slab.c 119.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500 501
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
502 503
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
504
 */
505 506 507
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
508
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
509

510 511
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
512
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
513
	return page->slab_cache;
514 515 516 517
}

static inline struct slab *virt_to_slab(const void *obj)
{
518
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
519 520 521

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
522 523
}

524 525 526
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
527
	return slab->s_mem + cache->size * idx;
528 529
}

530
/*
531 532 533
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
534 535 536 537
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
538
{
539 540
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
541 542
}

A
Andrew Morton 已提交
543 544 545
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
563
	{NULL,}
L
Linus Torvalds 已提交
564 565 566 567
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
568
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
569
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
570
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
571 572

/* internal cache of cache description objs */
573 574 575
static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
static struct kmem_cache kmem_cache_boot = {
	.nodelists = kmem_cache_nodelists,
P
Pekka Enberg 已提交
576 577 578
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
579
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
580
	.name = "kmem_cache",
L
Linus Torvalds 已提交
581 582
};

583 584
#define BAD_ALIEN_MAGIC 0x01020304ul

585 586 587 588 589 590 591 592
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
593 594 595 596
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
597
 */
598 599 600
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

646
static void init_node_lock_keys(int q)
647
{
648 649
	struct cache_sizes *s = malloc_sizes;

650
	if (slab_state < UP)
651 652 653 654 655 656 657
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
658
			continue;
659 660 661

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
662 663
	}
}
664 665 666 667 668 669 670 671

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
672
#else
673 674 675 676
static void init_node_lock_keys(int q)
{
}

677
static inline void init_lock_keys(void)
678 679
{
}
680 681 682 683 684 685 686 687

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
688 689
#endif

690
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
691

692
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
693 694 695 696
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
697 698
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
699 700 701 702 703
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
704 705 706
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
707
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
708
#endif
709 710 711
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
712 713 714 715
	while (size > csizep->cs_size)
		csizep++;

	/*
716
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
717 718 719
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
720
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
721 722
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
723
#endif
L
Linus Torvalds 已提交
724 725 726
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
727
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
728 729 730 731
{
	return __find_general_cachep(size, gfpflags);
}

732
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
733
{
734 735
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
736

A
Andrew Morton 已提交
737 738 739
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
740 741 742 743 744 745 746
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
796 797
}

798
#if DEBUG
799
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
800

A
Andrew Morton 已提交
801 802
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
803 804
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
805
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
806
	dump_stack();
807
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
808
}
809
#endif
L
Linus Torvalds 已提交
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

827 828 829 830 831 832 833 834 835 836 837
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

838 839 840 841 842 843 844
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
845
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
846 847 848 849 850

static void init_reap_node(int cpu)
{
	int node;

851
	node = next_node(cpu_to_mem(cpu), node_online_map);
852
	if (node == MAX_NUMNODES)
853
		node = first_node(node_online_map);
854

855
	per_cpu(slab_reap_node, cpu) = node;
856 857 858 859
}

static void next_reap_node(void)
{
860
	int node = __this_cpu_read(slab_reap_node);
861 862 863 864

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
865
	__this_cpu_write(slab_reap_node, node);
866 867 868 869 870 871 872
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
873 874 875 876 877 878 879
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
880
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
881
{
882
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
883 884 885 886 887 888

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
889
	if (keventd_up() && reap_work->work.func == NULL) {
890
		init_reap_node(cpu);
891
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
892 893
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
894 895 896
	}
}

897
static struct array_cache *alloc_arraycache(int node, int entries,
898
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
899
{
P
Pekka Enberg 已提交
900
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
901 902
	struct array_cache *nc = NULL;

903
	nc = kmalloc_node(memsize, gfp, node);
904 905
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
906
	 * However, when such objects are allocated or transferred to another
907 908 909 910 911
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
912 913 914 915 916
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
917
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
918 919 920 921
	}
	return nc;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

958
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
974
		for (i = 0; i < ac->avail; i++) {
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
991
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1019 1020 1021 1022
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
1023
		struct page *page = virt_to_head_page(objp);
1024 1025 1026 1027
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1028 1029 1030 1031 1032 1033 1034 1035 1036
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1037 1038 1039
	ac->entry[ac->avail++] = objp;
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1050
	int nr = min3(from->avail, max, to->limit - to->avail);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1063 1064 1065 1066 1067
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1068
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1088
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1089 1090 1091 1092 1093 1094 1095
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1096
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1097
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1098

1099
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1100 1101
{
	struct array_cache **ac_ptr;
1102
	int memsize = sizeof(void *) * nr_node_ids;
1103 1104 1105 1106
	int i;

	if (limit > 1)
		limit = 12;
1107
	ac_ptr = kzalloc_node(memsize, gfp, node);
1108 1109
	if (ac_ptr) {
		for_each_node(i) {
1110
			if (i == node || !node_online(i))
1111
				continue;
1112
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1113
			if (!ac_ptr[i]) {
1114
				for (i--; i >= 0; i--)
1115 1116 1117 1118 1119 1120 1121 1122 1123
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1124
static void free_alien_cache(struct array_cache **ac_ptr)
1125 1126 1127 1128 1129 1130
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1131
	    kfree(ac_ptr[i]);
1132 1133 1134
	kfree(ac_ptr);
}

1135
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1136
				struct array_cache *ac, int node)
1137 1138 1139 1140 1141
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1142 1143 1144 1145 1146
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1147 1148
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1149

1150
		free_block(cachep, ac->entry, ac->avail, node);
1151 1152 1153 1154 1155
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1156 1157 1158 1159 1160
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1161
	int node = __this_cpu_read(slab_reap_node);
1162 1163 1164

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1165 1166

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1167 1168 1169 1170 1171 1172
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1173 1174
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1175
{
P
Pekka Enberg 已提交
1176
	int i = 0;
1177 1178 1179 1180
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1181
		ac = alien[i];
1182 1183 1184 1185 1186 1187 1188
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1189

1190
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1191 1192 1193 1194 1195
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1196 1197
	int node;

1198
	node = numa_mem_id();
1199 1200 1201 1202 1203

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1204
	if (likely(slabp->nodeid == node))
1205 1206
		return 0;

P
Pekka Enberg 已提交
1207
	l3 = cachep->nodelists[node];
1208 1209 1210
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1211
		spin_lock(&alien->lock);
1212 1213 1214 1215
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1216
		ac_put_obj(cachep, alien, objp);
1217 1218 1219 1220 1221 1222 1223 1224
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1225 1226
#endif

1227 1228 1229 1230 1231 1232 1233
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1234
 * Must hold slab_mutex.
1235 1236 1237 1238 1239 1240 1241
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1242
	list_for_each_entry(cachep, &slab_caches, list) {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1258
			 * go.  slab_mutex is sufficient
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1273 1274 1275 1276
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1277
	int node = cpu_to_mem(cpu);
1278
	const struct cpumask *mask = cpumask_of_node(node);
1279

1280
	list_for_each_entry(cachep, &slab_caches, list) {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1300
		if (!cpumask_empty(mask)) {
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1330
	list_for_each_entry(cachep, &slab_caches, list) {
1331 1332 1333 1334 1335 1336 1337 1338
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1339
{
1340
	struct kmem_cache *cachep;
1341
	struct kmem_list3 *l3 = NULL;
1342
	int node = cpu_to_mem(cpu);
1343
	int err;
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1351 1352 1353
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1354 1355 1356 1357 1358

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1359
	list_for_each_entry(cachep, &slab_caches, list) {
1360 1361 1362 1363 1364
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1365
					cachep->batchcount, GFP_KERNEL);
1366 1367 1368 1369 1370
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1371
				0xbaadf00d, GFP_KERNEL);
1372 1373
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1374
				goto bad;
1375
			}
1376 1377
		}
		if (use_alien_caches) {
1378
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1379 1380 1381
			if (!alien) {
				kfree(shared);
				kfree(nc);
1382
				goto bad;
1383
			}
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1398
#ifdef CONFIG_NUMA
1399 1400 1401
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1402
		}
1403 1404 1405 1406
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1407 1408
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1409
	}
1410 1411
	init_node_lock_keys(node);

1412 1413
	return 0;
bad:
1414
	cpuup_canceled(cpu);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1427
		mutex_lock(&slab_mutex);
1428
		err = cpuup_prepare(cpu);
1429
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1430 1431
		break;
	case CPU_ONLINE:
1432
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1433 1434 1435
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1436
  	case CPU_DOWN_PREPARE:
1437
  	case CPU_DOWN_PREPARE_FROZEN:
1438
		/*
1439
		 * Shutdown cache reaper. Note that the slab_mutex is
1440 1441 1442 1443
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1444
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1445
		/* Now the cache_reaper is guaranteed to be not running. */
1446
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1447 1448
  		break;
  	case CPU_DOWN_FAILED:
1449
  	case CPU_DOWN_FAILED_FROZEN:
1450 1451
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1452
	case CPU_DEAD:
1453
	case CPU_DEAD_FROZEN:
1454 1455 1456 1457 1458 1459 1460 1461
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1462
		/* fall through */
1463
#endif
L
Linus Torvalds 已提交
1464
	case CPU_UP_CANCELED:
1465
	case CPU_UP_CANCELED_FROZEN:
1466
		mutex_lock(&slab_mutex);
1467
		cpuup_canceled(cpu);
1468
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1469 1470
		break;
	}
1471
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1472 1473
}

1474 1475 1476
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1477

1478 1479 1480 1481 1482 1483
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1484
 * Must hold slab_mutex.
1485 1486 1487 1488 1489 1490
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1491
	list_for_each_entry(cachep, &slab_caches, list) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1522
		mutex_lock(&slab_mutex);
1523
		ret = init_cache_nodelists_node(nid);
1524
		mutex_unlock(&slab_mutex);
1525 1526
		break;
	case MEM_GOING_OFFLINE:
1527
		mutex_lock(&slab_mutex);
1528
		ret = drain_cache_nodelists_node(nid);
1529
		mutex_unlock(&slab_mutex);
1530 1531 1532 1533 1534 1535 1536 1537
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1538
	return notifier_from_errno(ret);
1539 1540 1541
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1542 1543 1544
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1545 1546
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1547 1548 1549
{
	struct kmem_list3 *ptr;

1550
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1551 1552 1553
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1554 1555 1556 1557 1558
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1559 1560 1561 1562
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1579 1580 1581
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1582 1583 1584 1585 1586 1587
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1588
	int i;
1589
	int order;
P
Pekka Enberg 已提交
1590
	int node;
1591

1592 1593
	kmem_cache = &kmem_cache_boot;

1594
	if (num_possible_nodes() == 1)
1595 1596
		use_alien_caches = 0;

1597 1598 1599
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
1600
			kmem_cache->nodelists[i] = NULL;
1601
	}
1602
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1603 1604 1605

	/*
	 * Fragmentation resistance on low memory - only use bigger
1606 1607
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1608
	 */
1609
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1610
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1611 1612 1613

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1614 1615 1616
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1617 1618 1619
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1620
	 * 2) Create the first kmalloc cache.
1621
	 *    The struct kmem_cache for the new cache is allocated normally.
1622 1623 1624
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1625
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1626
	 *    kmalloc cache with kmalloc allocated arrays.
1627
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1628 1629
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1630 1631
	 */

1632
	node = numa_mem_id();
P
Pekka Enberg 已提交
1633

1634
	/* 1) create the kmem_cache */
1635
	INIT_LIST_HEAD(&slab_caches);
1636 1637 1638 1639
	list_add(&kmem_cache->list, &slab_caches);
	kmem_cache->colour_off = cache_line_size();
	kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
	kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1640

E
Eric Dumazet 已提交
1641
	/*
1642
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1643
	 */
1644
	kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1645
				  nr_node_ids * sizeof(struct kmem_list3 *);
1646 1647
	kmem_cache->object_size = kmem_cache->size;
	kmem_cache->size = ALIGN(kmem_cache->object_size,
A
Andrew Morton 已提交
1648
					cache_line_size());
1649 1650
	kmem_cache->reciprocal_buffer_size =
		reciprocal_value(kmem_cache->size);
L
Linus Torvalds 已提交
1651

1652
	for (order = 0; order < MAX_ORDER; order++) {
1653 1654 1655
		cache_estimate(order, kmem_cache->size,
			cache_line_size(), 0, &left_over, &kmem_cache->num);
		if (kmem_cache->num)
1656 1657
			break;
	}
1658 1659 1660 1661
	BUG_ON(!kmem_cache->num);
	kmem_cache->gfporder = order;
	kmem_cache->colour = left_over / kmem_cache->colour_off;
	kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
P
Pekka Enberg 已提交
1662
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1668 1669 1670 1671
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1672 1673
	 */

1674
	sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1675 1676 1677 1678 1679
	sizes[INDEX_AC].cs_cachep->name = names[INDEX_AC].name;
	sizes[INDEX_AC].cs_cachep->size = sizes[INDEX_AC].cs_size;
	sizes[INDEX_AC].cs_cachep->object_size = sizes[INDEX_AC].cs_size;
	sizes[INDEX_AC].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
	__kmem_cache_create(sizes[INDEX_AC].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1680
	list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
1681

A
Andrew Morton 已提交
1682
	if (INDEX_AC != INDEX_L3) {
1683
		sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1684 1685 1686 1687 1688
		sizes[INDEX_L3].cs_cachep->name = names[INDEX_L3].name;
		sizes[INDEX_L3].cs_cachep->size = sizes[INDEX_L3].cs_size;
		sizes[INDEX_L3].cs_cachep->object_size = sizes[INDEX_L3].cs_size;
		sizes[INDEX_L3].cs_cachep->align = ARCH_KMALLOC_MINALIGN;
		__kmem_cache_create(sizes[INDEX_L3].cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1689
		list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1690
	}
1691

1692 1693
	slab_early_init = 0;

L
Linus Torvalds 已提交
1694
	while (sizes->cs_size != ULONG_MAX) {
1695 1696
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1697 1698 1699
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1700 1701
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1702
		if (!sizes->cs_cachep) {
1703
			sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1704 1705 1706 1707 1708
			sizes->cs_cachep->name = names->name;
			sizes->cs_cachep->size = sizes->cs_size;
			sizes->cs_cachep->object_size = sizes->cs_size;
			sizes->cs_cachep->align = ARCH_KMALLOC_MINALIGN;
			__kmem_cache_create(sizes->cs_cachep, ARCH_KMALLOC_FLAGS|SLAB_PANIC);
1709
			list_add(&sizes->cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1710
		}
1711
#ifdef CONFIG_ZONE_DMA
1712
		sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1713 1714 1715 1716
		sizes->cs_dmacachep->name = names->name_dma;
		sizes->cs_dmacachep->size = sizes->cs_size;
		sizes->cs_dmacachep->object_size = sizes->cs_size;
		sizes->cs_dmacachep->align = ARCH_KMALLOC_MINALIGN;
1717
		__kmem_cache_create(sizes->cs_dmacachep,
1718
			       ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC);
1719
		list_add(&sizes->cs_dmacachep->list, &slab_caches);
1720
#endif
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1726
		struct array_cache *ptr;
1727

1728
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1729

1730 1731
		BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1732
		       sizeof(struct arraycache_init));
1733 1734 1735 1736 1737
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1738
		kmem_cache->array[smp_processor_id()] = ptr;
1739

1740
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1741

1742
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1743
		       != &initarray_generic.cache);
1744
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1745
		       sizeof(struct arraycache_init));
1746 1747 1748 1749 1750
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1751
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1752
		    ptr;
L
Linus Torvalds 已提交
1753
	}
1754 1755
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1756 1757
		int nid;

1758
		for_each_online_node(nid) {
1759
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1760

1761
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1762
				  &initkmem_list3[SIZE_AC + nid], nid);
1763 1764 1765

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1766
					  &initkmem_list3[SIZE_L3 + nid], nid);
1767 1768 1769
			}
		}
	}
L
Linus Torvalds 已提交
1770

1771
	slab_state = UP;
1772 1773 1774 1775 1776 1777
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1778
	slab_state = UP;
P
Peter Zijlstra 已提交
1779

1780
	/* 6) resize the head arrays to their final sizes */
1781 1782
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1783 1784
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1785
	mutex_unlock(&slab_mutex);
1786

1787 1788 1789
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1790 1791 1792
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1793 1794 1795
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1796 1797 1798
	 */
	register_cpu_notifier(&cpucache_notifier);

1799 1800 1801 1802 1803 1804 1805 1806
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1807 1808 1809
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815 1816
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1817 1818
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1819
	 */
1820
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1821
		start_cpu_timer(cpu);
1822 1823

	/* Done! */
1824
	slab_state = FULL;
L
Linus Torvalds 已提交
1825 1826 1827 1828
	return 0;
}
__initcall(cpucache_init);

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1841
		cachep->name, cachep->size, cachep->gfporder);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1875 1876 1877 1878 1879 1880 1881
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1882
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1883 1884
{
	struct page *page;
1885
	int nr_pages;
L
Linus Torvalds 已提交
1886 1887
	int i;

1888
#ifndef CONFIG_MMU
1889 1890 1891
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1892
	 */
1893
	flags |= __GFP_COMP;
1894
#endif
1895

1896
	flags |= cachep->allocflags;
1897 1898
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1899

L
Linus Torvalds 已提交
1900
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1901 1902 1903
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1904
		return NULL;
1905
	}
L
Linus Torvalds 已提交
1906

1907
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1908 1909 1910
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1911
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1912
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1913 1914 1915 1916 1917
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1918
	for (i = 0; i < nr_pages; i++) {
1919
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1920

1921 1922 1923 1924
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1925 1926 1927 1928 1929 1930 1931 1932
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1933

1934
	return page_address(page);
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939
}

/*
 * Interface to system's page release.
 */
1940
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1941
{
P
Pekka Enberg 已提交
1942
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1943 1944 1945
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1946
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1947

1948 1949 1950 1951 1952 1953
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1954
	while (i--) {
N
Nick Piggin 已提交
1955
		BUG_ON(!PageSlab(page));
1956
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1957
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1967
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1968
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1978
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1979
			    unsigned long caller)
L
Linus Torvalds 已提交
1980
{
1981
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1982

1983
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1984

P
Pekka Enberg 已提交
1985
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1986 1987
		return;

P
Pekka Enberg 已提交
1988 1989 1990 1991
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1999
				*addr++ = svalue;
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004 2005 2006
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
2007
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
2008 2009 2010
}
#endif

2011
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2012
{
2013
	int size = cachep->object_size;
2014
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2015 2016

	memset(addr, val, size);
P
Pekka Enberg 已提交
2017
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2023 2024 2025
	unsigned char error = 0;
	int bad_count = 0;

2026
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2027 2028 2029 2030 2031 2032
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2033 2034
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053
}
#endif

#if DEBUG

2054
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2060
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2061 2062
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2063 2064 2065 2066
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2067
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2068
		print_symbol("(%s)",
A
Andrew Morton 已提交
2069
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2070 2071
		printk("\n");
	}
2072
	realobj = (char *)objp + obj_offset(cachep);
2073
	size = cachep->object_size;
P
Pekka Enberg 已提交
2074
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2075 2076
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2077 2078
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2079 2080 2081 2082
		dump_line(realobj, i, limit);
	}
}

2083
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088
{
	char *realobj;
	int size, i;
	int lines = 0;

2089
	realobj = (char *)objp + obj_offset(cachep);
2090
	size = cachep->object_size;
L
Linus Torvalds 已提交
2091

P
Pekka Enberg 已提交
2092
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2093
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2094
		if (i == size - 1)
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2101
				printk(KERN_ERR
2102 2103
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2104 2105 2106
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2107
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2108
			limit = 16;
P
Pekka Enberg 已提交
2109 2110
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2123
		struct slab *slabp = virt_to_slab(objp);
2124
		unsigned int objnr;
L
Linus Torvalds 已提交
2125

2126
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2127
		if (objnr) {
2128
			objp = index_to_obj(cachep, slabp, objnr - 1);
2129
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2130
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2131
			       realobj, size);
L
Linus Torvalds 已提交
2132 2133
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2134
		if (objnr + 1 < cachep->num) {
2135
			objp = index_to_obj(cachep, slabp, objnr + 1);
2136
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2137
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2138
			       realobj, size);
L
Linus Torvalds 已提交
2139 2140 2141 2142 2143 2144
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2145
#if DEBUG
R
Rabin Vincent 已提交
2146
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2147 2148 2149
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2150
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2151 2152 2153

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2154
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2155
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2156
				kernel_map_pages(virt_to_page(objp),
2157
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2167
					   "was overwritten");
L
Linus Torvalds 已提交
2168 2169
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2170
					   "was overwritten");
L
Linus Torvalds 已提交
2171 2172
		}
	}
2173
}
L
Linus Torvalds 已提交
2174
#else
R
Rabin Vincent 已提交
2175
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2176 2177
{
}
L
Linus Torvalds 已提交
2178 2179
#endif

2180 2181 2182 2183 2184
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2185
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2186 2187
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2188
 */
2189
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2190 2191 2192
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2193
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2194 2195 2196
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2197
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2203 2204
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2205 2206 2207
	}
}

2208
/**
2209 2210 2211 2212 2213 2214 2215
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2216 2217 2218 2219 2220
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2221
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2222
			size_t size, size_t align, unsigned long flags)
2223
{
2224
	unsigned long offslab_limit;
2225
	size_t left_over = 0;
2226
	int gfporder;
2227

2228
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2229 2230 2231
		unsigned int num;
		size_t remainder;

2232
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2233 2234
		if (!num)
			continue;
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2248

2249
		/* Found something acceptable - save it away */
2250
		cachep->num = num;
2251
		cachep->gfporder = gfporder;
2252 2253
		left_over = remainder;

2254 2255 2256 2257 2258 2259 2260 2261
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2262 2263 2264 2265
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2266
		if (gfporder >= slab_max_order)
2267 2268
			break;

2269 2270 2271
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2272
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2273 2274 2275 2276 2277
			break;
	}
	return left_over;
}

2278
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2279
{
2280
	if (slab_state >= FULL)
2281
		return enable_cpucache(cachep, gfp);
2282

2283
	if (slab_state == DOWN) {
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2298
			slab_state = PARTIAL_L3;
2299
		else
2300
			slab_state = PARTIAL_ARRAYCACHE;
2301 2302
	} else {
		cachep->array[smp_processor_id()] =
2303
			kmalloc(sizeof(struct arraycache_init), gfp);
2304

2305
		if (slab_state == PARTIAL_ARRAYCACHE) {
2306
			set_up_list3s(cachep, SIZE_L3);
2307
			slab_state = PARTIAL_L3;
2308 2309
		} else {
			int node;
2310
			for_each_online_node(node) {
2311 2312
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2313
						gfp, node);
2314 2315 2316 2317 2318
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2319
	cachep->nodelists[numa_mem_id()]->next_reap =
2320 2321 2322 2323 2324 2325 2326 2327 2328
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2329
	return 0;
2330 2331
}

L
Linus Torvalds 已提交
2332
/**
2333
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2334 2335 2336 2337 2338 2339 2340 2341
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2342
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2356
int
2357
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2358 2359
{
	size_t left_over, slab_size, ralign;
2360
	gfp_t gfp;
2361
	int err;
2362
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2372 2373
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2374
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380 2381
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2382 2383
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2384
	 */
2385
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2386

A
Andrew Morton 已提交
2387 2388
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2389 2390 2391
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2392 2393 2394
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2395 2396
	}

A
Andrew Morton 已提交
2397 2398
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2399 2400
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2401 2402 2403 2404
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2405 2406
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2407
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2408 2409 2410 2411
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2412 2413

	/*
D
David Woodhouse 已提交
2414 2415 2416
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2417
	 */
D
David Woodhouse 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2428

2429
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2430 2431 2432
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2433
	/* 3) caller mandated alignment */
2434 2435
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2436
	}
2437 2438
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2439
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2440
	/*
2441
	 * 4) Store it.
L
Linus Torvalds 已提交
2442
	 */
2443
	cachep->align = ralign;
L
Linus Torvalds 已提交
2444

2445 2446 2447 2448 2449
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2450
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
L
Linus Torvalds 已提交
2451 2452
#if DEBUG

2453 2454 2455 2456
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2457 2458
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2459 2460
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2461 2462
	}
	if (flags & SLAB_STORE_USER) {
2463
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2464 2465
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2466
		 */
D
David Woodhouse 已提交
2467 2468 2469 2470
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2471 2472
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2473
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2474 2475 2476
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481
		size = PAGE_SIZE;
	}
#endif
#endif

2482 2483 2484
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2485 2486
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2487
	 */
2488 2489
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2496
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2497

2498
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2499

2500
	if (!cachep->num)
2501
		return -E2BIG;
L
Linus Torvalds 已提交
2502

P
Pekka Enberg 已提交
2503
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2504
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2517 2518
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2519 2520 2521 2522 2523 2524 2525 2526 2527

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2528 2529 2530 2531
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2532 2533
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2534
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2535 2536
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2537
	cachep->allocflags = 0;
2538
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2539
		cachep->allocflags |= GFP_DMA;
2540
	cachep->size = size;
2541
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2542

2543
	if (flags & CFLGS_OFF_SLAB) {
2544
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2545 2546 2547 2548 2549 2550 2551
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2552
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2553
	}
L
Linus Torvalds 已提交
2554

2555 2556
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2557
		__kmem_cache_shutdown(cachep);
2558
		return err;
2559
	}
L
Linus Torvalds 已提交
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

2571
	return 0;
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2585
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2586 2587 2588
{
#ifdef CONFIG_SMP
	check_irq_off();
2589
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2590 2591
#endif
}
2592

2593
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2594 2595 2596 2597 2598 2599 2600
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2601 2602 2603 2604
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2605
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2606 2607
#endif

2608 2609 2610 2611
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2612 2613
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2614
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2615
	struct array_cache *ac;
2616
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2617 2618

	check_irq_off();
2619
	ac = cpu_cache_get(cachep);
2620 2621 2622
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2623 2624 2625
	ac->avail = 0;
}

2626
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2627
{
2628 2629 2630
	struct kmem_list3 *l3;
	int node;

2631
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2632
	check_irq_on();
P
Pekka Enberg 已提交
2633
	for_each_online_node(node) {
2634
		l3 = cachep->nodelists[node];
2635 2636 2637 2638 2639 2640 2641
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2642
			drain_array(cachep, l3, l3->shared, 1, node);
2643
	}
L
Linus Torvalds 已提交
2644 2645
}

2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2654
{
2655 2656
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2657 2658
	struct slab *slabp;

2659 2660
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2661

2662
		spin_lock_irq(&l3->list_lock);
2663
		p = l3->slabs_free.prev;
2664 2665 2666 2667
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2668

2669
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2670
#if DEBUG
2671
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2672 2673
#endif
		list_del(&slabp->list);
2674 2675 2676 2677 2678
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2679
		spin_unlock_irq(&l3->list_lock);
2680 2681
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2682
	}
2683 2684
out:
	return nr_freed;
L
Linus Torvalds 已提交
2685 2686
}

2687
/* Called with slab_mutex held to protect against cpu hotplug */
2688
static int __cache_shrink(struct kmem_cache *cachep)
2689 2690 2691 2692 2693 2694 2695 2696 2697
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2698 2699 2700 2701 2702 2703 2704
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2705 2706 2707 2708
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714 2715
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2716
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2717
{
2718
	int ret;
2719
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2720

2721
	get_online_cpus();
2722
	mutex_lock(&slab_mutex);
2723
	ret = __cache_shrink(cachep);
2724
	mutex_unlock(&slab_mutex);
2725
	put_online_cpus();
2726
	return ret;
L
Linus Torvalds 已提交
2727 2728 2729
}
EXPORT_SYMBOL(kmem_cache_shrink);

2730
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2731
{
2732 2733 2734
	int i;
	struct kmem_list3 *l3;
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2735

2736 2737
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2738

2739 2740
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2752 2753
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2765
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2766 2767
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2768 2769
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2770

L
Linus Torvalds 已提交
2771 2772
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2773
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2774
					      local_flags, nodeid);
2775 2776 2777 2778 2779 2780
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2781 2782
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2783 2784 2785
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2786
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2787 2788 2789 2790
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2791
	slabp->s_mem = objp + colour_off;
2792
	slabp->nodeid = nodeid;
2793
	slabp->free = 0;
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2799
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2800 2801
}

2802
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2803
			    struct slab *slabp)
L
Linus Torvalds 已提交
2804 2805 2806 2807
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2808
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2821 2822 2823
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2824 2825
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2826
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2827 2828 2829 2830

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2831
					   " end of an object");
L
Linus Torvalds 已提交
2832 2833
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2834
					   " start of an object");
L
Linus Torvalds 已提交
2835
		}
2836
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2837
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2838
			kernel_map_pages(virt_to_page(objp),
2839
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2840 2841
#else
		if (cachep->ctor)
2842
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2843
#endif
P
Pekka Enberg 已提交
2844
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2845
	}
P
Pekka Enberg 已提交
2846
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2847 2848
}

2849
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2850
{
2851 2852
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2853
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2854
		else
2855
			BUG_ON(cachep->allocflags & GFP_DMA);
2856
	}
L
Linus Torvalds 已提交
2857 2858
}

A
Andrew Morton 已提交
2859 2860
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2861
{
2862
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2876 2877
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2878
{
2879
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2880 2881 2882 2883 2884

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2885
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2886
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2887
				"'%s', objp %p\n", cachep->name, objp);
2888 2889 2890 2891 2892 2893 2894 2895
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2896 2897 2898
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2899
 * virtual address for kfree, ksize, and slab debugging.
2900 2901 2902
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2903
{
2904
	int nr_pages;
L
Linus Torvalds 已提交
2905 2906
	struct page *page;

2907
	page = virt_to_page(addr);
2908

2909
	nr_pages = 1;
2910
	if (likely(!PageCompound(page)))
2911 2912
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2913
	do {
C
Christoph Lameter 已提交
2914 2915
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2916
		page++;
2917
	} while (--nr_pages);
L
Linus Torvalds 已提交
2918 2919 2920 2921 2922 2923
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2924 2925
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2926
{
P
Pekka Enberg 已提交
2927 2928 2929
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2930
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2931

A
Andrew Morton 已提交
2932 2933 2934
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2935
	 */
C
Christoph Lameter 已提交
2936 2937
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2938

2939
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2940
	check_irq_off();
2941 2942
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2943 2944

	/* Get colour for the slab, and cal the next value. */
2945 2946 2947 2948 2949
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2950

2951
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2964 2965 2966
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2967
	 */
2968
	if (!objp)
2969
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2970
	if (!objp)
L
Linus Torvalds 已提交
2971 2972 2973
		goto failed;

	/* Get slab management. */
2974
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2975
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2976
	if (!slabp)
L
Linus Torvalds 已提交
2977 2978
		goto opps1;

2979
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2980

C
Christoph Lameter 已提交
2981
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2982 2983 2984 2985

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2986
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2987 2988

	/* Make slab active. */
2989
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2990
	STATS_INC_GROWN(cachep);
2991 2992
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2993
	return 1;
A
Andrew Morton 已提交
2994
opps1:
L
Linus Torvalds 已提交
2995
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2996
failed:
L
Linus Torvalds 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3013 3014
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3015 3016 3017
	}
}

3018 3019
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3020
	unsigned long long redzone1, redzone2;
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3036
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3037 3038 3039
			obj, redzone1, redzone2);
}

3040
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3041
				   unsigned long caller)
L
Linus Torvalds 已提交
3042 3043 3044 3045 3046
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3047 3048
	BUG_ON(virt_to_cache(objp) != cachep);

3049
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3050
	kfree_debugcheck(objp);
3051
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3052

C
Christoph Lameter 已提交
3053
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3054 3055

	if (cachep->flags & SLAB_RED_ZONE) {
3056
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3057 3058 3059 3060
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
3061
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3062

3063
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3064 3065

	BUG_ON(objnr >= cachep->num);
3066
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3067

3068 3069 3070
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3071 3072
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3073
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3074
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
3075
			kernel_map_pages(virt_to_page(objp),
3076
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3087
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3088 3089 3090
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3091

L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097 3098
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3099 3100
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3101 3102 3103
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3104 3105 3106
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3116 3117
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3118 3119 3120 3121
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3122 3123
	int node;

L
Linus Torvalds 已提交
3124
	check_irq_off();
3125
	node = numa_mem_id();
3126 3127 3128
	if (unlikely(force_refill))
		goto force_grow;
retry:
3129
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3130 3131
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3132 3133 3134 3135
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3136 3137 3138
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3139
	l3 = cachep->nodelists[node];
3140 3141 3142

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3143

3144
	/* See if we can refill from the shared array */
3145 3146
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3147
		goto alloc_done;
3148
	}
3149

L
Linus Torvalds 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3165 3166 3167 3168 3169 3170

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3171
		BUG_ON(slabp->inuse >= cachep->num);
3172

L
Linus Torvalds 已提交
3173 3174 3175 3176 3177
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3178 3179
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3191
must_grow:
L
Linus Torvalds 已提交
3192
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3193
alloc_done:
3194
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3195 3196 3197

	if (unlikely(!ac->avail)) {
		int x;
3198
force_grow:
3199
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3200

A
Andrew Morton 已提交
3201
		/* cache_grow can reenable interrupts, then ac could change. */
3202
		ac = cpu_cache_get(cachep);
3203
		node = numa_mem_id();
3204 3205 3206

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3207 3208
			return NULL;

A
Andrew Morton 已提交
3209
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3210 3211 3212
			goto retry;
	}
	ac->touched = 1;
3213 3214

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3215 3216
}

A
Andrew Morton 已提交
3217 3218
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3219 3220 3221 3222 3223 3224 3225 3226
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3227
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3228
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3229
{
P
Pekka Enberg 已提交
3230
	if (!objp)
L
Linus Torvalds 已提交
3231
		return objp;
P
Pekka Enberg 已提交
3232
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3233
#ifdef CONFIG_DEBUG_PAGEALLOC
3234
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3235
			kernel_map_pages(virt_to_page(objp),
3236
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3237 3238 3239 3240 3241 3242 3243 3244
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3245
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3246 3247

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3248 3249 3250 3251
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3252
			printk(KERN_ERR
3253
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3254 3255
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3256 3257 3258 3259
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3260 3261 3262 3263 3264
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3265
		slabp = virt_to_head_page(objp)->slab_page;
3266
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3267 3268 3269
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3270
	objp += obj_offset(cachep);
3271
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3272
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3273 3274
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3275
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3276
		       objp, (int)ARCH_SLAB_MINALIGN);
3277
	}
L
Linus Torvalds 已提交
3278 3279 3280 3281 3282 3283
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3284
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3285
{
3286
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3287
		return false;
3288

3289
	return should_failslab(cachep->object_size, flags, cachep->flags);
3290 3291
}

3292
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3293
{
P
Pekka Enberg 已提交
3294
	void *objp;
L
Linus Torvalds 已提交
3295
	struct array_cache *ac;
3296
	bool force_refill = false;
L
Linus Torvalds 已提交
3297

3298
	check_irq_off();
3299

3300
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3301 3302
	if (likely(ac->avail)) {
		ac->touched = 1;
3303 3304
		objp = ac_get_obj(cachep, ac, flags, false);

3305
		/*
3306 3307
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3308
		 */
3309 3310 3311 3312 3313
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3314
	}
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3325 3326 3327 3328 3329
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3330 3331
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3332 3333 3334
	return objp;
}

3335
#ifdef CONFIG_NUMA
3336
/*
3337
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3338 3339 3340 3341 3342 3343 3344 3345
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3346
	if (in_interrupt() || (flags & __GFP_THISNODE))
3347
		return NULL;
3348
	nid_alloc = nid_here = numa_mem_id();
3349
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3350
		nid_alloc = cpuset_slab_spread_node();
3351
	else if (current->mempolicy)
3352
		nid_alloc = slab_node();
3353
	if (nid_alloc != nid_here)
3354
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3355 3356 3357
	return NULL;
}

3358 3359
/*
 * Fallback function if there was no memory available and no objects on a
3360 3361 3362 3363 3364
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3365
 */
3366
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3367
{
3368 3369
	struct zonelist *zonelist;
	gfp_t local_flags;
3370
	struct zoneref *z;
3371 3372
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3373
	void *obj = NULL;
3374
	int nid;
3375
	unsigned int cpuset_mems_cookie;
3376 3377 3378 3379

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3380
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3381

3382 3383
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3384
	zonelist = node_zonelist(slab_node(), flags);
3385

3386 3387 3388 3389 3390
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3391 3392
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3393

3394
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3395
			cache->nodelists[nid] &&
3396
			cache->nodelists[nid]->free_objects) {
3397 3398
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3399 3400 3401
				if (obj)
					break;
		}
3402 3403
	}

3404
	if (!obj) {
3405 3406 3407 3408 3409 3410
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3411 3412 3413
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3414
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3415 3416
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3433
				/* cache_grow already freed obj */
3434 3435 3436
				obj = NULL;
			}
		}
3437
	}
3438 3439 3440

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3441 3442 3443
	return obj;
}

3444 3445
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3446
 */
3447
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3448
				int nodeid)
3449 3450
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3451 3452 3453 3454 3455 3456 3457 3458
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3459
retry:
3460
	check_irq_off();
P
Pekka Enberg 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3480
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3481 3482 3483 3484 3485
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3486
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3487
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3488
	else
P
Pekka Enberg 已提交
3489
		list_add(&slabp->list, &l3->slabs_partial);
3490

P
Pekka Enberg 已提交
3491 3492
	spin_unlock(&l3->list_lock);
	goto done;
3493

A
Andrew Morton 已提交
3494
must_grow:
P
Pekka Enberg 已提交
3495
	spin_unlock(&l3->list_lock);
3496
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3497 3498
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3499

3500
	return fallback_alloc(cachep, flags);
3501

A
Andrew Morton 已提交
3502
done:
P
Pekka Enberg 已提交
3503
	return obj;
3504
}
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3519
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3520
		   unsigned long caller)
3521 3522 3523
{
	unsigned long save_flags;
	void *ptr;
3524
	int slab_node = numa_mem_id();
3525

3526
	flags &= gfp_allowed_mask;
3527

3528 3529
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3530
	if (slab_should_failslab(cachep, flags))
3531 3532
		return NULL;

3533 3534 3535
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3536
	if (nodeid == NUMA_NO_NODE)
3537
		nodeid = slab_node;
3538 3539 3540 3541 3542 3543 3544

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3545
	if (nodeid == slab_node) {
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3561
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3562
				 flags);
3563

P
Pekka Enberg 已提交
3564
	if (likely(ptr))
3565
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3566

3567
	if (unlikely((flags & __GFP_ZERO) && ptr))
3568
		memset(ptr, 0, cachep->object_size);
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3589 3590
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3606
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3607 3608 3609 3610
{
	unsigned long save_flags;
	void *objp;

3611
	flags &= gfp_allowed_mask;
3612

3613 3614
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3615
	if (slab_should_failslab(cachep, flags))
3616 3617
		return NULL;

3618 3619 3620 3621 3622
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3623
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3624
				 flags);
3625 3626
	prefetchw(objp);

P
Pekka Enberg 已提交
3627
	if (likely(objp))
3628
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3629

3630
	if (unlikely((flags & __GFP_ZERO) && objp))
3631
		memset(objp, 0, cachep->object_size);
3632

3633 3634
	return objp;
}
3635 3636 3637 3638

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3639
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3640
		       int node)
L
Linus Torvalds 已提交
3641 3642
{
	int i;
3643
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3644 3645

	for (i = 0; i < nr_objects; i++) {
3646
		void *objp;
L
Linus Torvalds 已提交
3647 3648
		struct slab *slabp;

3649 3650 3651
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3652
		slabp = virt_to_slab(objp);
3653
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3654
		list_del(&slabp->list);
3655
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3656
		check_slabp(cachep, slabp);
3657
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3658
		STATS_DEC_ACTIVE(cachep);
3659
		l3->free_objects++;
L
Linus Torvalds 已提交
3660 3661 3662 3663
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3664 3665
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3666 3667 3668 3669 3670 3671
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3672 3673
				slab_destroy(cachep, slabp);
			} else {
3674
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3681
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3682 3683 3684 3685
		}
	}
}

3686
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3687 3688
{
	int batchcount;
3689
	struct kmem_list3 *l3;
3690
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3691 3692 3693 3694 3695 3696

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3697
	l3 = cachep->nodelists[node];
3698
	spin_lock(&l3->list_lock);
3699 3700
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3701
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3702 3703 3704
		if (max) {
			if (batchcount > max)
				batchcount = max;
3705
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3706
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3707 3708 3709 3710 3711
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3712
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3713
free_done:
L
Linus Torvalds 已提交
3714 3715 3716 3717 3718
#if STATS
	{
		int i = 0;
		struct list_head *p;

3719 3720
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3732
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3733
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3734
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3735 3736 3737
}

/*
A
Andrew Morton 已提交
3738 3739
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3740
 */
3741
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3742
				unsigned long caller)
L
Linus Torvalds 已提交
3743
{
3744
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3745 3746

	check_irq_off();
3747
	kmemleak_free_recursive(objp, cachep->flags);
3748
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3749

3750
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3751

3752 3753 3754 3755 3756 3757 3758
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3759
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3760 3761
		return;

L
Linus Torvalds 已提交
3762 3763 3764 3765 3766 3767
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3768

3769
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3780
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3781
{
3782
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3783

3784
	trace_kmem_cache_alloc(_RET_IP_, ret,
3785
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3786 3787

	return ret;
L
Linus Torvalds 已提交
3788 3789 3790
}
EXPORT_SYMBOL(kmem_cache_alloc);

3791
#ifdef CONFIG_TRACING
3792
void *
3793
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3794
{
3795 3796
	void *ret;

3797
	ret = slab_alloc(cachep, flags, _RET_IP_);
3798 3799

	trace_kmalloc(_RET_IP_, ret,
3800
		      size, cachep->size, flags);
3801
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3802
}
3803
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3804 3805
#endif

L
Linus Torvalds 已提交
3806
#ifdef CONFIG_NUMA
3807 3808
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3809
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3810

3811
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3812
				    cachep->object_size, cachep->size,
3813
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3814 3815

	return ret;
3816
}
L
Linus Torvalds 已提交
3817 3818
EXPORT_SYMBOL(kmem_cache_alloc_node);

3819
#ifdef CONFIG_TRACING
3820
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3821
				  gfp_t flags,
3822 3823
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3824
{
3825 3826
	void *ret;

3827
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3828

3829
	trace_kmalloc_node(_RET_IP_, ret,
3830
			   size, cachep->size,
3831 3832
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3833
}
3834
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3835 3836
#endif

3837
static __always_inline void *
3838
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3839
{
3840
	struct kmem_cache *cachep;
3841 3842

	cachep = kmem_find_general_cachep(size, flags);
3843 3844
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3845
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3846
}
3847

3848
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3849 3850
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3851
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3852
}
3853
EXPORT_SYMBOL(__kmalloc_node);
3854 3855

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3856
		int node, unsigned long caller)
3857
{
3858
	return __do_kmalloc_node(size, flags, node, caller);
3859 3860 3861 3862 3863
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3864
	return __do_kmalloc_node(size, flags, node, 0);
3865 3866
}
EXPORT_SYMBOL(__kmalloc_node);
3867
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3868
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3869 3870

/**
3871
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3872
 * @size: how many bytes of memory are required.
3873
 * @flags: the type of memory to allocate (see kmalloc).
3874
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3875
 */
3876
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3877
					  unsigned long caller)
L
Linus Torvalds 已提交
3878
{
3879
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3880
	void *ret;
L
Linus Torvalds 已提交
3881

3882 3883 3884 3885 3886 3887
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3888 3889
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3890
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3891

3892
	trace_kmalloc(caller, ret,
3893
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3894 3895

	return ret;
3896 3897 3898
}


3899
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3900 3901
void *__kmalloc(size_t size, gfp_t flags)
{
3902
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3903 3904 3905
}
EXPORT_SYMBOL(__kmalloc);

3906
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3907
{
3908
	return __do_kmalloc(size, flags, caller);
3909 3910
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3911 3912 3913 3914

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3915
	return __do_kmalloc(size, flags, 0);
3916 3917
}
EXPORT_SYMBOL(__kmalloc);
3918 3919
#endif

L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926 3927
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3928
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3929 3930 3931 3932
{
	unsigned long flags;

	local_irq_save(flags);
3933
	debug_check_no_locks_freed(objp, cachep->object_size);
3934
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3935
		debug_check_no_obj_freed(objp, cachep->object_size);
3936
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3937
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3938

3939
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3940 3941 3942 3943 3944 3945 3946
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3947 3948
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3954
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3955 3956
	unsigned long flags;

3957 3958
	trace_kfree(_RET_IP_, objp);

3959
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3960 3961 3962
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3963
	c = virt_to_cache(objp);
3964 3965 3966
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3967
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3968 3969 3970 3971
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3972
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3973
{
3974
	return cachep->object_size;
L
Linus Torvalds 已提交
3975 3976 3977
}
EXPORT_SYMBOL(kmem_cache_size);

3978
/*
S
Simon Arlott 已提交
3979
 * This initializes kmem_list3 or resizes various caches for all nodes.
3980
 */
3981
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3982 3983 3984
{
	int node;
	struct kmem_list3 *l3;
3985
	struct array_cache *new_shared;
3986
	struct array_cache **new_alien = NULL;
3987

3988
	for_each_online_node(node) {
3989

3990
                if (use_alien_caches) {
3991
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3992 3993 3994
                        if (!new_alien)
                                goto fail;
                }
3995

3996 3997 3998
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3999
				cachep->shared*cachep->batchcount,
4000
					0xbaadf00d, gfp);
4001 4002 4003 4004
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4005
		}
4006

A
Andrew Morton 已提交
4007 4008
		l3 = cachep->nodelists[node];
		if (l3) {
4009 4010
			struct array_cache *shared = l3->shared;

4011 4012
			spin_lock_irq(&l3->list_lock);

4013
			if (shared)
4014 4015
				free_block(cachep, shared->entry,
						shared->avail, node);
4016

4017 4018
			l3->shared = new_shared;
			if (!l3->alien) {
4019 4020 4021
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4022
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4023
					cachep->batchcount + cachep->num;
4024
			spin_unlock_irq(&l3->list_lock);
4025
			kfree(shared);
4026 4027 4028
			free_alien_cache(new_alien);
			continue;
		}
4029
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4030 4031 4032
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4033
			goto fail;
4034
		}
4035 4036 4037

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4038
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4039
		l3->shared = new_shared;
4040
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4041
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4042
					cachep->batchcount + cachep->num;
4043 4044
		cachep->nodelists[node] = l3;
	}
4045
	return 0;
4046

A
Andrew Morton 已提交
4047
fail:
4048
	if (!cachep->list.next) {
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4063
	return -ENOMEM;
4064 4065
}

L
Linus Torvalds 已提交
4066
struct ccupdate_struct {
4067
	struct kmem_cache *cachep;
4068
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4069 4070 4071 4072
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4073
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4074 4075 4076
	struct array_cache *old;

	check_irq_off();
4077
	old = cpu_cache_get(new->cachep);
4078

L
Linus Torvalds 已提交
4079 4080 4081 4082
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4083
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4084
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4085
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4086
{
4087
	struct ccupdate_struct *new;
4088
	int i;
L
Linus Torvalds 已提交
4089

4090 4091
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4092 4093 4094
	if (!new)
		return -ENOMEM;

4095
	for_each_online_cpu(i) {
4096
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4097
						batchcount, gfp);
4098
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4099
			for (i--; i >= 0; i--)
4100 4101
				kfree(new->new[i]);
			kfree(new);
4102
			return -ENOMEM;
L
Linus Torvalds 已提交
4103 4104
		}
	}
4105
	new->cachep = cachep;
L
Linus Torvalds 已提交
4106

4107
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4108

L
Linus Torvalds 已提交
4109 4110 4111
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4112
	cachep->shared = shared;
L
Linus Torvalds 已提交
4113

4114
	for_each_online_cpu(i) {
4115
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4116 4117
		if (!ccold)
			continue;
4118 4119 4120
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4121 4122
		kfree(ccold);
	}
4123
	kfree(new);
4124
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4125 4126
}

4127
/* Called with slab_mutex held always */
4128
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4129 4130 4131 4132
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4133 4134
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4135 4136
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4137
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4138 4139 4140 4141
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4142
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4143
		limit = 1;
4144
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4145
		limit = 8;
4146
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4147
		limit = 24;
4148
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4149 4150 4151 4152
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4153 4154
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160 4161 4162
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4163
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4164 4165 4166
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4167 4168 4169
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4170 4171 4172 4173
	 */
	if (limit > 32)
		limit = 32;
#endif
4174
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4175 4176
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4177
		       cachep->name, -err);
4178
	return err;
L
Linus Torvalds 已提交
4179 4180
}

4181 4182
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4183 4184
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4185
 */
4186
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4187
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4188 4189 4190
{
	int tofree;

4191 4192
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4193 4194
	if (ac->touched && !force) {
		ac->touched = 0;
4195
	} else {
4196
		spin_lock_irq(&l3->list_lock);
4197 4198 4199 4200 4201 4202 4203 4204 4205
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4206
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4207 4208 4209 4210 4211
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4212
 * @w: work descriptor
L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4219 4220
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4221
 */
4222
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4223
{
4224
	struct kmem_cache *searchp;
4225
	struct kmem_list3 *l3;
4226
	int node = numa_mem_id();
4227
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4228

4229
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4230
		/* Give up. Setup the next iteration. */
4231
		goto out;
L
Linus Torvalds 已提交
4232

4233
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4234 4235
		check_irq_on();

4236 4237 4238 4239 4240
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4241
		l3 = searchp->nodelists[node];
4242

4243
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4244

4245
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4246

4247 4248 4249 4250
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4251
		if (time_after(l3->next_reap, jiffies))
4252
			goto next;
L
Linus Torvalds 已提交
4253

4254
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4255

4256
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4257

4258
		if (l3->free_touched)
4259
			l3->free_touched = 0;
4260 4261
		else {
			int freed;
L
Linus Torvalds 已提交
4262

4263 4264 4265 4266
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4267
next:
L
Linus Torvalds 已提交
4268 4269 4270
		cond_resched();
	}
	check_irq_on();
4271
	mutex_unlock(&slab_mutex);
4272
	next_reap_node();
4273
out:
A
Andrew Morton 已提交
4274
	/* Set up the next iteration */
4275
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4276 4277
}

4278
#ifdef CONFIG_SLABINFO
4279
int slabinfo_show(struct seq_file *m, void *p)
L
Linus Torvalds 已提交
4280
{
4281
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4282 4283 4284 4285 4286
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4287
	const char *name;
L
Linus Torvalds 已提交
4288
	char *error = NULL;
4289 4290
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4291 4292 4293

	active_objs = 0;
	num_slabs = 0;
4294 4295 4296 4297 4298
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4299 4300
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4301

4302
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4303 4304 4305 4306 4307
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4308
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4309 4310 4311 4312 4313 4314 4315
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4316
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4317 4318 4319 4320 4321
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4322 4323
		if (l3->shared)
			shared_avail += l3->shared->avail;
4324

4325
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4326
	}
P
Pekka Enberg 已提交
4327 4328
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4329
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4330 4331
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4332
	name = cachep->name;
L
Linus Torvalds 已提交
4333 4334 4335 4336
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4337
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4338
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4339
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4340
		   cachep->limit, cachep->batchcount, cachep->shared);
4341
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4342
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4343
#if STATS
P
Pekka Enberg 已提交
4344
	{			/* list3 stats */
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4352
		unsigned long node_frees = cachep->node_frees;
4353
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4354

J
Joe Perches 已提交
4355 4356 4357 4358 4359
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4369
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4384
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4385
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4386
{
P
Pekka Enberg 已提交
4387
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4388
	int limit, batchcount, shared, res;
4389
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4390

L
Linus Torvalds 已提交
4391 4392 4393 4394
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4395
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4406
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4407
	res = -EINVAL;
4408
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4409
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4410 4411
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4412
				res = 0;
L
Linus Torvalds 已提交
4413
			} else {
4414
				res = do_tune_cpucache(cachep, limit,
4415 4416
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4417 4418 4419 4420
			}
			break;
		}
	}
4421
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4422 4423 4424 4425
	if (res >= 0)
		res = count;
	return res;
}
4426 4427 4428 4429 4430

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4431 4432
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4471
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4483
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4484

4485
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4486
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4487
		if (modname[0])
4488 4489 4490 4491 4492 4493 4494 4495 4496
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4497
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4522
		list_for_each_entry(slabp, &l3->slabs_full, list)
4523
			handle_slab(n, cachep, slabp);
4524
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4525 4526 4527 4528 4529 4530
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4531
		mutex_unlock(&slab_mutex);
4532 4533 4534 4535
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4536
			mutex_lock(&slab_mutex);
4537 4538 4539 4540
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4541
		mutex_lock(&slab_mutex);
4542 4543 4544 4545 4546 4547 4548 4549 4550
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4551

4552 4553 4554
	return 0;
}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4565
static const struct seq_operations slabstats_op = {
4566 4567 4568 4569 4570
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4601
#endif
4602 4603 4604
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4605 4606
#endif

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4619
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4620
{
4621 4622
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4623
		return 0;
L
Linus Torvalds 已提交
4624

4625
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4626
}
K
Kirill A. Shutemov 已提交
4627
EXPORT_SYMBOL(ksize);