slab.c 113.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190

191 192 193 194 195 196 197 198
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
199 200 201 202 203
	struct {
		struct list_head list;
		void *s_mem;		/* including colour offset */
		unsigned int inuse;	/* num of objs active in slab */
		kmem_bufctl_t free;
204 205 206
	};
};

L
Linus Torvalds 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
224
	spinlock_t lock;
225
	void *entry[];	/*
A
Andrew Morton 已提交
226 227 228
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
229 230 231 232
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
233
			 */
L
Linus Torvalds 已提交
234 235
};

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
253 254 255
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
256 257 258 259
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
260
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
261 262
};

263 264 265
/*
 * Need this for bootstrapping a per node allocator.
 */
266
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
267
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
268
#define	CACHE_CACHE 0
269
#define	SIZE_AC MAX_NUMNODES
270
#define	SIZE_NODE (2 * MAX_NUMNODES)
271

272
static int drain_freelist(struct kmem_cache *cache,
273
			struct kmem_cache_node *n, int tofree);
274 275
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
276
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
277
static void cache_reap(struct work_struct *unused);
278

279 280
static int slab_early_init = 1;

281
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
282
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
283

284
static void kmem_cache_node_init(struct kmem_cache_node *parent)
285 286 287 288 289 290
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
291
	parent->colour_next = 0;
292 293 294 295 296
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
297 298 299
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
300
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
301 302
	} while (0)

A
Andrew Morton 已提交
303 304
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
305 306 307 308
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
309 310 311 312 313

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
314 315 316
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
317
 *
A
Adrian Bunk 已提交
318
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
319 320 321 322 323 324 325 326 327 328
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
329
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
330 331 332 333 334
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
335 336
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
337
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
338
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
339 340 341 342 343
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
353
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
354 355 356
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
357
#define	STATS_INC_NODEFREES(x)	do { } while (0)
358
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
359
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
360 361 362 363 364 365 366 367
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
368 369
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
370
 * 0		: objp
371
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
372 373
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
374
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
375
 * 		redzone word.
376
 * cachep->obj_offset: The real object.
377 378
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
379
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
380
 */
381
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
382
{
383
	return cachep->obj_offset;
L
Linus Torvalds 已提交
384 385
}

386
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
387 388
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
389 390
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
391 392
}

393
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
394 395 396
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
397
		return (unsigned long long *)(objp + cachep->size -
398
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
399
					      REDZONE_ALIGN);
400
	return (unsigned long long *) (objp + cachep->size -
401
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
402 403
}

404
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
405 406
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
407
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
408 409 410 411
}

#else

412
#define obj_offset(x)			0
413 414
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
415 416 417 418 419
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
420 421
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
422
 */
423 424 425
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
426
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
427

428 429
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
430
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
431
	return page->slab_cache;
432 433 434 435
}

static inline struct slab *virt_to_slab(const void *obj)
{
436
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
437 438 439

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
440 441
}

442 443 444
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
445
	return slab->s_mem + cache->size * idx;
446 447
}

448
/*
449 450 451
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
452 453 454 455
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
456
{
457 458
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 460
}

L
Linus Torvalds 已提交
461
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
462
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
463 464

/* internal cache of cache description objs */
465
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
466 467 468
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
469
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
470
	.name = "kmem_cache",
L
Linus Torvalds 已提交
471 472
};

473 474
#define BAD_ALIEN_MAGIC 0x01020304ul

475 476 477 478 479 480 481 482
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
483 484 485 486
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
487
 */
488 489 490
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

491 492 493 494 495 496 497 498
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
499
	struct kmem_cache_node *n;
500 501
	int r;

502 503
	n = cachep->node[q];
	if (!n)
504 505
		return;

506 507
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

536
static void init_node_lock_keys(int q)
537
{
538
	int i;
539

540
	if (slab_state < UP)
541 542
		return;

C
Christoph Lameter 已提交
543
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
544
		struct kmem_cache_node *n;
545 546 547 548
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
549

550 551
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
552
			continue;
553

554
		slab_set_lock_classes(cache, &on_slab_l3_key,
555
				&on_slab_alc_key, q);
556 557
	}
}
558

559 560
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
561
	if (!cachep->node[q])
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

577 578 579 580 581 582 583
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
584
#else
585 586 587 588
static void init_node_lock_keys(int q)
{
}

589
static inline void init_lock_keys(void)
590 591
{
}
592

593 594 595 596 597 598 599 600
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

601 602 603 604 605 606 607
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
608 609
#endif

610
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
611

612
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
613 614 615 616
{
	return cachep->array[smp_processor_id()];
}

617
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
618
{
619 620
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
621

A
Andrew Morton 已提交
622 623 624
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
625 626 627 628 629 630 631
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
681 682
}

683
#if DEBUG
684
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
685

A
Andrew Morton 已提交
686 687
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
688 689
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
690
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
691
	dump_stack();
692
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
693
}
694
#endif
L
Linus Torvalds 已提交
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

712 713 714 715 716 717 718 719 720 721 722
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

723 724 725 726 727 728 729
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
730
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
731 732 733 734 735

static void init_reap_node(int cpu)
{
	int node;

736
	node = next_node(cpu_to_mem(cpu), node_online_map);
737
	if (node == MAX_NUMNODES)
738
		node = first_node(node_online_map);
739

740
	per_cpu(slab_reap_node, cpu) = node;
741 742 743 744
}

static void next_reap_node(void)
{
745
	int node = __this_cpu_read(slab_reap_node);
746 747 748 749

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
750
	__this_cpu_write(slab_reap_node, node);
751 752 753 754 755 756 757
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
758 759 760 761 762 763 764
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
765
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
766
{
767
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
768 769 770 771 772 773

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
774
	if (keventd_up() && reap_work->work.func == NULL) {
775
		init_reap_node(cpu);
776
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
777 778
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
779 780 781
	}
}

782
static struct array_cache *alloc_arraycache(int node, int entries,
783
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
784
{
P
Pekka Enberg 已提交
785
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
786 787
	struct array_cache *nc = NULL;

788
	nc = kmalloc_node(memsize, gfp, node);
789 790
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
791
	 * However, when such objects are allocated or transferred to another
792 793 794 795 796
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
797 798 799 800 801
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
802
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
803 804 805 806
	}
	return nc;
}

807 808 809 810 811 812 813 814 815 816 817
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
818
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
819 820 821 822 823 824
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

825 826
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
827 828 829
		if (is_slab_pfmemalloc(slabp))
			goto out;

830
	list_for_each_entry(slabp, &n->slabs_partial, list)
831 832 833
		if (is_slab_pfmemalloc(slabp))
			goto out;

834
	list_for_each_entry(slabp, &n->slabs_free, list)
835 836 837 838 839
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
840
	spin_unlock_irqrestore(&n->list_lock, flags);
841 842
}

843
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
844 845 846 847 848 849 850
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
851
		struct kmem_cache_node *n;
852 853 854 855 856 857 858

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
859
		for (i = 0; i < ac->avail; i++) {
860 861 862 863 864 865 866 867 868 869 870 871 872
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
873 874
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
875
			struct slab *slabp = virt_to_slab(objp);
876
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
877 878 879 880 881 882 883 884 885 886 887 888 889
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
904 905 906 907
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
J
Joonsoo Kim 已提交
908 909
		struct slab *slabp = virt_to_slab(objp);
		struct page *page = virt_to_head_page(slabp->s_mem);
910 911 912 913
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

914 915 916 917 918 919 920 921 922
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

923 924 925
	ac->entry[ac->avail++] = objp;
}

926 927 928 929 930 931 932 933 934 935
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
936
	int nr = min3(from->avail, max, to->limit - to->avail);
937 938 939 940 941 942 943 944 945 946 947 948

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

949 950 951
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
952
#define reap_alien(cachep, n) do { } while (0)
953

954
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

974
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
975 976 977 978 979 980 981
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

982
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
983
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
984

985
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
986 987
{
	struct array_cache **ac_ptr;
988
	int memsize = sizeof(void *) * nr_node_ids;
989 990 991 992
	int i;

	if (limit > 1)
		limit = 12;
993
	ac_ptr = kzalloc_node(memsize, gfp, node);
994 995
	if (ac_ptr) {
		for_each_node(i) {
996
			if (i == node || !node_online(i))
997
				continue;
998
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
999
			if (!ac_ptr[i]) {
1000
				for (i--; i >= 0; i--)
1001 1002 1003 1004 1005 1006 1007 1008 1009
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1010
static void free_alien_cache(struct array_cache **ac_ptr)
1011 1012 1013 1014 1015 1016
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1017
	    kfree(ac_ptr[i]);
1018 1019 1020
	kfree(ac_ptr);
}

1021
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1022
				struct array_cache *ac, int node)
1023
{
1024
	struct kmem_cache_node *n = cachep->node[node];
1025 1026

	if (ac->avail) {
1027
		spin_lock(&n->list_lock);
1028 1029 1030 1031 1032
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1033 1034
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1035

1036
		free_block(cachep, ac->entry, ac->avail, node);
1037
		ac->avail = 0;
1038
		spin_unlock(&n->list_lock);
1039 1040 1041
	}
}

1042 1043 1044
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1045
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1046
{
1047
	int node = __this_cpu_read(slab_reap_node);
1048

1049 1050
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1051 1052

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1053 1054 1055 1056 1057 1058
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1059 1060
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1061
{
P
Pekka Enberg 已提交
1062
	int i = 0;
1063 1064 1065 1066
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1067
		ac = alien[i];
1068 1069 1070 1071 1072 1073 1074
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1075

1076
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1077
{
J
Joonsoo Kim 已提交
1078
	int nodeid = page_to_nid(virt_to_page(objp));
1079
	struct kmem_cache_node *n;
1080
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1081 1082
	int node;

1083
	node = numa_mem_id();
1084 1085 1086 1087 1088

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1089
	if (likely(nodeid == node))
1090 1091
		return 0;

1092
	n = cachep->node[node];
1093
	STATS_INC_NODEFREES(cachep);
1094 1095
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1096
		spin_lock(&alien->lock);
1097 1098 1099 1100
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1101
		ac_put_obj(cachep, alien, objp);
1102 1103
		spin_unlock(&alien->lock);
	} else {
1104
		spin_lock(&(cachep->node[nodeid])->list_lock);
1105
		free_block(cachep, &objp, 1, nodeid);
1106
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1107 1108 1109
	}
	return 1;
}
1110 1111
#endif

1112
/*
1113
 * Allocates and initializes node for a node on each slab cache, used for
1114
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1115
 * will be allocated off-node since memory is not yet online for the new node.
1116
 * When hotplugging memory or a cpu, existing node are not replaced if
1117 1118
 * already in use.
 *
1119
 * Must hold slab_mutex.
1120
 */
1121
static int init_cache_node_node(int node)
1122 1123
{
	struct kmem_cache *cachep;
1124
	struct kmem_cache_node *n;
1125
	const int memsize = sizeof(struct kmem_cache_node);
1126

1127
	list_for_each_entry(cachep, &slab_caches, list) {
1128 1129 1130 1131 1132
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1133
		if (!cachep->node[node]) {
1134 1135
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1136
				return -ENOMEM;
1137 1138
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1139 1140 1141 1142
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1143
			 * go.  slab_mutex is sufficient
1144 1145
			 * protection here.
			 */
1146
			cachep->node[node] = n;
1147 1148
		}

1149 1150
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1151 1152
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1153
		spin_unlock_irq(&cachep->node[node]->list_lock);
1154 1155 1156 1157
	}
	return 0;
}

1158 1159 1160 1161 1162 1163
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1164
static void cpuup_canceled(long cpu)
1165 1166
{
	struct kmem_cache *cachep;
1167
	struct kmem_cache_node *n = NULL;
1168
	int node = cpu_to_mem(cpu);
1169
	const struct cpumask *mask = cpumask_of_node(node);
1170

1171
	list_for_each_entry(cachep, &slab_caches, list) {
1172 1173 1174 1175 1176 1177 1178
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1179
		n = cachep->node[node];
1180

1181
		if (!n)
1182 1183
			goto free_array_cache;

1184
		spin_lock_irq(&n->list_lock);
1185

1186 1187
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1188 1189 1190
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1191
		if (!cpumask_empty(mask)) {
1192
			spin_unlock_irq(&n->list_lock);
1193 1194 1195
			goto free_array_cache;
		}

1196
		shared = n->shared;
1197 1198 1199
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1200
			n->shared = NULL;
1201 1202
		}

1203 1204
		alien = n->alien;
		n->alien = NULL;
1205

1206
		spin_unlock_irq(&n->list_lock);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1221
	list_for_each_entry(cachep, &slab_caches, list) {
1222 1223
		n = cachep->node[node];
		if (!n)
1224
			continue;
1225
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1226 1227 1228
	}
}

1229
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1230
{
1231
	struct kmem_cache *cachep;
1232
	struct kmem_cache_node *n = NULL;
1233
	int node = cpu_to_mem(cpu);
1234
	int err;
L
Linus Torvalds 已提交
1235

1236 1237 1238 1239
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1240
	 * kmem_cache_node and not this cpu's kmem_cache_node
1241
	 */
1242
	err = init_cache_node_node(node);
1243 1244
	if (err < 0)
		goto bad;
1245 1246 1247 1248 1249

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1250
	list_for_each_entry(cachep, &slab_caches, list) {
1251 1252 1253 1254 1255
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1256
					cachep->batchcount, GFP_KERNEL);
1257 1258 1259 1260 1261
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1262
				0xbaadf00d, GFP_KERNEL);
1263 1264
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1265
				goto bad;
1266
			}
1267 1268
		}
		if (use_alien_caches) {
1269
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1270 1271 1272
			if (!alien) {
				kfree(shared);
				kfree(nc);
1273
				goto bad;
1274
			}
1275 1276
		}
		cachep->array[cpu] = nc;
1277 1278
		n = cachep->node[node];
		BUG_ON(!n);
1279

1280 1281
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1282 1283 1284 1285
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1286
			n->shared = shared;
1287 1288
			shared = NULL;
		}
1289
#ifdef CONFIG_NUMA
1290 1291
		if (!n->alien) {
			n->alien = alien;
1292
			alien = NULL;
L
Linus Torvalds 已提交
1293
		}
1294
#endif
1295
		spin_unlock_irq(&n->list_lock);
1296 1297
		kfree(shared);
		free_alien_cache(alien);
1298 1299
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1300 1301 1302
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1303
	}
1304 1305
	init_node_lock_keys(node);

1306 1307
	return 0;
bad:
1308
	cpuup_canceled(cpu);
1309 1310 1311
	return -ENOMEM;
}

1312
static int cpuup_callback(struct notifier_block *nfb,
1313 1314 1315 1316 1317 1318 1319 1320
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1321
		mutex_lock(&slab_mutex);
1322
		err = cpuup_prepare(cpu);
1323
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1324 1325
		break;
	case CPU_ONLINE:
1326
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1327 1328 1329
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1330
  	case CPU_DOWN_PREPARE:
1331
  	case CPU_DOWN_PREPARE_FROZEN:
1332
		/*
1333
		 * Shutdown cache reaper. Note that the slab_mutex is
1334 1335 1336 1337
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1338
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1339
		/* Now the cache_reaper is guaranteed to be not running. */
1340
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1341 1342
  		break;
  	case CPU_DOWN_FAILED:
1343
  	case CPU_DOWN_FAILED_FROZEN:
1344 1345
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1346
	case CPU_DEAD:
1347
	case CPU_DEAD_FROZEN:
1348 1349
		/*
		 * Even if all the cpus of a node are down, we don't free the
1350
		 * kmem_cache_node of any cache. This to avoid a race between
1351
		 * cpu_down, and a kmalloc allocation from another cpu for
1352
		 * memory from the node of the cpu going down.  The node
1353 1354 1355
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1356
		/* fall through */
1357
#endif
L
Linus Torvalds 已提交
1358
	case CPU_UP_CANCELED:
1359
	case CPU_UP_CANCELED_FROZEN:
1360
		mutex_lock(&slab_mutex);
1361
		cpuup_canceled(cpu);
1362
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1363 1364
		break;
	}
1365
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1366 1367
}

1368
static struct notifier_block cpucache_notifier = {
1369 1370
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1371

1372 1373 1374 1375 1376 1377
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1378
 * Must hold slab_mutex.
1379
 */
1380
static int __meminit drain_cache_node_node(int node)
1381 1382 1383 1384
{
	struct kmem_cache *cachep;
	int ret = 0;

1385
	list_for_each_entry(cachep, &slab_caches, list) {
1386
		struct kmem_cache_node *n;
1387

1388 1389
		n = cachep->node[node];
		if (!n)
1390 1391
			continue;

1392
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1393

1394 1395
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1416
		mutex_lock(&slab_mutex);
1417
		ret = init_cache_node_node(nid);
1418
		mutex_unlock(&slab_mutex);
1419 1420
		break;
	case MEM_GOING_OFFLINE:
1421
		mutex_lock(&slab_mutex);
1422
		ret = drain_cache_node_node(nid);
1423
		mutex_unlock(&slab_mutex);
1424 1425 1426 1427 1428 1429 1430 1431
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1432
	return notifier_from_errno(ret);
1433 1434 1435
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1436
/*
1437
 * swap the static kmem_cache_node with kmalloced memory
1438
 */
1439
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1440
				int nodeid)
1441
{
1442
	struct kmem_cache_node *ptr;
1443

1444
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1445 1446
	BUG_ON(!ptr);

1447
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1448 1449 1450 1451 1452
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1453
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1454
	cachep->node[nodeid] = ptr;
1455 1456
}

1457
/*
1458 1459
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1460
 */
1461
static void __init set_up_node(struct kmem_cache *cachep, int index)
1462 1463 1464 1465
{
	int node;

	for_each_online_node(node) {
1466
		cachep->node[node] = &init_kmem_cache_node[index + node];
1467
		cachep->node[node]->next_reap = jiffies +
1468 1469 1470 1471 1472
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1473 1474
/*
 * The memory after the last cpu cache pointer is used for the
1475
 * the node pointer.
C
Christoph Lameter 已提交
1476
 */
1477
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1478
{
1479
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1480 1481
}

A
Andrew Morton 已提交
1482 1483 1484
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1485 1486 1487
 */
void __init kmem_cache_init(void)
{
1488 1489
	int i;

1490 1491
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1492
	kmem_cache = &kmem_cache_boot;
1493
	setup_node_pointer(kmem_cache);
1494

1495
	if (num_possible_nodes() == 1)
1496 1497
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1498
	for (i = 0; i < NUM_INIT_LISTS; i++)
1499
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1500

1501
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1502 1503 1504

	/*
	 * Fragmentation resistance on low memory - only use bigger
1505 1506
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1507
	 */
1508
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1509
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1510 1511 1512

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1513 1514 1515
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1516
	 *    Initially an __init data area is used for the head array and the
1517
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1518
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1519
	 * 2) Create the first kmalloc cache.
1520
	 *    The struct kmem_cache for the new cache is allocated normally.
1521 1522 1523
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1524
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1525
	 *    kmalloc cache with kmalloc allocated arrays.
1526
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1527 1528
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1529 1530
	 */

1531
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1532

E
Eric Dumazet 已提交
1533
	/*
1534
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1535
	 */
1536 1537
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1538
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1539 1540
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1541 1542 1543

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1544 1545
	/*
	 * Initialize the caches that provide memory for the array cache and the
1546
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1547
	 * bug.
1548 1549
	 */

1550 1551
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1552

1553 1554 1555 1556
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1557

1558 1559
	slab_early_init = 0;

L
Linus Torvalds 已提交
1560 1561
	/* 4) Replace the bootstrap head arrays */
	{
1562
		struct array_cache *ptr;
1563

1564
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1565

1566
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1567
		       sizeof(struct arraycache_init));
1568 1569 1570 1571 1572
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1573
		kmem_cache->array[smp_processor_id()] = ptr;
1574

1575
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1576

1577
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1578
		       != &initarray_generic.cache);
1579
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1580
		       sizeof(struct arraycache_init));
1581 1582 1583 1584 1585
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1586
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1587
	}
1588
	/* 5) Replace the bootstrap kmem_cache_node */
1589
	{
P
Pekka Enberg 已提交
1590 1591
		int nid;

1592
		for_each_online_node(nid) {
1593
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1594

1595
			init_list(kmalloc_caches[INDEX_AC],
1596
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1597

1598 1599 1600
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1601 1602 1603
			}
		}
	}
L
Linus Torvalds 已提交
1604

1605
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1606 1607 1608 1609 1610 1611
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1612
	slab_state = UP;
P
Peter Zijlstra 已提交
1613

1614
	/* 6) resize the head arrays to their final sizes */
1615 1616
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1617 1618
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1619
	mutex_unlock(&slab_mutex);
1620

1621 1622 1623
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1624 1625 1626
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1627 1628 1629
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1630 1631 1632
	 */
	register_cpu_notifier(&cpucache_notifier);

1633 1634 1635
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1636
	 * node.
1637 1638 1639 1640
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1641 1642 1643
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1651 1652
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1653
	 */
1654
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1655
		start_cpu_timer(cpu);
1656 1657

	/* Done! */
1658
	slab_state = FULL;
L
Linus Torvalds 已提交
1659 1660 1661 1662
	return 0;
}
__initcall(cpucache_init);

1663 1664 1665
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1666
	struct kmem_cache_node *n;
1667 1668 1669 1670 1671 1672 1673 1674
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1675
		cachep->name, cachep->size, cachep->gfporder);
1676 1677 1678 1679 1680

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1681 1682
		n = cachep->node[node];
		if (!n)
1683 1684
			continue;

1685 1686
		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(slabp, &n->slabs_full, list) {
1687 1688 1689
			active_objs += cachep->num;
			active_slabs++;
		}
1690
		list_for_each_entry(slabp, &n->slabs_partial, list) {
1691 1692 1693
			active_objs += slabp->inuse;
			active_slabs++;
		}
1694
		list_for_each_entry(slabp, &n->slabs_free, list)
1695 1696
			num_slabs++;

1697 1698
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714 1715
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1716 1717
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1718 1719
{
	struct page *page;
1720
	int nr_pages;
L
Linus Torvalds 已提交
1721 1722
	int i;

1723
#ifndef CONFIG_MMU
1724 1725 1726
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1727
	 */
1728
	flags |= __GFP_COMP;
1729
#endif
1730

1731
	flags |= cachep->allocflags;
1732 1733
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1734

L
Linus Torvalds 已提交
1735
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1736 1737 1738
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1739
		return NULL;
1740
	}
L
Linus Torvalds 已提交
1741

1742
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1743 1744 1745
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1746
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1747
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1748 1749 1750 1751 1752
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1753
	for (i = 0; i < nr_pages; i++) {
1754
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1755

1756
		if (page->pfmemalloc)
J
Joonsoo Kim 已提交
1757
			SetPageSlabPfmemalloc(page);
1758
	}
G
Glauber Costa 已提交
1759
	memcg_bind_pages(cachep, cachep->gfporder);
1760

1761 1762 1763 1764 1765 1766 1767 1768
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1769

1770
	return page;
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775
}

/*
 * Interface to system's page release.
 */
1776
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1777
{
P
Pekka Enberg 已提交
1778
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1779 1780
	const unsigned long nr_freed = i;

1781
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1782

1783 1784 1785 1786 1787 1788
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1789 1790

	__ClearPageSlabPfmemalloc(page);
L
Linus Torvalds 已提交
1791
	while (i--) {
N
Nick Piggin 已提交
1792 1793
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1794 1795
		page++;
	}
G
Glauber Costa 已提交
1796 1797

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1798 1799
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1800
	__free_memcg_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1801 1802 1803 1804
}

static void kmem_rcu_free(struct rcu_head *head)
{
1805 1806
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1807

1808 1809 1810 1811
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1817
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1818
			    unsigned long caller)
L
Linus Torvalds 已提交
1819
{
1820
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1821

1822
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1823

P
Pekka Enberg 已提交
1824
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1825 1826
		return;

P
Pekka Enberg 已提交
1827 1828 1829 1830
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1838
				*addr++ = svalue;
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843 1844 1845
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1846
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1847 1848 1849
}
#endif

1850
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1851
{
1852
	int size = cachep->object_size;
1853
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1854 1855

	memset(addr, val, size);
P
Pekka Enberg 已提交
1856
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1862 1863 1864
	unsigned char error = 0;
	int bad_count = 0;

1865
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1866 1867 1868 1869 1870 1871
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1872 1873
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892
}
#endif

#if DEBUG

1893
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1894 1895 1896 1897 1898
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1899
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1900 1901
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1902 1903 1904
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1905 1906 1907
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1908
	}
1909
	realobj = (char *)objp + obj_offset(cachep);
1910
	size = cachep->object_size;
P
Pekka Enberg 已提交
1911
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1912 1913
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1914 1915
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1916 1917 1918 1919
		dump_line(realobj, i, limit);
	}
}

1920
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1921 1922 1923 1924 1925
{
	char *realobj;
	int size, i;
	int lines = 0;

1926
	realobj = (char *)objp + obj_offset(cachep);
1927
	size = cachep->object_size;
L
Linus Torvalds 已提交
1928

P
Pekka Enberg 已提交
1929
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1930
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1931
		if (i == size - 1)
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1938
				printk(KERN_ERR
1939 1940
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1941 1942 1943
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1944
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1945
			limit = 16;
P
Pekka Enberg 已提交
1946 1947
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1960
		struct slab *slabp = virt_to_slab(objp);
1961
		unsigned int objnr;
L
Linus Torvalds 已提交
1962

1963
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1964
		if (objnr) {
1965
			objp = index_to_obj(cachep, slabp, objnr - 1);
1966
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1967
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1968
			       realobj, size);
L
Linus Torvalds 已提交
1969 1970
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1971
		if (objnr + 1 < cachep->num) {
1972
			objp = index_to_obj(cachep, slabp, objnr + 1);
1973
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1974
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1975
			       realobj, size);
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1982
#if DEBUG
R
Rabin Vincent 已提交
1983
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1984 1985 1986
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1987
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1988 1989 1990

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1991
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1992
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1993
				kernel_map_pages(virt_to_page(objp),
1994
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2004
					   "was overwritten");
L
Linus Torvalds 已提交
2005 2006
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2007
					   "was overwritten");
L
Linus Torvalds 已提交
2008 2009
		}
	}
2010
}
L
Linus Torvalds 已提交
2011
#else
R
Rabin Vincent 已提交
2012
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2013 2014
{
}
L
Linus Torvalds 已提交
2015 2016
#endif

2017 2018 2019 2020 2021
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2022
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2023 2024
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2025
 */
2026
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2027
{
2028
	struct page *page = virt_to_head_page(slabp->s_mem);
2029

R
Rabin Vincent 已提交
2030
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2031
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
2042 2043

	} else {
2044
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2045
	}
2046 2047 2048 2049 2050 2051 2052

	/*
	 * From now on, we don't use slab management
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2053 2054
}

2055
/**
2056 2057 2058 2059 2060 2061 2062
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2063 2064 2065 2066 2067
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2068
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2069
			size_t size, size_t align, unsigned long flags)
2070
{
2071
	unsigned long offslab_limit;
2072
	size_t left_over = 0;
2073
	int gfporder;
2074

2075
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2076 2077 2078
		unsigned int num;
		size_t remainder;

2079
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2080 2081
		if (!num)
			continue;
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2095

2096
		/* Found something acceptable - save it away */
2097
		cachep->num = num;
2098
		cachep->gfporder = gfporder;
2099 2100
		left_over = remainder;

2101 2102 2103 2104 2105 2106 2107 2108
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2109 2110 2111 2112
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2113
		if (gfporder >= slab_max_order)
2114 2115
			break;

2116 2117 2118
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2119
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2120 2121 2122 2123 2124
			break;
	}
	return left_over;
}

2125
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2126
{
2127
	if (slab_state >= FULL)
2128
		return enable_cpucache(cachep, gfp);
2129

2130
	if (slab_state == DOWN) {
2131
		/*
2132
		 * Note: Creation of first cache (kmem_cache).
2133
		 * The setup_node is taken care
2134 2135 2136 2137 2138 2139 2140
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2141 2142 2143 2144 2145 2146
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2147 2148
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2149 2150
		 * otherwise the creation of further caches will BUG().
		 */
2151 2152 2153
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2154
		else
2155
			slab_state = PARTIAL_ARRAYCACHE;
2156
	} else {
2157
		/* Remaining boot caches */
2158
		cachep->array[smp_processor_id()] =
2159
			kmalloc(sizeof(struct arraycache_init), gfp);
2160

2161
		if (slab_state == PARTIAL_ARRAYCACHE) {
2162 2163
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2164 2165
		} else {
			int node;
2166
			for_each_online_node(node) {
2167
				cachep->node[node] =
2168
				    kmalloc_node(sizeof(struct kmem_cache_node),
2169
						gfp, node);
2170
				BUG_ON(!cachep->node[node]);
2171
				kmem_cache_node_init(cachep->node[node]);
2172 2173 2174
			}
		}
	}
2175
	cachep->node[numa_mem_id()]->next_reap =
2176 2177 2178 2179 2180 2181 2182 2183 2184
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2185
	return 0;
2186 2187
}

L
Linus Torvalds 已提交
2188
/**
2189
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2190
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2191 2192 2193 2194
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2195
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2209
int
2210
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2211 2212
{
	size_t left_over, slab_size, ralign;
2213
	gfp_t gfp;
2214
	int err;
2215
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2225 2226
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2227
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2235 2236
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2237 2238 2239
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2240 2241 2242
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2243 2244
	}

2245
	/*
D
David Woodhouse 已提交
2246 2247 2248
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2249
	 */
D
David Woodhouse 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2260

2261
	/* 3) caller mandated alignment */
2262 2263
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2264
	}
2265 2266
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2267
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2268
	/*
2269
	 * 4) Store it.
L
Linus Torvalds 已提交
2270
	 */
2271
	cachep->align = ralign;
L
Linus Torvalds 已提交
2272

2273 2274 2275 2276 2277
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2278
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2279 2280
#if DEBUG

2281 2282 2283 2284
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2285 2286
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2287 2288
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2289 2290
	}
	if (flags & SLAB_STORE_USER) {
2291
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2292 2293
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2294
		 */
D
David Woodhouse 已提交
2295 2296 2297 2298
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2299 2300
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2301
	if (size >= kmalloc_size(INDEX_NODE + 1)
2302 2303 2304
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2305 2306 2307 2308 2309
		size = PAGE_SIZE;
	}
#endif
#endif

2310 2311 2312
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2313 2314
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2315
	 */
2316 2317
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322 2323
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2324
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2325

2326
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2327

2328
	if (!cachep->num)
2329
		return -E2BIG;
L
Linus Torvalds 已提交
2330

P
Pekka Enberg 已提交
2331
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2332
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2345 2346
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2347 2348 2349 2350 2351 2352 2353 2354 2355

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2356 2357 2358 2359
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2360 2361
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2362
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2363 2364
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2365
	cachep->allocflags = 0;
2366
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2367
		cachep->allocflags |= GFP_DMA;
2368
	cachep->size = size;
2369
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2370

2371
	if (flags & CFLGS_OFF_SLAB) {
2372
		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2373 2374 2375 2376 2377 2378 2379
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2380
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2381
	}
L
Linus Torvalds 已提交
2382

2383 2384
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2385
		__kmem_cache_shutdown(cachep);
2386
		return err;
2387
	}
L
Linus Torvalds 已提交
2388

2389 2390 2391 2392 2393 2394 2395 2396
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2397 2398
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2399

2400
	return 0;
L
Linus Torvalds 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2414
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2415 2416 2417
{
#ifdef CONFIG_SMP
	check_irq_off();
2418
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2419 2420
#endif
}
2421

2422
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2423 2424 2425
{
#ifdef CONFIG_SMP
	check_irq_off();
2426
	assert_spin_locked(&cachep->node[node]->list_lock);
2427 2428 2429
#endif
}

L
Linus Torvalds 已提交
2430 2431 2432 2433
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2434
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2435 2436
#endif

2437
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2438 2439 2440
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2441 2442
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2443
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2444
	struct array_cache *ac;
2445
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2446 2447

	check_irq_off();
2448
	ac = cpu_cache_get(cachep);
2449
	spin_lock(&cachep->node[node]->list_lock);
2450
	free_block(cachep, ac->entry, ac->avail, node);
2451
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2452 2453 2454
	ac->avail = 0;
}

2455
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2456
{
2457
	struct kmem_cache_node *n;
2458 2459
	int node;

2460
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2461
	check_irq_on();
P
Pekka Enberg 已提交
2462
	for_each_online_node(node) {
2463 2464 2465
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2466 2467 2468
	}

	for_each_online_node(node) {
2469 2470 2471
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2472
	}
L
Linus Torvalds 已提交
2473 2474
}

2475 2476 2477 2478 2479 2480 2481
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2482
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2483
{
2484 2485
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2486 2487
	struct slab *slabp;

2488
	nr_freed = 0;
2489
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2490

2491 2492 2493 2494
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2495 2496
			goto out;
		}
L
Linus Torvalds 已提交
2497

2498
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2499
#if DEBUG
2500
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2501 2502
#endif
		list_del(&slabp->list);
2503 2504 2505 2506
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2507 2508
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2509 2510
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2511
	}
2512 2513
out:
	return nr_freed;
L
Linus Torvalds 已提交
2514 2515
}

2516
/* Called with slab_mutex held to protect against cpu hotplug */
2517
static int __cache_shrink(struct kmem_cache *cachep)
2518 2519
{
	int ret = 0, i = 0;
2520
	struct kmem_cache_node *n;
2521 2522 2523 2524 2525

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2526 2527
		n = cachep->node[i];
		if (!n)
2528 2529
			continue;

2530
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2531

2532 2533
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2534 2535 2536 2537
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543 2544
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2545
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2546
{
2547
	int ret;
2548
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2549

2550
	get_online_cpus();
2551
	mutex_lock(&slab_mutex);
2552
	ret = __cache_shrink(cachep);
2553
	mutex_unlock(&slab_mutex);
2554
	put_online_cpus();
2555
	return ret;
L
Linus Torvalds 已提交
2556 2557 2558
}
EXPORT_SYMBOL(kmem_cache_shrink);

2559
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2560
{
2561
	int i;
2562
	struct kmem_cache_node *n;
2563
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2564

2565 2566
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2567

2568 2569
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2570

2571
	/* NUMA: free the node structures */
2572
	for_each_online_node(i) {
2573 2574 2575 2576 2577
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2578 2579 2580
		}
	}
	return 0;
L
Linus Torvalds 已提交
2581 2582
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2594 2595 2596
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2597 2598
{
	struct slab *slabp;
2599
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2600

L
Linus Torvalds 已提交
2601 2602
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2603
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2604
					      local_flags, nodeid);
2605 2606 2607 2608 2609 2610
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2611 2612
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2613 2614 2615
		if (!slabp)
			return NULL;
	} else {
2616
		slabp = addr + colour_off;
L
Linus Torvalds 已提交
2617 2618 2619
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
2620
	slabp->s_mem = addr + colour_off;
2621
	slabp->free = 0;
L
Linus Torvalds 已提交
2622 2623 2624 2625 2626
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2627
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2628 2629
}

2630
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2631
			    struct slab *slabp)
L
Linus Torvalds 已提交
2632 2633 2634 2635
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2636
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2649 2650 2651
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2652 2653
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2654
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2655 2656 2657 2658

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2659
					   " end of an object");
L
Linus Torvalds 已提交
2660 2661
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2662
					   " start of an object");
L
Linus Torvalds 已提交
2663
		}
2664
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2665
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2666
			kernel_map_pages(virt_to_page(objp),
2667
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2668 2669
#else
		if (cachep->ctor)
2670
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2671
#endif
P
Pekka Enberg 已提交
2672
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2673
	}
P
Pekka Enberg 已提交
2674
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2675 2676
}

2677
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2678
{
2679 2680
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2681
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2682
		else
2683
			BUG_ON(cachep->allocflags & GFP_DMA);
2684
	}
L
Linus Torvalds 已提交
2685 2686
}

A
Andrew Morton 已提交
2687 2688
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2689
{
2690
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2691 2692 2693 2694 2695 2696
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
J
Joonsoo Kim 已提交
2697
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2698 2699 2700 2701 2702 2703
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2704 2705
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2706
{
2707
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2708 2709 2710

#if DEBUG
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2711
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2712

2713
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2714
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2715
				"'%s', objp %p\n", cachep->name, objp);
2716 2717 2718 2719 2720 2721 2722 2723
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2724 2725 2726
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2727
 * virtual address for kfree, ksize, and slab debugging.
2728 2729
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2730
			   struct page *page)
L
Linus Torvalds 已提交
2731
{
2732
	int nr_pages;
2733

2734
	nr_pages = 1;
2735
	if (likely(!PageCompound(page)))
2736 2737
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2738
	do {
C
Christoph Lameter 已提交
2739 2740
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2741
		page++;
2742
	} while (--nr_pages);
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2749
static int cache_grow(struct kmem_cache *cachep,
2750
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2751
{
P
Pekka Enberg 已提交
2752 2753 2754
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2755
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2756

A
Andrew Morton 已提交
2757 2758 2759
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2760
	 */
C
Christoph Lameter 已提交
2761 2762
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2763

2764
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2765
	check_irq_off();
2766 2767
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2768 2769

	/* Get colour for the slab, and cal the next value. */
2770 2771 2772 2773 2774
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2775

2776
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2789 2790 2791
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2792
	 */
2793 2794 2795
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2796 2797 2798
		goto failed;

	/* Get slab management. */
2799
	slabp = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2800
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2801
	if (!slabp)
L
Linus Torvalds 已提交
2802 2803
		goto opps1;

2804
	slab_map_pages(cachep, slabp, page);
L
Linus Torvalds 已提交
2805

C
Christoph Lameter 已提交
2806
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2807 2808 2809 2810

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2811
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2812 2813

	/* Make slab active. */
2814
	list_add_tail(&slabp->list, &(n->slabs_free));
L
Linus Torvalds 已提交
2815
	STATS_INC_GROWN(cachep);
2816 2817
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2818
	return 1;
A
Andrew Morton 已提交
2819
opps1:
2820
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2821
failed:
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2838 2839
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2840 2841 2842
	}
}

2843 2844
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2845
	unsigned long long redzone1, redzone2;
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2861
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2862 2863 2864
			obj, redzone1, redzone2);
}

2865
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2866
				   unsigned long caller)
L
Linus Torvalds 已提交
2867 2868 2869 2870
{
	unsigned int objnr;
	struct slab *slabp;

2871 2872
	BUG_ON(virt_to_cache(objp) != cachep);

2873
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2874
	kfree_debugcheck(objp);
2875
	slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
2876 2877

	if (cachep->flags & SLAB_RED_ZONE) {
2878
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2879 2880 2881 2882
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2883
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2884

2885
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2886 2887

	BUG_ON(objnr >= cachep->num);
2888
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2889

2890 2891 2892
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2893 2894
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2895
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2896
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2897
			kernel_map_pages(virt_to_page(objp),
2898
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2909
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2910 2911 2912
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2913

L
Linus Torvalds 已提交
2914 2915 2916 2917 2918 2919 2920
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2921 2922
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
2923 2924 2925
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
2926 2927 2928
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2938 2939
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2940 2941
{
	int batchcount;
2942
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2943
	struct array_cache *ac;
P
Pekka Enberg 已提交
2944 2945
	int node;

L
Linus Torvalds 已提交
2946
	check_irq_off();
2947
	node = numa_mem_id();
2948 2949 2950
	if (unlikely(force_refill))
		goto force_grow;
retry:
2951
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2952 2953
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2954 2955 2956 2957
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2958 2959 2960
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2961
	n = cachep->node[node];
2962

2963 2964
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2965

2966
	/* See if we can refill from the shared array */
2967 2968
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2969
		goto alloc_done;
2970
	}
2971

L
Linus Torvalds 已提交
2972 2973 2974 2975
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
2976 2977 2978 2979 2980
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2987 2988 2989 2990 2991 2992

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2993
		BUG_ON(slabp->inuse >= cachep->num);
2994

L
Linus Torvalds 已提交
2995 2996 2997 2998 2999
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3000 3001
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
3008
			list_add(&slabp->list, &n->slabs_full);
L
Linus Torvalds 已提交
3009
		else
3010
			list_add(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3011 3012
	}

A
Andrew Morton 已提交
3013
must_grow:
3014
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3015
alloc_done:
3016
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3017 3018 3019

	if (unlikely(!ac->avail)) {
		int x;
3020
force_grow:
3021
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3022

A
Andrew Morton 已提交
3023
		/* cache_grow can reenable interrupts, then ac could change. */
3024
		ac = cpu_cache_get(cachep);
3025
		node = numa_mem_id();
3026 3027 3028

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3029 3030
			return NULL;

A
Andrew Morton 已提交
3031
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3032 3033 3034
			goto retry;
	}
	ac->touched = 1;
3035 3036

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3037 3038
}

A
Andrew Morton 已提交
3039 3040
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045 3046 3047 3048
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3049
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3050
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3051
{
P
Pekka Enberg 已提交
3052
	if (!objp)
L
Linus Torvalds 已提交
3053
		return objp;
P
Pekka Enberg 已提交
3054
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3055
#ifdef CONFIG_DEBUG_PAGEALLOC
3056
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3057
			kernel_map_pages(virt_to_page(objp),
3058
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064 3065 3066
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3067
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3068 3069

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3070 3071 3072 3073
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3074
			printk(KERN_ERR
3075
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3076 3077
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3078 3079 3080 3081
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3082 3083 3084 3085 3086
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3087
		slabp = virt_to_slab(objp);
3088
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3089 3090 3091
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3092
	objp += obj_offset(cachep);
3093
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3094
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3095 3096
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3097
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3098
		       objp, (int)ARCH_SLAB_MINALIGN);
3099
	}
L
Linus Torvalds 已提交
3100 3101 3102 3103 3104 3105
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3106
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3107
{
3108
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3109
		return false;
3110

3111
	return should_failslab(cachep->object_size, flags, cachep->flags);
3112 3113
}

3114
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3115
{
P
Pekka Enberg 已提交
3116
	void *objp;
L
Linus Torvalds 已提交
3117
	struct array_cache *ac;
3118
	bool force_refill = false;
L
Linus Torvalds 已提交
3119

3120
	check_irq_off();
3121

3122
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3123 3124
	if (likely(ac->avail)) {
		ac->touched = 1;
3125 3126
		objp = ac_get_obj(cachep, ac, flags, false);

3127
		/*
3128 3129
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3130
		 */
3131 3132 3133 3134 3135
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3136
	}
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3147 3148 3149 3150 3151
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3152 3153
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3154 3155 3156
	return objp;
}

3157
#ifdef CONFIG_NUMA
3158
/*
3159
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3160 3161 3162 3163 3164 3165 3166 3167
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3168
	if (in_interrupt() || (flags & __GFP_THISNODE))
3169
		return NULL;
3170
	nid_alloc = nid_here = numa_mem_id();
3171
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3172
		nid_alloc = cpuset_slab_spread_node();
3173
	else if (current->mempolicy)
3174
		nid_alloc = slab_node();
3175
	if (nid_alloc != nid_here)
3176
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3177 3178 3179
	return NULL;
}

3180 3181
/*
 * Fallback function if there was no memory available and no objects on a
3182
 * certain node and fall back is permitted. First we scan all the
3183
 * available node for available objects. If that fails then we
3184 3185 3186
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3187
 */
3188
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3189
{
3190 3191
	struct zonelist *zonelist;
	gfp_t local_flags;
3192
	struct zoneref *z;
3193 3194
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3195
	void *obj = NULL;
3196
	int nid;
3197
	unsigned int cpuset_mems_cookie;
3198 3199 3200 3201

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3202
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3203

3204 3205
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3206
	zonelist = node_zonelist(slab_node(), flags);
3207

3208 3209 3210 3211 3212
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3213 3214
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3215

3216
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3217 3218
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3219 3220
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3221 3222 3223
				if (obj)
					break;
		}
3224 3225
	}

3226
	if (!obj) {
3227 3228 3229 3230 3231 3232
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3233 3234
		struct page *page;

3235 3236 3237
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3238
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3239 3240
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3241
		if (page) {
3242 3243 3244
			/*
			 * Insert into the appropriate per node queues
			 */
3245 3246
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3257
				/* cache_grow already freed obj */
3258 3259 3260
				obj = NULL;
			}
		}
3261
	}
3262 3263 3264

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3265 3266 3267
	return obj;
}

3268 3269
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3270
 */
3271
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3272
				int nodeid)
3273 3274
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3275
	struct slab *slabp;
3276
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3277 3278 3279
	void *obj;
	int x;

3280
	VM_BUG_ON(nodeid > num_online_nodes());
3281 3282
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3283

A
Andrew Morton 已提交
3284
retry:
3285
	check_irq_off();
3286 3287 3288 3289 3290 3291
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3305
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3306
	check_slabp(cachep, slabp);
3307
	n->free_objects--;
P
Pekka Enberg 已提交
3308 3309 3310
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3311
	if (slabp->free == BUFCTL_END)
3312
		list_add(&slabp->list, &n->slabs_full);
A
Andrew Morton 已提交
3313
	else
3314
		list_add(&slabp->list, &n->slabs_partial);
3315

3316
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3317
	goto done;
3318

A
Andrew Morton 已提交
3319
must_grow:
3320
	spin_unlock(&n->list_lock);
3321
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3322 3323
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3324

3325
	return fallback_alloc(cachep, flags);
3326

A
Andrew Morton 已提交
3327
done:
P
Pekka Enberg 已提交
3328
	return obj;
3329
}
3330 3331

static __always_inline void *
3332
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3333
		   unsigned long caller)
3334 3335 3336
{
	unsigned long save_flags;
	void *ptr;
3337
	int slab_node = numa_mem_id();
3338

3339
	flags &= gfp_allowed_mask;
3340

3341 3342
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3343
	if (slab_should_failslab(cachep, flags))
3344 3345
		return NULL;

3346 3347
	cachep = memcg_kmem_get_cache(cachep, flags);

3348 3349 3350
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3351
	if (nodeid == NUMA_NO_NODE)
3352
		nodeid = slab_node;
3353

3354
	if (unlikely(!cachep->node[nodeid])) {
3355 3356 3357 3358 3359
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3360
	if (nodeid == slab_node) {
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3376
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3377
				 flags);
3378

P
Pekka Enberg 已提交
3379
	if (likely(ptr))
3380
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3381

3382
	if (unlikely((flags & __GFP_ZERO) && ptr))
3383
		memset(ptr, 0, cachep->object_size);
3384

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3404 3405
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3421
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3422 3423 3424 3425
{
	unsigned long save_flags;
	void *objp;

3426
	flags &= gfp_allowed_mask;
3427

3428 3429
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3430
	if (slab_should_failslab(cachep, flags))
3431 3432
		return NULL;

3433 3434
	cachep = memcg_kmem_get_cache(cachep, flags);

3435 3436 3437 3438 3439
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3440
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3441
				 flags);
3442 3443
	prefetchw(objp);

P
Pekka Enberg 已提交
3444
	if (likely(objp))
3445
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3446

3447
	if (unlikely((flags & __GFP_ZERO) && objp))
3448
		memset(objp, 0, cachep->object_size);
3449

3450 3451
	return objp;
}
3452 3453 3454 3455

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3456
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3457
		       int node)
L
Linus Torvalds 已提交
3458 3459
{
	int i;
3460
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3461 3462

	for (i = 0; i < nr_objects; i++) {
3463
		void *objp;
L
Linus Torvalds 已提交
3464 3465
		struct slab *slabp;

3466 3467 3468
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3469
		slabp = virt_to_slab(objp);
3470
		n = cachep->node[node];
L
Linus Torvalds 已提交
3471
		list_del(&slabp->list);
3472
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3473
		check_slabp(cachep, slabp);
3474
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3475
		STATS_DEC_ACTIVE(cachep);
3476
		n->free_objects++;
L
Linus Torvalds 已提交
3477 3478 3479 3480
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3481 3482
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3483 3484 3485 3486 3487 3488
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3489 3490
				slab_destroy(cachep, slabp);
			} else {
3491
				list_add(&slabp->list, &n->slabs_free);
L
Linus Torvalds 已提交
3492 3493 3494 3495 3496 3497
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3498
			list_add_tail(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3499 3500 3501 3502
		}
	}
}

3503
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3504 3505
{
	int batchcount;
3506
	struct kmem_cache_node *n;
3507
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3514 3515 3516 3517
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3518
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3519 3520 3521
		if (max) {
			if (batchcount > max)
				batchcount = max;
3522
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3523
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3529
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3530
free_done:
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535
#if STATS
	{
		int i = 0;
		struct list_head *p;

3536 3537
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
L
Linus Torvalds 已提交
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3549
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3550
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3551
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3552 3553 3554
}

/*
A
Andrew Morton 已提交
3555 3556
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3557
 */
3558
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3559
				unsigned long caller)
L
Linus Torvalds 已提交
3560
{
3561
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3562 3563

	check_irq_off();
3564
	kmemleak_free_recursive(objp, cachep->flags);
3565
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3566

3567
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3568

3569 3570 3571 3572 3573 3574 3575
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3576
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3577 3578
		return;

L
Linus Torvalds 已提交
3579 3580 3581 3582 3583 3584
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3585

3586
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3597
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3598
{
3599
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3600

3601
	trace_kmem_cache_alloc(_RET_IP_, ret,
3602
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3603 3604

	return ret;
L
Linus Torvalds 已提交
3605 3606 3607
}
EXPORT_SYMBOL(kmem_cache_alloc);

3608
#ifdef CONFIG_TRACING
3609
void *
3610
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3611
{
3612 3613
	void *ret;

3614
	ret = slab_alloc(cachep, flags, _RET_IP_);
3615 3616

	trace_kmalloc(_RET_IP_, ret,
3617
		      size, cachep->size, flags);
3618
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3619
}
3620
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3621 3622
#endif

L
Linus Torvalds 已提交
3623
#ifdef CONFIG_NUMA
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3635 3636
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3637
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3638

3639
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3640
				    cachep->object_size, cachep->size,
3641
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3642 3643

	return ret;
3644
}
L
Linus Torvalds 已提交
3645 3646
EXPORT_SYMBOL(kmem_cache_alloc_node);

3647
#ifdef CONFIG_TRACING
3648
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3649
				  gfp_t flags,
3650 3651
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3652
{
3653 3654
	void *ret;

3655
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3656

3657
	trace_kmalloc_node(_RET_IP_, ret,
3658
			   size, cachep->size,
3659 3660
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3661
}
3662
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3663 3664
#endif

3665
static __always_inline void *
3666
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3667
{
3668
	struct kmem_cache *cachep;
3669

3670
	cachep = kmalloc_slab(size, flags);
3671 3672
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3673
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3674
}
3675

3676
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3677 3678
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3679
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3680
}
3681
EXPORT_SYMBOL(__kmalloc_node);
3682 3683

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3684
		int node, unsigned long caller)
3685
{
3686
	return __do_kmalloc_node(size, flags, node, caller);
3687 3688 3689 3690 3691
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3692
	return __do_kmalloc_node(size, flags, node, 0);
3693 3694
}
EXPORT_SYMBOL(__kmalloc_node);
3695
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3696
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3697 3698

/**
3699
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3700
 * @size: how many bytes of memory are required.
3701
 * @flags: the type of memory to allocate (see kmalloc).
3702
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3703
 */
3704
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3705
					  unsigned long caller)
L
Linus Torvalds 已提交
3706
{
3707
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3708
	void *ret;
L
Linus Torvalds 已提交
3709

3710 3711 3712 3713 3714
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3715
	cachep = kmalloc_slab(size, flags);
3716 3717
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3718
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3719

3720
	trace_kmalloc(caller, ret,
3721
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3722 3723

	return ret;
3724 3725 3726
}


3727
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3728 3729
void *__kmalloc(size_t size, gfp_t flags)
{
3730
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3731 3732 3733
}
EXPORT_SYMBOL(__kmalloc);

3734
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3735
{
3736
	return __do_kmalloc(size, flags, caller);
3737 3738
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3739 3740 3741 3742

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3743
	return __do_kmalloc(size, flags, 0);
3744 3745
}
EXPORT_SYMBOL(__kmalloc);
3746 3747
#endif

L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753 3754 3755
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3756
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3757 3758
{
	unsigned long flags;
3759 3760 3761
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3762 3763

	local_irq_save(flags);
3764
	debug_check_no_locks_freed(objp, cachep->object_size);
3765
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3766
		debug_check_no_obj_freed(objp, cachep->object_size);
3767
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3768
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3769

3770
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3778 3779
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3780 3781 3782 3783 3784
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3785
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3786 3787
	unsigned long flags;

3788 3789
	trace_kfree(_RET_IP_, objp);

3790
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3791 3792 3793
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3794
	c = virt_to_cache(objp);
3795 3796 3797
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3798
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3799 3800 3801 3802
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3803
/*
3804
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3805
 */
3806
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3807 3808
{
	int node;
3809
	struct kmem_cache_node *n;
3810
	struct array_cache *new_shared;
3811
	struct array_cache **new_alien = NULL;
3812

3813
	for_each_online_node(node) {
3814

3815
                if (use_alien_caches) {
3816
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3817 3818 3819
                        if (!new_alien)
                                goto fail;
                }
3820

3821 3822 3823
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3824
				cachep->shared*cachep->batchcount,
3825
					0xbaadf00d, gfp);
3826 3827 3828 3829
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3830
		}
3831

3832 3833 3834
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3835

3836
			spin_lock_irq(&n->list_lock);
3837

3838
			if (shared)
3839 3840
				free_block(cachep, shared->entry,
						shared->avail, node);
3841

3842 3843 3844
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3845 3846
				new_alien = NULL;
			}
3847
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3848
					cachep->batchcount + cachep->num;
3849
			spin_unlock_irq(&n->list_lock);
3850
			kfree(shared);
3851 3852 3853
			free_alien_cache(new_alien);
			continue;
		}
3854 3855
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3856 3857
			free_alien_cache(new_alien);
			kfree(new_shared);
3858
			goto fail;
3859
		}
3860

3861 3862
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3863
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3864 3865 3866
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3867
					cachep->batchcount + cachep->num;
3868
		cachep->node[node] = n;
3869
	}
3870
	return 0;
3871

A
Andrew Morton 已提交
3872
fail:
3873
	if (!cachep->list.next) {
3874 3875 3876
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3877
			if (cachep->node[node]) {
3878
				n = cachep->node[node];
3879

3880 3881 3882
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3883
				cachep->node[node] = NULL;
3884 3885 3886 3887
			}
			node--;
		}
	}
3888
	return -ENOMEM;
3889 3890
}

L
Linus Torvalds 已提交
3891
struct ccupdate_struct {
3892
	struct kmem_cache *cachep;
3893
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3894 3895 3896 3897
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3898
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3899 3900 3901
	struct array_cache *old;

	check_irq_off();
3902
	old = cpu_cache_get(new->cachep);
3903

L
Linus Torvalds 已提交
3904 3905 3906 3907
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3908
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3909
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3910
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3911
{
3912
	struct ccupdate_struct *new;
3913
	int i;
L
Linus Torvalds 已提交
3914

3915 3916
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3917 3918 3919
	if (!new)
		return -ENOMEM;

3920
	for_each_online_cpu(i) {
3921
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3922
						batchcount, gfp);
3923
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3924
			for (i--; i >= 0; i--)
3925 3926
				kfree(new->new[i]);
			kfree(new);
3927
			return -ENOMEM;
L
Linus Torvalds 已提交
3928 3929
		}
	}
3930
	new->cachep = cachep;
L
Linus Torvalds 已提交
3931

3932
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3933

L
Linus Torvalds 已提交
3934 3935 3936
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3937
	cachep->shared = shared;
L
Linus Torvalds 已提交
3938

3939
	for_each_online_cpu(i) {
3940
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3941 3942
		if (!ccold)
			continue;
3943
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3944
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3945
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3946 3947
		kfree(ccold);
	}
3948
	kfree(new);
3949
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3950 3951
}

G
Glauber Costa 已提交
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3967
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3978
/* Called with slab_mutex held always */
3979
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3980 3981
{
	int err;
G
Glauber Costa 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3992

G
Glauber Costa 已提交
3993 3994
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3995 3996
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3997 3998
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3999
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4000 4001 4002 4003
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4004
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4005
		limit = 1;
4006
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4007
		limit = 8;
4008
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4009
		limit = 24;
4010
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4011 4012 4013 4014
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4015 4016
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4017 4018 4019 4020 4021 4022 4023 4024
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4025
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4026 4027 4028
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4029 4030 4031
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4032 4033 4034 4035
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4036 4037 4038
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4039 4040
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4041
		       cachep->name, -err);
4042
	return err;
L
Linus Torvalds 已提交
4043 4044
}

4045
/*
4046 4047
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4048
 * if drain_array() is used on the shared array.
4049
 */
4050
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4051
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4052 4053 4054
{
	int tofree;

4055 4056
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4057 4058
	if (ac->touched && !force) {
		ac->touched = 0;
4059
	} else {
4060
		spin_lock_irq(&n->list_lock);
4061 4062 4063 4064 4065 4066 4067 4068 4069
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4070
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4076
 * @w: work descriptor
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4083 4084
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4085
 */
4086
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4087
{
4088
	struct kmem_cache *searchp;
4089
	struct kmem_cache_node *n;
4090
	int node = numa_mem_id();
4091
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4092

4093
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4094
		/* Give up. Setup the next iteration. */
4095
		goto out;
L
Linus Torvalds 已提交
4096

4097
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4098 4099
		check_irq_on();

4100
		/*
4101
		 * We only take the node lock if absolutely necessary and we
4102 4103 4104
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4105
		n = searchp->node[node];
4106

4107
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4108

4109
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4110

4111 4112 4113 4114
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4115
		if (time_after(n->next_reap, jiffies))
4116
			goto next;
L
Linus Torvalds 已提交
4117

4118
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4119

4120
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4121

4122 4123
		if (n->free_touched)
			n->free_touched = 0;
4124 4125
		else {
			int freed;
L
Linus Torvalds 已提交
4126

4127
			freed = drain_freelist(searchp, n, (n->free_limit +
4128 4129 4130
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4131
next:
L
Linus Torvalds 已提交
4132 4133 4134
		cond_resched();
	}
	check_irq_on();
4135
	mutex_unlock(&slab_mutex);
4136
	next_reap_node();
4137
out:
A
Andrew Morton 已提交
4138
	/* Set up the next iteration */
4139
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4140 4141
}

4142
#ifdef CONFIG_SLABINFO
4143
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4144
{
P
Pekka Enberg 已提交
4145 4146 4147 4148 4149
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4150
	const char *name;
L
Linus Torvalds 已提交
4151
	char *error = NULL;
4152
	int node;
4153
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4154 4155 4156

	active_objs = 0;
	num_slabs = 0;
4157
	for_each_online_node(node) {
4158 4159
		n = cachep->node[node];
		if (!n)
4160 4161
			continue;

4162
		check_irq_on();
4163
		spin_lock_irq(&n->list_lock);
4164

4165
		list_for_each_entry(slabp, &n->slabs_full, list) {
4166 4167 4168 4169 4170
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4171
		list_for_each_entry(slabp, &n->slabs_partial, list) {
4172 4173 4174 4175 4176 4177 4178
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4179
		list_for_each_entry(slabp, &n->slabs_free, list) {
4180 4181 4182 4183
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
4184 4185 4186
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4187

4188
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4189
	}
P
Pekka Enberg 已提交
4190 4191
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4192
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4193 4194
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4195
	name = cachep->name;
L
Linus Torvalds 已提交
4196 4197 4198
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4213
#if STATS
4214
	{			/* node stats */
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219 4220 4221
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4222
		unsigned long node_frees = cachep->node_frees;
4223
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4224

J
Joe Perches 已提交
4225 4226 4227 4228 4229
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4239
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4252
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4253
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4254
{
P
Pekka Enberg 已提交
4255
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4256
	int limit, batchcount, shared, res;
4257
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4258

L
Linus Torvalds 已提交
4259 4260 4261 4262
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4263
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4274
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4275
	res = -EINVAL;
4276
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4277
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4278 4279
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4280
				res = 0;
L
Linus Torvalds 已提交
4281
			} else {
4282
				res = do_tune_cpucache(cachep, limit,
4283 4284
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4285 4286 4287 4288
			}
			break;
		}
	}
4289
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4290 4291 4292 4293
	if (res >= 0)
		res = count;
	return res;
}
4294 4295 4296 4297 4298

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4299 4300
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4339
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4351
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4352

4353
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4354
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4355
		if (modname[0])
4356 4357 4358 4359 4360 4361 4362 4363 4364
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4365
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4366
	struct slab *slabp;
4367
	struct kmem_cache_node *n;
4368
	const char *name;
4369
	unsigned long *x = m->private;
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4380
	x[1] = 0;
4381 4382

	for_each_online_node(node) {
4383 4384
		n = cachep->node[node];
		if (!n)
4385 4386 4387
			continue;

		check_irq_on();
4388
		spin_lock_irq(&n->list_lock);
4389

4390
		list_for_each_entry(slabp, &n->slabs_full, list)
4391
			handle_slab(x, cachep, slabp);
4392
		list_for_each_entry(slabp, &n->slabs_partial, list)
4393
			handle_slab(x, cachep, slabp);
4394
		spin_unlock_irq(&n->list_lock);
4395 4396
	}
	name = cachep->name;
4397
	if (x[0] == x[1]) {
4398
		/* Increase the buffer size */
4399
		mutex_unlock(&slab_mutex);
4400
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4401 4402
		if (!m->private) {
			/* Too bad, we are really out */
4403
			m->private = x;
4404
			mutex_lock(&slab_mutex);
4405 4406
			return -ENOMEM;
		}
4407 4408
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4409
		mutex_lock(&slab_mutex);
4410 4411 4412 4413
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4414 4415 4416
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4417 4418
		seq_putc(m, '\n');
	}
4419

4420 4421 4422
	return 0;
}

4423
static const struct seq_operations slabstats_op = {
4424
	.start = leaks_start,
4425 4426
	.next = slab_next,
	.stop = slab_stop,
4427 4428
	.show = leaks_show,
};
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4459
#endif
4460 4461 4462
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4463 4464
#endif

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4477
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4478
{
4479 4480
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4481
		return 0;
L
Linus Torvalds 已提交
4482

4483
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4484
}
K
Kirill A. Shutemov 已提交
4485
EXPORT_SYMBOL(ksize);