slab.c 113.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	spinlock_t lock;
195
	void *entry[];	/*
A
Andrew Morton 已提交
196 197 198
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
199 200 201 202
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
203
			 */
L
Linus Torvalds 已提交
204 205
};

J
Joonsoo Kim 已提交
206 207 208 209 210
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
228 229 230
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
231 232 233 234
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
235
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
236 237
};

238 239 240
/*
 * Need this for bootstrapping a per node allocator.
 */
241
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
242
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
243
#define	CACHE_CACHE 0
244
#define	SIZE_AC MAX_NUMNODES
245
#define	SIZE_NODE (2 * MAX_NUMNODES)
246

247
static int drain_freelist(struct kmem_cache *cache,
248
			struct kmem_cache_node *n, int tofree);
249
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
250 251
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
252
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
253
static void cache_reap(struct work_struct *unused);
254

255 256
static int slab_early_init = 1;

257
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
258
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
259

260
static void kmem_cache_node_init(struct kmem_cache_node *parent)
261 262 263 264 265 266
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
267
	parent->colour_next = 0;
268 269 270 271 272
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
273 274 275
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
276
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
277 278
	} while (0)

A
Andrew Morton 已提交
279 280
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
281 282 283 284
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
285 286 287 288 289

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
290 291 292
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
293
 *
A
Adrian Bunk 已提交
294
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
295 296
 * which could lock up otherwise freeable slabs.
 */
297 298
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
299 300 301 302 303 304

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
305
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
306 307 308 309 310
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
311 312
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
313
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
314
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
315 316 317 318 319
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
320 321 322 323 324 325 326 327 328
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
329
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
330 331 332
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
333
#define	STATS_INC_NODEFREES(x)	do { } while (0)
334
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
335
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
336 337 338 339 340 341 342 343
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
344 345
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
346
 * 0		: objp
347
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
348 349
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
350
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
351
 * 		redzone word.
352
 * cachep->obj_offset: The real object.
353 354
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
355
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
356
 */
357
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
358
{
359
	return cachep->obj_offset;
L
Linus Torvalds 已提交
360 361
}

362
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
363 364
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
365 366
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
367 368
}

369
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
370 371 372
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
373
		return (unsigned long long *)(objp + cachep->size -
374
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
375
					      REDZONE_ALIGN);
376
	return (unsigned long long *) (objp + cachep->size -
377
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
378 379
}

380
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
381 382
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
383
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
384 385 386 387
}

#else

388
#define obj_offset(x)			0
389 390
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
391 392 393 394
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

L
Linus Torvalds 已提交
428
/*
429 430
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
431
 */
432 433 434
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
435
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
436

437 438
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
439
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
440
	return page->slab_cache;
441 442
}

443
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
444 445
				 unsigned int idx)
{
446
	return page->s_mem + cache->size * idx;
447 448
}

449
/*
450 451 452
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
453 454 455
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
456
					const struct page *page, void *obj)
457
{
458
	u32 offset = (obj - page->s_mem);
459
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
460 461
}

L
Linus Torvalds 已提交
462
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
463
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
464 465

/* internal cache of cache description objs */
466
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
467 468 469
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
470
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
471
	.name = "kmem_cache",
L
Linus Torvalds 已提交
472 473
};

474 475
#define BAD_ALIEN_MAGIC 0x01020304ul

476 477 478 479 480 481 482 483
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
484 485 486 487
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
488
 */
489 490 491
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

492 493 494 495 496
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
497
		struct kmem_cache_node *n)
498
{
J
Joonsoo Kim 已提交
499
	struct alien_cache **alc;
500 501
	int r;

502 503
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
504 505 506 507 508 509 510 511 512 513 514
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
J
Joonsoo Kim 已提交
515
			lockdep_set_class(&(alc[r]->ac.lock), alc_key);
516 517 518
	}
}

519 520
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
521
{
522
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, n);
523 524 525 526 527
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;
528
	struct kmem_cache_node *n;
529

530 531
	for_each_kmem_cache_node(cachep, node, n)
		slab_set_debugobj_lock_classes_node(cachep, n);
532 533
}

534
static void init_node_lock_keys(int q)
535
{
536
	int i;
537

538
	if (slab_state < UP)
539 540
		return;

C
Christoph Lameter 已提交
541
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
542
		struct kmem_cache_node *n;
543 544 545 546
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
547

548
		n = get_node(cache, q);
549
		if (!n || OFF_SLAB(cache))
550
			continue;
551

552
		slab_set_lock_classes(cache, &on_slab_l3_key,
553
				&on_slab_alc_key, n);
554 555
	}
}
556

557 558
static void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
559 560
{
	slab_set_lock_classes(cachep, &on_slab_l3_key,
561
			&on_slab_alc_key, n);
562 563 564 565 566
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;
567
	struct kmem_cache_node *n;
568 569

	VM_BUG_ON(OFF_SLAB(cachep));
570 571
	for_each_kmem_cache_node(cachep, node, n)
		on_slab_lock_classes_node(cachep, n);
572 573
}

574
static inline void __init init_lock_keys(void)
575 576 577 578 579 580
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
581
#else
582
static void __init init_node_lock_keys(int q)
583 584 585
{
}

586
static inline void init_lock_keys(void)
587 588
{
}
589

590 591 592 593
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

594 595
static inline void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
596 597 598
{
}

599 600
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
601 602 603 604 605 606
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
607 608
#endif

609
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
610

611
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
612 613 614 615
{
	return cachep->array[smp_processor_id()];
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

630 631
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
632
{
633
	int nr_objs;
634
	size_t remained_size;
635
	size_t freelist_size;
636
	int extra_space = 0;
637

638 639
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
640 641 642 643 644 645 646 647
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
648
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
649 650 651 652 653

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
654 655 656
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
657 658 659
		nr_objs--;

	return nr_objs;
660
}
L
Linus Torvalds 已提交
661

A
Andrew Morton 已提交
662 663 664
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
665 666 667 668 669 670 671
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
672

673 674 675 676 677
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
678
	 * - One unsigned int for each object
679 680 681 682 683 684 685 686 687 688 689 690 691
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
692
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
693
					sizeof(freelist_idx_t), align);
694
		mgmt_size = calculate_freelist_size(nr_objs, align);
695 696 697
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
698 699
}

700
#if DEBUG
701
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
702

A
Andrew Morton 已提交
703 704
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
705 706
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
707
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
708
	dump_stack();
709
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
710
}
711
#endif
L
Linus Torvalds 已提交
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

729 730 731 732 733 734 735 736 737 738 739
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

740 741 742 743 744 745 746
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
747
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
748 749 750 751 752

static void init_reap_node(int cpu)
{
	int node;

753
	node = next_node(cpu_to_mem(cpu), node_online_map);
754
	if (node == MAX_NUMNODES)
755
		node = first_node(node_online_map);
756

757
	per_cpu(slab_reap_node, cpu) = node;
758 759 760 761
}

static void next_reap_node(void)
{
762
	int node = __this_cpu_read(slab_reap_node);
763 764 765 766

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
767
	__this_cpu_write(slab_reap_node, node);
768 769 770 771 772 773 774
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
775 776 777 778 779 780 781
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
782
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
783
{
784
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
785 786 787 788 789 790

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
791
	if (keventd_up() && reap_work->work.func == NULL) {
792
		init_reap_node(cpu);
793
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
794 795
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
796 797 798
	}
}

799
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
800
{
801 802
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
803
	 * However, when such objects are allocated or transferred to another
804 805 806 807
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
808 809 810 811 812 813 814
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
		spin_lock_init(&ac->lock);
L
Linus Torvalds 已提交
815
	}
816 817 818 819 820 821 822 823 824 825 826
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
827 828
}

829
static inline bool is_slab_pfmemalloc(struct page *page)
830 831 832 833 834 835 836 837
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
838
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
839
	struct page *page;
840 841 842 843 844
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

845
	spin_lock_irqsave(&n->list_lock, flags);
846 847
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
848 849
			goto out;

850 851
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
852 853
			goto out;

854 855
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
856 857 858 859
			goto out;

	pfmemalloc_active = false;
out:
860
	spin_unlock_irqrestore(&n->list_lock, flags);
861 862
}

863
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
864 865 866 867 868 869 870
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
871
		struct kmem_cache_node *n;
872 873 874 875 876 877 878

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
879
		for (i = 0; i < ac->avail; i++) {
880 881 882 883 884 885 886 887 888 889 890 891 892
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
893
		n = get_node(cachep, numa_mem_id());
894
		if (!list_empty(&n->slabs_free) && force_refill) {
895
			struct page *page = virt_to_head_page(objp);
896
			ClearPageSlabPfmemalloc(page);
897 898 899 900 901 902 903 904 905 906 907 908 909
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
924 925 926 927
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
928
		struct page *page = virt_to_head_page(objp);
929 930 931 932
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

933 934 935 936 937 938 939 940 941
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

942 943 944
	ac->entry[ac->avail++] = objp;
}

945 946 947 948 949 950 951 952 953 954
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
955
	int nr = min3(from->avail, max, to->limit - to->avail);
956 957 958 959 960 961 962 963 964 965 966 967

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

968 969 970
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
971
#define reap_alien(cachep, n) do { } while (0)
972

J
Joonsoo Kim 已提交
973 974
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
975
{
J
Joonsoo Kim 已提交
976
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
977 978
}

J
Joonsoo Kim 已提交
979
static inline void free_alien_cache(struct alien_cache **ac_ptr)
980 981 982 983 984 985 986 987 988 989 990 991 992 993
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

994
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
995 996 997 998 999 1000 1001
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1002
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1003
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1004

J
Joonsoo Kim 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1017
{
J
Joonsoo Kim 已提交
1018
	struct alien_cache **alc_ptr;
1019
	int memsize = sizeof(void *) * nr_node_ids;
1020 1021 1022 1023
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
1037 1038
		}
	}
J
Joonsoo Kim 已提交
1039
	return alc_ptr;
1040 1041
}

J
Joonsoo Kim 已提交
1042
static void free_alien_cache(struct alien_cache **alc_ptr)
1043 1044 1045
{
	int i;

J
Joonsoo Kim 已提交
1046
	if (!alc_ptr)
1047 1048
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
1049 1050
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
1051 1052
}

1053
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1054
				struct array_cache *ac, int node)
1055
{
1056
	struct kmem_cache_node *n = get_node(cachep, node);
1057
	LIST_HEAD(list);
1058 1059

	if (ac->avail) {
1060
		spin_lock(&n->list_lock);
1061 1062 1063 1064 1065
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1066 1067
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1068

1069
		free_block(cachep, ac->entry, ac->avail, node, &list);
1070
		ac->avail = 0;
1071
		spin_unlock(&n->list_lock);
1072
		slabs_destroy(cachep, &list);
1073 1074 1075
	}
}

1076 1077 1078
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1079
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1080
{
1081
	int node = __this_cpu_read(slab_reap_node);
1082

1083
	if (n->alien) {
J
Joonsoo Kim 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
			if (ac->avail && spin_trylock_irq(&ac->lock)) {
				__drain_alien_cache(cachep, ac, node);
				spin_unlock_irq(&ac->lock);
			}
1093 1094 1095 1096
		}
	}
}

A
Andrew Morton 已提交
1097
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
1098
				struct alien_cache **alien)
1099
{
P
Pekka Enberg 已提交
1100
	int i = 0;
J
Joonsoo Kim 已提交
1101
	struct alien_cache *alc;
1102 1103 1104 1105
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
1106 1107 1108
		alc = alien[i];
		if (alc) {
			ac = &alc->ac;
1109 1110 1111 1112 1113 1114
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1115

1116
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1117
{
J
Joonsoo Kim 已提交
1118
	int nodeid = page_to_nid(virt_to_page(objp));
1119
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
1120 1121
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
P
Pekka Enberg 已提交
1122
	int node;
1123
	LIST_HEAD(list);
P
Pekka Enberg 已提交
1124

1125
	node = numa_mem_id();
1126 1127 1128 1129 1130

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1131
	if (likely(nodeid == node))
1132 1133
		return 0;

1134
	n = get_node(cachep, node);
1135
	STATS_INC_NODEFREES(cachep);
1136 1137
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
J
Joonsoo Kim 已提交
1138 1139 1140
		ac = &alien->ac;
		spin_lock(&ac->lock);
		if (unlikely(ac->avail == ac->limit)) {
1141
			STATS_INC_ACOVERFLOW(cachep);
J
Joonsoo Kim 已提交
1142
			__drain_alien_cache(cachep, ac, nodeid);
1143
		}
J
Joonsoo Kim 已提交
1144 1145
		ac_put_obj(cachep, ac, objp);
		spin_unlock(&ac->lock);
1146
	} else {
1147 1148
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1149
		free_block(cachep, &objp, 1, nodeid, &list);
1150
		spin_unlock(&n->list_lock);
1151
		slabs_destroy(cachep, &list);
1152 1153 1154
	}
	return 1;
}
1155 1156
#endif

1157
/*
1158
 * Allocates and initializes node for a node on each slab cache, used for
1159
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1160
 * will be allocated off-node since memory is not yet online for the new node.
1161
 * When hotplugging memory or a cpu, existing node are not replaced if
1162 1163
 * already in use.
 *
1164
 * Must hold slab_mutex.
1165
 */
1166
static int init_cache_node_node(int node)
1167 1168
{
	struct kmem_cache *cachep;
1169
	struct kmem_cache_node *n;
1170
	const int memsize = sizeof(struct kmem_cache_node);
1171

1172
	list_for_each_entry(cachep, &slab_caches, list) {
1173
		/*
1174
		 * Set up the kmem_cache_node for cpu before we can
1175 1176 1177
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1178 1179
		n = get_node(cachep, node);
		if (!n) {
1180 1181
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1182
				return -ENOMEM;
1183
			kmem_cache_node_init(n);
1184 1185
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1186 1187

			/*
1188 1189
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1190 1191
			 * protection here.
			 */
1192
			cachep->node[node] = n;
1193 1194
		}

1195 1196
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1197 1198
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1199
		spin_unlock_irq(&n->list_lock);
1200 1201 1202 1203
	}
	return 0;
}

1204 1205 1206 1207 1208 1209
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1210
static void cpuup_canceled(long cpu)
1211 1212
{
	struct kmem_cache *cachep;
1213
	struct kmem_cache_node *n = NULL;
1214
	int node = cpu_to_mem(cpu);
1215
	const struct cpumask *mask = cpumask_of_node(node);
1216

1217
	list_for_each_entry(cachep, &slab_caches, list) {
1218 1219
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1220
		struct alien_cache **alien;
1221
		LIST_HEAD(list);
1222 1223 1224 1225

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1226
		n = get_node(cachep, node);
1227

1228
		if (!n)
1229 1230
			goto free_array_cache;

1231
		spin_lock_irq(&n->list_lock);
1232

1233 1234
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1235
		if (nc)
1236
			free_block(cachep, nc->entry, nc->avail, node, &list);
1237

1238
		if (!cpumask_empty(mask)) {
1239
			spin_unlock_irq(&n->list_lock);
1240 1241 1242
			goto free_array_cache;
		}

1243
		shared = n->shared;
1244 1245
		if (shared) {
			free_block(cachep, shared->entry,
1246
				   shared->avail, node, &list);
1247
			n->shared = NULL;
1248 1249
		}

1250 1251
		alien = n->alien;
		n->alien = NULL;
1252

1253
		spin_unlock_irq(&n->list_lock);
1254 1255 1256 1257 1258 1259 1260

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
1261
		slabs_destroy(cachep, &list);
1262 1263 1264 1265 1266 1267 1268
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1269
	list_for_each_entry(cachep, &slab_caches, list) {
1270
		n = get_node(cachep, node);
1271
		if (!n)
1272
			continue;
1273
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1274 1275 1276
	}
}

1277
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1278
{
1279
	struct kmem_cache *cachep;
1280
	struct kmem_cache_node *n = NULL;
1281
	int node = cpu_to_mem(cpu);
1282
	int err;
L
Linus Torvalds 已提交
1283

1284 1285 1286 1287
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1288
	 * kmem_cache_node and not this cpu's kmem_cache_node
1289
	 */
1290
	err = init_cache_node_node(node);
1291 1292
	if (err < 0)
		goto bad;
1293 1294 1295 1296 1297

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1298
	list_for_each_entry(cachep, &slab_caches, list) {
1299 1300
		struct array_cache *nc;
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1301
		struct alien_cache **alien = NULL;
1302 1303

		nc = alloc_arraycache(node, cachep->limit,
1304
					cachep->batchcount, GFP_KERNEL);
1305 1306 1307 1308 1309
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1310
				0xbaadf00d, GFP_KERNEL);
1311 1312
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1313
				goto bad;
1314
			}
1315 1316
		}
		if (use_alien_caches) {
1317
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1318 1319 1320
			if (!alien) {
				kfree(shared);
				kfree(nc);
1321
				goto bad;
1322
			}
1323 1324
		}
		cachep->array[cpu] = nc;
1325
		n = get_node(cachep, node);
1326
		BUG_ON(!n);
1327

1328 1329
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1330 1331 1332 1333
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1334
			n->shared = shared;
1335 1336
			shared = NULL;
		}
1337
#ifdef CONFIG_NUMA
1338 1339
		if (!n->alien) {
			n->alien = alien;
1340
			alien = NULL;
L
Linus Torvalds 已提交
1341
		}
1342
#endif
1343
		spin_unlock_irq(&n->list_lock);
1344 1345
		kfree(shared);
		free_alien_cache(alien);
1346
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1347
			slab_set_debugobj_lock_classes_node(cachep, n);
1348 1349
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1350
			on_slab_lock_classes_node(cachep, n);
1351
	}
1352 1353
	init_node_lock_keys(node);

1354 1355
	return 0;
bad:
1356
	cpuup_canceled(cpu);
1357 1358 1359
	return -ENOMEM;
}

1360
static int cpuup_callback(struct notifier_block *nfb,
1361 1362 1363 1364 1365 1366 1367 1368
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1369
		mutex_lock(&slab_mutex);
1370
		err = cpuup_prepare(cpu);
1371
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1372 1373
		break;
	case CPU_ONLINE:
1374
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1375 1376 1377
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1378
  	case CPU_DOWN_PREPARE:
1379
  	case CPU_DOWN_PREPARE_FROZEN:
1380
		/*
1381
		 * Shutdown cache reaper. Note that the slab_mutex is
1382 1383 1384 1385
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1386
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1387
		/* Now the cache_reaper is guaranteed to be not running. */
1388
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1389 1390
  		break;
  	case CPU_DOWN_FAILED:
1391
  	case CPU_DOWN_FAILED_FROZEN:
1392 1393
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1394
	case CPU_DEAD:
1395
	case CPU_DEAD_FROZEN:
1396 1397
		/*
		 * Even if all the cpus of a node are down, we don't free the
1398
		 * kmem_cache_node of any cache. This to avoid a race between
1399
		 * cpu_down, and a kmalloc allocation from another cpu for
1400
		 * memory from the node of the cpu going down.  The node
1401 1402 1403
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1404
		/* fall through */
1405
#endif
L
Linus Torvalds 已提交
1406
	case CPU_UP_CANCELED:
1407
	case CPU_UP_CANCELED_FROZEN:
1408
		mutex_lock(&slab_mutex);
1409
		cpuup_canceled(cpu);
1410
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1411 1412
		break;
	}
1413
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1414 1415
}

1416
static struct notifier_block cpucache_notifier = {
1417 1418
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1419

1420 1421 1422 1423 1424 1425
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1426
 * Must hold slab_mutex.
1427
 */
1428
static int __meminit drain_cache_node_node(int node)
1429 1430 1431 1432
{
	struct kmem_cache *cachep;
	int ret = 0;

1433
	list_for_each_entry(cachep, &slab_caches, list) {
1434
		struct kmem_cache_node *n;
1435

1436
		n = get_node(cachep, node);
1437
		if (!n)
1438 1439
			continue;

1440
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1441

1442 1443
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1464
		mutex_lock(&slab_mutex);
1465
		ret = init_cache_node_node(nid);
1466
		mutex_unlock(&slab_mutex);
1467 1468
		break;
	case MEM_GOING_OFFLINE:
1469
		mutex_lock(&slab_mutex);
1470
		ret = drain_cache_node_node(nid);
1471
		mutex_unlock(&slab_mutex);
1472 1473 1474 1475 1476 1477 1478 1479
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1480
	return notifier_from_errno(ret);
1481 1482 1483
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1484
/*
1485
 * swap the static kmem_cache_node with kmalloced memory
1486
 */
1487
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1488
				int nodeid)
1489
{
1490
	struct kmem_cache_node *ptr;
1491

1492
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1493 1494
	BUG_ON(!ptr);

1495
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1496 1497 1498 1499 1500
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1501
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1502
	cachep->node[nodeid] = ptr;
1503 1504
}

1505
/*
1506 1507
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1508
 */
1509
static void __init set_up_node(struct kmem_cache *cachep, int index)
1510 1511 1512 1513
{
	int node;

	for_each_online_node(node) {
1514
		cachep->node[node] = &init_kmem_cache_node[index + node];
1515
		cachep->node[node]->next_reap = jiffies +
1516 1517
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1518 1519 1520
	}
}

C
Christoph Lameter 已提交
1521 1522
/*
 * The memory after the last cpu cache pointer is used for the
1523
 * the node pointer.
C
Christoph Lameter 已提交
1524
 */
1525
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1526
{
1527
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1528 1529
}

A
Andrew Morton 已提交
1530 1531 1532
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1533 1534 1535
 */
void __init kmem_cache_init(void)
{
1536 1537
	int i;

1538 1539
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1540
	kmem_cache = &kmem_cache_boot;
1541
	setup_node_pointer(kmem_cache);
1542

1543
	if (num_possible_nodes() == 1)
1544 1545
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1546
	for (i = 0; i < NUM_INIT_LISTS; i++)
1547
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1548

1549
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1550 1551 1552

	/*
	 * Fragmentation resistance on low memory - only use bigger
1553 1554
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1555
	 */
1556
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1557
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1558 1559 1560

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1561 1562 1563
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1564
	 *    Initially an __init data area is used for the head array and the
1565
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1566
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1567
	 * 2) Create the first kmalloc cache.
1568
	 *    The struct kmem_cache for the new cache is allocated normally.
1569 1570 1571
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1572
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1573
	 *    kmalloc cache with kmalloc allocated arrays.
1574
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1575 1576
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1577 1578
	 */

1579
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1580

E
Eric Dumazet 已提交
1581
	/*
1582
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1583
	 */
1584 1585
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1586
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1587 1588
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1589 1590 1591

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1592 1593
	/*
	 * Initialize the caches that provide memory for the array cache and the
1594
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1595
	 * bug.
1596 1597
	 */

1598 1599
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1600

1601 1602 1603 1604
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1605

1606 1607
	slab_early_init = 0;

L
Linus Torvalds 已提交
1608 1609
	/* 4) Replace the bootstrap head arrays */
	{
1610
		struct array_cache *ptr;
1611

1612
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1613

1614
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1615
		       sizeof(struct arraycache_init));
1616 1617 1618 1619 1620
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1621
		kmem_cache->array[smp_processor_id()] = ptr;
1622

1623
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1624

1625
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1626
		       != &initarray_generic.cache);
1627
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1628
		       sizeof(struct arraycache_init));
1629 1630 1631 1632 1633
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1634
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1635
	}
1636
	/* 5) Replace the bootstrap kmem_cache_node */
1637
	{
P
Pekka Enberg 已提交
1638 1639
		int nid;

1640
		for_each_online_node(nid) {
1641
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1642

1643
			init_list(kmalloc_caches[INDEX_AC],
1644
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1645

1646 1647 1648
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1649 1650 1651
			}
		}
	}
L
Linus Torvalds 已提交
1652

1653
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1654 1655 1656 1657 1658 1659
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1660
	slab_state = UP;
P
Peter Zijlstra 已提交
1661

1662
	/* 6) resize the head arrays to their final sizes */
1663 1664
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1665 1666
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1667
	mutex_unlock(&slab_mutex);
1668

1669 1670 1671
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1672 1673 1674
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1675 1676 1677
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1678 1679 1680
	 */
	register_cpu_notifier(&cpucache_notifier);

1681 1682 1683
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1684
	 * node.
1685 1686 1687 1688
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1689 1690 1691
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1699 1700
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1701
	 */
1702
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1703
		start_cpu_timer(cpu);
1704 1705

	/* Done! */
1706
	slab_state = FULL;
L
Linus Torvalds 已提交
1707 1708 1709 1710
	return 0;
}
__initcall(cpucache_init);

1711 1712 1713
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1714
#if DEBUG
1715
	struct kmem_cache_node *n;
1716
	struct page *page;
1717 1718
	unsigned long flags;
	int node;
1719 1720 1721 1722 1723
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1724 1725 1726 1727 1728

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1729
		cachep->name, cachep->size, cachep->gfporder);
1730

1731
	for_each_kmem_cache_node(cachep, node, n) {
1732 1733 1734
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1735
		spin_lock_irqsave(&n->list_lock, flags);
1736
		list_for_each_entry(page, &n->slabs_full, lru) {
1737 1738 1739
			active_objs += cachep->num;
			active_slabs++;
		}
1740 1741
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1742 1743
			active_slabs++;
		}
1744
		list_for_each_entry(page, &n->slabs_free, lru)
1745 1746
			num_slabs++;

1747 1748
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1749 1750 1751 1752 1753 1754 1755 1756

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1757
#endif
1758 1759
}

L
Linus Torvalds 已提交
1760 1761 1762 1763 1764 1765 1766
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1767 1768
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1769 1770
{
	struct page *page;
1771
	int nr_pages;
1772

1773
	flags |= cachep->allocflags;
1774 1775
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1776

1777 1778 1779
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1780
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1781
	if (!page) {
1782
		memcg_uncharge_slab(cachep, cachep->gfporder);
1783
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1784
		return NULL;
1785
	}
L
Linus Torvalds 已提交
1786

1787
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1788 1789 1790
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1791
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1792
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1793 1794 1795 1796 1797
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1798 1799 1800
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
1801

1802 1803 1804 1805 1806 1807 1808 1809
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1810

1811
	return page;
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816
}

/*
 * Interface to system's page release.
 */
1817
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1818
{
1819
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1820

1821
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1822

1823 1824 1825 1826 1827 1828
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1829

1830
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1831
	__ClearPageSlabPfmemalloc(page);
1832
	__ClearPageSlab(page);
1833 1834
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1835

L
Linus Torvalds 已提交
1836 1837
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1838 1839
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1840 1841 1842 1843
}

static void kmem_rcu_free(struct rcu_head *head)
{
1844 1845
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1846

1847 1848 1849 1850
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1851 1852 1853 1854 1855
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1856
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1857
			    unsigned long caller)
L
Linus Torvalds 已提交
1858
{
1859
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1860

1861
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1862

P
Pekka Enberg 已提交
1863
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1864 1865
		return;

P
Pekka Enberg 已提交
1866 1867 1868 1869
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875 1876
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1877
				*addr++ = svalue;
L
Linus Torvalds 已提交
1878 1879 1880 1881 1882 1883 1884
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1885
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1886 1887 1888
}
#endif

1889
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1890
{
1891
	int size = cachep->object_size;
1892
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1893 1894

	memset(addr, val, size);
P
Pekka Enberg 已提交
1895
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1901 1902 1903
	unsigned char error = 0;
	int bad_count = 0;

1904
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1905 1906 1907 1908 1909 1910
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1911 1912
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931
}
#endif

#if DEBUG

1932
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1938
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1939 1940
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1941 1942 1943
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1944 1945 1946
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1947
	}
1948
	realobj = (char *)objp + obj_offset(cachep);
1949
	size = cachep->object_size;
P
Pekka Enberg 已提交
1950
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1951 1952
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1953 1954
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1955 1956 1957 1958
		dump_line(realobj, i, limit);
	}
}

1959
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964
{
	char *realobj;
	int size, i;
	int lines = 0;

1965
	realobj = (char *)objp + obj_offset(cachep);
1966
	size = cachep->object_size;
L
Linus Torvalds 已提交
1967

P
Pekka Enberg 已提交
1968
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1969
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1970
		if (i == size - 1)
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975 1976
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1977
				printk(KERN_ERR
1978 1979
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1980 1981 1982
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1983
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1984
			limit = 16;
P
Pekka Enberg 已提交
1985 1986
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1999
		struct page *page = virt_to_head_page(objp);
2000
		unsigned int objnr;
L
Linus Torvalds 已提交
2001

2002
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2003
		if (objnr) {
2004
			objp = index_to_obj(cachep, page, objnr - 1);
2005
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2006
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2007
			       realobj, size);
L
Linus Torvalds 已提交
2008 2009
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2010
		if (objnr + 1 < cachep->num) {
2011
			objp = index_to_obj(cachep, page, objnr + 1);
2012
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2013
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2014
			       realobj, size);
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2021
#if DEBUG
2022 2023
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
2024 2025 2026
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2027
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2028 2029 2030

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2031
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2032
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2033
				kernel_map_pages(virt_to_page(objp),
2034
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2044
					   "was overwritten");
L
Linus Torvalds 已提交
2045 2046
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2047
					   "was overwritten");
L
Linus Torvalds 已提交
2048 2049
		}
	}
2050
}
L
Linus Torvalds 已提交
2051
#else
2052 2053
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
2054 2055
{
}
L
Linus Torvalds 已提交
2056 2057
#endif

2058 2059 2060
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
2061
 * @page: page pointer being destroyed
2062
 *
2063
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2064 2065
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2066
 */
2067
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
2068
{
2069
	void *freelist;
2070

2071 2072
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
2073
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
2084 2085

	} else {
2086
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2087
	}
2088 2089

	/*
2090
	 * From now on, we don't use freelist
2091 2092 2093
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
2094
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
2095 2096
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

2107
/**
2108 2109 2110 2111 2112 2113 2114
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2115 2116 2117 2118 2119
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2120
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2121
			size_t size, size_t align, unsigned long flags)
2122
{
2123
	unsigned long offslab_limit;
2124
	size_t left_over = 0;
2125
	int gfporder;
2126

2127
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2128 2129 2130
		unsigned int num;
		size_t remainder;

2131
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2132 2133
		if (!num)
			continue;
2134

2135 2136 2137 2138
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

2139
		if (flags & CFLGS_OFF_SLAB) {
2140
			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
2141 2142 2143 2144 2145
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2146 2147
			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
				freelist_size_per_obj += sizeof(char);
2148
			offslab_limit = size;
2149
			offslab_limit /= freelist_size_per_obj;
2150 2151 2152 2153

 			if (num > offslab_limit)
				break;
		}
2154

2155
		/* Found something acceptable - save it away */
2156
		cachep->num = num;
2157
		cachep->gfporder = gfporder;
2158 2159
		left_over = remainder;

2160 2161 2162 2163 2164 2165 2166 2167
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2168 2169 2170 2171
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2172
		if (gfporder >= slab_max_order)
2173 2174
			break;

2175 2176 2177
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2178
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2179 2180 2181 2182 2183
			break;
	}
	return left_over;
}

2184
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2185
{
2186
	if (slab_state >= FULL)
2187
		return enable_cpucache(cachep, gfp);
2188

2189
	if (slab_state == DOWN) {
2190
		/*
2191
		 * Note: Creation of first cache (kmem_cache).
2192
		 * The setup_node is taken care
2193 2194 2195 2196 2197 2198 2199
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2200 2201 2202 2203 2204 2205
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2206 2207
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2208 2209
		 * otherwise the creation of further caches will BUG().
		 */
2210 2211 2212
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2213
		else
2214
			slab_state = PARTIAL_ARRAYCACHE;
2215
	} else {
2216
		/* Remaining boot caches */
2217
		cachep->array[smp_processor_id()] =
2218
			kmalloc(sizeof(struct arraycache_init), gfp);
2219

2220
		if (slab_state == PARTIAL_ARRAYCACHE) {
2221 2222
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2223 2224
		} else {
			int node;
2225
			for_each_online_node(node) {
2226
				cachep->node[node] =
2227
				    kmalloc_node(sizeof(struct kmem_cache_node),
2228
						gfp, node);
2229
				BUG_ON(!cachep->node[node]);
2230
				kmem_cache_node_init(cachep->node[node]);
2231 2232 2233
			}
		}
	}
2234
	cachep->node[numa_mem_id()]->next_reap =
2235 2236
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2237 2238 2239 2240 2241 2242 2243

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2244
	return 0;
2245 2246
}

L
Linus Torvalds 已提交
2247
/**
2248
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2249
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2250 2251 2252 2253
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2254
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2268
int
2269
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2270
{
2271
	size_t left_over, freelist_size, ralign;
2272
	gfp_t gfp;
2273
	int err;
2274
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2284 2285
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2286
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2294 2295
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2296 2297 2298
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2299 2300 2301
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2302 2303
	}

2304
	/*
D
David Woodhouse 已提交
2305 2306 2307
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2308
	 */
D
David Woodhouse 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2319

2320
	/* 3) caller mandated alignment */
2321 2322
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2323
	}
2324 2325
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2326
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2327
	/*
2328
	 * 4) Store it.
L
Linus Torvalds 已提交
2329
	 */
2330
	cachep->align = ralign;
L
Linus Torvalds 已提交
2331

2332 2333 2334 2335 2336
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2337
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2338 2339
#if DEBUG

2340 2341 2342 2343
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2344 2345
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2346 2347
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2348 2349
	}
	if (flags & SLAB_STORE_USER) {
2350
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2351 2352
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2353
		 */
D
David Woodhouse 已提交
2354 2355 2356 2357
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2358 2359
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2360
	if (size >= kmalloc_size(INDEX_NODE + 1)
2361 2362 2363
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368
		size = PAGE_SIZE;
	}
#endif
#endif

2369 2370 2371
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2372 2373
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2374
	 */
2375
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2376
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381 2382
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2383
	size = ALIGN(size, cachep->align);
2384 2385 2386 2387 2388 2389
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2390

2391
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2392

2393
	if (!cachep->num)
2394
		return -E2BIG;
L
Linus Torvalds 已提交
2395

2396
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2402
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2403
		flags &= ~CFLGS_OFF_SLAB;
2404
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2405 2406 2407 2408
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2409
		freelist_size = calculate_freelist_size(cachep->num, 0);
2410 2411 2412 2413 2414 2415 2416 2417 2418

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2419 2420 2421 2422
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2423 2424
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2425
	cachep->colour = left_over / cachep->colour_off;
2426
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2427
	cachep->flags = flags;
2428
	cachep->allocflags = __GFP_COMP;
2429
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2430
		cachep->allocflags |= GFP_DMA;
2431
	cachep->size = size;
2432
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2433

2434
	if (flags & CFLGS_OFF_SLAB) {
2435
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2436
		/*
2437
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2438
		 * But since we go off slab only for object size greater than
2439 2440
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2441 2442
		 * But leave a BUG_ON for some lucky dude.
		 */
2443
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2444
	}
L
Linus Torvalds 已提交
2445

2446 2447
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2448
		__kmem_cache_shutdown(cachep);
2449
		return err;
2450
	}
L
Linus Torvalds 已提交
2451

2452 2453 2454 2455 2456 2457 2458 2459
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2460 2461
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2462

2463
	return 0;
L
Linus Torvalds 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2477
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2478 2479 2480
{
#ifdef CONFIG_SMP
	check_irq_off();
2481
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2482 2483
#endif
}
2484

2485
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2486 2487 2488
{
#ifdef CONFIG_SMP
	check_irq_off();
2489
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2490 2491 2492
#endif
}

L
Linus Torvalds 已提交
2493 2494 2495 2496
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2497
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2498 2499
#endif

2500
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2501 2502 2503
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2504 2505
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2506
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2507
	struct array_cache *ac;
2508
	int node = numa_mem_id();
2509
	struct kmem_cache_node *n;
2510
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2511 2512

	check_irq_off();
2513
	ac = cpu_cache_get(cachep);
2514 2515
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2516
	free_block(cachep, ac->entry, ac->avail, node, &list);
2517
	spin_unlock(&n->list_lock);
2518
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2519 2520 2521
	ac->avail = 0;
}

2522
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2523
{
2524
	struct kmem_cache_node *n;
2525 2526
	int node;

2527
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2528
	check_irq_on();
2529 2530
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2531
			drain_alien_cache(cachep, n->alien);
2532

2533 2534
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2535 2536
}

2537 2538 2539 2540 2541 2542 2543
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2544
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2545
{
2546 2547
	struct list_head *p;
	int nr_freed;
2548
	struct page *page;
L
Linus Torvalds 已提交
2549

2550
	nr_freed = 0;
2551
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2552

2553 2554 2555 2556
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2557 2558
			goto out;
		}
L
Linus Torvalds 已提交
2559

2560
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2561
#if DEBUG
2562
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2563
#endif
2564
		list_del(&page->lru);
2565 2566 2567 2568
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2569 2570
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2571
		slab_destroy(cache, page);
2572
		nr_freed++;
L
Linus Torvalds 已提交
2573
	}
2574 2575
out:
	return nr_freed;
L
Linus Torvalds 已提交
2576 2577
}

2578
int __kmem_cache_shrink(struct kmem_cache *cachep)
2579
{
2580 2581
	int ret = 0;
	int node;
2582
	struct kmem_cache_node *n;
2583 2584 2585 2586

	drain_cpu_caches(cachep);

	check_irq_on();
2587
	for_each_kmem_cache_node(cachep, node, n) {
2588
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2589

2590 2591
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2592 2593 2594 2595
	}
	return (ret ? 1 : 0);
}

2596
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2597
{
2598
	int i;
2599
	struct kmem_cache_node *n;
2600
	int rc = __kmem_cache_shrink(cachep);
L
Linus Torvalds 已提交
2601

2602 2603
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2604

2605 2606
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2607

2608
	/* NUMA: free the node structures */
2609 2610 2611 2612 2613
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2614 2615
	}
	return 0;
L
Linus Torvalds 已提交
2616 2617
}

2618 2619
/*
 * Get the memory for a slab management obj.
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2631
 */
2632
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2633 2634
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2635
{
2636
	void *freelist;
2637
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2638

L
Linus Torvalds 已提交
2639 2640
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2641
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2642
					      local_flags, nodeid);
2643
		if (!freelist)
L
Linus Torvalds 已提交
2644 2645
			return NULL;
	} else {
2646 2647
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2648
	}
2649 2650 2651
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2652 2653
}

2654
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2655
{
2656
	return ((freelist_idx_t *)page->freelist)[idx];
2657 2658 2659
}

static inline void set_free_obj(struct page *page,
2660
					unsigned int idx, freelist_idx_t val)
2661
{
2662
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2663 2664
}

2665
static void cache_init_objs(struct kmem_cache *cachep,
2666
			    struct page *page)
L
Linus Torvalds 已提交
2667 2668 2669 2670
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2671
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2684 2685 2686
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2687 2688
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2689
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2690 2691 2692 2693

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2694
					   " end of an object");
L
Linus Torvalds 已提交
2695 2696
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2697
					   " start of an object");
L
Linus Torvalds 已提交
2698
		}
2699
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2700
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2701
			kernel_map_pages(virt_to_page(objp),
2702
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2703 2704
#else
		if (cachep->ctor)
2705
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2706
#endif
2707
		set_obj_status(page, i, OBJECT_FREE);
2708
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2709 2710 2711
	}
}

2712
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2713
{
2714 2715
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2716
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2717
		else
2718
			BUG_ON(cachep->allocflags & GFP_DMA);
2719
	}
L
Linus Torvalds 已提交
2720 2721
}

2722
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2723
				int nodeid)
2724
{
2725
	void *objp;
2726

2727
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2728
	page->active++;
2729
#if DEBUG
J
Joonsoo Kim 已提交
2730
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2731 2732 2733 2734 2735
#endif

	return objp;
}

2736
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2737
				void *objp, int nodeid)
2738
{
2739
	unsigned int objnr = obj_to_index(cachep, page, objp);
2740
#if DEBUG
J
Joonsoo Kim 已提交
2741
	unsigned int i;
2742

2743
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2744
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2745

2746
	/* Verify double free bug */
2747
	for (i = page->active; i < cachep->num; i++) {
2748
		if (get_free_obj(page, i) == objnr) {
2749 2750 2751 2752
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2753 2754
	}
#endif
2755
	page->active--;
2756
	set_free_obj(page, page->active, objnr);
2757 2758
}

2759 2760 2761
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2762
 * virtual address for kfree, ksize, and slab debugging.
2763
 */
2764
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2765
			   void *freelist)
L
Linus Torvalds 已提交
2766
{
2767
	page->slab_cache = cache;
2768
	page->freelist = freelist;
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2775
static int cache_grow(struct kmem_cache *cachep,
2776
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2777
{
2778
	void *freelist;
P
Pekka Enberg 已提交
2779 2780
	size_t offset;
	gfp_t local_flags;
2781
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2782

A
Andrew Morton 已提交
2783 2784 2785
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2786
	 */
C
Christoph Lameter 已提交
2787 2788
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2789

2790
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2791
	check_irq_off();
2792
	n = get_node(cachep, nodeid);
2793
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2794 2795

	/* Get colour for the slab, and cal the next value. */
2796 2797 2798 2799 2800
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2801

2802
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2815 2816 2817
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2818
	 */
2819 2820 2821
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2822 2823 2824
		goto failed;

	/* Get slab management. */
2825
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2826
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2827
	if (!freelist)
L
Linus Torvalds 已提交
2828 2829
		goto opps1;

2830
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2831

2832
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2833 2834 2835 2836

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2837
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2838 2839

	/* Make slab active. */
2840
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2841
	STATS_INC_GROWN(cachep);
2842 2843
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2844
	return 1;
A
Andrew Morton 已提交
2845
opps1:
2846
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2847
failed:
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2864 2865
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2866 2867 2868
	}
}

2869 2870
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2871
	unsigned long long redzone1, redzone2;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2887
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2888 2889 2890
			obj, redzone1, redzone2);
}

2891
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2892
				   unsigned long caller)
L
Linus Torvalds 已提交
2893 2894
{
	unsigned int objnr;
2895
	struct page *page;
L
Linus Torvalds 已提交
2896

2897 2898
	BUG_ON(virt_to_cache(objp) != cachep);

2899
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2900
	kfree_debugcheck(objp);
2901
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2902 2903

	if (cachep->flags & SLAB_RED_ZONE) {
2904
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2905 2906 2907 2908
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2909
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2910

2911
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2912 2913

	BUG_ON(objnr >= cachep->num);
2914
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2915

2916
	set_obj_status(page, objnr, OBJECT_FREE);
L
Linus Torvalds 已提交
2917 2918
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2919
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2920
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2921
			kernel_map_pages(virt_to_page(objp),
2922
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2938 2939
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2940 2941
{
	int batchcount;
2942
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2943
	struct array_cache *ac;
P
Pekka Enberg 已提交
2944 2945
	int node;

L
Linus Torvalds 已提交
2946
	check_irq_off();
2947
	node = numa_mem_id();
2948 2949 2950
	if (unlikely(force_refill))
		goto force_grow;
retry:
2951
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2952 2953
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2954 2955 2956 2957
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2958 2959 2960
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2961
	n = get_node(cachep, node);
2962

2963 2964
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2965

2966
	/* See if we can refill from the shared array */
2967 2968
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2969
		goto alloc_done;
2970
	}
2971

L
Linus Torvalds 已提交
2972 2973
	while (batchcount > 0) {
		struct list_head *entry;
2974
		struct page *page;
L
Linus Torvalds 已提交
2975
		/* Get slab alloc is to come from. */
2976 2977 2978 2979 2980
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2981 2982 2983
				goto must_grow;
		}

2984
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2985
		check_spinlock_acquired(cachep);
2986 2987 2988 2989 2990 2991

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2992
		BUG_ON(page->active >= cachep->num);
2993

2994
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2995 2996 2997 2998
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2999
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
3000
									node));
L
Linus Torvalds 已提交
3001 3002 3003
		}

		/* move slabp to correct slabp list: */
3004 3005
		list_del(&page->lru);
		if (page->active == cachep->num)
3006
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
3007
		else
3008
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3009 3010
	}

A
Andrew Morton 已提交
3011
must_grow:
3012
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3013
alloc_done:
3014
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3015 3016 3017

	if (unlikely(!ac->avail)) {
		int x;
3018
force_grow:
3019
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3020

A
Andrew Morton 已提交
3021
		/* cache_grow can reenable interrupts, then ac could change. */
3022
		ac = cpu_cache_get(cachep);
3023
		node = numa_mem_id();
3024 3025 3026

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3027 3028
			return NULL;

A
Andrew Morton 已提交
3029
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3030 3031 3032
			goto retry;
	}
	ac->touched = 1;
3033 3034

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3035 3036
}

A
Andrew Morton 已提交
3037 3038
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044 3045 3046
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3047
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3048
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3049
{
3050 3051
	struct page *page;

P
Pekka Enberg 已提交
3052
	if (!objp)
L
Linus Torvalds 已提交
3053
		return objp;
P
Pekka Enberg 已提交
3054
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3055
#ifdef CONFIG_DEBUG_PAGEALLOC
3056
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3057
			kernel_map_pages(virt_to_page(objp),
3058
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064 3065 3066
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3067
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3068 3069

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3070 3071 3072 3073
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3074
			printk(KERN_ERR
3075
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3076 3077
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3078 3079 3080 3081
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3082 3083 3084

	page = virt_to_head_page(objp);
	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3085
	objp += obj_offset(cachep);
3086
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3087
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3088 3089
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3090
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3091
		       objp, (int)ARCH_SLAB_MINALIGN);
3092
	}
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3099
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3100
{
3101
	if (unlikely(cachep == kmem_cache))
A
Akinobu Mita 已提交
3102
		return false;
3103

3104
	return should_failslab(cachep->object_size, flags, cachep->flags);
3105 3106
}

3107
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3108
{
P
Pekka Enberg 已提交
3109
	void *objp;
L
Linus Torvalds 已提交
3110
	struct array_cache *ac;
3111
	bool force_refill = false;
L
Linus Torvalds 已提交
3112

3113
	check_irq_off();
3114

3115
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3116 3117
	if (likely(ac->avail)) {
		ac->touched = 1;
3118 3119
		objp = ac_get_obj(cachep, ac, flags, false);

3120
		/*
3121 3122
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3123
		 */
3124 3125 3126 3127 3128
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3129
	}
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3140 3141 3142 3143 3144
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3145 3146
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3147 3148 3149
	return objp;
}

3150
#ifdef CONFIG_NUMA
3151
/*
3152
 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3153 3154 3155 3156 3157 3158 3159 3160
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3161
	if (in_interrupt() || (flags & __GFP_THISNODE))
3162
		return NULL;
3163
	nid_alloc = nid_here = numa_mem_id();
3164
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165
		nid_alloc = cpuset_slab_spread_node();
3166
	else if (current->mempolicy)
3167
		nid_alloc = mempolicy_slab_node();
3168
	if (nid_alloc != nid_here)
3169
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3170 3171 3172
	return NULL;
}

3173 3174
/*
 * Fallback function if there was no memory available and no objects on a
3175
 * certain node and fall back is permitted. First we scan all the
3176
 * available node for available objects. If that fails then we
3177 3178 3179
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3180
 */
3181
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182
{
3183 3184
	struct zonelist *zonelist;
	gfp_t local_flags;
3185
	struct zoneref *z;
3186 3187
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3188
	void *obj = NULL;
3189
	int nid;
3190
	unsigned int cpuset_mems_cookie;
3191 3192 3193 3194

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3195
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3196

3197
retry_cpuset:
3198
	cpuset_mems_cookie = read_mems_allowed_begin();
3199
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3200

3201 3202 3203 3204 3205
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3206 3207
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3208

3209
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3210 3211
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3212 3213
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3214 3215 3216
				if (obj)
					break;
		}
3217 3218
	}

3219
	if (!obj) {
3220 3221 3222 3223 3224 3225
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3226 3227
		struct page *page;

3228 3229 3230
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3231
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3232 3233
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3234
		if (page) {
3235 3236 3237
			/*
			 * Insert into the appropriate per node queues
			 */
3238 3239
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3250
				/* cache_grow already freed obj */
3251 3252 3253
				obj = NULL;
			}
		}
3254
	}
3255

3256
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3257
		goto retry_cpuset;
3258 3259 3260
	return obj;
}

3261 3262
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3263
 */
3264
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3265
				int nodeid)
3266 3267
{
	struct list_head *entry;
3268
	struct page *page;
3269
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3270 3271 3272
	void *obj;
	int x;

3273
	VM_BUG_ON(nodeid > num_online_nodes());
3274
	n = get_node(cachep, nodeid);
3275
	BUG_ON(!n);
P
Pekka Enberg 已提交
3276

A
Andrew Morton 已提交
3277
retry:
3278
	check_irq_off();
3279 3280 3281 3282 3283 3284
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3285 3286 3287
			goto must_grow;
	}

3288
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3289 3290 3291 3292 3293 3294
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3295
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3296

3297
	obj = slab_get_obj(cachep, page, nodeid);
3298
	n->free_objects--;
P
Pekka Enberg 已提交
3299
	/* move slabp to correct slabp list: */
3300
	list_del(&page->lru);
P
Pekka Enberg 已提交
3301

3302 3303
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3304
	else
3305
		list_add(&page->lru, &n->slabs_partial);
3306

3307
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3308
	goto done;
3309

A
Andrew Morton 已提交
3310
must_grow:
3311
	spin_unlock(&n->list_lock);
3312
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3313 3314
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3315

3316
	return fallback_alloc(cachep, flags);
3317

A
Andrew Morton 已提交
3318
done:
P
Pekka Enberg 已提交
3319
	return obj;
3320
}
3321 3322

static __always_inline void *
3323
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3324
		   unsigned long caller)
3325 3326 3327
{
	unsigned long save_flags;
	void *ptr;
3328
	int slab_node = numa_mem_id();
3329

3330
	flags &= gfp_allowed_mask;
3331

3332 3333
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3334
	if (slab_should_failslab(cachep, flags))
3335 3336
		return NULL;

3337 3338
	cachep = memcg_kmem_get_cache(cachep, flags);

3339 3340 3341
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3342
	if (nodeid == NUMA_NO_NODE)
3343
		nodeid = slab_node;
3344

3345
	if (unlikely(!get_node(cachep, nodeid))) {
3346 3347 3348 3349 3350
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3351
	if (nodeid == slab_node) {
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3367
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3368
				 flags);
3369

3370
	if (likely(ptr)) {
3371
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3372 3373 3374
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3375

3376 3377 3378 3379 3380 3381 3382 3383
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3384
	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3395 3396
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3412
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3413 3414 3415 3416
{
	unsigned long save_flags;
	void *objp;

3417
	flags &= gfp_allowed_mask;
3418

3419 3420
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3421
	if (slab_should_failslab(cachep, flags))
3422 3423
		return NULL;

3424 3425
	cachep = memcg_kmem_get_cache(cachep, flags);

3426 3427 3428 3429 3430
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3431
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3432
				 flags);
3433 3434
	prefetchw(objp);

3435
	if (likely(objp)) {
3436
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3437 3438 3439
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3440

3441 3442
	return objp;
}
3443 3444

/*
3445
 * Caller needs to acquire correct kmem_cache_node's list_lock
3446
 * @list: List of detached free slabs should be freed by caller
3447
 */
3448 3449
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3450 3451
{
	int i;
3452
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3453 3454

	for (i = 0; i < nr_objects; i++) {
3455
		void *objp;
3456
		struct page *page;
L
Linus Torvalds 已提交
3457

3458 3459 3460
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3461 3462
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3463
		check_spinlock_acquired_node(cachep, node);
3464
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3465
		STATS_DEC_ACTIVE(cachep);
3466
		n->free_objects++;
L
Linus Torvalds 已提交
3467 3468

		/* fixup slab chains */
3469
		if (page->active == 0) {
3470 3471
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3472
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3473
			} else {
3474
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3475 3476 3477 3478 3479 3480
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3481
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3482 3483 3484 3485
		}
	}
}

3486
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3487 3488
{
	int batchcount;
3489
	struct kmem_cache_node *n;
3490
	int node = numa_mem_id();
3491
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3492 3493 3494 3495 3496 3497

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3498
	n = get_node(cachep, node);
3499 3500 3501
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3502
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3503 3504 3505
		if (max) {
			if (batchcount > max)
				batchcount = max;
3506
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3507
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3513
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3514
free_done:
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519
#if STATS
	{
		int i = 0;
		struct list_head *p;

3520 3521
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3522
			struct page *page;
L
Linus Torvalds 已提交
3523

3524 3525
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3533
	spin_unlock(&n->list_lock);
3534
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3535
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3536
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3537 3538 3539
}

/*
A
Andrew Morton 已提交
3540 3541
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3542
 */
3543
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3544
				unsigned long caller)
L
Linus Torvalds 已提交
3545
{
3546
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3547 3548

	check_irq_off();
3549
	kmemleak_free_recursive(objp, cachep->flags);
3550
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3551

3552
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3553

3554 3555 3556 3557 3558 3559 3560
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3561
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3562 3563
		return;

L
Linus Torvalds 已提交
3564 3565 3566 3567 3568 3569
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3570

3571
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3582
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3583
{
3584
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3585

3586
	trace_kmem_cache_alloc(_RET_IP_, ret,
3587
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3588 3589

	return ret;
L
Linus Torvalds 已提交
3590 3591 3592
}
EXPORT_SYMBOL(kmem_cache_alloc);

3593
#ifdef CONFIG_TRACING
3594
void *
3595
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3596
{
3597 3598
	void *ret;

3599
	ret = slab_alloc(cachep, flags, _RET_IP_);
3600 3601

	trace_kmalloc(_RET_IP_, ret,
3602
		      size, cachep->size, flags);
3603
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3604
}
3605
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3606 3607
#endif

L
Linus Torvalds 已提交
3608
#ifdef CONFIG_NUMA
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3620 3621
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3622
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3623

3624
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3625
				    cachep->object_size, cachep->size,
3626
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3627 3628

	return ret;
3629
}
L
Linus Torvalds 已提交
3630 3631
EXPORT_SYMBOL(kmem_cache_alloc_node);

3632
#ifdef CONFIG_TRACING
3633
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3634
				  gfp_t flags,
3635 3636
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3637
{
3638 3639
	void *ret;

3640
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3641

3642
	trace_kmalloc_node(_RET_IP_, ret,
3643
			   size, cachep->size,
3644 3645
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3646
}
3647
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3648 3649
#endif

3650
static __always_inline void *
3651
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3652
{
3653
	struct kmem_cache *cachep;
3654

3655
	cachep = kmalloc_slab(size, flags);
3656 3657
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3658
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3659
}
3660

3661
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3662 3663
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3664
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3665
}
3666
EXPORT_SYMBOL(__kmalloc_node);
3667 3668

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3669
		int node, unsigned long caller)
3670
{
3671
	return __do_kmalloc_node(size, flags, node, caller);
3672 3673 3674 3675 3676
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3677
	return __do_kmalloc_node(size, flags, node, 0);
3678 3679
}
EXPORT_SYMBOL(__kmalloc_node);
3680
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3681
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3682 3683

/**
3684
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3685
 * @size: how many bytes of memory are required.
3686
 * @flags: the type of memory to allocate (see kmalloc).
3687
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3688
 */
3689
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690
					  unsigned long caller)
L
Linus Torvalds 已提交
3691
{
3692
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3693
	void *ret;
L
Linus Torvalds 已提交
3694

3695
	cachep = kmalloc_slab(size, flags);
3696 3697
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3698
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3699

3700
	trace_kmalloc(caller, ret,
3701
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3702 3703

	return ret;
3704 3705 3706
}


3707
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3708 3709
void *__kmalloc(size_t size, gfp_t flags)
{
3710
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3711 3712 3713
}
EXPORT_SYMBOL(__kmalloc);

3714
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3715
{
3716
	return __do_kmalloc(size, flags, caller);
3717 3718
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3719 3720 3721 3722

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3723
	return __do_kmalloc(size, flags, 0);
3724 3725
}
EXPORT_SYMBOL(__kmalloc);
3726 3727
#endif

L
Linus Torvalds 已提交
3728 3729 3730 3731 3732 3733 3734 3735
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3736
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3737 3738
{
	unsigned long flags;
3739 3740 3741
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3742 3743

	local_irq_save(flags);
3744
	debug_check_no_locks_freed(objp, cachep->object_size);
3745
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3746
		debug_check_no_obj_freed(objp, cachep->object_size);
3747
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3748
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3749

3750
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3751 3752 3753 3754 3755 3756 3757
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3758 3759
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3765
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3766 3767
	unsigned long flags;

3768 3769
	trace_kfree(_RET_IP_, objp);

3770
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3771 3772 3773
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3774
	c = virt_to_cache(objp);
3775 3776 3777
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3778
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3779 3780 3781 3782
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3783
/*
3784
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3785
 */
3786
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3787 3788
{
	int node;
3789
	struct kmem_cache_node *n;
3790
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3791
	struct alien_cache **new_alien = NULL;
3792

3793
	for_each_online_node(node) {
3794

3795
                if (use_alien_caches) {
3796
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3797 3798 3799
                        if (!new_alien)
                                goto fail;
                }
3800

3801 3802 3803
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3804
				cachep->shared*cachep->batchcount,
3805
					0xbaadf00d, gfp);
3806 3807 3808 3809
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3810
		}
3811

3812
		n = get_node(cachep, node);
3813 3814
		if (n) {
			struct array_cache *shared = n->shared;
3815
			LIST_HEAD(list);
3816

3817
			spin_lock_irq(&n->list_lock);
3818

3819
			if (shared)
3820
				free_block(cachep, shared->entry,
3821
						shared->avail, node, &list);
3822

3823 3824 3825
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3826 3827
				new_alien = NULL;
			}
3828
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3829
					cachep->batchcount + cachep->num;
3830
			spin_unlock_irq(&n->list_lock);
3831
			slabs_destroy(cachep, &list);
3832
			kfree(shared);
3833 3834 3835
			free_alien_cache(new_alien);
			continue;
		}
3836 3837
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3838 3839
			free_alien_cache(new_alien);
			kfree(new_shared);
3840
			goto fail;
3841
		}
3842

3843
		kmem_cache_node_init(n);
3844 3845
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3846 3847 3848
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3849
					cachep->batchcount + cachep->num;
3850
		cachep->node[node] = n;
3851
	}
3852
	return 0;
3853

A
Andrew Morton 已提交
3854
fail:
3855
	if (!cachep->list.next) {
3856 3857 3858
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3859 3860
			n = get_node(cachep, node);
			if (n) {
3861 3862 3863
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3864
				cachep->node[node] = NULL;
3865 3866 3867 3868
			}
			node--;
		}
	}
3869
	return -ENOMEM;
3870 3871
}

L
Linus Torvalds 已提交
3872
struct ccupdate_struct {
3873
	struct kmem_cache *cachep;
3874
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3875 3876 3877 3878
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3879
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3880 3881 3882
	struct array_cache *old;

	check_irq_off();
3883
	old = cpu_cache_get(new->cachep);
3884

L
Linus Torvalds 已提交
3885 3886 3887 3888
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3889
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3890
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3891
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3892
{
3893
	struct ccupdate_struct *new;
3894
	int i;
L
Linus Torvalds 已提交
3895

3896 3897
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3898 3899 3900
	if (!new)
		return -ENOMEM;

3901
	for_each_online_cpu(i) {
3902
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3903
						batchcount, gfp);
3904
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3905
			for (i--; i >= 0; i--)
3906 3907
				kfree(new->new[i]);
			kfree(new);
3908
			return -ENOMEM;
L
Linus Torvalds 已提交
3909 3910
		}
	}
3911
	new->cachep = cachep;
L
Linus Torvalds 已提交
3912

3913
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3914

L
Linus Torvalds 已提交
3915 3916 3917
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3918
	cachep->shared = shared;
L
Linus Torvalds 已提交
3919

3920
	for_each_online_cpu(i) {
3921
		LIST_HEAD(list);
3922
		struct array_cache *ccold = new->new[i];
3923 3924 3925
		int node;
		struct kmem_cache_node *n;

L
Linus Torvalds 已提交
3926 3927
		if (!ccold)
			continue;
3928 3929 3930 3931

		node = cpu_to_mem(i);
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3932
		free_block(cachep, ccold->entry, ccold->avail, node, &list);
3933
		spin_unlock_irq(&n->list_lock);
3934
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3935 3936
		kfree(ccold);
	}
3937
	kfree(new);
3938
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3939 3940
}

G
Glauber Costa 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3956
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3957
	for_each_memcg_cache_index(i) {
3958
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3959 3960 3961 3962 3963 3964 3965 3966
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3967
/* Called with slab_mutex held always */
3968
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3969 3970
{
	int err;
G
Glauber Costa 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3981

G
Glauber Costa 已提交
3982 3983
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3984 3985
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3986 3987
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3988
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3989 3990 3991 3992
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3993
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3994
		limit = 1;
3995
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3996
		limit = 8;
3997
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3998
		limit = 24;
3999
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4000 4001 4002 4003
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4004 4005
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012 4013
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4014
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4015 4016 4017
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4018 4019 4020
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4021 4022 4023 4024
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4025 4026 4027
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4028 4029
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4030
		       cachep->name, -err);
4031
	return err;
L
Linus Torvalds 已提交
4032 4033
}

4034
/*
4035 4036
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4037
 * if drain_array() is used on the shared array.
4038
 */
4039
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4040
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4041
{
4042
	LIST_HEAD(list);
L
Linus Torvalds 已提交
4043 4044
	int tofree;

4045 4046
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4047 4048
	if (ac->touched && !force) {
		ac->touched = 0;
4049
	} else {
4050
		spin_lock_irq(&n->list_lock);
4051 4052 4053 4054
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
4055
			free_block(cachep, ac->entry, tofree, node, &list);
4056 4057 4058 4059
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4060
		spin_unlock_irq(&n->list_lock);
4061
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4067
 * @w: work descriptor
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4074 4075
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4076
 */
4077
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4078
{
4079
	struct kmem_cache *searchp;
4080
	struct kmem_cache_node *n;
4081
	int node = numa_mem_id();
4082
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4083

4084
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4085
		/* Give up. Setup the next iteration. */
4086
		goto out;
L
Linus Torvalds 已提交
4087

4088
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4089 4090
		check_irq_on();

4091
		/*
4092
		 * We only take the node lock if absolutely necessary and we
4093 4094 4095
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4096
		n = get_node(searchp, node);
4097

4098
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4099

4100
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4101

4102 4103 4104 4105
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4106
		if (time_after(n->next_reap, jiffies))
4107
			goto next;
L
Linus Torvalds 已提交
4108

4109
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4110

4111
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4112

4113 4114
		if (n->free_touched)
			n->free_touched = 0;
4115 4116
		else {
			int freed;
L
Linus Torvalds 已提交
4117

4118
			freed = drain_freelist(searchp, n, (n->free_limit +
4119 4120 4121
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4122
next:
L
Linus Torvalds 已提交
4123 4124 4125
		cond_resched();
	}
	check_irq_on();
4126
	mutex_unlock(&slab_mutex);
4127
	next_reap_node();
4128
out:
A
Andrew Morton 已提交
4129
	/* Set up the next iteration */
4130
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4131 4132
}

4133
#ifdef CONFIG_SLABINFO
4134
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4135
{
4136
	struct page *page;
P
Pekka Enberg 已提交
4137 4138 4139 4140
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4141
	const char *name;
L
Linus Torvalds 已提交
4142
	char *error = NULL;
4143
	int node;
4144
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4145 4146 4147

	active_objs = 0;
	num_slabs = 0;
4148
	for_each_kmem_cache_node(cachep, node, n) {
4149

4150
		check_irq_on();
4151
		spin_lock_irq(&n->list_lock);
4152

4153 4154
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4155 4156 4157 4158
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4159 4160
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4161
				error = "slabs_partial accounting error";
4162
			if (!page->active && !error)
4163
				error = "slabs_partial accounting error";
4164
			active_objs += page->active;
4165 4166
			active_slabs++;
		}
4167 4168
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4169
				error = "slabs_free accounting error";
4170 4171
			num_slabs++;
		}
4172 4173 4174
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4175

4176
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4177
	}
P
Pekka Enberg 已提交
4178 4179
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4180
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4181 4182
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4183
	name = cachep->name;
L
Linus Torvalds 已提交
4184 4185 4186
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4201
#if STATS
4202
	{			/* node stats */
L
Linus Torvalds 已提交
4203 4204 4205 4206 4207 4208 4209
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4210
		unsigned long node_frees = cachep->node_frees;
4211
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4212

J
Joe Perches 已提交
4213 4214 4215 4216 4217
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4227
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4240
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4241
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4242
{
P
Pekka Enberg 已提交
4243
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4244
	int limit, batchcount, shared, res;
4245
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4246

L
Linus Torvalds 已提交
4247 4248 4249 4250
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4251
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4262
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4263
	res = -EINVAL;
4264
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4265
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4266 4267
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4268
				res = 0;
L
Linus Torvalds 已提交
4269
			} else {
4270
				res = do_tune_cpucache(cachep, limit,
4271 4272
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4273 4274 4275 4276
			}
			break;
		}
	}
4277
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4278 4279 4280 4281
	if (res >= 0)
		res = count;
	return res;
}
4282 4283 4284 4285 4286

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4287 4288
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4321 4322
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4323 4324
{
	void *p;
4325
	int i;
4326

4327 4328
	if (n[0] == n[1])
		return;
4329
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4330
		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4331
			continue;
4332

4333 4334 4335 4336 4337 4338 4339 4340 4341
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4342
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4343

4344
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4345
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4346
		if (modname[0])
4347 4348 4349 4350 4351 4352 4353 4354 4355
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4356
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4357
	struct page *page;
4358
	struct kmem_cache_node *n;
4359
	const char *name;
4360
	unsigned long *x = m->private;
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4371
	x[1] = 0;
4372

4373
	for_each_kmem_cache_node(cachep, node, n) {
4374 4375

		check_irq_on();
4376
		spin_lock_irq(&n->list_lock);
4377

4378 4379 4380 4381
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4382
		spin_unlock_irq(&n->list_lock);
4383 4384
	}
	name = cachep->name;
4385
	if (x[0] == x[1]) {
4386
		/* Increase the buffer size */
4387
		mutex_unlock(&slab_mutex);
4388
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4389 4390
		if (!m->private) {
			/* Too bad, we are really out */
4391
			m->private = x;
4392
			mutex_lock(&slab_mutex);
4393 4394
			return -ENOMEM;
		}
4395 4396
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4397
		mutex_lock(&slab_mutex);
4398 4399 4400 4401
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4402 4403 4404
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4405 4406
		seq_putc(m, '\n');
	}
4407

4408 4409 4410
	return 0;
}

4411
static const struct seq_operations slabstats_op = {
4412
	.start = leaks_start,
4413 4414
	.next = slab_next,
	.stop = slab_stop,
4415 4416
	.show = leaks_show,
};
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4447
#endif
4448 4449 4450
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4451 4452
#endif

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4465
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4466
{
4467 4468
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4469
		return 0;
L
Linus Torvalds 已提交
4470

4471
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4472
}
K
Kirill A. Shutemov 已提交
4473
EXPORT_SYMBOL(ksize);