct array_cache *ac, int node)
981
{
982
	struct kmem_cache_node *n = cachep->node[node];
983 984

	if (ac->avail) {
985
		spin_lock(&n->list_lock);
986 987 988 989 990
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
991 992
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
993

994
		free_block(cachep, ac->entry, ac->avail, node);
995
		ac->avail = 0;
996
		spin_unlock(&n->list_lock);
997 998 999
	}
}

1000 1001 1002
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1003
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1004
{
1005
	int node = __this_cpu_read(slab_reap_node);
1006

1007 1008
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1009 1010

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 1012 1013 1014 1015 1016
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1017 1018
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1019
{
P
Pekka Enberg 已提交
1020
	int i = 0;
1021 1022 1023 1024
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1025
		ac = alien[i];
1026 1027 1028 1029 1030 1031 1032
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1033

1034
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1035
{
J
Joonsoo Kim 已提交
1036
	int nodeid = page_to_nid(virt_to_page(objp));
1037
	struct kmem_cache_node *n;
1038
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1039 1040
	int node;

1041
	node = numa_mem_id();
1042 1043 1044 1045 1046

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1047
	if (likely(nodeid == node))
1048 1049
		return 0;

1050
	n = cachep->node[node];
1051
	STATS_INC_NODEFREES(cachep);
1052 1053
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1054
		spin_lock(&alien->lock);
1055 1056 1057 1058
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1059
		ac_put_obj(cachep, alien, objp);
1060 1061
		spin_unlock(&alien->lock);
	} else {
1062
		spin_lock(&(cachep->node[nodeid])->list_lock);
1063
		free_block(cachep, &objp, 1, nodeid);
1064
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1065 1066 1067
	}
	return 1;
}
1068 1069
#endif

1070
/*
1071
 * Allocates and initializes node for a node on each slab cache, used for
1072
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1073
 * will be allocated off-node since memory is not yet online for the new node.
1074
 * When hotplugging memory or a cpu, existing node are not replaced if
1075 1076
 * already in use.
 *
1077
 * Must hold slab_mutex.
1078
 */
1079
static int init_cache_node_node(int node)
1080 1081
{
	struct kmem_cache *cachep;
1082
	struct kmem_cache_node *n;
1083
	const int memsize = sizeof(struct kmem_cache_node);
1084

1085
	list_for_each_entry(cachep, &slab_caches, list) {
1086 1087 1088 1089 1090
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1091
		if (!cachep->node[node]) {
1092 1093
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1094
				return -ENOMEM;
1095 1096
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1097 1098 1099 1100
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1101
			 * go.  slab_mutex is sufficient
1102 1103
			 * protection here.
			 */
1104
			cachep->node[node] = n;
1105 1106
		}

1107 1108
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1109 1110
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1111
		spin_unlock_irq(&cachep->node[node]->list_lock);
1112 1113 1114 1115
	}
	return 0;
}

1116 1117 1118 1119 1120 1121
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1122
static void cpuup_canceled(long cpu)
1123 1124
{
	struct kmem_cache *cachep;
1125
	struct kmem_cache_node *n = NULL;
1126
	int node = cpu_to_mem(cpu);
1127
	const struct cpumask *mask = cpumask_of_node(node);
1128

1129
	list_for_each_entry(cachep, &slab_caches, list) {
1130 1131 1132 1133 1134 1135 1136
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1137
		n = cachep->node[node];
1138

1139
		if (!n)
1140 1141
			goto free_array_cache;

1142
		spin_lock_irq(&n->list_lock);
1143

1144 1145
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1146 1147 1148
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1149
		if (!cpumask_empty(mask)) {
1150
			spin_unlock_irq(&n->list_lock);
1151 1152 1153
			goto free_array_cache;
		}

1154
		shared = n->shared;
1155 1156 1157
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1158
			n->shared = NULL;
1159 1160
		}

1161 1162
		alien = n->alien;
		n->alien = NULL;
1163

1164
		spin_unlock_irq(&n->list_lock);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1179
	list_for_each_entry(cachep, &slab_caches, list) {
1180 1181
		n = cachep->node[node];
		if (!n)
1182
			continue;
1183
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1184 1185 1186
	}
}

1187
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1188
{
1189
	struct kmem_cache *cachep;
1190
	struct kmem_cache_node *n = NULL;
1191
	int node = cpu_to_mem(cpu);
1192
	int err;
L
Linus Torvalds 已提交
1193

1194 1195 1196 1197
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1198
	 * kmem_cache_node and not this cpu's kmem_cache_node
1199
	 */
1200
	err = init_cache_node_node(node);
1201 1202
	if (err < 0)
		goto bad;
1203 1204 1205 1206 1207

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1208
	list_for_each_entry(cachep, &slab_caches, list) {
1209 1210 1211 1212 1213
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1214
					cachep->batchcount, GFP_KERNEL);
1215 1216 1217 1218 1219
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1220
				0xbaadf00d, GFP_KERNEL);
1221 1222
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1223
				goto bad;
1224
			}
1225 1226
		}
		if (use_alien_caches) {
1227
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 1229 1230
			if (!alien) {
				kfree(shared);
				kfree(nc);
1231
				goto bad;
1232
			}
1233 1234
		}
		cachep->array[cpu] = nc;
1235 1236
		n = cachep->node[node];
		BUG_ON(!n);
1237

1238 1239
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1240 1241 1242 1243
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1244
			n->shared = shared;
1245 1246
			shared = NULL;
		}
1247
#ifdef CONFIG_NUMA
1248 1249
		if (!n->alien) {
			n->alien = alien;
1250
			alien = NULL;
L
Linus Torvalds 已提交
1251
		}
1252
#endif
1253
		spin_unlock_irq(&n->list_lock);
1254 1255
		kfree(shared);
		free_alien_cache(alien);
1256 1257
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1258 1259 1260
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1261
	}
1262 1263
	init_node_lock_keys(node);

1264 1265
	return 0;
bad:
1266
	cpuup_canceled(cpu);
1267 1268 1269
	return -ENOMEM;
}

1270
static int cpuup_callback(struct notifier_block *nfb,
1271 1272 1273 1274 1275 1276 1277 1278
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1279
		mutex_lock(&slab_mutex);
1280
		err = cpuup_prepare(cpu);
1281
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1282 1283
		break;
	case CPU_ONLINE:
1284
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1285 1286 1287
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1288
  	case CPU_DOWN_PREPARE:
1289
  	case CPU_DOWN_PREPARE_FROZEN:
1290
		/*
1291
		 * Shutdown cache reaper. Note that the slab_mutex is
1292 1293 1294 1295
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1296
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297
		/* Now the cache_reaper is guaranteed to be not running. */
1298
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1299 1300
  		break;
  	case CPU_DOWN_FAILED:
1301
  	case CPU_DOWN_FAILED_FROZEN:
1302 1303
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1304
	case CPU_DEAD:
1305
	case CPU_DEAD_FROZEN:
1306 1307
		/*
		 * Even if all the cpus of a node are down, we don't free the
1308
		 * kmem_cache_node of any cache. This to avoid a race between
1309
		 * cpu_down, and a kmalloc allocation from another cpu for
1310
		 * memory from the node of the cpu going down.  The node
1311 1312 1313
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1314
		/* fall through */
1315
#endif
L
Linus Torvalds 已提交
1316
	case CPU_UP_CANCELED:
1317
	case CPU_UP_CANCELED_FROZEN:
1318
		mutex_lock(&slab_mutex);
1319
		cpuup_canceled(cpu);
1320
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1321 1322
		break;
	}
1323
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1324 1325
}

1326
static struct notifier_block cpucache_notifier = {
1327 1328
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1329

1330 1331 1332 1333 1334 1335
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1336
 * Must hold slab_mutex.
1337
 */
1338
static int __meminit drain_cache_node_node(int node)
1339 1340 1341 1342
{
	struct kmem_cache *cachep;
	int ret = 0;

1343
	list_for_each_entry(cachep, &slab_caches, list) {
1344
		struct kmem_cache_node *n;
1345

1346 1347
		n = cachep->node[node];
		if (!n)
1348 1349
			continue;

1350
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1351

1352 1353
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1374
		mutex_lock(&slab_mutex);
1375
		ret = init_cache_node_node(nid);
1376
		mutex_unlock(&slab_mutex);
1377 1378
		break;
	case MEM_GOING_OFFLINE:
1379
		mutex_lock(&slab_mutex);
1380
		ret = drain_cache_node_node(nid);
1381
		mutex_unlock(&slab_mutex);
1382 1383 1384 1385 1386 1387 1388 1389
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1390
	return notifier_from_errno(ret);
1391 1392 1393
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1394
/*
1395
 * swap the static kmem_cache_node with kmalloced memory
1396
 */
1397
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398
				int nodeid)
1399
{
1400
	struct kmem_cache_node *ptr;
1401

1402
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 1404
	BUG_ON(!ptr);

1405
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1406 1407 1408 1409 1410
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1411
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412
	cachep->node[nodeid] = ptr;
1413 1414
}

1415
/*
1416 1417
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1418
 */
1419
static void __init set_up_node(struct kmem_cache *cachep, int index)
1420 1421 1422 1423
{
	int node;

	for_each_online_node(node) {
1424
		cachep->node[node] = &init_kmem_cache_node[index + node];
1425
		cachep->node[node]->next_reap = jiffies +
1426 1427 1428 1429 1430
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1431 1432
/*
 * The memory after the last cpu cache pointer is used for the
1433
 * the node pointer.
C
Christoph Lameter 已提交
1434
 */
1435
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1436
{
1437
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1438 1439
}

A
Andrew Morton 已提交
1440 1441 1442
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1443 1444 1445
 */
void __init kmem_cache_init(void)
{
1446 1447
	int i;

1448 1449
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1450
	kmem_cache = &kmem_cache_boot;
1451
	setup_node_pointer(kmem_cache);
1452

1453
	if (num_possible_nodes() == 1)
1454 1455
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1456
	for (i = 0; i < NUM_INIT_LISTS; i++)
1457
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1458

1459
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1460 1461 1462

	/*
	 * Fragmentation resistance on low memory - only use bigger
1463 1464
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1465
	 */
1466
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1468 1469 1470

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1471 1472 1473
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1474
	 *    Initially an __init data area is used for the head array and the
1475
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1476
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1477
	 * 2) Create the first kmalloc cache.
1478
	 *    The struct kmem_cache for the new cache is allocated normally.
1479 1480 1481
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1482
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1483
	 *    kmalloc cache with kmalloc allocated arrays.
1484
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 1486
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1487 1488
	 */

1489
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1490

E
Eric Dumazet 已提交
1491
	/*
1492
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1493
	 */
1494 1495
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1497 1498
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1499 1500 1501

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1502 1503
	/*
	 * Initialize the caches that provide memory for the array cache and the
1504
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1505
	 * bug.
1506 1507
	 */

1508 1509
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1510

1511 1512 1513 1514
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1515

1516 1517
	slab_early_init = 0;

L
Linus Torvalds 已提交
1518 1519
	/* 4) Replace the bootstrap head arrays */
	{
1520
		struct array_cache *ptr;
1521

1522
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523

1524
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1525
		       sizeof(struct arraycache_init));
1526 1527 1528 1529 1530
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1531
		kmem_cache->array[smp_processor_id()] = ptr;
1532

1533
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1534

1535
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1536
		       != &initarray_generic.cache);
1537
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1538
		       sizeof(struct arraycache_init));
1539 1540 1541 1542 1543
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1544
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1545
	}
1546
	/* 5) Replace the bootstrap kmem_cache_node */
1547
	{
P
Pekka Enberg 已提交
1548 1549
		int nid;

1550
		for_each_online_node(nid) {
1551
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1552

1553
			init_list(kmalloc_caches[INDEX_AC],
1554
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1555

1556 1557 1558
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1559 1560 1561
			}
		}
	}
L
Linus Torvalds 已提交
1562

1563
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1564 1565 1566 1567 1568 1569
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1570
	slab_state = UP;
P
Peter Zijlstra 已提交
1571

1572
	/* 6) resize the head arrays to their final sizes */
1573 1574
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1575 1576
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1577
	mutex_unlock(&slab_mutex);
1578

1579 1580 1581
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1582 1583 1584
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1585 1586 1587
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1588 1589 1590
	 */
	register_cpu_notifier(&cpucache_notifier);

1591 1592 1593
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1594
	 * node.
1595 1596 1597 1598
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1599 1600 1601
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1609 1610
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1611
	 */
1612
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1613
		start_cpu_timer(cpu);
1614 1615

	/* Done! */
1616
	slab_state = FULL;
L
Linus Torvalds 已提交
1617 1618 1619 1620
	return 0;
}
__initcall(cpucache_init);

1621 1622 1623
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1624
	struct kmem_cache_node *n;
1625
	struct page *page;
1626 1627 1628 1629 1630 1631 1632
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1633
		cachep->name, cachep->size, cachep->gfporder);
1634 1635 1636 1637 1638

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1639 1640
		n = cachep->node[node];
		if (!n)
1641 1642
			continue;

1643
		spin_lock_irqsave(&n->list_lock, flags);
1644
		list_for_each_entry(page, &n->slabs_full, lru) {
1645 1646 1647
			active_objs += cachep->num;
			active_slabs++;
		}
1648 1649
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1650 1651
			active_slabs++;
		}
1652
		list_for_each_entry(page, &n->slabs_free, lru)
1653 1654
			num_slabs++;

1655 1656
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1674 1675
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1676 1677
{
	struct page *page;
1678
	int nr_pages;
1679

1680
	flags |= cachep->allocflags;
1681 1682
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1683

L
Linus Torvalds 已提交
1684
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1685 1686 1687
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1688
		return NULL;
1689
	}
L
Linus Torvalds 已提交
1690

1691
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1692 1693 1694
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1695
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1696
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1697 1698 1699 1700 1701
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1702 1703 1704
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
G
Glauber Costa 已提交
1705
	memcg_bind_pages(cachep, cachep->gfporder);
1706

1707 1708 1709 1710 1711 1712 1713 1714
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1715

1716
	return page;
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721
}

/*
 * Interface to system's page release.
 */
1722
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1723
{
1724
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1725

1726
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1727

1728 1729 1730 1731 1732 1733
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1734

1735
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1736
	__ClearPageSlabPfmemalloc(page);
1737
	__ClearPageSlab(page);
1738 1739
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1740 1741

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1742 1743
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1744
	__free_memcg_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1745 1746 1747 1748
}

static void kmem_rcu_free(struct rcu_head *head)
{
1749 1750
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1751

1752 1753 1754 1755
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1761
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1762
			    unsigned long caller)
L
Linus Torvalds 已提交
1763
{
1764
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1765

1766
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1767

P
Pekka Enberg 已提交
1768
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1769 1770
		return;

P
Pekka Enberg 已提交
1771 1772 1773 1774
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779 1780 1781
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1782
				*addr++ = svalue;
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787 1788 1789
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1790
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1791 1792 1793
}
#endif

1794
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1795
{
1796
	int size = cachep->object_size;
1797
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1798 1799

	memset(addr, val, size);
P
Pekka Enberg 已提交
1800
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1806 1807 1808
	unsigned char error = 0;
	int bad_count = 0;

1809
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1810 1811 1812 1813 1814 1815
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1816 1817
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836
}
#endif

#if DEBUG

1837
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1843
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1844 1845
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1846 1847 1848
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1849 1850 1851
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1852
	}
1853
	realobj = (char *)objp + obj_offset(cachep);
1854
	size = cachep->object_size;
P
Pekka Enberg 已提交
1855
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1856 1857
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1858 1859
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1860 1861 1862 1863
		dump_line(realobj, i, limit);
	}
}

1864
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869
{
	char *realobj;
	int size, i;
	int lines = 0;

1870
	realobj = (char *)objp + obj_offset(cachep);
1871
	size = cachep->object_size;
L
Linus Torvalds 已提交
1872

P
Pekka Enberg 已提交
1873
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1874
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1875
		if (i == size - 1)
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1882
				printk(KERN_ERR
1883 1884
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1885 1886 1887
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1888
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1889
			limit = 16;
P
Pekka Enberg 已提交
1890 1891
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1904
		struct page *page = virt_to_head_page(objp);
1905
		unsigned int objnr;
L
Linus Torvalds 已提交
1906

1907
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1908
		if (objnr) {
1909
			objp = index_to_obj(cachep, page, objnr - 1);
1910
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1911
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1912
			       realobj, size);
L
Linus Torvalds 已提交
1913 1914
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1915
		if (objnr + 1 < cachep->num) {
1916
			objp = index_to_obj(cachep, page, objnr + 1);
1917
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1918
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1919
			       realobj, size);
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1926
#if DEBUG
1927 1928
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1929 1930 1931
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1932
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1933 1934 1935

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1936
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1937
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1938
				kernel_map_pages(virt_to_page(objp),
1939
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1949
					   "was overwritten");
L
Linus Torvalds 已提交
1950 1951
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1952
					   "was overwritten");
L
Linus Torvalds 已提交
1953 1954
		}
	}
1955
}
L
Linus Torvalds 已提交
1956
#else
1957 1958
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1959 1960
{
}
L
Linus Torvalds 已提交
1961 1962
#endif

1963 1964 1965
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1966
 * @page: page pointer being destroyed
1967
 *
1968
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1969 1970
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1971
 */
1972
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1973
{
1974
	void *freelist;
1975

1976 1977
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1978
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1989 1990

	} else {
1991
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1992
	}
1993 1994

	/*
1995
	 * From now on, we don't use freelist
1996 1997 1998
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1999
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
2000 2001
}

2002
/**
2003 2004 2005 2006 2007 2008 2009
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2010 2011 2012 2013 2014
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2015
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2016
			size_t size, size_t align, unsigned long flags)
2017
{
2018
	unsigned long offslab_limit;
2019
	size_t left_over = 0;
2020
	int gfporder;
2021

2022
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2023 2024 2025
		unsigned int num;
		size_t remainder;

2026
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2027 2028
		if (!num)
			continue;
2029

2030 2031 2032 2033
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

2034 2035 2036 2037 2038 2039
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2040
			offslab_limit = size;
J
Joonsoo Kim 已提交
2041
			offslab_limit /= sizeof(unsigned int);
2042 2043 2044 2045

 			if (num > offslab_limit)
				break;
		}
2046

2047
		/* Found something acceptable - save it away */
2048
		cachep->num = num;
2049
		cachep->gfporder = gfporder;
2050 2051
		left_over = remainder;

2052 2053 2054 2055 2056 2057 2058 2059
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2060 2061 2062 2063
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2064
		if (gfporder >= slab_max_order)
2065 2066
			break;

2067 2068 2069
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2070
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2071 2072 2073 2074 2075
			break;
	}
	return left_over;
}

2076
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2077
{
2078
	if (slab_state >= FULL)
2079
		return enable_cpucache(cachep, gfp);
2080

2081
	if (slab_state == DOWN) {
2082
		/*
2083
		 * Note: Creation of first cache (kmem_cache).
2084
		 * The setup_node is taken care
2085 2086 2087 2088 2089 2090 2091
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2092 2093 2094 2095 2096 2097
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2098 2099
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2100 2101
		 * otherwise the creation of further caches will BUG().
		 */
2102 2103 2104
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2105
		else
2106
			slab_state = PARTIAL_ARRAYCACHE;
2107
	} else {
2108
		/* Remaining boot caches */
2109
		cachep->array[smp_processor_id()] =
2110
			kmalloc(sizeof(struct arraycache_init), gfp);
2111

2112
		if (slab_state == PARTIAL_ARRAYCACHE) {
2113 2114
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2115 2116
		} else {
			int node;
2117
			for_each_online_node(node) {
2118
				cachep->node[node] =
2119
				    kmalloc_node(sizeof(struct kmem_cache_node),
2120
						gfp, node);
2121
				BUG_ON(!cachep->node[node]);
2122
				kmem_cache_node_init(cachep->node[node]);
2123 2124 2125
			}
		}
	}
2126
	cachep->node[numa_mem_id()]->next_reap =
2127 2128 2129 2130 2131 2132 2133 2134 2135
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136
	return 0;
2137 2138
}

L
Linus Torvalds 已提交
2139
/**
2140
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2141
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2142 2143 2144 2145
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2146
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2160
int
2161
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2162
{
2163
	size_t left_over, freelist_size, ralign;
2164
	gfp_t gfp;
2165
	int err;
2166
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2176 2177
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2178
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184 2185
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2186 2187
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2188 2189 2190
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2191 2192 2193
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2194 2195
	}

2196
	/*
D
David Woodhouse 已提交
2197 2198 2199
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2200
	 */
D
David Woodhouse 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2211

2212
	/* 3) caller mandated alignment */
2213 2214
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2215
	}
2216 2217
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2218
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2219
	/*
2220
	 * 4) Store it.
L
Linus Torvalds 已提交
2221
	 */
2222
	cachep->align = ralign;
L
Linus Torvalds 已提交
2223

2224 2225 2226 2227 2228
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2229
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2230 2231
#if DEBUG

2232 2233 2234 2235
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2236 2237
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2238 2239
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2240 2241
	}
	if (flags & SLAB_STORE_USER) {
2242
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2243 2244
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2245
		 */
D
David Woodhouse 已提交
2246 2247 2248 2249
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2250 2251
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2252
	if (size >= kmalloc_size(INDEX_NODE + 1)
2253 2254 2255
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260
		size = PAGE_SIZE;
	}
#endif
#endif

2261 2262 2263
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2264 2265
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2266
	 */
2267 2268
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2275
	size = ALIGN(size, cachep->align);
2276 2277 2278 2279 2280 2281
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2282

2283
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2284

2285
	if (!cachep->num)
2286
		return -E2BIG;
L
Linus Torvalds 已提交
2287

2288 2289
	freelist_size =
		ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2295
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2296
		flags &= ~CFLGS_OFF_SLAB;
2297
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2298 2299 2300 2301
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2302
		freelist_size = cachep->num * sizeof(unsigned int);
2303 2304 2305 2306 2307 2308 2309 2310 2311

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2312 2313 2314 2315
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2316 2317
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2318
	cachep->colour = left_over / cachep->colour_off;
2319
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2320
	cachep->flags = flags;
2321
	cachep->allocflags = __GFP_COMP;
2322
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2323
		cachep->allocflags |= GFP_DMA;
2324
	cachep->size = size;
2325
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2326

2327
	if (flags & CFLGS_OFF_SLAB) {
2328
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2329 2330 2331 2332 2333 2334 2335
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2336
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2337
	}
L
Linus Torvalds 已提交
2338

2339 2340
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2341
		__kmem_cache_shutdown(cachep);
2342
		return err;
2343
	}
L
Linus Torvalds 已提交
2344

2345 2346 2347 2348 2349 2350 2351 2352
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2353 2354
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2355

2356
	return 0;
L
Linus Torvalds 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2370
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2371 2372 2373
{
#ifdef CONFIG_SMP
	check_irq_off();
2374
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2375 2376
#endif
}
2377

2378
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2379 2380 2381
{
#ifdef CONFIG_SMP
	check_irq_off();
2382
	assert_spin_locked(&cachep->node[node]->list_lock);
2383 2384 2385
#endif
}

L
Linus Torvalds 已提交
2386 2387 2388 2389
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2390
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2391 2392
#endif

2393
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2394 2395 2396
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2397 2398
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2399
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2400
	struct array_cache *ac;
2401
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2402 2403

	check_irq_off();
2404
	ac = cpu_cache_get(cachep);
2405
	spin_lock(&cachep->node[node]->list_lock);
2406
	free_block(cachep, ac->entry, ac->avail, node);
2407
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2408 2409 2410
	ac->avail = 0;
}

2411
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2412
{
2413
	struct kmem_cache_node *n;
2414 2415
	int node;

2416
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2417
	check_irq_on();
P
Pekka Enberg 已提交
2418
	for_each_online_node(node) {
2419 2420 2421
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2422 2423 2424
	}

	for_each_online_node(node) {
2425 2426 2427
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2428
	}
L
Linus Torvalds 已提交
2429 2430
}

2431 2432 2433 2434 2435 2436 2437
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2438
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2439
{
2440 2441
	struct list_head *p;
	int nr_freed;
2442
	struct page *page;
L
Linus Torvalds 已提交
2443

2444
	nr_freed = 0;
2445
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2446

2447 2448 2449 2450
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2451 2452
			goto out;
		}
L
Linus Torvalds 已提交
2453

2454
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2455
#if DEBUG
2456
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2457
#endif
2458
		list_del(&page->lru);
2459 2460 2461 2462
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2463 2464
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2465
		slab_destroy(cache, page);
2466
		nr_freed++;
L
Linus Torvalds 已提交
2467
	}
2468 2469
out:
	return nr_freed;
L
Linus Torvalds 已提交
2470 2471
}

2472
/* Called with slab_mutex held to protect against cpu hotplug */
2473
static int __cache_shrink(struct kmem_cache *cachep)
2474 2475
{
	int ret = 0, i = 0;
2476
	struct kmem_cache_node *n;
2477 2478 2479 2480 2481

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2482 2483
		n = cachep->node[i];
		if (!n)
2484 2485
			continue;

2486
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2487

2488 2489
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2490 2491 2492 2493
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2501
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2502
{
2503
	int ret;
2504
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2505

2506
	get_online_cpus();
2507
	mutex_lock(&slab_mutex);
2508
	ret = __cache_shrink(cachep);
2509
	mutex_unlock(&slab_mutex);
2510
	put_online_cpus();
2511
	return ret;
L
Linus Torvalds 已提交
2512 2513 2514
}
EXPORT_SYMBOL(kmem_cache_shrink);

2515
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2516
{
2517
	int i;
2518
	struct kmem_cache_node *n;
2519
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2520

2521 2522
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2523

2524 2525
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2526

2527
	/* NUMA: free the node structures */
2528
	for_each_online_node(i) {
2529 2530 2531 2532 2533
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2534 2535 2536
		}
	}
	return 0;
L
Linus Torvalds 已提交
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
2548
 * Hence we cannot have freelist_cache same as the original cache.
2549
 */
2550
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2551 2552
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2553
{
2554
	void *freelist;
2555
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2556

L
Linus Torvalds 已提交
2557 2558
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2559
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2560
					      local_flags, nodeid);
2561
		if (!freelist)
L
Linus Torvalds 已提交
2562 2563
			return NULL;
	} else {
2564 2565
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2566
	}
2567 2568 2569
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2570 2571
}

2572
static inline unsigned int get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2573
{
2574 2575 2576 2577 2578 2579 2580
	return ((unsigned int *)page->freelist)[idx];
}

static inline void set_free_obj(struct page *page,
					unsigned int idx, unsigned int val)
{
	((unsigned int *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2581 2582
}

2583
static void cache_init_objs(struct kmem_cache *cachep,
2584
			    struct page *page)
L
Linus Torvalds 已提交
2585 2586 2587 2588
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2589
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2602 2603 2604
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2605 2606
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2607
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2608 2609 2610 2611

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2612
					   " end of an object");
L
Linus Torvalds 已提交
2613 2614
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2615
					   " start of an object");
L
Linus Torvalds 已提交
2616
		}
2617
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2618
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2619
			kernel_map_pages(virt_to_page(objp),
2620
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2621 2622
#else
		if (cachep->ctor)
2623
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2624
#endif
2625
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2626 2627 2628
	}
}

2629
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2630
{
2631 2632
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2633
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2634
		else
2635
			BUG_ON(cachep->allocflags & GFP_DMA);
2636
	}
L
Linus Torvalds 已提交
2637 2638
}

2639
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2640
				int nodeid)
2641
{
2642
	void *objp;
2643

2644
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2645
	page->active++;
2646
#if DEBUG
J
Joonsoo Kim 已提交
2647
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2648 2649 2650 2651 2652
#endif

	return objp;
}

2653
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2654
				void *objp, int nodeid)
2655
{
2656
	unsigned int objnr = obj_to_index(cachep, page, objp);
2657
#if DEBUG
J
Joonsoo Kim 已提交
2658
	unsigned int i;
2659

2660
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2661
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2662

2663
	/* Verify double free bug */
2664
	for (i = page->active; i < cachep->num; i++) {
2665
		if (get_free_obj(page, i) == objnr) {
2666 2667 2668 2669
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2670 2671
	}
#endif
2672
	page->active--;
2673
	set_free_obj(page, page->active, objnr);
2674 2675
}

2676 2677 2678
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2679
 * virtual address for kfree, ksize, and slab debugging.
2680
 */
2681
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2682
			   void *freelist)
L
Linus Torvalds 已提交
2683
{
2684
	page->slab_cache = cache;
2685
	page->freelist = freelist;
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2692
static int cache_grow(struct kmem_cache *cachep,
2693
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2694
{
2695
	void *freelist;
P
Pekka Enberg 已提交
2696 2697
	size_t offset;
	gfp_t local_flags;
2698
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2699

A
Andrew Morton 已提交
2700 2701 2702
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2703
	 */
C
Christoph Lameter 已提交
2704 2705
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2706

2707
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2708
	check_irq_off();
2709 2710
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2711 2712

	/* Get colour for the slab, and cal the next value. */
2713 2714 2715 2716 2717
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2718

2719
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2732 2733 2734
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2735
	 */
2736 2737 2738
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2739 2740 2741
		goto failed;

	/* Get slab management. */
2742
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2743
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2744
	if (!freelist)
L
Linus Torvalds 已提交
2745 2746
		goto opps1;

2747
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2748

2749
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2750 2751 2752 2753

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2754
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2755 2756

	/* Make slab active. */
2757
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2758
	STATS_INC_GROWN(cachep);
2759 2760
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2761
	return 1;
A
Andrew Morton 已提交
2762
opps1:
2763
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2764
failed:
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2781 2782
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2783 2784 2785
	}
}

2786 2787
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2788
	unsigned long long redzone1, redzone2;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2804
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2805 2806 2807
			obj, redzone1, redzone2);
}

2808
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2809
				   unsigned long caller)
L
Linus Torvalds 已提交
2810 2811
{
	unsigned int objnr;
2812
	struct page *page;
L
Linus Torvalds 已提交
2813

2814 2815
	BUG_ON(virt_to_cache(objp) != cachep);

2816
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2817
	kfree_debugcheck(objp);
2818
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2819 2820

	if (cachep->flags & SLAB_RED_ZONE) {
2821
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2822 2823 2824 2825
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2826
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2827

2828
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2829 2830

	BUG_ON(objnr >= cachep->num);
2831
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2832 2833 2834

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2835
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2836
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2837
			kernel_map_pages(virt_to_page(objp),
2838
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2854 2855
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2856 2857
{
	int batchcount;
2858
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2859
	struct array_cache *ac;
P
Pekka Enberg 已提交
2860 2861
	int node;

L
Linus Torvalds 已提交
2862
	check_irq_off();
2863
	node = numa_mem_id();
2864 2865 2866
	if (unlikely(force_refill))
		goto force_grow;
retry:
2867
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2868 2869
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2870 2871 2872 2873
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2874 2875 2876
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2877
	n = cachep->node[node];
2878

2879 2880
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2881

2882
	/* See if we can refill from the shared array */
2883 2884
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2885
		goto alloc_done;
2886
	}
2887

L
Linus Torvalds 已提交
2888 2889
	while (batchcount > 0) {
		struct list_head *entry;
2890
		struct page *page;
L
Linus Torvalds 已提交
2891
		/* Get slab alloc is to come from. */
2892 2893 2894 2895 2896
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2897 2898 2899
				goto must_grow;
		}

2900
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2901
		check_spinlock_acquired(cachep);
2902 2903 2904 2905 2906 2907

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2908
		BUG_ON(page->active >= cachep->num);
2909

2910
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2911 2912 2913 2914
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2915
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2916
									node));
L
Linus Torvalds 已提交
2917 2918 2919
		}

		/* move slabp to correct slabp list: */
2920 2921 2922
		list_del(&page->lru);
		if (page->active == cachep->num)
			list_add(&page->list, &n->slabs_full);
L
Linus Torvalds 已提交
2923
		else
2924
			list_add(&page->list, &n->slabs_partial);
L
Linus Torvalds 已提交
2925 2926
	}

A
Andrew Morton 已提交
2927
must_grow:
2928
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2929
alloc_done:
2930
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2931 2932 2933

	if (unlikely(!ac->avail)) {
		int x;
2934
force_grow:
2935
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2936

A
Andrew Morton 已提交
2937
		/* cache_grow can reenable interrupts, then ac could change. */
2938
		ac = cpu_cache_get(cachep);
2939
		node = numa_mem_id();
2940 2941 2942

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2943 2944
			return NULL;

A
Andrew Morton 已提交
2945
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2946 2947 2948
			goto retry;
	}
	ac->touched = 1;
2949 2950

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2951 2952
}

A
Andrew Morton 已提交
2953 2954
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2955 2956 2957 2958 2959 2960 2961 2962
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2963
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2964
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2965
{
P
Pekka Enberg 已提交
2966
	if (!objp)
L
Linus Torvalds 已提交
2967
		return objp;
P
Pekka Enberg 已提交
2968
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2969
#ifdef CONFIG_DEBUG_PAGEALLOC
2970
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2971
			kernel_map_pages(virt_to_page(objp),
2972
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977 2978 2979 2980
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2981
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2982 2983

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2984 2985 2986 2987
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2988
			printk(KERN_ERR
2989
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2990 2991
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2992 2993 2994 2995
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2996
	objp += obj_offset(cachep);
2997
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2998
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2999 3000
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3001
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3002
		       objp, (int)ARCH_SLAB_MINALIGN);
3003
	}
L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3010
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3011
{
3012
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3013
		return false;
3014

3015
	return should_failslab(cachep->object_size, flags, cachep->flags);
3016 3017
}

3018
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3019
{
P
Pekka Enberg 已提交
3020
	void *objp;
L
Linus Torvalds 已提交
3021
	struct array_cache *ac;
3022
	bool force_refill = false;
L
Linus Torvalds 已提交
3023

3024
	check_irq_off();
3025

3026
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3027 3028
	if (likely(ac->avail)) {
		ac->touched = 1;
3029 3030
		objp = ac_get_obj(cachep, ac, flags, false);

3031
		/*
3032 3033
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3034
		 */
3035 3036 3037 3038 3039
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3040
	}
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3051 3052 3053 3054 3055
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3056 3057
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3058 3059 3060
	return objp;
}

3061
#ifdef CONFIG_NUMA
3062
/*
3063
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3064 3065 3066 3067 3068 3069 3070 3071
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3072
	if (in_interrupt() || (flags & __GFP_THISNODE))
3073
		return NULL;
3074
	nid_alloc = nid_here = numa_mem_id();
3075
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3076
		nid_alloc = cpuset_slab_spread_node();
3077
	else if (current->mempolicy)
3078
		nid_alloc = slab_node();
3079
	if (nid_alloc != nid_here)
3080
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3081 3082 3083
	return NULL;
}

3084 3085
/*
 * Fallback function if there was no memory available and no objects on a
3086
 * certain node and fall back is permitted. First we scan all the
3087
 * available node for available objects. If that fails then we
3088 3089 3090
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3091
 */
3092
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3093
{
3094 3095
	struct zonelist *zonelist;
	gfp_t local_flags;
3096
	struct zoneref *z;
3097 3098
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3099
	void *obj = NULL;
3100
	int nid;
3101
	unsigned int cpuset_mems_cookie;
3102 3103 3104 3105

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3106
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3107

3108 3109
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3110
	zonelist = node_zonelist(slab_node(), flags);
3111

3112 3113 3114 3115 3116
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3117 3118
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3119

3120
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3121 3122
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3123 3124
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3125 3126 3127
				if (obj)
					break;
		}
3128 3129
	}

3130
	if (!obj) {
3131 3132 3133 3134 3135 3136
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3137 3138
		struct page *page;

3139 3140 3141
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3142
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3143 3144
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3145
		if (page) {
3146 3147 3148
			/*
			 * Insert into the appropriate per node queues
			 */
3149 3150
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3161
				/* cache_grow already freed obj */
3162 3163 3164
				obj = NULL;
			}
		}
3165
	}
3166 3167 3168

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3169 3170 3171
	return obj;
}

3172 3173
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3174
 */
3175
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3176
				int nodeid)
3177 3178
{
	struct list_head *entry;
3179
	struct page *page;
3180
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3181 3182 3183
	void *obj;
	int x;

3184
	VM_BUG_ON(nodeid > num_online_nodes());
3185 3186
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3187

A
Andrew Morton 已提交
3188
retry:
3189
	check_irq_off();
3190 3191 3192 3193 3194 3195
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3196 3197 3198
			goto must_grow;
	}

3199
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3200 3201 3202 3203 3204 3205
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3206
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3207

3208
	obj = slab_get_obj(cachep, page, nodeid);
3209
	n->free_objects--;
P
Pekka Enberg 已提交
3210
	/* move slabp to correct slabp list: */
3211
	list_del(&page->lru);
P
Pekka Enberg 已提交
3212

3213 3214
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3215
	else
3216
		list_add(&page->lru, &n->slabs_partial);
3217

3218
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3219
	goto done;
3220

A
Andrew Morton 已提交
3221
must_grow:
3222
	spin_unlock(&n->list_lock);
3223
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3224 3225
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3226

3227
	return fallback_alloc(cachep, flags);
3228

A
Andrew Morton 已提交
3229
done:
P
Pekka Enberg 已提交
3230
	return obj;
3231
}
3232 3233

static __always_inline void *
3234
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3235
		   unsigned long caller)
3236 3237 3238
{
	unsigned long save_flags;
	void *ptr;
3239
	int slab_node = numa_mem_id();
3240

3241
	flags &= gfp_allowed_mask;
3242

3243 3244
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3245
	if (slab_should_failslab(cachep, flags))
3246 3247
		return NULL;

3248 3249
	cachep = memcg_kmem_get_cache(cachep, flags);

3250 3251 3252
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3253
	if (nodeid == NUMA_NO_NODE)
3254
		nodeid = slab_node;
3255

3256
	if (unlikely(!cachep->node[nodeid])) {
3257 3258 3259 3260 3261
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3262
	if (nodeid == slab_node) {
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3278
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3279
				 flags);
3280

P
Pekka Enberg 已提交
3281
	if (likely(ptr))
3282
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3283

3284
	if (unlikely((flags & __GFP_ZERO) && ptr))
3285
		memset(ptr, 0, cachep->object_size);
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3306 3307
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3323
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3324 3325 3326 3327
{
	unsigned long save_flags;
	void *objp;

3328
	flags &= gfp_allowed_mask;
3329

3330 3331
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3332
	if (slab_should_failslab(cachep, flags))
3333 3334
		return NULL;

3335 3336
	cachep = memcg_kmem_get_cache(cachep, flags);

3337 3338 3339 3340 3341
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3342
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3343
				 flags);
3344 3345
	prefetchw(objp);

P
Pekka Enberg 已提交
3346
	if (likely(objp))
3347
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3348

3349
	if (unlikely((flags & __GFP_ZERO) && objp))
3350
		memset(objp, 0, cachep->object_size);
3351

3352 3353
	return objp;
}
3354 3355 3356 3357

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3358
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3359
		       int node)
L
Linus Torvalds 已提交
3360 3361
{
	int i;
3362
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3363 3364

	for (i = 0; i < nr_objects; i++) {
3365
		void *objp;
3366
		struct page *page;
L
Linus Torvalds 已提交
3367

3368 3369 3370
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3371
		page = virt_to_head_page(objp);
3372
		n = cachep->node[node];
3373
		list_del(&page->lru);
3374
		check_spinlock_acquired_node(cachep, node);
3375
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3376
		STATS_DEC_ACTIVE(cachep);
3377
		n->free_objects++;
L
Linus Torvalds 已提交
3378 3379

		/* fixup slab chains */
3380
		if (page->active == 0) {
3381 3382
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3383 3384 3385 3386 3387 3388
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
3389
				slab_destroy(cachep, page);
L
Linus Torvalds 已提交
3390
			} else {
3391
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3392 3393 3394 3395 3396 3397
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3398
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3399 3400 3401 3402
		}
	}
}

3403
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3404 3405
{
	int batchcount;
3406
	struct kmem_cache_node *n;
3407
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3408 3409 3410 3411 3412 3413

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3414 3415 3416 3417
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3418
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3419 3420 3421
		if (max) {
			if (batchcount > max)
				batchcount = max;
3422
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3423
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3429
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3430
free_done:
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435
#if STATS
	{
		int i = 0;
		struct list_head *p;

3436 3437
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3438
			struct page *page;
L
Linus Torvalds 已提交
3439

3440 3441
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3442 3443 3444 3445 3446 3447 3448

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3449
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3450
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3451
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3452 3453 3454
}

/*
A
Andrew Morton 已提交
3455 3456
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3457
 */
3458
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3459
				unsigned long caller)
L
Linus Torvalds 已提交
3460
{
3461
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3462 3463

	check_irq_off();
3464
	kmemleak_free_recursive(objp, cachep->flags);
3465
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3466

3467
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3468

3469 3470 3471 3472 3473 3474 3475
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3476
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3477 3478
		return;

L
Linus Torvalds 已提交
3479 3480 3481 3482 3483 3484
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3485

3486
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3497
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3498
{
3499
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3500

3501
	trace_kmem_cache_alloc(_RET_IP_, ret,
3502
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3503 3504

	return ret;
L
Linus Torvalds 已提交
3505 3506 3507
}
EXPORT_SYMBOL(kmem_cache_alloc);

3508
#ifdef CONFIG_TRACING
3509
void *
3510
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3511
{
3512 3513
	void *ret;

3514
	ret = slab_alloc(cachep, flags, _RET_IP_);
3515 3516

	trace_kmalloc(_RET_IP_, ret,
3517
		      size, cachep->size, flags);
3518
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3519
}
3520
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3521 3522
#endif

L
Linus Torvalds 已提交
3523
#ifdef CONFIG_NUMA
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3535 3536
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3537
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3538

3539
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3540
				    cachep->object_size, cachep->size,
3541
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3542 3543

	return ret;
3544
}
L
Linus Torvalds 已提交
3545 3546
EXPORT_SYMBOL(kmem_cache_alloc_node);

3547
#ifdef CONFIG_TRACING
3548
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3549
				  gfp_t flags,
3550 3551
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3552
{
3553 3554
	void *ret;

3555
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3556

3557
	trace_kmalloc_node(_RET_IP_, ret,
3558
			   size, cachep->size,
3559 3560
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3561
}
3562
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3563 3564
#endif

3565
static __always_inline void *
3566
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3567
{
3568
	struct kmem_cache *cachep;
3569

3570
	cachep = kmalloc_slab(size, flags);
3571 3572
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3573
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3574
}
3575

3576
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3577 3578
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3579
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3580
}
3581
EXPORT_SYMBOL(__kmalloc_node);
3582 3583

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3584
		int node, unsigned long caller)
3585
{
3586
	return __do_kmalloc_node(size, flags, node, caller);
3587 3588 3589 3590 3591
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3592
	return __do_kmalloc_node(size, flags, node, 0);
3593 3594
}
EXPORT_SYMBOL(__kmalloc_node);
3595
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3596
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3597 3598

/**
3599
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3600
 * @size: how many bytes of memory are required.
3601
 * @flags: the type of memory to allocate (see kmalloc).
3602
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3603
 */
3604
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3605
					  unsigned long caller)
L
Linus Torvalds 已提交
3606
{
3607
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3608
	void *ret;
L
Linus Torvalds 已提交
3609

3610 3611 3612 3613 3614
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3615
	cachep = kmalloc_slab(size, flags);
3616 3617
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3618
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3619

3620
	trace_kmalloc(caller, ret,
3621
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3622 3623

	return ret;
3624 3625 3626
}


3627
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3628 3629
void *__kmalloc(size_t size, gfp_t flags)
{
3630
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3631 3632 3633
}
EXPORT_SYMBOL(__kmalloc);

3634
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3635
{
3636
	return __do_kmalloc(size, flags, caller);
3637 3638
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3639 3640 3641 3642

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3643
	return __do_kmalloc(size, flags, 0);
3644 3645
}
EXPORT_SYMBOL(__kmalloc);
3646 3647
#endif

L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654 3655
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3656
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3657 3658
{
	unsigned long flags;
3659 3660 3661
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3662 3663

	local_irq_save(flags);
3664
	debug_check_no_locks_freed(objp, cachep->object_size);
3665
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3666
		debug_check_no_obj_freed(objp, cachep->object_size);
3667
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3668
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3669

3670
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3678 3679
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3680 3681 3682 3683 3684
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3685
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3686 3687
	unsigned long flags;

3688 3689
	trace_kfree(_RET_IP_, objp);

3690
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3691 3692 3693
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3694
	c = virt_to_cache(objp);
3695 3696 3697
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3698
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3699 3700 3701 3702
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3703
/*
3704
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3705
 */
3706
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3707 3708
{
	int node;
3709
	struct kmem_cache_node *n;
3710
	struct array_cache *new_shared;
3711
	struct array_cache **new_alien = NULL;
3712

3713
	for_each_online_node(node) {
3714

3715
                if (use_alien_caches) {
3716
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3717 3718 3719
                        if (!new_alien)
                                goto fail;
                }
3720

3721 3722 3723
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3724
				cachep->shared*cachep->batchcount,
3725
					0xbaadf00d, gfp);
3726 3727 3728 3729
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3730
		}
3731

3732 3733 3734
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3735

3736
			spin_lock_irq(&n->list_lock);
3737

3738
			if (shared)
3739 3740
				free_block(cachep, shared->entry,
						shared->avail, node);
3741

3742 3743 3744
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3745 3746
				new_alien = NULL;
			}
3747
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3748
					cachep->batchcount + cachep->num;
3749
			spin_unlock_irq(&n->list_lock);
3750
			kfree(shared);
3751 3752 3753
			free_alien_cache(new_alien);
			continue;
		}
3754 3755
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3756 3757
			free_alien_cache(new_alien);
			kfree(new_shared);
3758
			goto fail;
3759
		}
3760

3761 3762
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3763
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3764 3765 3766
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3767
					cachep->batchcount + cachep->num;
3768
		cachep->node[node] = n;
3769
	}
3770
	return 0;
3771

A
Andrew Morton 已提交
3772
fail:
3773
	if (!cachep->list.next) {
3774 3775 3776
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3777
			if (cachep->node[node]) {
3778
				n = cachep->node[node];
3779

3780 3781 3782
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3783
				cachep->node[node] = NULL;
3784 3785 3786 3787
			}
			node--;
		}
	}
3788
	return -ENOMEM;
3789 3790
}

L
Linus Torvalds 已提交
3791
struct ccupdate_struct {
3792
	struct kmem_cache *cachep;
3793
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3794 3795 3796 3797
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3798
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3799 3800 3801
	struct array_cache *old;

	check_irq_off();
3802
	old = cpu_cache_get(new->cachep);
3803

L
Linus Torvalds 已提交
3804 3805 3806 3807
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3808
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3809
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3810
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3811
{
3812
	struct ccupdate_struct *new;
3813
	int i;
L
Linus Torvalds 已提交
3814

3815 3816
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3817 3818 3819
	if (!new)
		return -ENOMEM;

3820
	for_each_online_cpu(i) {
3821
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3822
						batchcount, gfp);
3823
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3824
			for (i--; i >= 0; i--)
3825 3826
				kfree(new->new[i]);
			kfree(new);
3827
			return -ENOMEM;
L
Linus Torvalds 已提交
3828 3829
		}
	}
3830
	new->cachep = cachep;
L
Linus Torvalds 已提交
3831

3832
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3833

L
Linus Torvalds 已提交
3834 3835 3836
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3837
	cachep->shared = shared;
L
Linus Torvalds 已提交
3838

3839
	for_each_online_cpu(i) {
3840
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3841 3842
		if (!ccold)
			continue;
3843
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3844
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3845
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3846 3847
		kfree(ccold);
	}
3848
	kfree(new);
3849
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3850 3851
}

G
Glauber Costa 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3867
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3868
	for_each_memcg_cache_index(i) {
3869
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3870 3871 3872 3873 3874 3875 3876 3877
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3878
/* Called with slab_mutex held always */
3879
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3880 3881
{
	int err;
G
Glauber Costa 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3892

G
Glauber Costa 已提交
3893 3894
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3895 3896
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3897 3898
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3899
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3900 3901 3902 3903
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3904
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3905
		limit = 1;
3906
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3907
		limit = 8;
3908
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3909
		limit = 24;
3910
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3911 3912 3913 3914
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3915 3916
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921 3922 3923 3924
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3925
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3926 3927 3928
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3929 3930 3931
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3932 3933 3934 3935
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3936 3937 3938
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3939 3940
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3941
		       cachep->name, -err);
3942
	return err;
L
Linus Torvalds 已提交
3943 3944
}

3945
/*
3946 3947
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3948
 * if drain_array() is used on the shared array.
3949
 */
3950
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3951
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3952 3953 3954
{
	int tofree;

3955 3956
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3957 3958
	if (ac->touched && !force) {
		ac->touched = 0;
3959
	} else {
3960
		spin_lock_irq(&n->list_lock);
3961 3962 3963 3964 3965 3966 3967 3968 3969
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3970
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3976
 * @w: work descriptor
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3983 3984
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3985
 */
3986
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3987
{
3988
	struct kmem_cache *searchp;
3989
	struct kmem_cache_node *n;
3990
	int node = numa_mem_id();
3991
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3992

3993
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3994
		/* Give up. Setup the next iteration. */
3995
		goto out;
L
Linus Torvalds 已提交
3996

3997
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3998 3999
		check_irq_on();

4000
		/*
4001
		 * We only take the node lock if absolutely necessary and we
4002 4003 4004
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4005
		n = searchp->node[node];
4006

4007
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4008

4009
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4010

4011 4012 4013 4014
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4015
		if (time_after(n->next_reap, jiffies))
4016
			goto next;
L
Linus Torvalds 已提交
4017

4018
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4019

4020
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4021

4022 4023
		if (n->free_touched)
			n->free_touched = 0;
4024 4025
		else {
			int freed;
L
Linus Torvalds 已提交
4026

4027
			freed = drain_freelist(searchp, n, (n->free_limit +
4028 4029 4030
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4031
next:
L
Linus Torvalds 已提交
4032 4033 4034
		cond_resched();
	}
	check_irq_on();
4035
	mutex_unlock(&slab_mutex);
4036
	next_reap_node();
4037
out:
A
Andrew Morton 已提交
4038
	/* Set up the next iteration */
4039
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4040 4041
}

4042
#ifdef CONFIG_SLABINFO
4043
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4044
{
4045
	struct page *page;
P
Pekka Enberg 已提交
4046 4047 4048 4049
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4050
	const char *name;
L
Linus Torvalds 已提交
4051
	char *error = NULL;
4052
	int node;
4053
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4054 4055 4056

	active_objs = 0;
	num_slabs = 0;
4057
	for_each_online_node(node) {
4058 4059
		n = cachep->node[node];
		if (!n)
4060 4061
			continue;

4062
		check_irq_on();
4063
		spin_lock_irq(&n->list_lock);
4064

4065 4066
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4067 4068 4069 4070
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4071 4072
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4073
				error = "slabs_partial accounting error";
4074
			if (!page->active && !error)
4075
				error = "slabs_partial accounting error";
4076
			active_objs += page->active;
4077 4078
			active_slabs++;
		}
4079 4080
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4081
				error = "slabs_free accounting error";
4082 4083
			num_slabs++;
		}
4084 4085 4086
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4087

4088
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4089
	}
P
Pekka Enberg 已提交
4090 4091
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4092
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4093 4094
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4095
	name = cachep->name;
L
Linus Torvalds 已提交
4096 4097 4098
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4113
#if STATS
4114
	{			/* node stats */
L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4122
		unsigned long node_frees = cachep->node_frees;
4123
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4124

J
Joe Perches 已提交
4125 4126 4127 4128 4129
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4139
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4152
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4153
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4154
{
P
Pekka Enberg 已提交
4155
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4156
	int limit, batchcount, shared, res;
4157
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4158

L
Linus Torvalds 已提交
4159 4160 4161 4162
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4163
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4174
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4175
	res = -EINVAL;
4176
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4177
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4178 4179
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4180
				res = 0;
L
Linus Torvalds 已提交
4181
			} else {
4182
				res = do_tune_cpucache(cachep, limit,
4183 4184
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4185 4186 4187 4188
			}
			break;
		}
	}
4189
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4190 4191 4192 4193
	if (res >= 0)
		res = count;
	return res;
}
4194 4195 4196 4197 4198

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4199 4200
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4233 4234
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4235 4236
{
	void *p;
4237 4238
	int i, j;

4239 4240
	if (n[0] == n[1])
		return;
4241
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4242 4243
		bool active = true;

4244
		for (j = page->active; j < c->num; j++) {
4245
			/* Skip freed item */
4246
			if (get_free_obj(page, j) == i) {
4247 4248 4249 4250 4251
				active = false;
				break;
			}
		}
		if (!active)
4252
			continue;
4253

4254 4255 4256 4257 4258 4259 4260 4261 4262
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4263
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4264

4265
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4266
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4267
		if (modname[0])
4268 4269 4270 4271 4272 4273 4274 4275 4276
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4277
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4278
	struct page *page;
4279
	struct kmem_cache_node *n;
4280
	const char *name;
4281
	unsigned long *x = m->private;
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4292
	x[1] = 0;
4293 4294

	for_each_online_node(node) {
4295 4296
		n = cachep->node[node];
		if (!n)
4297 4298 4299
			continue;

		check_irq_on();
4300
		spin_lock_irq(&n->list_lock);
4301

4302 4303 4304 4305
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4306
		spin_unlock_irq(&n->list_lock);
4307 4308
	}
	name = cachep->name;
4309
	if (x[0] == x[1]) {
4310
		/* Increase the buffer size */
4311
		mutex_unlock(&slab_mutex);
4312
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4313 4314
		if (!m->private) {
			/* Too bad, we are really out */
4315
			m->private = x;
4316
			mutex_lock(&slab_mutex);
4317 4318
			return -ENOMEM;
		}
4319 4320
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4321
		mutex_lock(&slab_mutex);
4322 4323 4324 4325
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4326 4327 4328
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4329 4330
		seq_putc(m, '\n');
	}
4331

4332 4333 4334
	return 0;
}

4335
static const struct seq_operations slabstats_op = {
4336
	.start = leaks_start,
4337 4338
	.next = slab_next,
	.stop = slab_stop,
4339 4340
	.show = leaks_show,
};
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4371
#endif
4372 4373 4374
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4375 4376
#endif

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4389
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4390
{
4391 4392
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4393
		return 0;
L
Linus Torvalds 已提交
4394

4395
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4396
}
K
Kirill A. Shutemov 已提交
4397
EXPORT_SYMBOL(ksize);