slab.c 117.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120 121 122 123 124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

125 126
#include <trace/events/kmem.h>

L
Linus Torvalds 已提交
127
/*
128
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
149
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
150 151 152 153 154 155 156

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
157
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
158
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
159
			 SLAB_CACHE_DMA | \
160
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
161
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
162
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
163
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
164
#else
165
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
166
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
167
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
168
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
169
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

191
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
192 193
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
194 195
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
212
	struct rcu_head head;
213
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
214
	void *addr;
L
Linus Torvalds 已提交
215 216
};

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
255
	spinlock_t lock;
256
	void *entry[];	/*
A
Andrew Morton 已提交
257 258 259 260
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
261 262
};

A
Andrew Morton 已提交
263 264 265
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
266 267 268 269
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
270
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
271 272 273
};

/*
274
 * The slab lists for all objects.
L
Linus Torvalds 已提交
275 276
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
277 278 279 280 281
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
282
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
283 284 285
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
286 287
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
288 289
};

290 291 292
/*
 * Need this for bootstrapping a per node allocator.
 */
293
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
294
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
295
#define	CACHE_CACHE 0
296 297
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
298

299 300 301 302
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
303
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
304
static void cache_reap(struct work_struct *unused);
305

306
/*
A
Andrew Morton 已提交
307 308
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
309
 */
310
static __always_inline int index_of(const size_t size)
311
{
312 313
	extern void __bad_size(void);

314 315 316 317 318 319 320 321
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
322
#include <linux/kmalloc_sizes.h>
323
#undef CACHE
324
		__bad_size();
325
	} else
326
		__bad_size();
327 328 329
	return 0;
}

330 331
static int slab_early_init = 1;

332 333
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
334

P
Pekka Enberg 已提交
335
static void kmem_list3_init(struct kmem_list3 *parent)
336 337 338 339 340 341
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
342
	parent->colour_next = 0;
343 344 345 346 347
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
348 349 350 351
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
352 353
	} while (0)

A
Andrew Morton 已提交
354 355
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
356 357 358 359
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
360 361 362 363 364

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
365 366 367
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
368
 *
A
Adrian Bunk 已提交
369
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
370 371 372 373 374 375 376 377 378 379
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
380
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
381 382 383 384 385
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
386 387
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
388
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
389
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
390 391 392 393 394
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
395 396 397 398 399 400 401 402 403
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
404
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
405 406 407
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
408
#define	STATS_INC_NODEFREES(x)	do { } while (0)
409
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
410
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
411 412 413 414 415 416 417 418
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
419 420
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
421
 * 0		: objp
422
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
423 424
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
425
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
426
 * 		redzone word.
427
 * cachep->obj_offset: The real object.
428 429
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
430
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
431
 */
432
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
433
{
434
	return cachep->obj_offset;
L
Linus Torvalds 已提交
435 436
}

437
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
438 439
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
440 441
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
442 443
}

444
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
445 446 447
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
448
		return (unsigned long long *)(objp + cachep->size -
449
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
450
					      REDZONE_ALIGN);
451
	return (unsigned long long *) (objp + cachep->size -
452
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
453 454
}

455
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
456 457
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
458
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
459 460 461 462
}

#else

463
#define obj_offset(x)			0
464 465
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
466 467 468 469
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

470
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
471 472
size_t slab_buffer_size(struct kmem_cache *cachep)
{
473
	return cachep->size;
E
Eduard - Gabriel Munteanu 已提交
474 475 476 477
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
478
/*
479 480
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
481
 */
482 483 484
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
485
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
486

487 488
static inline struct kmem_cache *page_get_cache(struct page *page)
{
489
	page = compound_head(page);
490
	BUG_ON(!PageSlab(page));
491
	return page->slab_cache;
492 493
}

494 495
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
496
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
497
	return page->slab_cache;
498 499 500 501
}

static inline struct slab *virt_to_slab(const void *obj)
{
502
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
503 504 505

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
506 507
}

508 509 510
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
511
	return slab->s_mem + cache->size * idx;
512 513
}

514
/*
515 516 517
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
518 519 520 521
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
522
{
523 524
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
525 526
}

A
Andrew Morton 已提交
527 528 529
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
547
	{NULL,}
L
Linus Torvalds 已提交
548 549 550 551
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
552
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
553
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
554
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
555 556

/* internal cache of cache description objs */
557
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
558
static struct kmem_cache cache_cache = {
559
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
560 561 562
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
563
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
564
	.name = "kmem_cache",
L
Linus Torvalds 已提交
565 566
};

567 568
#define BAD_ALIEN_MAGIC 0x01020304ul

569 570 571 572 573 574 575 576
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
577 578 579 580
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
581
 */
582 583 584
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

630
static void init_node_lock_keys(int q)
631
{
632 633
	struct cache_sizes *s = malloc_sizes;

634
	if (slab_state < UP)
635 636 637 638 639 640 641
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
642
			continue;
643 644 645

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
646 647
	}
}
648 649 650 651 652 653 654 655

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
656
#else
657 658 659 660
static void init_node_lock_keys(int q)
{
}

661
static inline void init_lock_keys(void)
662 663
{
}
664 665 666 667 668 669 670 671

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
672 673
#endif

674
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
675

676
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
677 678 679 680
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
681 682
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
683 684 685 686 687
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
688 689 690
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
691
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
692
#endif
693 694 695
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
696 697 698 699
	while (size > csizep->cs_size)
		csizep++;

	/*
700
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
701 702 703
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
704
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
705 706
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
707
#endif
L
Linus Torvalds 已提交
708 709 710
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
711
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
712 713 714 715
{
	return __find_general_cachep(size, gfpflags);
}

716
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
717
{
718 719
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
720

A
Andrew Morton 已提交
721 722 723
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
724 725 726 727 728 729 730
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
780 781
}

782
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
783

A
Andrew Morton 已提交
784 785
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
786 787
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
788
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
789 790 791
	dump_stack();
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

808 809 810 811 812 813 814 815 816 817 818
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

819 820 821 822 823 824 825
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
826
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
827 828 829 830 831

static void init_reap_node(int cpu)
{
	int node;

832
	node = next_node(cpu_to_mem(cpu), node_online_map);
833
	if (node == MAX_NUMNODES)
834
		node = first_node(node_online_map);
835

836
	per_cpu(slab_reap_node, cpu) = node;
837 838 839 840
}

static void next_reap_node(void)
{
841
	int node = __this_cpu_read(slab_reap_node);
842 843 844 845

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
846
	__this_cpu_write(slab_reap_node, node);
847 848 849 850 851 852 853
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
854 855 856 857 858 859 860
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
861
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
862
{
863
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
864 865 866 867 868 869

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
870
	if (keventd_up() && reap_work->work.func == NULL) {
871
		init_reap_node(cpu);
872
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
873 874
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
875 876 877
	}
}

878
static struct array_cache *alloc_arraycache(int node, int entries,
879
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
880
{
P
Pekka Enberg 已提交
881
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
882 883
	struct array_cache *nc = NULL;

884
	nc = kmalloc_node(memsize, gfp, node);
885 886
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
887
	 * However, when such objects are allocated or transferred to another
888 889 890 891 892
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
893 894 895 896 897
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
898
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
899 900 901 902
	}
	return nc;
}

903 904 905 906 907 908 909 910 911 912
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
913
	int nr = min3(from->avail, max, to->limit - to->avail);
914 915 916 917 918 919 920 921 922 923 924 925

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

926 927 928 929 930
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

931
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

951
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
952 953 954 955 956 957 958
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

959
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
960
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
961

962
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
963 964
{
	struct array_cache **ac_ptr;
965
	int memsize = sizeof(void *) * nr_node_ids;
966 967 968 969
	int i;

	if (limit > 1)
		limit = 12;
970
	ac_ptr = kzalloc_node(memsize, gfp, node);
971 972
	if (ac_ptr) {
		for_each_node(i) {
973
			if (i == node || !node_online(i))
974
				continue;
975
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
976
			if (!ac_ptr[i]) {
977
				for (i--; i >= 0; i--)
978 979 980 981 982 983 984 985 986
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
987
static void free_alien_cache(struct array_cache **ac_ptr)
988 989 990 991 992 993
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
994
	    kfree(ac_ptr[i]);
995 996 997
	kfree(ac_ptr);
}

998
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
999
				struct array_cache *ac, int node)
1000 1001 1002 1003 1004
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1005 1006 1007 1008 1009
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1010 1011
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1012

1013
		free_block(cachep, ac->entry, ac->avail, node);
1014 1015 1016 1017 1018
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1019 1020 1021 1022 1023
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1024
	int node = __this_cpu_read(slab_reap_node);
1025 1026 1027

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1028 1029

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1030 1031 1032 1033 1034 1035
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1036 1037
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1038
{
P
Pekka Enberg 已提交
1039
	int i = 0;
1040 1041 1042 1043
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1044
		ac = alien[i];
1045 1046 1047 1048 1049 1050 1051
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1052

1053
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1054 1055 1056 1057 1058
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1059 1060
	int node;

1061
	node = numa_mem_id();
1062 1063 1064 1065 1066

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1067
	if (likely(slabp->nodeid == node))
1068 1069
		return 0;

P
Pekka Enberg 已提交
1070
	l3 = cachep->nodelists[node];
1071 1072 1073
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1074
		spin_lock(&alien->lock);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1088 1089
#endif

1090 1091 1092 1093 1094 1095 1096
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1097
 * Must hold slab_mutex.
1098 1099 1100 1101 1102 1103 1104
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1105
	list_for_each_entry(cachep, &slab_caches, list) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1121
			 * go.  slab_mutex is sufficient
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1136 1137 1138 1139
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1140
	int node = cpu_to_mem(cpu);
1141
	const struct cpumask *mask = cpumask_of_node(node);
1142

1143
	list_for_each_entry(cachep, &slab_caches, list) {
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1163
		if (!cpumask_empty(mask)) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1193
	list_for_each_entry(cachep, &slab_caches, list) {
1194 1195 1196 1197 1198 1199 1200 1201
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1202
{
1203
	struct kmem_cache *cachep;
1204
	struct kmem_list3 *l3 = NULL;
1205
	int node = cpu_to_mem(cpu);
1206
	int err;
L
Linus Torvalds 已提交
1207

1208 1209 1210 1211 1212 1213
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1214 1215 1216
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1217 1218 1219 1220 1221

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1222
	list_for_each_entry(cachep, &slab_caches, list) {
1223 1224 1225 1226 1227
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1228
					cachep->batchcount, GFP_KERNEL);
1229 1230 1231 1232 1233
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1234
				0xbaadf00d, GFP_KERNEL);
1235 1236
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1237
				goto bad;
1238
			}
1239 1240
		}
		if (use_alien_caches) {
1241
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1242 1243 1244
			if (!alien) {
				kfree(shared);
				kfree(nc);
1245
				goto bad;
1246
			}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1261
#ifdef CONFIG_NUMA
1262 1263 1264
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1265
		}
1266 1267 1268 1269
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1270 1271
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1272
	}
1273 1274
	init_node_lock_keys(node);

1275 1276
	return 0;
bad:
1277
	cpuup_canceled(cpu);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1290
		mutex_lock(&slab_mutex);
1291
		err = cpuup_prepare(cpu);
1292
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1293 1294
		break;
	case CPU_ONLINE:
1295
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1296 1297 1298
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1299
  	case CPU_DOWN_PREPARE:
1300
  	case CPU_DOWN_PREPARE_FROZEN:
1301
		/*
1302
		 * Shutdown cache reaper. Note that the slab_mutex is
1303 1304 1305 1306
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1307
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1308
		/* Now the cache_reaper is guaranteed to be not running. */
1309
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1310 1311
  		break;
  	case CPU_DOWN_FAILED:
1312
  	case CPU_DOWN_FAILED_FROZEN:
1313 1314
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1315
	case CPU_DEAD:
1316
	case CPU_DEAD_FROZEN:
1317 1318 1319 1320 1321 1322 1323 1324
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1325
		/* fall through */
1326
#endif
L
Linus Torvalds 已提交
1327
	case CPU_UP_CANCELED:
1328
	case CPU_UP_CANCELED_FROZEN:
1329
		mutex_lock(&slab_mutex);
1330
		cpuup_canceled(cpu);
1331
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1332 1333
		break;
	}
1334
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1335 1336
}

1337 1338 1339
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1340

1341 1342 1343 1344 1345 1346
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1347
 * Must hold slab_mutex.
1348 1349 1350 1351 1352 1353
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1354
	list_for_each_entry(cachep, &slab_caches, list) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1385
		mutex_lock(&slab_mutex);
1386
		ret = init_cache_nodelists_node(nid);
1387
		mutex_unlock(&slab_mutex);
1388 1389
		break;
	case MEM_GOING_OFFLINE:
1390
		mutex_lock(&slab_mutex);
1391
		ret = drain_cache_nodelists_node(nid);
1392
		mutex_unlock(&slab_mutex);
1393 1394 1395 1396 1397 1398 1399 1400
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1401
	return notifier_from_errno(ret);
1402 1403 1404
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1405 1406 1407
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1408 1409
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1410 1411 1412
{
	struct kmem_list3 *ptr;

1413
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1414 1415 1416
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1417 1418 1419 1420 1421
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1422 1423 1424 1425
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1442 1443 1444
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1445 1446 1447 1448 1449 1450
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1451
	int i;
1452
	int order;
P
Pekka Enberg 已提交
1453
	int node;
1454

1455
	if (num_possible_nodes() == 1)
1456 1457
		use_alien_caches = 0;

1458 1459 1460 1461 1462
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1463
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1464 1465 1466

	/*
	 * Fragmentation resistance on low memory - only use bigger
1467 1468
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1469
	 */
1470
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1471
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1472 1473 1474

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1475 1476 1477
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1478 1479 1480
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1481
	 * 2) Create the first kmalloc cache.
1482
	 *    The struct kmem_cache for the new cache is allocated normally.
1483 1484 1485
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1486 1487
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1488 1489 1490
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1491 1492
	 */

1493
	node = numa_mem_id();
P
Pekka Enberg 已提交
1494

L
Linus Torvalds 已提交
1495
	/* 1) create the cache_cache */
1496 1497
	INIT_LIST_HEAD(&slab_caches);
	list_add(&cache_cache.list, &slab_caches);
L
Linus Torvalds 已提交
1498 1499
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1500
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1501

E
Eric Dumazet 已提交
1502
	/*
1503
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1504
	 */
1505
	cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1506
				  nr_node_ids * sizeof(struct kmem_list3 *);
1507 1508
	cache_cache.object_size = cache_cache.size;
	cache_cache.size = ALIGN(cache_cache.size,
A
Andrew Morton 已提交
1509
					cache_line_size());
1510
	cache_cache.reciprocal_buffer_size =
1511
		reciprocal_value(cache_cache.size);
L
Linus Torvalds 已提交
1512

1513
	for (order = 0; order < MAX_ORDER; order++) {
1514
		cache_estimate(order, cache_cache.size,
1515 1516 1517 1518
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1519
	BUG_ON(!cache_cache.num);
1520
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1521 1522 1523
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1524 1525 1526 1527 1528

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1529 1530 1531 1532
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1533 1534
	 */

1535
	sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1536 1537 1538
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1539
					NULL);
1540

A
Andrew Morton 已提交
1541
	if (INDEX_AC != INDEX_L3) {
1542
		sizes[INDEX_L3].cs_cachep =
1543
			__kmem_cache_create(names[INDEX_L3].name,
A
Andrew Morton 已提交
1544 1545 1546
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1547
				NULL);
A
Andrew Morton 已提交
1548
	}
1549

1550 1551
	slab_early_init = 0;

L
Linus Torvalds 已提交
1552
	while (sizes->cs_size != ULONG_MAX) {
1553 1554
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1555 1556 1557
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1558 1559
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1560
		if (!sizes->cs_cachep) {
1561
			sizes->cs_cachep = __kmem_cache_create(names->name,
A
Andrew Morton 已提交
1562 1563 1564
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1565
					NULL);
A
Andrew Morton 已提交
1566
		}
1567
#ifdef CONFIG_ZONE_DMA
1568
		sizes->cs_dmacachep = __kmem_cache_create(
1569
					names->name_dma,
A
Andrew Morton 已提交
1570 1571 1572 1573
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1574
					NULL);
1575
#endif
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1581
		struct array_cache *ptr;
1582

1583
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1584

1585 1586
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1587
		       sizeof(struct arraycache_init));
1588 1589 1590 1591 1592
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1593
		cache_cache.array[smp_processor_id()] = ptr;
1594

1595
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1596

1597
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1598
		       != &initarray_generic.cache);
1599
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1600
		       sizeof(struct arraycache_init));
1601 1602 1603 1604 1605
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1606
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1607
		    ptr;
L
Linus Torvalds 已提交
1608
	}
1609 1610
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1611 1612
		int nid;

1613
		for_each_online_node(nid) {
1614
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1615

1616
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1617
				  &initkmem_list3[SIZE_AC + nid], nid);
1618 1619 1620

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1621
					  &initkmem_list3[SIZE_L3 + nid], nid);
1622 1623 1624
			}
		}
	}
L
Linus Torvalds 已提交
1625

1626
	slab_state = UP;
1627 1628 1629 1630 1631 1632
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1633
	slab_state = UP;
P
Peter Zijlstra 已提交
1634

1635 1636 1637
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1638
	/* 6) resize the head arrays to their final sizes */
1639 1640
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1641 1642
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1643
	mutex_unlock(&slab_mutex);
1644

1645 1646 1647
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1648 1649 1650
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1651 1652 1653
	 */
	register_cpu_notifier(&cpucache_notifier);

1654 1655 1656 1657 1658 1659 1660 1661
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1662 1663 1664
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1672 1673
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1674
	 */
1675
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1676
		start_cpu_timer(cpu);
1677 1678

	/* Done! */
1679
	slab_state = FULL;
L
Linus Torvalds 已提交
1680 1681 1682 1683
	return 0;
}
__initcall(cpucache_init);

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1696
		cachep->name, cachep->size, cachep->gfporder);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1730 1731 1732 1733 1734 1735 1736
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1737
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1738 1739
{
	struct page *page;
1740
	int nr_pages;
L
Linus Torvalds 已提交
1741 1742
	int i;

1743
#ifndef CONFIG_MMU
1744 1745 1746
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1747
	 */
1748
	flags |= __GFP_COMP;
1749
#endif
1750

1751
	flags |= cachep->allocflags;
1752 1753
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1754

L
Linus Torvalds 已提交
1755
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1756 1757 1758
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1759
		return NULL;
1760
	}
L
Linus Torvalds 已提交
1761

1762
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1763
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1764 1765 1766 1767 1768
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1769 1770
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1771

1772 1773 1774 1775 1776 1777 1778 1779
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1780

1781
	return page_address(page);
L
Linus Torvalds 已提交
1782 1783 1784 1785 1786
}

/*
 * Interface to system's page release.
 */
1787
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1788
{
P
Pekka Enberg 已提交
1789
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1790 1791 1792
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1793
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1794

1795 1796 1797 1798 1799 1800
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1801
	while (i--) {
N
Nick Piggin 已提交
1802 1803
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1813
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1814
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1824
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1825
			    unsigned long caller)
L
Linus Torvalds 已提交
1826
{
1827
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1828

1829
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1830

P
Pekka Enberg 已提交
1831
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1832 1833
		return;

P
Pekka Enberg 已提交
1834 1835 1836 1837
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842 1843 1844
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1845
				*addr++ = svalue;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1853
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1854 1855 1856
}
#endif

1857
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1858
{
1859
	int size = cachep->object_size;
1860
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1861 1862

	memset(addr, val, size);
P
Pekka Enberg 已提交
1863
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1869 1870 1871
	unsigned char error = 0;
	int bad_count = 0;

1872
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1873 1874 1875 1876 1877 1878
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1879 1880
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899
}
#endif

#if DEBUG

1900
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1906
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1907 1908
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1909 1910 1911 1912
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1913
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1914
		print_symbol("(%s)",
A
Andrew Morton 已提交
1915
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1916 1917
		printk("\n");
	}
1918
	realobj = (char *)objp + obj_offset(cachep);
1919
	size = cachep->object_size;
P
Pekka Enberg 已提交
1920
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1921 1922
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1923 1924
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1925 1926 1927 1928
		dump_line(realobj, i, limit);
	}
}

1929
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934
{
	char *realobj;
	int size, i;
	int lines = 0;

1935
	realobj = (char *)objp + obj_offset(cachep);
1936
	size = cachep->object_size;
L
Linus Torvalds 已提交
1937

P
Pekka Enberg 已提交
1938
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1939
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1940
		if (i == size - 1)
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1947
				printk(KERN_ERR
1948 1949
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1950 1951 1952
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1953
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1954
			limit = 16;
P
Pekka Enberg 已提交
1955 1956
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1969
		struct slab *slabp = virt_to_slab(objp);
1970
		unsigned int objnr;
L
Linus Torvalds 已提交
1971

1972
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1973
		if (objnr) {
1974
			objp = index_to_obj(cachep, slabp, objnr - 1);
1975
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1976
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1977
			       realobj, size);
L
Linus Torvalds 已提交
1978 1979
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1980
		if (objnr + 1 < cachep->num) {
1981
			objp = index_to_obj(cachep, slabp, objnr + 1);
1982
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1983
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1984
			       realobj, size);
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1991
#if DEBUG
R
Rabin Vincent 已提交
1992
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1993 1994 1995
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1996
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1997 1998 1999

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2000
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2001
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2002
				kernel_map_pages(virt_to_page(objp),
2003
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2013
					   "was overwritten");
L
Linus Torvalds 已提交
2014 2015
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2016
					   "was overwritten");
L
Linus Torvalds 已提交
2017 2018
		}
	}
2019
}
L
Linus Torvalds 已提交
2020
#else
R
Rabin Vincent 已提交
2021
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2022 2023
{
}
L
Linus Torvalds 已提交
2024 2025
#endif

2026 2027 2028 2029 2030
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2031
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2032 2033
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2034
 */
2035
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2036 2037 2038
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2039
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2040 2041 2042
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2043
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2044 2045 2046 2047 2048
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2049 2050
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2051 2052 2053
	}
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2075
/**
2076 2077 2078 2079 2080 2081 2082
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2083 2084 2085 2086 2087
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2088
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2089
			size_t size, size_t align, unsigned long flags)
2090
{
2091
	unsigned long offslab_limit;
2092
	size_t left_over = 0;
2093
	int gfporder;
2094

2095
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2096 2097 2098
		unsigned int num;
		size_t remainder;

2099
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2100 2101
		if (!num)
			continue;
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2115

2116
		/* Found something acceptable - save it away */
2117
		cachep->num = num;
2118
		cachep->gfporder = gfporder;
2119 2120
		left_over = remainder;

2121 2122 2123 2124 2125 2126 2127 2128
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2129 2130 2131 2132
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2133
		if (gfporder >= slab_max_order)
2134 2135
			break;

2136 2137 2138
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2139
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2140 2141 2142 2143 2144
			break;
	}
	return left_over;
}

2145
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2146
{
2147
	if (slab_state >= FULL)
2148
		return enable_cpucache(cachep, gfp);
2149

2150
	if (slab_state == DOWN) {
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2165
			slab_state = PARTIAL_L3;
2166
		else
2167
			slab_state = PARTIAL_ARRAYCACHE;
2168 2169
	} else {
		cachep->array[smp_processor_id()] =
2170
			kmalloc(sizeof(struct arraycache_init), gfp);
2171

2172
		if (slab_state == PARTIAL_ARRAYCACHE) {
2173
			set_up_list3s(cachep, SIZE_L3);
2174
			slab_state = PARTIAL_L3;
2175 2176
		} else {
			int node;
2177
			for_each_online_node(node) {
2178 2179
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2180
						gfp, node);
2181 2182 2183 2184 2185
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2186
	cachep->nodelists[numa_mem_id()]->next_reap =
2187 2188 2189 2190 2191 2192 2193 2194 2195
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2196
	return 0;
2197 2198
}

L
Linus Torvalds 已提交
2199
/**
2200
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207 2208
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2209
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2210 2211
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2212 2213
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2226
struct kmem_cache *
2227
__kmem_cache_create (const char *name, size_t size, size_t align,
2228
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2229 2230
{
	size_t left_over, slab_size, ralign;
2231
	struct kmem_cache *cachep = NULL;
2232
	gfp_t gfp;
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2242 2243
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2244
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249 2250 2251
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2252 2253
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2254
	 */
2255
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2256

A
Andrew Morton 已提交
2257 2258
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2259 2260 2261
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2262 2263 2264
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2265 2266
	}

A
Andrew Morton 已提交
2267 2268
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2269 2270
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2271 2272 2273 2274
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2275 2276
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2277
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2278 2279 2280 2281
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2282 2283

	/*
D
David Woodhouse 已提交
2284 2285 2286
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2287
	 */
D
David Woodhouse 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2298

2299
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2300 2301 2302
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2303
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2304 2305 2306
	if (ralign < align) {
		ralign = align;
	}
2307 2308
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2309
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2310
	/*
2311
	 * 4) Store it.
L
Linus Torvalds 已提交
2312 2313 2314
	 */
	align = ralign;

2315 2316 2317 2318 2319
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2320
	/* Get cache's description obj. */
2321
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2322
	if (!cachep)
2323
		return NULL;
L
Linus Torvalds 已提交
2324

2325
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2326 2327
	cachep->object_size = size;
	cachep->align = align;
L
Linus Torvalds 已提交
2328 2329
#if DEBUG

2330 2331 2332 2333
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2334 2335
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2336 2337
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2338 2339
	}
	if (flags & SLAB_STORE_USER) {
2340
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2341 2342
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2343
		 */
D
David Woodhouse 已提交
2344 2345 2346 2347
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2348 2349
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2350
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2351
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2352
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
		size = PAGE_SIZE;
	}
#endif
#endif

2358 2359 2360
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2361 2362
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2363
	 */
2364 2365
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2374
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2375 2376

	if (!cachep->num) {
2377 2378
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2379
		kmem_cache_free(&cache_cache, cachep);
2380
		return NULL;
L
Linus Torvalds 已提交
2381
	}
P
Pekka Enberg 已提交
2382 2383
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2396 2397
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2398 2399 2400 2401 2402 2403 2404 2405 2406

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2413
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2414 2415
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2416
	cachep->allocflags = 0;
2417
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2418
		cachep->allocflags |= GFP_DMA;
2419
	cachep->size = size;
2420
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2421

2422
	if (flags & CFLGS_OFF_SLAB) {
2423
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2424 2425 2426 2427 2428 2429 2430
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2431
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2432
	}
L
Linus Torvalds 已提交
2433 2434 2435
	cachep->ctor = ctor;
	cachep->name = name;

2436
	if (setup_cpu_cache(cachep, gfp)) {
2437
		__kmem_cache_destroy(cachep);
2438
		return NULL;
2439
	}
L
Linus Torvalds 已提交
2440

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2451
	/* cache setup completed, link it into the list */
2452
	list_add(&cachep->list, &slab_caches);
L
Linus Torvalds 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	return cachep;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2467
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2468 2469 2470
{
#ifdef CONFIG_SMP
	check_irq_off();
2471
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2472 2473
#endif
}
2474

2475
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2476 2477 2478 2479 2480 2481 2482
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2483 2484 2485 2486
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2487
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2488 2489
#endif

2490 2491 2492 2493
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2494 2495
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2496
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2497
	struct array_cache *ac;
2498
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2499 2500

	check_irq_off();
2501
	ac = cpu_cache_get(cachep);
2502 2503 2504
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2505 2506 2507
	ac->avail = 0;
}

2508
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2509
{
2510 2511 2512
	struct kmem_list3 *l3;
	int node;

2513
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2514
	check_irq_on();
P
Pekka Enberg 已提交
2515
	for_each_online_node(node) {
2516
		l3 = cachep->nodelists[node];
2517 2518 2519 2520 2521 2522 2523
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2524
			drain_array(cachep, l3, l3->shared, 1, node);
2525
	}
L
Linus Torvalds 已提交
2526 2527
}

2528 2529 2530 2531 2532 2533 2534 2535
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2536
{
2537 2538
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2539 2540
	struct slab *slabp;

2541 2542
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2543

2544
		spin_lock_irq(&l3->list_lock);
2545
		p = l3->slabs_free.prev;
2546 2547 2548 2549
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2550

2551
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2552
#if DEBUG
2553
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2554 2555
#endif
		list_del(&slabp->list);
2556 2557 2558 2559 2560
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2561
		spin_unlock_irq(&l3->list_lock);
2562 2563
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2564
	}
2565 2566
out:
	return nr_freed;
L
Linus Torvalds 已提交
2567 2568
}

2569
/* Called with slab_mutex held to protect against cpu hotplug */
2570
static int __cache_shrink(struct kmem_cache *cachep)
2571 2572 2573 2574 2575 2576 2577 2578 2579
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2580 2581 2582 2583 2584 2585 2586
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2587 2588 2589 2590
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2591 2592 2593 2594 2595 2596 2597
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2598
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2599
{
2600
	int ret;
2601
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2602

2603
	get_online_cpus();
2604
	mutex_lock(&slab_mutex);
2605
	ret = __cache_shrink(cachep);
2606
	mutex_unlock(&slab_mutex);
2607
	put_online_cpus();
2608
	return ret;
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614 2615
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2616
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622 2623 2624
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2625
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2626 2627
 * during the kmem_cache_destroy().
 */
2628
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2629
{
2630
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2631 2632

	/* Find the cache in the chain of caches. */
2633
	get_online_cpus();
2634
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
2635 2636 2637
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
2638
	list_del(&cachep->list);
L
Linus Torvalds 已提交
2639 2640
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
2641 2642
		list_add(&cachep->list, &slab_caches);
		mutex_unlock(&slab_mutex);
2643
		put_online_cpus();
2644
		return;
L
Linus Torvalds 已提交
2645 2646 2647
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2648
		rcu_barrier();
L
Linus Torvalds 已提交
2649

2650
	__kmem_cache_destroy(cachep);
2651
	mutex_unlock(&slab_mutex);
2652
	put_online_cpus();
L
Linus Torvalds 已提交
2653 2654 2655
}
EXPORT_SYMBOL(kmem_cache_destroy);

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2667
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2668 2669
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2670 2671
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2672

L
Linus Torvalds 已提交
2673 2674
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2675
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2676
					      local_flags, nodeid);
2677 2678 2679 2680 2681 2682
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2683 2684
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2685 2686 2687
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2688
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2689 2690 2691 2692
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2693
	slabp->s_mem = objp + colour_off;
2694
	slabp->nodeid = nodeid;
2695
	slabp->free = 0;
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2701
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2702 2703
}

2704
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2705
			    struct slab *slabp)
L
Linus Torvalds 已提交
2706 2707 2708 2709
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2710
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2723 2724 2725
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2726 2727
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2728
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2729 2730 2731 2732

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2733
					   " end of an object");
L
Linus Torvalds 已提交
2734 2735
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2736
					   " start of an object");
L
Linus Torvalds 已提交
2737
		}
2738
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2739
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2740
			kernel_map_pages(virt_to_page(objp),
2741
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2742 2743
#else
		if (cachep->ctor)
2744
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2745
#endif
P
Pekka Enberg 已提交
2746
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2747
	}
P
Pekka Enberg 已提交
2748
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2749 2750
}

2751
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2752
{
2753 2754
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2755
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2756
		else
2757
			BUG_ON(cachep->allocflags & GFP_DMA);
2758
	}
L
Linus Torvalds 已提交
2759 2760
}

A
Andrew Morton 已提交
2761 2762
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2763
{
2764
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2778 2779
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2780
{
2781
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2782 2783 2784 2785 2786

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2787
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2788
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2789
				"'%s', objp %p\n", cachep->name, objp);
2790 2791 2792 2793 2794 2795 2796 2797
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2798 2799 2800
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2801
 * virtual address for kfree, ksize, and slab debugging.
2802 2803 2804
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2805
{
2806
	int nr_pages;
L
Linus Torvalds 已提交
2807 2808
	struct page *page;

2809
	page = virt_to_page(addr);
2810

2811
	nr_pages = 1;
2812
	if (likely(!PageCompound(page)))
2813 2814
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2815
	do {
C
Christoph Lameter 已提交
2816 2817
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2818
		page++;
2819
	} while (--nr_pages);
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2826 2827
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2828
{
P
Pekka Enberg 已提交
2829 2830 2831
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2832
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2833

A
Andrew Morton 已提交
2834 2835 2836
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2837
	 */
C
Christoph Lameter 已提交
2838 2839
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2840

2841
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2842
	check_irq_off();
2843 2844
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2845 2846

	/* Get colour for the slab, and cal the next value. */
2847 2848 2849 2850 2851
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2852

2853
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2866 2867 2868
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2869
	 */
2870
	if (!objp)
2871
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2872
	if (!objp)
L
Linus Torvalds 已提交
2873 2874 2875
		goto failed;

	/* Get slab management. */
2876
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2877
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2878
	if (!slabp)
L
Linus Torvalds 已提交
2879 2880
		goto opps1;

2881
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2882

C
Christoph Lameter 已提交
2883
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2884 2885 2886 2887

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2888
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2889 2890

	/* Make slab active. */
2891
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2892
	STATS_INC_GROWN(cachep);
2893 2894
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2895
	return 1;
A
Andrew Morton 已提交
2896
opps1:
L
Linus Torvalds 已提交
2897
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2898
failed:
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2915 2916
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2917 2918 2919
	}
}

2920 2921
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2922
	unsigned long long redzone1, redzone2;
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2938
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2939 2940 2941
			obj, redzone1, redzone2);
}

2942
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2943
				   void *caller)
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2949 2950
	BUG_ON(virt_to_cache(objp) != cachep);

2951
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2952
	kfree_debugcheck(objp);
2953
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2954

C
Christoph Lameter 已提交
2955
	slabp = page->slab_page;
L
Linus Torvalds 已提交
2956 2957

	if (cachep->flags & SLAB_RED_ZONE) {
2958
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963 2964
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2965
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2966 2967

	BUG_ON(objnr >= cachep->num);
2968
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2969

2970 2971 2972
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2973 2974
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2975
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2976
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2977
			kernel_map_pages(virt_to_page(objp),
2978
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2989
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2990 2991 2992
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2993

L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3001 3002
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3003 3004 3005
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3006 3007 3008
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3018
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3019 3020 3021 3022
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3023 3024
	int node;

3025
retry:
L
Linus Torvalds 已提交
3026
	check_irq_off();
3027
	node = numa_mem_id();
3028
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3029 3030
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3031 3032 3033 3034
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3035 3036 3037
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3038
	l3 = cachep->nodelists[node];
3039 3040 3041

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3042

3043
	/* See if we can refill from the shared array */
3044 3045
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3046
		goto alloc_done;
3047
	}
3048

L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3064 3065 3066 3067 3068 3069

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3070
		BUG_ON(slabp->inuse >= cachep->num);
3071

L
Linus Torvalds 已提交
3072 3073 3074 3075 3076
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3077
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3078
							    node);
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3090
must_grow:
L
Linus Torvalds 已提交
3091
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3092
alloc_done:
3093
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3094 3095 3096

	if (unlikely(!ac->avail)) {
		int x;
3097
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3098

A
Andrew Morton 已提交
3099
		/* cache_grow can reenable interrupts, then ac could change. */
3100
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3101
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3102 3103
			return NULL;

A
Andrew Morton 已提交
3104
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3105 3106 3107
			goto retry;
	}
	ac->touched = 1;
3108
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3109 3110
}

A
Andrew Morton 已提交
3111 3112
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118 3119 3120
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3121 3122
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3123
{
P
Pekka Enberg 已提交
3124
	if (!objp)
L
Linus Torvalds 已提交
3125
		return objp;
P
Pekka Enberg 已提交
3126
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3127
#ifdef CONFIG_DEBUG_PAGEALLOC
3128
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3129
			kernel_map_pages(virt_to_page(objp),
3130
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3142 3143 3144 3145
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3146
			printk(KERN_ERR
3147
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3148 3149
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3150 3151 3152 3153
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3154 3155 3156 3157 3158
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3159
		slabp = virt_to_head_page(objp)->slab_page;
3160
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3161 3162 3163
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3164
	objp += obj_offset(cachep);
3165
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3166
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3167 3168
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3169
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3170
		       objp, (int)ARCH_SLAB_MINALIGN);
3171
	}
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3178
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3179 3180
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3181
		return false;
3182

3183
	return should_failslab(cachep->object_size, flags, cachep->flags);
3184 3185
}

3186
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3187
{
P
Pekka Enberg 已提交
3188
	void *objp;
L
Linus Torvalds 已提交
3189 3190
	struct array_cache *ac;

3191
	check_irq_off();
3192

3193
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3194 3195 3196
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3197
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3198 3199 3200
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3201 3202 3203 3204 3205
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3206
	}
3207 3208 3209 3210 3211
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3212 3213
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3214 3215 3216
	return objp;
}

3217
#ifdef CONFIG_NUMA
3218
/*
3219
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3220 3221 3222 3223 3224 3225 3226 3227
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3228
	if (in_interrupt() || (flags & __GFP_THISNODE))
3229
		return NULL;
3230
	nid_alloc = nid_here = numa_mem_id();
3231
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3232
		nid_alloc = cpuset_slab_spread_node();
3233
	else if (current->mempolicy)
3234
		nid_alloc = slab_node();
3235
	if (nid_alloc != nid_here)
3236
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3237 3238 3239
	return NULL;
}

3240 3241
/*
 * Fallback function if there was no memory available and no objects on a
3242 3243 3244 3245 3246
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3247
 */
3248
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3249
{
3250 3251
	struct zonelist *zonelist;
	gfp_t local_flags;
3252
	struct zoneref *z;
3253 3254
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3255
	void *obj = NULL;
3256
	int nid;
3257
	unsigned int cpuset_mems_cookie;
3258 3259 3260 3261

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3262
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3263

3264 3265
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3266
	zonelist = node_zonelist(slab_node(), flags);
3267

3268 3269 3270 3271 3272
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3273 3274
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3275

3276
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3277
			cache->nodelists[nid] &&
3278
			cache->nodelists[nid]->free_objects) {
3279 3280
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3281 3282 3283
				if (obj)
					break;
		}
3284 3285
	}

3286
	if (!obj) {
3287 3288 3289 3290 3291 3292
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3293 3294 3295
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3296
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3297 3298
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3315
				/* cache_grow already freed obj */
3316 3317 3318
				obj = NULL;
			}
		}
3319
	}
3320 3321 3322

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3323 3324 3325
	return obj;
}

3326 3327
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3328
 */
3329
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3330
				int nodeid)
3331 3332
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3333 3334 3335 3336 3337 3338 3339 3340
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3341
retry:
3342
	check_irq_off();
P
Pekka Enberg 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3362
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3363 3364 3365 3366 3367
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3368
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3369
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3370
	else
P
Pekka Enberg 已提交
3371
		list_add(&slabp->list, &l3->slabs_partial);
3372

P
Pekka Enberg 已提交
3373 3374
	spin_unlock(&l3->list_lock);
	goto done;
3375

A
Andrew Morton 已提交
3376
must_grow:
P
Pekka Enberg 已提交
3377
	spin_unlock(&l3->list_lock);
3378
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3379 3380
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3381

3382
	return fallback_alloc(cachep, flags);
3383

A
Andrew Morton 已提交
3384
done:
P
Pekka Enberg 已提交
3385
	return obj;
3386
}
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3406
	int slab_node = numa_mem_id();
3407

3408
	flags &= gfp_allowed_mask;
3409

3410 3411
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3412
	if (slab_should_failslab(cachep, flags))
3413 3414
		return NULL;

3415 3416 3417
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3418
	if (nodeid == NUMA_NO_NODE)
3419
		nodeid = slab_node;
3420 3421 3422 3423 3424 3425 3426

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3427
	if (nodeid == slab_node) {
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3443
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3444
				 flags);
3445

P
Pekka Enberg 已提交
3446
	if (likely(ptr))
3447
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3448

3449
	if (unlikely((flags & __GFP_ZERO) && ptr))
3450
		memset(ptr, 0, cachep->object_size);
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3471 3472
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3493
	flags &= gfp_allowed_mask;
3494

3495 3496
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3497
	if (slab_should_failslab(cachep, flags))
3498 3499
		return NULL;

3500 3501 3502 3503 3504
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3505
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3506
				 flags);
3507 3508
	prefetchw(objp);

P
Pekka Enberg 已提交
3509
	if (likely(objp))
3510
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3511

3512
	if (unlikely((flags & __GFP_ZERO) && objp))
3513
		memset(objp, 0, cachep->object_size);
3514

3515 3516
	return objp;
}
3517 3518 3519 3520

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3521
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3522
		       int node)
L
Linus Torvalds 已提交
3523 3524
{
	int i;
3525
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3531
		slabp = virt_to_slab(objp);
3532
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3533
		list_del(&slabp->list);
3534
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3535
		check_slabp(cachep, slabp);
3536
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3537
		STATS_DEC_ACTIVE(cachep);
3538
		l3->free_objects++;
L
Linus Torvalds 已提交
3539 3540 3541 3542
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3543 3544
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3545 3546 3547 3548 3549 3550
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3551 3552
				slab_destroy(cachep, slabp);
			} else {
3553
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3560
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3561 3562 3563 3564
		}
	}
}

3565
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3566 3567
{
	int batchcount;
3568
	struct kmem_list3 *l3;
3569
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3576
	l3 = cachep->nodelists[node];
3577
	spin_lock(&l3->list_lock);
3578 3579
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3580
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3581 3582 3583
		if (max) {
			if (batchcount > max)
				batchcount = max;
3584
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3585
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3591
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3592
free_done:
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597
#if STATS
	{
		int i = 0;
		struct list_head *p;

3598 3599
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3611
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3612
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3613
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3614 3615 3616
}

/*
A
Andrew Morton 已提交
3617 3618
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3619
 */
3620 3621
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3622
{
3623
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3624 3625

	check_irq_off();
3626
	kmemleak_free_recursive(objp, cachep->flags);
3627
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3628

3629
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3630

3631 3632 3633 3634 3635 3636 3637
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3638
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3639 3640
		return;

L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3647 3648

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3659
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3660
{
E
Eduard - Gabriel Munteanu 已提交
3661 3662
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3663
	trace_kmem_cache_alloc(_RET_IP_, ret,
3664
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3665 3666

	return ret;
L
Linus Torvalds 已提交
3667 3668 3669
}
EXPORT_SYMBOL(kmem_cache_alloc);

3670
#ifdef CONFIG_TRACING
3671 3672
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3673
{
3674 3675 3676 3677 3678 3679 3680
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3681
}
3682
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3683 3684
#endif

L
Linus Torvalds 已提交
3685
#ifdef CONFIG_NUMA
3686 3687
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3688 3689 3690
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3691
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3692
				    cachep->object_size, cachep->size,
3693
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3694 3695

	return ret;
3696
}
L
Linus Torvalds 已提交
3697 3698
EXPORT_SYMBOL(kmem_cache_alloc_node);

3699
#ifdef CONFIG_TRACING
3700 3701 3702 3703
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3704
{
3705 3706 3707
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3708
				  __builtin_return_address(0));
3709 3710 3711 3712
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3713
}
3714
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3715 3716
#endif

3717 3718
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3719
{
3720
	struct kmem_cache *cachep;
3721 3722

	cachep = kmem_find_general_cachep(size, flags);
3723 3724
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3725
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3726
}
3727

3728
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3729 3730 3731 3732 3733
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3734
EXPORT_SYMBOL(__kmalloc_node);
3735 3736

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3737
		int node, unsigned long caller)
3738
{
3739
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3740 3741 3742 3743 3744 3745 3746 3747
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3748
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3749
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3750 3751

/**
3752
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3753
 * @size: how many bytes of memory are required.
3754
 * @flags: the type of memory to allocate (see kmalloc).
3755
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3756
 */
3757 3758
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3759
{
3760
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3761
	void *ret;
L
Linus Torvalds 已提交
3762

3763 3764 3765 3766 3767 3768
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3769 3770
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3771 3772
	ret = __cache_alloc(cachep, flags, caller);

3773
	trace_kmalloc((unsigned long) caller, ret,
3774
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3775 3776

	return ret;
3777 3778 3779
}


3780
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3781 3782
void *__kmalloc(size_t size, gfp_t flags)
{
3783
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3784 3785 3786
}
EXPORT_SYMBOL(__kmalloc);

3787
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3788
{
3789
	return __do_kmalloc(size, flags, (void *)caller);
3790 3791
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3792 3793 3794 3795 3796 3797 3798

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3799 3800
#endif

L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3809
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3810 3811 3812 3813
{
	unsigned long flags;

	local_irq_save(flags);
3814
	debug_check_no_locks_freed(objp, cachep->object_size);
3815
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3816
		debug_check_no_obj_freed(objp, cachep->object_size);
3817
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3818
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3819

3820
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826 3827
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3828 3829
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3830 3831 3832 3833 3834
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3835
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3836 3837
	unsigned long flags;

3838 3839
	trace_kfree(_RET_IP_, objp);

3840
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3841 3842 3843
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3844
	c = virt_to_cache(objp);
3845 3846 3847
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3848
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3849 3850 3851 3852
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3853
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3854
{
3855
	return cachep->object_size;
L
Linus Torvalds 已提交
3856 3857 3858
}
EXPORT_SYMBOL(kmem_cache_size);

3859
/*
S
Simon Arlott 已提交
3860
 * This initializes kmem_list3 or resizes various caches for all nodes.
3861
 */
3862
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3863 3864 3865
{
	int node;
	struct kmem_list3 *l3;
3866
	struct array_cache *new_shared;
3867
	struct array_cache **new_alien = NULL;
3868

3869
	for_each_online_node(node) {
3870

3871
                if (use_alien_caches) {
3872
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3873 3874 3875
                        if (!new_alien)
                                goto fail;
                }
3876

3877 3878 3879
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3880
				cachep->shared*cachep->batchcount,
3881
					0xbaadf00d, gfp);
3882 3883 3884 3885
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3886
		}
3887

A
Andrew Morton 已提交
3888 3889
		l3 = cachep->nodelists[node];
		if (l3) {
3890 3891
			struct array_cache *shared = l3->shared;

3892 3893
			spin_lock_irq(&l3->list_lock);

3894
			if (shared)
3895 3896
				free_block(cachep, shared->entry,
						shared->avail, node);
3897

3898 3899
			l3->shared = new_shared;
			if (!l3->alien) {
3900 3901 3902
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3903
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3904
					cachep->batchcount + cachep->num;
3905
			spin_unlock_irq(&l3->list_lock);
3906
			kfree(shared);
3907 3908 3909
			free_alien_cache(new_alien);
			continue;
		}
3910
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3911 3912 3913
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3914
			goto fail;
3915
		}
3916 3917 3918

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3919
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3920
		l3->shared = new_shared;
3921
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3922
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3923
					cachep->batchcount + cachep->num;
3924 3925
		cachep->nodelists[node] = l3;
	}
3926
	return 0;
3927

A
Andrew Morton 已提交
3928
fail:
3929
	if (!cachep->list.next) {
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3944
	return -ENOMEM;
3945 3946
}

L
Linus Torvalds 已提交
3947
struct ccupdate_struct {
3948
	struct kmem_cache *cachep;
3949
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3950 3951 3952 3953
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3954
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3955 3956 3957
	struct array_cache *old;

	check_irq_off();
3958
	old = cpu_cache_get(new->cachep);
3959

L
Linus Torvalds 已提交
3960 3961 3962 3963
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3964
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
3965
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3966
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3967
{
3968
	struct ccupdate_struct *new;
3969
	int i;
L
Linus Torvalds 已提交
3970

3971 3972
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3973 3974 3975
	if (!new)
		return -ENOMEM;

3976
	for_each_online_cpu(i) {
3977
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3978
						batchcount, gfp);
3979
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3980
			for (i--; i >= 0; i--)
3981 3982
				kfree(new->new[i]);
			kfree(new);
3983
			return -ENOMEM;
L
Linus Torvalds 已提交
3984 3985
		}
	}
3986
	new->cachep = cachep;
L
Linus Torvalds 已提交
3987

3988
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3989

L
Linus Torvalds 已提交
3990 3991 3992
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3993
	cachep->shared = shared;
L
Linus Torvalds 已提交
3994

3995
	for_each_online_cpu(i) {
3996
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3997 3998
		if (!ccold)
			continue;
3999 4000 4001
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4002 4003
		kfree(ccold);
	}
4004
	kfree(new);
4005
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4006 4007
}

4008
/* Called with slab_mutex held always */
4009
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4010 4011 4012 4013
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4014 4015
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4016 4017
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4018
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4019 4020 4021 4022
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4023
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4024
		limit = 1;
4025
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4026
		limit = 8;
4027
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4028
		limit = 24;
4029
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4030 4031 4032 4033
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4034 4035
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4044
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4045 4046 4047
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4048 4049 4050
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4051 4052 4053 4054
	 */
	if (limit > 32)
		limit = 32;
#endif
4055
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4056 4057
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4058
		       cachep->name, -err);
4059
	return err;
L
Linus Torvalds 已提交
4060 4061
}

4062 4063
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4064 4065
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4066
 */
4067
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4068
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4069 4070 4071
{
	int tofree;

4072 4073
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4074 4075
	if (ac->touched && !force) {
		ac->touched = 0;
4076
	} else {
4077
		spin_lock_irq(&l3->list_lock);
4078 4079 4080 4081 4082 4083 4084 4085 4086
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4087
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4093
 * @w: work descriptor
L
Linus Torvalds 已提交
4094 4095 4096 4097 4098 4099
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4100 4101
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4102
 */
4103
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4104
{
4105
	struct kmem_cache *searchp;
4106
	struct kmem_list3 *l3;
4107
	int node = numa_mem_id();
4108
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4109

4110
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4111
		/* Give up. Setup the next iteration. */
4112
		goto out;
L
Linus Torvalds 已提交
4113

4114
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4115 4116
		check_irq_on();

4117 4118 4119 4120 4121
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4122
		l3 = searchp->nodelists[node];
4123

4124
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4125

4126
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4127

4128 4129 4130 4131
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4132
		if (time_after(l3->next_reap, jiffies))
4133
			goto next;
L
Linus Torvalds 已提交
4134

4135
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4136

4137
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4138

4139
		if (l3->free_touched)
4140
			l3->free_touched = 0;
4141 4142
		else {
			int freed;
L
Linus Torvalds 已提交
4143

4144 4145 4146 4147
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4148
next:
L
Linus Torvalds 已提交
4149 4150 4151
		cond_resched();
	}
	check_irq_on();
4152
	mutex_unlock(&slab_mutex);
4153
	next_reap_node();
4154
out:
A
Andrew Morton 已提交
4155
	/* Set up the next iteration */
4156
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4157 4158
}

4159
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4160

4161
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4162
{
4163 4164 4165 4166
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4167
#if STATS
4168
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4169
#else
4170
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4171
#endif
4172 4173 4174 4175
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4176
#if STATS
4177
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4178
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4179
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4180
#endif
4181 4182 4183 4184 4185 4186 4187
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4188
	mutex_lock(&slab_mutex);
4189 4190
	if (!n)
		print_slabinfo_header(m);
4191

4192
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4193 4194 4195 4196
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4197
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4198 4199 4200 4201
}

static void s_stop(struct seq_file *m, void *p)
{
4202
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4203 4204 4205 4206
}

static int s_show(struct seq_file *m, void *p)
{
4207
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4208 4209 4210 4211 4212
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4213
	const char *name;
L
Linus Torvalds 已提交
4214
	char *error = NULL;
4215 4216
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4217 4218 4219

	active_objs = 0;
	num_slabs = 0;
4220 4221 4222 4223 4224
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4225 4226
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4227

4228
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4229 4230 4231 4232 4233
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4234
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4235 4236 4237 4238 4239 4240 4241
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4242
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4243 4244 4245 4246 4247
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4248 4249
		if (l3->shared)
			shared_avail += l3->shared->avail;
4250

4251
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4252
	}
P
Pekka Enberg 已提交
4253 4254
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4255
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4256 4257
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4258
	name = cachep->name;
L
Linus Torvalds 已提交
4259 4260 4261 4262
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4263
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4264
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4265
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4266
		   cachep->limit, cachep->batchcount, cachep->shared);
4267
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4268
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4269
#if STATS
P
Pekka Enberg 已提交
4270
	{			/* list3 stats */
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276 4277
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4278
		unsigned long node_frees = cachep->node_frees;
4279
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4280

J
Joe Perches 已提交
4281 4282 4283 4284 4285
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4295
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4316
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4317 4318 4319 4320
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4331
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4332
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4333
{
P
Pekka Enberg 已提交
4334
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4335
	int limit, batchcount, shared, res;
4336
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4337

L
Linus Torvalds 已提交
4338 4339 4340 4341
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4342
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4353
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4354
	res = -EINVAL;
4355
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4356
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4357 4358
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4359
				res = 0;
L
Linus Torvalds 已提交
4360
			} else {
4361
				res = do_tune_cpucache(cachep, limit,
4362 4363
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4364 4365 4366 4367
			}
			break;
		}
	}
4368
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4369 4370 4371 4372
	if (res >= 0)
		res = count;
	return res;
}
4373

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4387 4388 4389 4390
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4391 4392
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4431
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4443
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4444

4445
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4446
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4447
		if (modname[0])
4448 4449 4450 4451 4452 4453 4454 4455 4456
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4457
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4482
		list_for_each_entry(slabp, &l3->slabs_full, list)
4483
			handle_slab(n, cachep, slabp);
4484
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4485 4486 4487 4488 4489 4490
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4491
		mutex_unlock(&slab_mutex);
4492 4493 4494 4495
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4496
			mutex_lock(&slab_mutex);
4497 4498 4499 4500
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4501
		mutex_lock(&slab_mutex);
4502 4503 4504 4505 4506 4507 4508 4509 4510
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4511

4512 4513 4514
	return 0;
}

4515
static const struct seq_operations slabstats_op = {
4516 4517 4518 4519 4520
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4549
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4550 4551
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4552
#endif
4553 4554 4555
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4556 4557
#endif

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4570
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4571
{
4572 4573
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4574
		return 0;
L
Linus Torvalds 已提交
4575

4576
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4577
}
K
Kirill A. Shutemov 已提交
4578
EXPORT_SYMBOL(ksize);