slab.c 115.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
140
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
141 142 143 144 145 146 147

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 149 150
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
151
 */
152
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
172
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
173
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
175
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
176
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
178
#else
179
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
180
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
181
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

204
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
205 206
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207 208
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
209 210 211 212 213 214 215 216 217

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
218 219 220 221 222 223
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
243
	struct rcu_head head;
244
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
245
	void *addr;
L
Linus Torvalds 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269 270
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
271 272
};

A
Andrew Morton 已提交
273 274 275
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
276 277 278 279
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
280
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
281 282 283
};

/*
284
 * The slab lists for all objects.
L
Linus Torvalds 已提交
285 286
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
287 288 289 290 291
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
292
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
293 294 295
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
296 297
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
298 299
};

300 301 302
/*
 * Need this for bootstrapping a per node allocator.
 */
303
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
304 305
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
306 307
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
308

309 310 311 312
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
313
static int enable_cpucache(struct kmem_cache *cachep);
314
static void cache_reap(struct work_struct *unused);
315

316
/*
A
Andrew Morton 已提交
317 318
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
319
 */
320
static __always_inline int index_of(const size_t size)
321
{
322 323
	extern void __bad_size(void);

324 325 326 327 328 329 330 331
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
332
#include <linux/kmalloc_sizes.h>
333
#undef CACHE
334
		__bad_size();
335
	} else
336
		__bad_size();
337 338 339
	return 0;
}

340 341
static int slab_early_init = 1;

342 343
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
344

P
Pekka Enberg 已提交
345
static void kmem_list3_init(struct kmem_list3 *parent)
346 347 348 349 350 351
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
352
	parent->colour_next = 0;
353 354 355 356 357
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
358 359 360 361
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
362 363
	} while (0)

A
Andrew Morton 已提交
364 365
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
366 367 368 369
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
370 371

/*
372
 * struct kmem_cache
L
Linus Torvalds 已提交
373 374 375
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
376

377
struct kmem_cache {
L
Linus Torvalds 已提交
378
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
379
	struct array_cache *array[NR_CPUS];
380
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
381 382 383
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
384

385
	unsigned int buffer_size;
386
	u32 reciprocal_buffer_size;
387 388
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
389 390
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
391

392
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
393
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
394
	unsigned int gfporder;
L
Linus Torvalds 已提交
395 396

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
397
	gfp_t gfpflags;
L
Linus Torvalds 已提交
398

A
Andrew Morton 已提交
399
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
400
	unsigned int colour_off;	/* colour offset */
401
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
402
	unsigned int slab_size;
A
Andrew Morton 已提交
403
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
404 405

	/* constructor func */
406
	void (*ctor)(struct kmem_cache *, void *);
L
Linus Torvalds 已提交
407

408
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
409 410
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
411

412
/* 6) statistics */
L
Linus Torvalds 已提交
413
#if STATS
P
Pekka Enberg 已提交
414 415 416 417 418 419 420 421 422
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
423
	unsigned long node_overflow;
P
Pekka Enberg 已提交
424 425 426 427
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
428 429
#endif
#if DEBUG
430 431 432 433 434 435 436 437
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
438
#endif
E
Eric Dumazet 已提交
439 440 441 442 443 444 445 446 447 448 449
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
450 451 452 453 454 455
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
456 457 458
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
459
 *
A
Adrian Bunk 已提交
460
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
461 462 463 464 465 466 467 468 469 470
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
471
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
472 473 474 475 476
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
477 478
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
479
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
480
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
481 482 483 484 485
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
486 487 488 489 490 491 492 493 494
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
495
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
496 497 498
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
499
#define	STATS_INC_NODEFREES(x)	do { } while (0)
500
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
501
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
502 503 504 505 506 507 508 509
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
510 511
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
512
 * 0		: objp
513
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
514 515
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
516
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
517
 * 		redzone word.
518 519
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
520 521
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
522
 */
523
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_offset;
L
Linus Torvalds 已提交
526 527
}

528
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
529
{
530
	return cachep->obj_size;
L
Linus Torvalds 已提交
531 532
}

533
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
534 535
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 537
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
538 539
}

540
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
541 542 543
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
544 545
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
546
					      REDZONE_ALIGN);
547 548
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
549 550
}

551
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
552 553
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
554
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
555 556 557 558
}

#else

559 560
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
561 562
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
563 564 565 566 567 568 569 570 571 572 573
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
574 575 576 577
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
578
 */
579 580 581 582 583 584 585
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
586
	page = compound_head(page);
587
	BUG_ON(!PageSlab(page));
588 589 590 591 592 593 594 595 596 597
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
598
	BUG_ON(!PageSlab(page));
599 600
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
601

602 603
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
604
	struct page *page = virt_to_head_page(obj);
605 606 607 608 609
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
610
	struct page *page = virt_to_head_page(obj);
611 612 613
	return page_get_slab(page);
}

614 615 616 617 618 619
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

620 621 622 623 624 625 626 627
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
628
{
629 630
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
631 632
}

A
Andrew Morton 已提交
633 634 635
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
653
	{NULL,}
L
Linus Torvalds 已提交
654 655 656 657
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
658
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
659
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
660
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
661 662

/* internal cache of cache description objs */
663
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
664 665 666
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
667
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
668
	.name = "kmem_cache",
L
Linus Torvalds 已提交
669 670
};

671 672
#define BAD_ALIEN_MAGIC 0x01020304ul

673 674 675 676 677 678 679 680
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
681 682 683 684
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
685
 */
686 687 688 689
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
690 691 692

{
	int q;
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
720 721 722
	}
}
#else
723
static inline void init_lock_keys(void)
724 725 726 727
{
}
#endif

728
/*
729
 * Guard access to the cache-chain.
730
 */
I
Ingo Molnar 已提交
731
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
732 733 734 735 736 737 738 739
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
740 741
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
742 743 744
	FULL
} g_cpucache_up;

745 746 747 748 749 750 751 752
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

753
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
754

755
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
756 757 758 759
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
760 761
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
762 763 764 765 766
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
767 768 769
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
770
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
771
#endif
772 773 774
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
775 776 777 778
	while (size > csizep->cs_size)
		csizep++;

	/*
779
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
780 781 782
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
783
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
784 785
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
786
#endif
L
Linus Torvalds 已提交
787 788 789
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
790
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
791 792 793 794
{
	return __find_general_cachep(size, gfpflags);
}

795
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
796
{
797 798
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
799

A
Andrew Morton 已提交
800 801 802
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
803 804 805 806 807 808 809
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
859 860 861 862
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
863 864
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
865 866
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
867
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
868 869 870
	dump_stack();
}

871 872 873 874 875 876 877 878 879
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
880
static int numa_platform __read_mostly = 1;
881 882 883 884 885 886 887
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
903
		node = first_node(node_online_map);
904

905
	per_cpu(reap_node, cpu) = node;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
923 924 925 926 927 928 929
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
930
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
931
{
932
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
933 934 935 936 937 938

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
939
	if (keventd_up() && reap_work->work.func == NULL) {
940
		init_reap_node(cpu);
941
		INIT_DELAYED_WORK(reap_work, cache_reap);
942 943
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
944 945 946
	}
}

947
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
948
					    int batchcount)
L
Linus Torvalds 已提交
949
{
P
Pekka Enberg 已提交
950
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
951 952
	struct array_cache *nc = NULL;

953
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
954 955 956 957 958
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
959
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
960 961 962 963
	}
	return nc;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1013
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1014 1015 1016 1017 1018 1019 1020
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1021
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1022
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1023

P
Pekka Enberg 已提交
1024
static struct array_cache **alloc_alien_cache(int node, int limit)
1025 1026
{
	struct array_cache **ac_ptr;
1027
	int memsize = sizeof(void *) * nr_node_ids;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
1041
				for (i--; i >= 0; i--)
1042 1043 1044 1045 1046 1047 1048 1049 1050
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1051
static void free_alien_cache(struct array_cache **ac_ptr)
1052 1053 1054 1055 1056 1057
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1058
	    kfree(ac_ptr[i]);
1059 1060 1061
	kfree(ac_ptr);
}

1062
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1063
				struct array_cache *ac, int node)
1064 1065 1066 1067 1068
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1069 1070 1071 1072 1073
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1074 1075
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1076

1077
		free_block(cachep, ac->entry, ac->avail, node);
1078 1079 1080 1081 1082
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1083 1084 1085 1086 1087 1088 1089 1090 1091
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1092 1093

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1094 1095 1096 1097 1098 1099
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1100 1101
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1102
{
P
Pekka Enberg 已提交
1103
	int i = 0;
1104 1105 1106 1107
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1108
		ac = alien[i];
1109 1110 1111 1112 1113 1114 1115
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1116

1117
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1118 1119 1120 1121 1122
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1123 1124 1125
	int node;

	node = numa_node_id();
1126 1127 1128 1129 1130

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1131
	if (likely(slabp->nodeid == node))
1132 1133
		return 0;

P
Pekka Enberg 已提交
1134
	l3 = cachep->nodelists[node];
1135 1136 1137
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1138
		spin_lock(&alien->lock);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1152 1153
#endif

1154 1155 1156 1157 1158
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1159
	node_to_cpumask_ptr(mask, node);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1181
		if (!cpus_empty(*mask)) {
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1220
{
1221
	struct kmem_cache *cachep;
1222 1223
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1224
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1225

1226 1227 1228 1229 1230 1231 1232 1233
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1234
		/*
1235 1236 1237
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1238
		 */
1239 1240 1241 1242 1243 1244 1245
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1246

A
Andrew Morton 已提交
1247
			/*
1248 1249 1250
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1251
			 */
1252
			cachep->nodelists[node] = l3;
1253 1254
		}

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
					cachep->batchcount);
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
				0xbaadf00d);
1279 1280
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1281
				goto bad;
1282
			}
1283 1284 1285
		}
		if (use_alien_caches) {
			alien = alloc_alien_cache(node, cachep->limit);
1286 1287 1288
			if (!alien) {
				kfree(shared);
				kfree(nc);
1289
				goto bad;
1290
			}
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1305
#ifdef CONFIG_NUMA
1306 1307 1308
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1309
		}
1310 1311 1312 1313 1314 1315 1316
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1317
	cpuup_canceled(cpu);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1330
		mutex_lock(&cache_chain_mutex);
1331
		err = cpuup_prepare(cpu);
1332
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1333 1334
		break;
	case CPU_ONLINE:
1335
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1336 1337 1338
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1339
  	case CPU_DOWN_PREPARE:
1340
  	case CPU_DOWN_PREPARE_FROZEN:
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1352
  	case CPU_DOWN_FAILED_FROZEN:
1353 1354
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1355
	case CPU_DEAD:
1356
	case CPU_DEAD_FROZEN:
1357 1358 1359 1360 1361 1362 1363 1364
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1365
		/* fall through */
1366
#endif
L
Linus Torvalds 已提交
1367
	case CPU_UP_CANCELED:
1368
	case CPU_UP_CANCELED_FROZEN:
1369
		mutex_lock(&cache_chain_mutex);
1370
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1371
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1372 1373
		break;
	}
1374
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1375 1376
}

1377 1378 1379
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1380

1381 1382 1383
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1384 1385
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1386 1387 1388 1389 1390 1391 1392 1393
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1394 1395 1396 1397 1398
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1399 1400 1401 1402 1403
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1420 1421 1422
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1429
	int i;
1430
	int order;
P
Pekka Enberg 已提交
1431
	int node;
1432

1433
	if (num_possible_nodes() == 1) {
1434
		use_alien_caches = 0;
1435 1436
		numa_platform = 0;
	}
1437

1438 1439 1440 1441 1442
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1443
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1454 1455 1456
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1457 1458 1459
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1460
	 * 2) Create the first kmalloc cache.
1461
	 *    The struct kmem_cache for the new cache is allocated normally.
1462 1463 1464
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1465 1466
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1467 1468 1469
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1470 1471
	 */

P
Pekka Enberg 已提交
1472 1473
	node = numa_node_id();

L
Linus Torvalds 已提交
1474 1475 1476 1477 1478
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1479
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1480

E
Eric Dumazet 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1490 1491
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1492 1493
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1494

1495 1496 1497 1498 1499 1500
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1501
	BUG_ON(!cache_cache.num);
1502
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1503 1504 1505
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1511 1512 1513 1514
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1515 1516 1517
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1518 1519 1520
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1521
					NULL);
1522

A
Andrew Morton 已提交
1523
	if (INDEX_AC != INDEX_L3) {
1524
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1525 1526 1527 1528
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1529
				NULL);
A
Andrew Morton 已提交
1530
	}
1531

1532 1533
	slab_early_init = 0;

L
Linus Torvalds 已提交
1534
	while (sizes->cs_size != ULONG_MAX) {
1535 1536
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1537 1538 1539
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1540 1541
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1542
		if (!sizes->cs_cachep) {
1543
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1544 1545 1546
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1547
					NULL);
A
Andrew Morton 已提交
1548
		}
1549 1550 1551
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1552 1553 1554 1555
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1556
					NULL);
1557
#endif
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1563
		struct array_cache *ptr;
1564

L
Linus Torvalds 已提交
1565
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1566

L
Linus Torvalds 已提交
1567
		local_irq_disable();
1568 1569
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1570
		       sizeof(struct arraycache_init));
1571 1572 1573 1574 1575
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1576 1577
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1578

L
Linus Torvalds 已提交
1579
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1580

L
Linus Torvalds 已提交
1581
		local_irq_disable();
1582
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1583
		       != &initarray_generic.cache);
1584
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1585
		       sizeof(struct arraycache_init));
1586 1587 1588 1589 1590
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1591
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1592
		    ptr;
L
Linus Torvalds 已提交
1593 1594
		local_irq_enable();
	}
1595 1596
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1597 1598
		int nid;

1599
		for_each_online_node(nid) {
1600
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1601

1602
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1603
				  &initkmem_list3[SIZE_AC + nid], nid);
1604 1605 1606

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1607
					  &initkmem_list3[SIZE_L3 + nid], nid);
1608 1609 1610
			}
		}
	}
L
Linus Torvalds 已提交
1611

1612
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1613
	{
1614
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1615
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1616
		list_for_each_entry(cachep, &cache_chain, next)
1617 1618
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1619
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1620 1621
	}

1622 1623 1624 1625
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1626 1627 1628
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1629 1630 1631
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1632 1633 1634
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1635 1636 1637
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1645 1646
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1647
	 */
1648
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1649
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1661
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1662 1663
{
	struct page *page;
1664
	int nr_pages;
L
Linus Torvalds 已提交
1665 1666
	int i;

1667
#ifndef CONFIG_MMU
1668 1669 1670
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1671
	 */
1672
	flags |= __GFP_COMP;
1673
#endif
1674

1675
	flags |= cachep->gfpflags;
1676 1677
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1678 1679

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1680 1681 1682
	if (!page)
		return NULL;

1683
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1684
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1685 1686 1687 1688 1689
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1690 1691 1692
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697
}

/*
 * Interface to system's page release.
 */
1698
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1699
{
P
Pekka Enberg 已提交
1700
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1701 1702 1703
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1704 1705 1706 1707 1708 1709
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1710
	while (i--) {
N
Nick Piggin 已提交
1711 1712
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1722
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1723
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1733
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1734
			    unsigned long caller)
L
Linus Torvalds 已提交
1735
{
1736
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1737

1738
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1739

P
Pekka Enberg 已提交
1740
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1741 1742
		return;

P
Pekka Enberg 已提交
1743 1744 1745 1746
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752 1753
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1754
				*addr++ = svalue;
L
Linus Torvalds 已提交
1755 1756 1757 1758 1759 1760 1761
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1762
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1763 1764 1765
}
#endif

1766
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1767
{
1768 1769
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1770 1771

	memset(addr, val, size);
P
Pekka Enberg 已提交
1772
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1778 1779 1780
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1781
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1782 1783 1784 1785 1786
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1787
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1788
	}
L
Linus Torvalds 已提交
1789
	printk("\n");
D
Dave Jones 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808
}
#endif

#if DEBUG

1809
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1815
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1816 1817
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1818 1819 1820 1821
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1822
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1823
		print_symbol("(%s)",
A
Andrew Morton 已提交
1824
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1825 1826
		printk("\n");
	}
1827 1828
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1829
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1830 1831
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1832 1833
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1834 1835 1836 1837
		dump_line(realobj, i, limit);
	}
}

1838
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843
{
	char *realobj;
	int size, i;
	int lines = 0;

1844 1845
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1846

P
Pekka Enberg 已提交
1847
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1848
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1849
		if (i == size - 1)
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1856
				printk(KERN_ERR
1857 1858
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1859 1860 1861
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1862
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1863
			limit = 16;
P
Pekka Enberg 已提交
1864 1865
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1878
		struct slab *slabp = virt_to_slab(objp);
1879
		unsigned int objnr;
L
Linus Torvalds 已提交
1880

1881
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1882
		if (objnr) {
1883
			objp = index_to_obj(cachep, slabp, objnr - 1);
1884
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1885
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1886
			       realobj, size);
L
Linus Torvalds 已提交
1887 1888
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1889
		if (objnr + 1 < cachep->num) {
1890
			objp = index_to_obj(cachep, slabp, objnr + 1);
1891
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1892
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1893
			       realobj, size);
L
Linus Torvalds 已提交
1894 1895 1896 1897 1898 1899
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1900 1901
#if DEBUG
/**
1902 1903 1904 1905 1906 1907
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1908
 */
1909
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1910 1911 1912
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1913
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1914 1915 1916

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1917 1918
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1919
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1920
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1930
					   "was overwritten");
L
Linus Torvalds 已提交
1931 1932
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1933
					   "was overwritten");
L
Linus Torvalds 已提交
1934 1935
		}
	}
1936
}
L
Linus Torvalds 已提交
1937
#else
1938
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1939 1940
{
}
L
Linus Torvalds 已提交
1941 1942
#endif

1943 1944 1945 1946 1947
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1948
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1949 1950
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1951
 */
1952
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1953 1954 1955 1956
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1957 1958 1959
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1960
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1966 1967
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1968 1969 1970
	}
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1992
/**
1993 1994 1995 1996 1997 1998 1999
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2000 2001 2002 2003 2004
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2005
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2006
			size_t size, size_t align, unsigned long flags)
2007
{
2008
	unsigned long offslab_limit;
2009
	size_t left_over = 0;
2010
	int gfporder;
2011

2012
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2013 2014 2015
		unsigned int num;
		size_t remainder;

2016
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2017 2018
		if (!num)
			continue;
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2032

2033
		/* Found something acceptable - save it away */
2034
		cachep->num = num;
2035
		cachep->gfporder = gfporder;
2036 2037
		left_over = remainder;

2038 2039 2040 2041 2042 2043 2044 2045
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2046 2047 2048 2049
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2050
		if (gfporder >= slab_break_gfp_order)
2051 2052
			break;

2053 2054 2055
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2056
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2057 2058 2059 2060 2061
			break;
	}
	return left_over;
}

2062
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2063
{
2064 2065 2066
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2094
			for_each_online_node(node) {
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2113
	return 0;
2114 2115
}

L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2126
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2127 2128
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2129 2130
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2143
struct kmem_cache *
L
Linus Torvalds 已提交
2144
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2145
	unsigned long flags,
2146
	void (*ctor)(struct kmem_cache *, void *))
L
Linus Torvalds 已提交
2147 2148
{
	size_t left_over, slab_size, ralign;
2149
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2150 2151 2152 2153

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2154
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2155
	    size > KMALLOC_MAX_SIZE) {
A
Andrew Morton 已提交
2156 2157
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2158 2159
		BUG();
	}
L
Linus Torvalds 已提交
2160

2161
	/*
2162 2163
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2164
	 */
2165
	get_online_cpus();
I
Ingo Molnar 已提交
2166
	mutex_lock(&cache_chain_mutex);
2167

2168
	list_for_each_entry(pc, &cache_chain, next) {
2169 2170 2171 2172 2173 2174 2175 2176
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2177
		res = probe_kernel_address(pc->name, tmp);
2178
		if (res) {
2179 2180
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2181
			       pc->buffer_size);
2182 2183 2184
			continue;
		}

P
Pekka Enberg 已提交
2185
		if (!strcmp(pc->name, name)) {
2186 2187
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2188 2189 2190 2191 2192
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2202 2203
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2204
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2205 2206 2207 2208 2209 2210 2211
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2212 2213
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2214
	 */
2215
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2216

A
Andrew Morton 已提交
2217 2218
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2219 2220 2221
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2222 2223 2224
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2225 2226
	}

A
Andrew Morton 已提交
2227 2228
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2229 2230
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2231 2232 2233 2234
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2235 2236
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2237
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2238 2239 2240 2241
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2242 2243

	/*
D
David Woodhouse 已提交
2244 2245 2246
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2247
	 */
D
David Woodhouse 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2258

2259
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2260 2261 2262
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2263
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2264 2265 2266
	if (ralign < align) {
		ralign = align;
	}
2267
	/* disable debug if necessary */
2268
	if (ralign > __alignof__(unsigned long long))
2269
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2270
	/*
2271
	 * 4) Store it.
L
Linus Torvalds 已提交
2272 2273 2274 2275
	 */
	align = ralign;

	/* Get cache's description obj. */
2276
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2277
	if (!cachep)
2278
		goto oops;
L
Linus Torvalds 已提交
2279 2280

#if DEBUG
2281
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2282

2283 2284 2285 2286
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2287 2288
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2289 2290
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2291 2292
	}
	if (flags & SLAB_STORE_USER) {
2293
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2294 2295
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2296
		 */
D
David Woodhouse 已提交
2297 2298 2299 2300
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2301 2302
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2303
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2304 2305
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310
		size = PAGE_SIZE;
	}
#endif
#endif

2311 2312 2313 2314 2315 2316
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2325
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2326 2327

	if (!cachep->num) {
2328 2329
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2330 2331
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2332
		goto oops;
L
Linus Torvalds 已提交
2333
	}
P
Pekka Enberg 已提交
2334 2335
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2348 2349
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2356
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2357 2358 2359
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2360
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2361
		cachep->gfpflags |= GFP_DMA;
2362
	cachep->buffer_size = size;
2363
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2364

2365
	if (flags & CFLGS_OFF_SLAB) {
2366
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2367 2368 2369 2370 2371 2372 2373
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2374
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2375
	}
L
Linus Torvalds 已提交
2376 2377 2378
	cachep->ctor = ctor;
	cachep->name = name;

2379 2380 2381 2382 2383
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2384 2385 2386

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2387
oops:
L
Linus Torvalds 已提交
2388 2389
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2390
		      name);
I
Ingo Molnar 已提交
2391
	mutex_unlock(&cache_chain_mutex);
2392
	put_online_cpus();
L
Linus Torvalds 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2408
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2409 2410 2411
{
#ifdef CONFIG_SMP
	check_irq_off();
2412
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2413 2414
#endif
}
2415

2416
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2417 2418 2419 2420 2421 2422 2423
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2424 2425 2426 2427
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2428
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2429 2430
#endif

2431 2432 2433 2434
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2435 2436
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2437
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2438
	struct array_cache *ac;
2439
	int node = numa_node_id();
L
Linus Torvalds 已提交
2440 2441

	check_irq_off();
2442
	ac = cpu_cache_get(cachep);
2443 2444 2445
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2446 2447 2448
	ac->avail = 0;
}

2449
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2450
{
2451 2452 2453
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2454
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2455
	check_irq_on();
P
Pekka Enberg 已提交
2456
	for_each_online_node(node) {
2457
		l3 = cachep->nodelists[node];
2458 2459 2460 2461 2462 2463 2464
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2465
			drain_array(cachep, l3, l3->shared, 1, node);
2466
	}
L
Linus Torvalds 已提交
2467 2468
}

2469 2470 2471 2472 2473 2474 2475 2476
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2477
{
2478 2479
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2480 2481
	struct slab *slabp;

2482 2483
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2484

2485
		spin_lock_irq(&l3->list_lock);
2486
		p = l3->slabs_free.prev;
2487 2488 2489 2490
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2491

2492
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2493
#if DEBUG
2494
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2495 2496
#endif
		list_del(&slabp->list);
2497 2498 2499 2500 2501
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2502
		spin_unlock_irq(&l3->list_lock);
2503 2504
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2505
	}
2506 2507
out:
	return nr_freed;
L
Linus Torvalds 已提交
2508 2509
}

2510
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2511
static int __cache_shrink(struct kmem_cache *cachep)
2512 2513 2514 2515 2516 2517 2518 2519 2520
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2521 2522 2523 2524 2525 2526 2527
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2528 2529 2530 2531
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2539
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2540
{
2541
	int ret;
2542
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2543

2544
	get_online_cpus();
2545 2546 2547
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2548
	put_online_cpus();
2549
	return ret;
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555 2556
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2557
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2569
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2570
{
2571
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2572 2573

	/* Find the cache in the chain of caches. */
2574
	get_online_cpus();
I
Ingo Molnar 已提交
2575
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2582
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2583
		mutex_unlock(&cache_chain_mutex);
2584
		put_online_cpus();
2585
		return;
L
Linus Torvalds 已提交
2586 2587 2588
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2589
		synchronize_rcu();
L
Linus Torvalds 已提交
2590

2591
	__kmem_cache_destroy(cachep);
2592
	mutex_unlock(&cache_chain_mutex);
2593
	put_online_cpus();
L
Linus Torvalds 已提交
2594 2595 2596
}
EXPORT_SYMBOL(kmem_cache_destroy);

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2608
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2609 2610
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2611 2612
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2613

L
Linus Torvalds 已提交
2614 2615
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2616
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2617
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2618 2619 2620
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2621
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2622 2623 2624 2625
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2626
	slabp->s_mem = objp + colour_off;
2627
	slabp->nodeid = nodeid;
2628
	slabp->free = 0;
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2634
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2635 2636
}

2637
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2638
			    struct slab *slabp)
L
Linus Torvalds 已提交
2639 2640 2641 2642
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2643
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2656 2657 2658
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2659 2660
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2661
			cachep->ctor(cachep, objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2662 2663 2664 2665

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2666
					   " end of an object");
L
Linus Torvalds 已提交
2667 2668
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2669
					   " start of an object");
L
Linus Torvalds 已提交
2670
		}
A
Andrew Morton 已提交
2671 2672
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2673
			kernel_map_pages(virt_to_page(objp),
2674
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2675 2676
#else
		if (cachep->ctor)
2677
			cachep->ctor(cachep, objp);
L
Linus Torvalds 已提交
2678
#endif
P
Pekka Enberg 已提交
2679
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2680
	}
P
Pekka Enberg 已提交
2681
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2682 2683
}

2684
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2685
{
2686 2687 2688 2689 2690 2691
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2692 2693
}

A
Andrew Morton 已提交
2694 2695
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2696
{
2697
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2711 2712
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2713
{
2714
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2715 2716 2717 2718 2719

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2720
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2721
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2722
				"'%s', objp %p\n", cachep->name, objp);
2723 2724 2725 2726 2727 2728 2729 2730
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2731 2732 2733 2734 2735 2736 2737
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2738
{
2739
	int nr_pages;
L
Linus Torvalds 已提交
2740 2741
	struct page *page;

2742
	page = virt_to_page(addr);
2743

2744
	nr_pages = 1;
2745
	if (likely(!PageCompound(page)))
2746 2747
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2748
	do {
2749 2750
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2751
		page++;
2752
	} while (--nr_pages);
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2759 2760
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2761
{
P
Pekka Enberg 已提交
2762 2763 2764
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2765
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2766

A
Andrew Morton 已提交
2767 2768 2769
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2770
	 */
C
Christoph Lameter 已提交
2771 2772
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2773

2774
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2775
	check_irq_off();
2776 2777
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2778 2779

	/* Get colour for the slab, and cal the next value. */
2780 2781 2782 2783 2784
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2785

2786
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2799 2800 2801
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2802
	 */
2803
	if (!objp)
2804
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2805
	if (!objp)
L
Linus Torvalds 已提交
2806 2807 2808
		goto failed;

	/* Get slab management. */
2809
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2810
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2811
	if (!slabp)
L
Linus Torvalds 已提交
2812 2813
		goto opps1;

2814
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2815

C
Christoph Lameter 已提交
2816
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2817 2818 2819 2820

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2821
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2822 2823

	/* Make slab active. */
2824
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2825
	STATS_INC_GROWN(cachep);
2826 2827
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2828
	return 1;
A
Andrew Morton 已提交
2829
opps1:
L
Linus Torvalds 已提交
2830
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2831
failed:
L
Linus Torvalds 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2848 2849
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2850 2851 2852
	}
}

2853 2854
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2855
	unsigned long long redzone1, redzone2;
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2871
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2872 2873 2874
			obj, redzone1, redzone2);
}

2875
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2876
				   void *caller)
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2882 2883
	BUG_ON(virt_to_cache(objp) != cachep);

2884
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2885
	kfree_debugcheck(objp);
2886
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2887

2888
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2889 2890

	if (cachep->flags & SLAB_RED_ZONE) {
2891
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2892 2893 2894 2895 2896 2897
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2898
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2899 2900

	BUG_ON(objnr >= cachep->num);
2901
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2902

2903 2904 2905
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2906 2907
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2908
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2909
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2910
			kernel_map_pages(virt_to_page(objp),
2911
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2922
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2923 2924 2925
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2926

L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932 2933
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2934 2935 2936 2937
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2938
		for (i = 0;
2939
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2940
		     i++) {
A
Andrew Morton 已提交
2941
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2942
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2943
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2955
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2956 2957 2958 2959
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2960 2961
	int node;

2962
retry:
L
Linus Torvalds 已提交
2963
	check_irq_off();
2964
	node = numa_node_id();
2965
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2966 2967
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2968 2969 2970 2971
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2972 2973 2974
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2975
	l3 = cachep->nodelists[node];
2976 2977 2978

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2979

2980 2981 2982 2983
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2999 3000 3001 3002 3003 3004 3005 3006

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3007 3008 3009 3010 3011
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3012
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3013
							    node);
L
Linus Torvalds 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3025
must_grow:
L
Linus Torvalds 已提交
3026
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3027
alloc_done:
3028
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3029 3030 3031

	if (unlikely(!ac->avail)) {
		int x;
3032
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3033

A
Andrew Morton 已提交
3034
		/* cache_grow can reenable interrupts, then ac could change. */
3035
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3036
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3037 3038
			return NULL;

A
Andrew Morton 已提交
3039
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3040 3041 3042
			goto retry;
	}
	ac->touched = 1;
3043
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3044 3045
}

A
Andrew Morton 已提交
3046 3047
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053 3054 3055
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3056 3057
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3058
{
P
Pekka Enberg 已提交
3059
	if (!objp)
L
Linus Torvalds 已提交
3060
		return objp;
P
Pekka Enberg 已提交
3061
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3062
#ifdef CONFIG_DEBUG_PAGEALLOC
3063
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3064
			kernel_map_pages(virt_to_page(objp),
3065
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3077 3078 3079 3080
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3081
			printk(KERN_ERR
3082
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3083 3084
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3085 3086 3087 3088
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3089 3090 3091 3092 3093
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3094
		slabp = page_get_slab(virt_to_head_page(objp));
3095 3096 3097 3098
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3099
	objp += obj_offset(cachep);
3100
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3101
		cachep->ctor(cachep, objp);
3102 3103 3104 3105 3106 3107
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112 3113
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3127
	.ignore_gfp_wait = 1,
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3156
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3187
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3188
{
P
Pekka Enberg 已提交
3189
	void *objp;
L
Linus Torvalds 已提交
3190 3191
	struct array_cache *ac;

3192
	check_irq_off();
3193

3194
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3195 3196 3197
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3198
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3199 3200 3201 3202
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3203 3204 3205
	return objp;
}

3206
#ifdef CONFIG_NUMA
3207
/*
3208
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 3210 3211 3212 3213 3214 3215 3216
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3217
	if (in_interrupt() || (flags & __GFP_THISNODE))
3218 3219 3220 3221 3222 3223 3224
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3225
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3226 3227 3228
	return NULL;
}

3229 3230
/*
 * Fallback function if there was no memory available and no objects on a
3231 3232 3233 3234 3235
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3236
 */
3237
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3238
{
3239 3240
	struct zonelist *zonelist;
	gfp_t local_flags;
3241
	struct zoneref *z;
3242 3243
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3244
	void *obj = NULL;
3245
	int nid;
3246 3247 3248 3249

	if (flags & __GFP_THISNODE)
		return NULL;

3250
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3251
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3252

3253 3254 3255 3256 3257
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3258 3259
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3260

3261
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3262 3263 3264 3265 3266 3267
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3268
	if (!obj) {
3269 3270 3271 3272 3273 3274
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3275 3276 3277
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3278
		obj = kmem_getpages(cache, local_flags, -1);
3279 3280
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3297
				/* cache_grow already freed obj */
3298 3299 3300
				obj = NULL;
			}
		}
3301
	}
3302 3303 3304
	return obj;
}

3305 3306
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3307
 */
3308
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3309
				int nodeid)
3310 3311
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3312 3313 3314 3315 3316 3317 3318 3319
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3320
retry:
3321
	check_irq_off();
P
Pekka Enberg 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3341
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3342 3343 3344 3345 3346
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3347
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3348
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3349
	else
P
Pekka Enberg 已提交
3350
		list_add(&slabp->list, &l3->slabs_partial);
3351

P
Pekka Enberg 已提交
3352 3353
	spin_unlock(&l3->list_lock);
	goto done;
3354

A
Andrew Morton 已提交
3355
must_grow:
P
Pekka Enberg 已提交
3356
	spin_unlock(&l3->list_lock);
3357
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3358 3359
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3360

3361
	return fallback_alloc(cachep, flags);
3362

A
Andrew Morton 已提交
3363
done:
P
Pekka Enberg 已提交
3364
	return obj;
3365
}
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3386 3387 3388
	if (should_failslab(cachep, flags))
		return NULL;

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3418 3419 3420
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3462 3463 3464
	if (should_failslab(cachep, flags))
		return NULL;

3465 3466 3467 3468 3469 3470 3471
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3472 3473 3474
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3475 3476
	return objp;
}
3477 3478 3479 3480

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3481
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3482
		       int node)
L
Linus Torvalds 已提交
3483 3484
{
	int i;
3485
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3491
		slabp = virt_to_slab(objp);
3492
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3493
		list_del(&slabp->list);
3494
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3495
		check_slabp(cachep, slabp);
3496
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3497
		STATS_DEC_ACTIVE(cachep);
3498
		l3->free_objects++;
L
Linus Torvalds 已提交
3499 3500 3501 3502
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3503 3504
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3505 3506 3507 3508 3509 3510
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3511 3512
				slab_destroy(cachep, slabp);
			} else {
3513
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3520
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3521 3522 3523 3524
		}
	}
}

3525
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3526 3527
{
	int batchcount;
3528
	struct kmem_list3 *l3;
3529
	int node = numa_node_id();
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3536
	l3 = cachep->nodelists[node];
3537
	spin_lock(&l3->list_lock);
3538 3539
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3540
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3541 3542 3543
		if (max) {
			if (batchcount > max)
				batchcount = max;
3544
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3545
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3546 3547 3548 3549 3550
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3551
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3552
free_done:
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557
#if STATS
	{
		int i = 0;
		struct list_head *p;

3558 3559
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3571
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3572
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3573
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3574 3575 3576
}

/*
A
Andrew Morton 已提交
3577 3578
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3579
 */
3580
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3581
{
3582
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3583 3584 3585 3586

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3587 3588 3589 3590 3591 3592 3593 3594
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (numa_platform && cache_free_alien(cachep, objp))
3595 3596
		return;

L
Linus Torvalds 已提交
3597 3598
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3599
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3600 3601 3602 3603
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3604
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3616
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3617
{
3618
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3619 3620 3621 3622
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
3623
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3624 3625 3626
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3627
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3635
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3636
{
P
Pekka Enberg 已提交
3637
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3638
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3639
	unsigned long align_mask = BYTES_PER_WORD - 1;
3640
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3656
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3657 3658
		goto out;
	return 1;
A
Andrew Morton 已提交
3659
out:
L
Linus Torvalds 已提交
3660 3661 3662 3663
	return 0;
}

#ifdef CONFIG_NUMA
3664 3665 3666 3667 3668
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3669 3670
EXPORT_SYMBOL(kmem_cache_alloc_node);

3671 3672
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3673
{
3674
	struct kmem_cache *cachep;
3675 3676

	cachep = kmem_find_general_cachep(size, flags);
3677 3678
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3679 3680
	return kmem_cache_alloc_node(cachep, flags, node);
}
3681 3682 3683 3684 3685 3686 3687

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3688
EXPORT_SYMBOL(__kmalloc_node);
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3704 3705

/**
3706
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3707
 * @size: how many bytes of memory are required.
3708
 * @flags: the type of memory to allocate (see kmalloc).
3709
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3710
 */
3711 3712
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3713
{
3714
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3715

3716 3717 3718 3719 3720 3721
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3722 3723
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3724 3725 3726 3727
	return __cache_alloc(cachep, flags, caller);
}


3728
#ifdef CONFIG_DEBUG_SLAB
3729 3730
void *__kmalloc(size_t size, gfp_t flags)
{
3731
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3732 3733 3734
}
EXPORT_SYMBOL(__kmalloc);

3735 3736 3737 3738 3739
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3740 3741 3742 3743 3744 3745 3746

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3747 3748
#endif

L
Linus Torvalds 已提交
3749 3750 3751 3752 3753 3754 3755 3756
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3757
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3758 3759 3760 3761
{
	unsigned long flags;

	local_irq_save(flags);
3762
	debug_check_no_locks_freed(objp, obj_size(cachep));
3763
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3772 3773
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3774 3775 3776 3777 3778
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3779
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3780 3781
	unsigned long flags;

3782
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3783 3784 3785
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3786
	c = virt_to_cache(objp);
3787
	debug_check_no_locks_freed(objp, obj_size(c));
3788
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3789 3790 3791 3792
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3793
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3794
{
3795
	return obj_size(cachep);
L
Linus Torvalds 已提交
3796 3797 3798
}
EXPORT_SYMBOL(kmem_cache_size);

3799
const char *kmem_cache_name(struct kmem_cache *cachep)
3800 3801 3802 3803 3804
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3805
/*
S
Simon Arlott 已提交
3806
 * This initializes kmem_list3 or resizes various caches for all nodes.
3807
 */
3808
static int alloc_kmemlist(struct kmem_cache *cachep)
3809 3810 3811
{
	int node;
	struct kmem_list3 *l3;
3812
	struct array_cache *new_shared;
3813
	struct array_cache **new_alien = NULL;
3814

3815
	for_each_online_node(node) {
3816

3817 3818 3819 3820 3821
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3822

3823 3824 3825
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3826
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3827
					0xbaadf00d);
3828 3829 3830 3831
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3832
		}
3833

A
Andrew Morton 已提交
3834 3835
		l3 = cachep->nodelists[node];
		if (l3) {
3836 3837
			struct array_cache *shared = l3->shared;

3838 3839
			spin_lock_irq(&l3->list_lock);

3840
			if (shared)
3841 3842
				free_block(cachep, shared->entry,
						shared->avail, node);
3843

3844 3845
			l3->shared = new_shared;
			if (!l3->alien) {
3846 3847 3848
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3849
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3850
					cachep->batchcount + cachep->num;
3851
			spin_unlock_irq(&l3->list_lock);
3852
			kfree(shared);
3853 3854 3855
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3856
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3857 3858 3859
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3860
			goto fail;
3861
		}
3862 3863 3864

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3865
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3866
		l3->shared = new_shared;
3867
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3868
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3869
					cachep->batchcount + cachep->num;
3870 3871
		cachep->nodelists[node] = l3;
	}
3872
	return 0;
3873

A
Andrew Morton 已提交
3874
fail:
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3890
	return -ENOMEM;
3891 3892
}

L
Linus Torvalds 已提交
3893
struct ccupdate_struct {
3894
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3895 3896 3897 3898 3899
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3900
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3901 3902 3903
	struct array_cache *old;

	check_irq_off();
3904
	old = cpu_cache_get(new->cachep);
3905

L
Linus Torvalds 已提交
3906 3907 3908 3909
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3910
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3911 3912
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3913
{
3914
	struct ccupdate_struct *new;
3915
	int i;
L
Linus Torvalds 已提交
3916

3917 3918 3919 3920
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3921
	for_each_online_cpu(i) {
3922
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3923
						batchcount);
3924
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3925
			for (i--; i >= 0; i--)
3926 3927
				kfree(new->new[i]);
			kfree(new);
3928
			return -ENOMEM;
L
Linus Torvalds 已提交
3929 3930
		}
	}
3931
	new->cachep = cachep;
L
Linus Torvalds 已提交
3932

3933
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3934

L
Linus Torvalds 已提交
3935 3936 3937
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3938
	cachep->shared = shared;
L
Linus Torvalds 已提交
3939

3940
	for_each_online_cpu(i) {
3941
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3942 3943
		if (!ccold)
			continue;
3944
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3945
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3946
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3947 3948
		kfree(ccold);
	}
3949
	kfree(new);
3950
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3951 3952
}

3953
/* Called with cache_chain_mutex held always */
3954
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3955 3956 3957 3958
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3959 3960
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3961 3962
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3963
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3964 3965 3966 3967
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3968
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3969
		limit = 1;
3970
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3971
		limit = 8;
3972
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3973
		limit = 24;
3974
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3975 3976 3977 3978
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3979 3980
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986 3987 3988
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3989
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3990 3991 3992
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3993 3994 3995
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3996 3997 3998 3999
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4000
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4001 4002
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4003
		       cachep->name, -err);
4004
	return err;
L
Linus Torvalds 已提交
4005 4006
}

4007 4008
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4009 4010
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4011 4012 4013
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4014 4015 4016
{
	int tofree;

4017 4018
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4019 4020
	if (ac->touched && !force) {
		ac->touched = 0;
4021
	} else {
4022
		spin_lock_irq(&l3->list_lock);
4023 4024 4025 4026 4027 4028 4029 4030 4031
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4032
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4033 4034 4035 4036 4037
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4038
 * @w: work descriptor
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4045 4046
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4047
 */
4048
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4049
{
4050
	struct kmem_cache *searchp;
4051
	struct kmem_list3 *l3;
4052
	int node = numa_node_id();
4053 4054
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4055

4056
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4057
		/* Give up. Setup the next iteration. */
4058
		goto out;
L
Linus Torvalds 已提交
4059

4060
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4061 4062
		check_irq_on();

4063 4064 4065 4066 4067
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4068
		l3 = searchp->nodelists[node];
4069

4070
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4071

4072
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4073

4074 4075 4076 4077
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4078
		if (time_after(l3->next_reap, jiffies))
4079
			goto next;
L
Linus Torvalds 已提交
4080

4081
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4082

4083
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4084

4085
		if (l3->free_touched)
4086
			l3->free_touched = 0;
4087 4088
		else {
			int freed;
L
Linus Torvalds 已提交
4089

4090 4091 4092 4093
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4094
next:
L
Linus Torvalds 已提交
4095 4096 4097
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4098
	mutex_unlock(&cache_chain_mutex);
4099
	next_reap_node();
4100
out:
A
Andrew Morton 已提交
4101
	/* Set up the next iteration */
4102
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4103 4104
}

4105
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4106

4107
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4108
{
4109 4110 4111 4112
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4113
#if STATS
4114
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4115
#else
4116
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4117
#endif
4118 4119 4120 4121
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4122
#if STATS
4123
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4124
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4125
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4126
#endif
4127 4128 4129 4130 4131 4132 4133
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4134
	mutex_lock(&cache_chain_mutex);
4135 4136
	if (!n)
		print_slabinfo_header(m);
4137 4138

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4139 4140 4141 4142
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4143
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4144 4145 4146 4147
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4148
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4149 4150 4151 4152
}

static int s_show(struct seq_file *m, void *p)
{
4153
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4154 4155 4156 4157 4158
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4159
	const char *name;
L
Linus Torvalds 已提交
4160
	char *error = NULL;
4161 4162
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4163 4164 4165

	active_objs = 0;
	num_slabs = 0;
4166 4167 4168 4169 4170
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4171 4172
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4173

4174
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4175 4176 4177 4178 4179
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4180
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4181 4182 4183 4184 4185 4186 4187
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4188
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4189 4190 4191 4192 4193
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4194 4195
		if (l3->shared)
			shared_avail += l3->shared->avail;
4196

4197
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4198
	}
P
Pekka Enberg 已提交
4199 4200
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4201
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4202 4203
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4204
	name = cachep->name;
L
Linus Torvalds 已提交
4205 4206 4207 4208
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4209
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4210
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4211
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4212
		   cachep->limit, cachep->batchcount, cachep->shared);
4213
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4214
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4215
#if STATS
P
Pekka Enberg 已提交
4216
	{			/* list3 stats */
L
Linus Torvalds 已提交
4217 4218 4219 4220 4221 4222 4223
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4224
		unsigned long node_frees = cachep->node_frees;
4225
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4226

4227
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4228
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4229
				reaped, errors, max_freeable, node_allocs,
4230
				node_frees, overflows);
L
Linus Torvalds 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4240
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4261
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4262 4263 4264 4265
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4276 4277
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4278
{
P
Pekka Enberg 已提交
4279
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4280
	int limit, batchcount, shared, res;
4281
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4282

L
Linus Torvalds 已提交
4283 4284 4285 4286
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4287
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4298
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4299
	res = -EINVAL;
4300
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4301
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4302 4303
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4304
				res = 0;
L
Linus Torvalds 已提交
4305
			} else {
4306
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4307
						       batchcount, shared);
L
Linus Torvalds 已提交
4308 4309 4310 4311
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4312
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4313 4314 4315 4316
	if (res >= 0)
		res = count;
	return res;
}
4317 4318 4319 4320 4321 4322

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4323
	return seq_list_start(&cache_chain, *pos);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4374
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4375

4376
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4377
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4378
		if (modname[0])
4379 4380 4381 4382 4383 4384 4385 4386 4387
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4388
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4413
		list_for_each_entry(slabp, &l3->slabs_full, list)
4414
			handle_slab(n, cachep, slabp);
4415
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4442

4443 4444 4445
	return 0;
}

4446
const struct seq_operations slabstats_op = {
4447 4448 4449 4450 4451 4452
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4453 4454
#endif

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4467
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4468
{
4469 4470
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4471
		return 0;
L
Linus Torvalds 已提交
4472

4473
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4474
}
T
Tetsuo Handa 已提交
4475
EXPORT_SYMBOL(ksize);