slab.c 99.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
313
 * This function must be completely optimized away if
314 315 316 317
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
318
static __always_inline int index_of(const size_t size)
319
{
320 321
	extern void __bad_size(void);

322 323 324 325 326 327 328 329 330 331
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
332
		__bad_size();
333
	} else
334
		__bad_size();
335 336 337 338 339
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
340

P
Pekka Enberg 已提交
341
static void kmem_list3_init(struct kmem_list3 *parent)
342 343 344 345 346 347
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
348
	parent->colour_next = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
366 367

/*
368
 * struct kmem_cache
L
Linus Torvalds 已提交
369 370 371
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
372

373
struct kmem_cache {
L
Linus Torvalds 已提交
374
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
375 376 377 378
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
379
	unsigned int buffer_size;
380
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
381 382 383 384
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
385 386 387

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
388
	unsigned int gfporder;
L
Linus Torvalds 已提交
389 390

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
391
	gfp_t gfpflags;
L
Linus Torvalds 已提交
392

P
Pekka Enberg 已提交
393 394
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
396 397
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
398 399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
401 402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404 405

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
406 407
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
408 409 410

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
424 425
#endif
#if DEBUG
426 427 428 429 430 431 432 433
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441 442 443
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
444
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
461
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
480
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
504
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
505 506
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
507
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
508
 * 		redzone word.
509 510 511
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
512
 */
513
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
514
{
515
	return cachep->obj_offset;
L
Linus Torvalds 已提交
516 517
}

518
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_size;
L
Linus Torvalds 已提交
521 522
}

523
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
524 525
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
527 528
}

529
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
530 531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
533
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
534
					 2 * BYTES_PER_WORD);
535
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
536 537
}

538
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
539 540
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
542 543 544 545
}

#else

546 547
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

576
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
577 578 579
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
599

600 601 602 603 604 605 606 607 608 609 610 611
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
630
	{NULL,}
L
Linus Torvalds 已提交
631 632 633 634
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
635
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
636
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
637
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
638 639

/* internal cache of cache description objs */
640
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
641 642 643
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
644
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
645 646 647
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
648
#if DEBUG
649
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
650 651 652 653
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
654
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
671 672
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
673 674 675 676 677
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

678 679
static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
680
static void cache_reap(void *unused);
681
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
682

683
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
684 685 686 687
{
	return cachep->array[smp_processor_id()];
}

688
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
689 690 691 692 693
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
694 695 696
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
697
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
698 699 700 701 702
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
703
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
704 705 706 707 708 709 710 711
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

712
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
713 714 715 716 717
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

718
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
719
{
720 721
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
722

723 724 725 726 727 728 729 730 731
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
781 782 783 784
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

785
static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
L
Linus Torvalds 已提交
786 787
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
788
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	dump_stack();
}

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

814
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
815
					    int batchcount)
L
Linus Torvalds 已提交
816
{
P
Pekka Enberg 已提交
817
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
818 819
	struct array_cache *nc = NULL;

820
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
821 822 823 824 825
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
826
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
827 828 829 830
	}
	return nc;
}

831
#ifdef CONFIG_NUMA
832
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
833

P
Pekka Enberg 已提交
834
static struct array_cache **alloc_alien_cache(int node, int limit)
835 836
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
837
	int memsize = sizeof(void *) * MAX_NUMNODES;
838 839 840 841 842 843 844 845 846 847 848 849 850
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
851
				for (i--; i <= 0; i--)
852 853 854 855 856 857 858 859 860
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
861
static void free_alien_cache(struct array_cache **ac_ptr)
862 863 864 865 866 867 868
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
869
	    kfree(ac_ptr[i]);
870 871 872 873

	kfree(ac_ptr);
}

874
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
875
				struct array_cache *ac, int node)
876 877 878 879 880
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
881
		free_block(cachep, ac->entry, ac->avail, node);
882 883 884 885 886
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

887
static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
888
{
P
Pekka Enberg 已提交
889
	int i = 0;
890 891 892 893
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
894
		ac = alien[i];
895 896 897 898 899 900 901 902
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
903

904 905
#define drain_alien_cache(cachep, alien) do { } while (0)

906 907 908 909 910
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

911 912 913
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
914

915 916
#endif

L
Linus Torvalds 已提交
917
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
918
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
919 920
{
	long cpu = (long)hcpu;
921
	struct kmem_cache *cachep;
922 923 924
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
925 926 927

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
928
		mutex_lock(&cache_chain_mutex);
929 930 931 932 933 934
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
935
		list_for_each_entry(cachep, &cache_chain, next) {
936 937 938 939 940 941
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
942
							GFP_KERNEL, node)))
943 944 945
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
946
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
947

948 949 950 951 952
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
953 954
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
955

956 957
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
958 959
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
960 961 962 963
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
964
		   & array cache's */
965
		list_for_each_entry(cachep, &cache_chain, next) {
966
			struct array_cache *nc;
967 968
			struct array_cache *shared;
			struct array_cache **alien;
969

970
			nc = alloc_arraycache(node, cachep->limit,
971
						cachep->batchcount);
L
Linus Torvalds 已提交
972 973
			if (!nc)
				goto bad;
974 975 976 977 978
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
979

980 981 982
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
983 984
			cachep->array[cpu] = nc;

985 986 987
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

988 989 990 991 992 993 994 995
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
996
			}
997 998 999 1000 1001 1002 1003 1004 1005 1006
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1007
		}
I
Ingo Molnar 已提交
1008
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1015 1016 1017 1018 1019 1020 1021 1022
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1023 1024
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1025
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1026 1027 1028

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1029 1030
			struct array_cache *shared;
			struct array_cache **alien;
1031
			cpumask_t mask;
L
Linus Torvalds 已提交
1032

1033
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1034 1035 1036
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1037 1038 1039
			l3 = cachep->nodelists[node];

			if (!l3)
1040
				goto free_array_cache;
1041

1042
			spin_lock_irq(&l3->list_lock);
1043 1044 1045 1046

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1047
				free_block(cachep, nc->entry, nc->avail, node);
1048 1049

			if (!cpus_empty(mask)) {
1050
				spin_unlock_irq(&l3->list_lock);
1051
				goto free_array_cache;
P
Pekka Enberg 已提交
1052
			}
1053

1054 1055
			shared = l3->shared;
			if (shared) {
1056
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1057
					   l3->shared->avail, node);
1058 1059 1060
				l3->shared = NULL;
			}

1061 1062 1063 1064 1065 1066 1067 1068 1069
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1070
			}
1071
free_array_cache:
L
Linus Torvalds 已提交
1072 1073
			kfree(nc);
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1088
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1089 1090 1091 1092
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1093
      bad:
I
Ingo Molnar 已提交
1094
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1095 1096 1097 1098 1099
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1100 1101 1102
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1103
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1118 1119 1120 1121 1122 1123 1124 1125
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1126
	int i;
1127
	int order;
1128 1129 1130 1131 1132 1133

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1144
	 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
L
Linus Torvalds 已提交
1145 1146
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1147 1148 1149
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1150
	 * 2) Create the first kmalloc cache.
1151
	 *    The struct kmem_cache for the new cache is allocated normally.
1152 1153 1154
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1155 1156
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1157 1158 1159
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1167
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1168

1169
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1170

1171 1172 1173 1174 1175 1176
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
L
Linus Torvalds 已提交
1177 1178
	if (!cache_cache.num)
		BUG();
1179
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1180 1181 1182
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1183 1184 1185 1186 1187

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1188 1189 1190 1191 1192 1193
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1194 1195 1196 1197
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1198 1199 1200

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1201 1202 1203 1204 1205
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1206

L
Linus Torvalds 已提交
1207
	while (sizes->cs_size != ULONG_MAX) {
1208 1209
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1210 1211 1212
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1213 1214
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1215
		if (!sizes->cs_cachep)
1216
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1217 1218 1219 1220 1221
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1222 1223 1224

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1225
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1226 1227 1228 1229
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1230 1231 1232 1233 1234 1235
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1236 1237 1238 1239 1240 1241

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1242
		void *ptr;
1243

L
Linus Torvalds 已提交
1244
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1245

L
Linus Torvalds 已提交
1246
		local_irq_disable();
1247 1248
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1249
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1250 1251
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1252

L
Linus Torvalds 已提交
1253
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1254

L
Linus Torvalds 已提交
1255
		local_irq_disable();
1256
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1257
		       != &initarray_generic.cache);
1258
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1259
		       sizeof(struct arraycache_init));
1260
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1261
		    ptr;
L
Linus Torvalds 已提交
1262 1263
		local_irq_enable();
	}
1264 1265 1266 1267 1268
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1269
			  numa_node_id());
1270 1271 1272

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1273
				  &initkmem_list3[SIZE_AC + node], node);
1274 1275 1276

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1277 1278
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1279 1280 1281
			}
		}
	}
L
Linus Torvalds 已提交
1282

1283
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1284
	{
1285
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1286
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1287
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1288
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1289
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1290 1291 1292 1293 1294 1295
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
1296
	 * that initializes cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1313
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1314
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1328
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333 1334
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1335
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
		SetPageSlab(page);
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1354
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1355
{
P
Pekka Enberg 已提交
1356
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
		if (!TestClearPageSlab(page))
			BUG();
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1369 1370
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1371 1372 1373 1374
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1375
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1376
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1386
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1387
			    unsigned long caller)
L
Linus Torvalds 已提交
1388
{
1389
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1390

1391
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1392

P
Pekka Enberg 已提交
1393
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1394 1395
		return;

P
Pekka Enberg 已提交
1396 1397 1398 1399
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405 1406
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1407
				*addr++ = svalue;
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1415
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1416 1417 1418
}
#endif

1419
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1420
{
1421 1422
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1423 1424

	memset(addr, val, size);
P
Pekka Enberg 已提交
1425
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1432 1433
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1434 1435 1436 1437 1438 1439 1440
	}
	printk("\n");
}
#endif

#if DEBUG

1441
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1448 1449
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1450 1451 1452 1453
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1454
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1455
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1456
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1457 1458
		printk("\n");
	}
1459 1460
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1461
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1462 1463
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1464 1465
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1466 1467 1468 1469
		dump_line(realobj, i, limit);
	}
}

1470
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475
{
	char *realobj;
	int size, i;
	int lines = 0;

1476 1477
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1478

P
Pekka Enberg 已提交
1479
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1480
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1481
		if (i == size - 1)
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1488 1489 1490
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1491 1492 1493
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1494
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1495
			limit = 16;
P
Pekka Enberg 已提交
1496 1497
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1510
		struct slab *slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
1511 1512
		int objnr;

1513
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
1514
		if (objnr) {
1515 1516
			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1517
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1518
			       realobj, size);
L
Linus Torvalds 已提交
1519 1520
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1521
		if (objnr + 1 < cachep->num) {
1522 1523
			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1524
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1525
			       realobj, size);
L
Linus Torvalds 已提交
1526 1527 1528 1529 1530 1531
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1532 1533 1534 1535
#if DEBUG
/**
 * slab_destroy_objs - call the registered destructor for each object in
 *      a slab that is to be destroyed.
L
Linus Torvalds 已提交
1536
 */
1537
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1538 1539 1540
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1541
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
1542 1543 1544

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1545
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1546 1547
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1548
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1549
						 1);
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1559
					   "was overwritten");
L
Linus Torvalds 已提交
1560 1561
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1562
					   "was overwritten");
L
Linus Torvalds 已提交
1563 1564
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1565
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1566
	}
1567
}
L
Linus Torvalds 已提交
1568
#else
1569
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1570
{
L
Linus Torvalds 已提交
1571 1572 1573
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1574
			void *objp = slabp->s_mem + cachep->buffer_size * i;
P
Pekka Enberg 已提交
1575
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1576 1577
		}
	}
1578
}
L
Linus Torvalds 已提交
1579 1580
#endif

1581 1582 1583 1584 1585
/**
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
1586
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1587 1588 1589 1590
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1591 1592 1593
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1594
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1605
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1606
   as size of kmem_list3. */
1607
static void set_up_list3s(struct kmem_cache *cachep, int index)
1608 1609 1610 1611
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1612
		cachep->nodelists[node] = &initkmem_list3[index + node];
1613
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1614 1615
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1616 1617 1618
	}
}

1619
/**
1620 1621 1622 1623 1624 1625 1626
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1627 1628 1629 1630 1631
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
R
Randy Dunlap 已提交
1632 1633
static inline size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
1634 1635
{
	size_t left_over = 0;
1636
	int gfporder;
1637

1638
	for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
1639 1640 1641
		unsigned int num;
		size_t remainder;

1642
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1643 1644
		if (!num)
			continue;
1645

1646
		/* More than offslab_limit objects will cause problems */
1647
		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1648 1649
			break;

1650
		/* Found something acceptable - save it away */
1651
		cachep->num = num;
1652
		cachep->gfporder = gfporder;
1653 1654
		left_over = remainder;

1655 1656 1657 1658 1659 1660 1661 1662
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1663 1664 1665 1666
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1667
		if (gfporder >= slab_break_gfp_order)
1668 1669
			break;

1670 1671 1672 1673
		/*
		 * Acceptable internal fragmentation?
		 */
		if ((left_over * 8) <= (PAGE_SIZE << gfporder))
1674 1675 1676 1677 1678
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1712
struct kmem_cache *
L
Linus Torvalds 已提交
1713
kmem_cache_create (const char *name, size_t size, size_t align,
1714 1715
	unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1716 1717
{
	size_t left_over, slab_size, ralign;
1718
	struct kmem_cache *cachep = NULL;
1719
	struct list_head *p;
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1725 1726 1727 1728 1729 1730 1731
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1732

1733 1734 1735 1736 1737 1738
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1739
	mutex_lock(&cache_chain_mutex);
1740 1741

	list_for_each(p, &cache_chain) {
1742
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1757
			       pc->buffer_size);
1758 1759 1760
			continue;
		}

P
Pekka Enberg 已提交
1761
		if (!strcmp(pc->name, name)) {
1762 1763 1764 1765 1766 1767
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1768 1769 1770 1771 1772
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1773
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1783 1784 1785
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1806 1807 1808
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1819
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825 1826 1827
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1828
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1834
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840 1841
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
1842
	cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
1843
	if (!cachep)
1844
		goto oops;
1845
	memset(cachep, 0, sizeof(struct kmem_cache));
L
Linus Torvalds 已提交
1846 1847

#if DEBUG
1848
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1855
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1856
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1867
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1868 1869
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1876
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882 1883 1884
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

1885
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1891
		goto oops;
L
Linus Torvalds 已提交
1892
	}
P
Pekka Enberg 已提交
1893 1894
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1907 1908
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913 1914
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1915
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920 1921
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
1922
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
1923 1924

	if (flags & CFLGS_OFF_SLAB)
1925
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1939
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1940
			    &initarray_generic.cache;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
1952
		} else {
1953
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1954
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1955 1956 1957 1958 1959 1960 1961 1962 1963

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
1964 1965 1966
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
1967
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
1968 1969
					kmem_list3_init(cachep->
							nodelists[node]);
1970 1971
				}
			}
L
Linus Torvalds 已提交
1972
		}
1973
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
1974 1975
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1976

1977 1978 1979 1980 1981
		BUG_ON(!cpu_cache_get(cachep));
		cpu_cache_get(cachep)->avail = 0;
		cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		cpu_cache_get(cachep)->batchcount = 1;
		cpu_cache_get(cachep)->touched = 0;
L
Linus Torvalds 已提交
1982 1983
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
1984
	}
L
Linus Torvalds 已提交
1985 1986 1987

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
P
Pekka Enberg 已提交
1988
      oops:
L
Linus Torvalds 已提交
1989 1990
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
1991
		      name);
I
Ingo Molnar 已提交
1992
	mutex_unlock(&cache_chain_mutex);
1993
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2009
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2010 2011 2012
{
#ifdef CONFIG_SMP
	check_irq_off();
2013
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2014 2015
#endif
}
2016

2017
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2018 2019 2020 2021 2022 2023 2024
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2025 2026 2027 2028
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2029
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
2035
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

2050
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
2051
				int force, int node);
L
Linus Torvalds 已提交
2052 2053 2054

static void do_drain(void *arg)
{
2055
	struct kmem_cache *cachep = (struct kmem_cache *) arg;
L
Linus Torvalds 已提交
2056
	struct array_cache *ac;
2057
	int node = numa_node_id();
L
Linus Torvalds 已提交
2058 2059

	check_irq_off();
2060
	ac = cpu_cache_get(cachep);
2061 2062 2063
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2064 2065 2066
	ac->avail = 0;
}

2067
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2068
{
2069 2070 2071
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
2072 2073
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
P
Pekka Enberg 已提交
2074
	for_each_online_node(node) {
2075 2076
		l3 = cachep->nodelists[node];
		if (l3) {
2077
			spin_lock_irq(&l3->list_lock);
2078
			drain_array_locked(cachep, l3->shared, 1, node);
2079
			spin_unlock_irq(&l3->list_lock);
2080
			if (l3->alien)
2081
				drain_alien_cache(cachep, l3->alien);
2082 2083
		}
	}
L
Linus Torvalds 已提交
2084 2085
}

2086
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2087 2088
{
	struct slab *slabp;
2089
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2090 2091
	int ret;

2092
	for (;;) {
L
Linus Torvalds 已提交
2093 2094
		struct list_head *p;

2095 2096
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2097 2098
			break;

2099
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2106 2107
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2108
		slab_destroy(cachep, slabp);
2109
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2110
	}
P
Pekka Enberg 已提交
2111
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2112 2113 2114
	return ret;
}

2115
static int __cache_shrink(struct kmem_cache *cachep)
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139 2140
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2141
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2154
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2167
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2168 2169
{
	int i;
2170
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176 2177 2178

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2179
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2180 2181 2182 2183
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2184
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2185 2186 2187

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2188
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2189
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2190
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2191 2192 2193 2194 2195
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2196
		synchronize_rcu();
L
Linus Torvalds 已提交
2197

2198
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2199
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2200 2201

	/* NUMA: free the list3 structures */
2202 2203 2204 2205 2206 2207 2208
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2218
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2219
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2220 2221
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2222

L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2229
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2230 2231 2232 2233
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2234
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2241
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2242 2243
}

2244
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2245
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2246 2247 2248 2249
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2250
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2268
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2269
				     ctor_flags);
L
Linus Torvalds 已提交
2270 2271 2272 2273

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2274
					   " end of an object");
L
Linus Torvalds 已提交
2275 2276
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2277
					   " start of an object");
L
Linus Torvalds 已提交
2278
		}
2279
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2280 2281
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2282
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2283 2284 2285 2286
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2287
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2288
	}
P
Pekka Enberg 已提交
2289
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2290 2291 2292
	slabp->free = 0;
}

2293
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

2304
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
{
	void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

2320
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
			  int nodeid)
{
	unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
		printk(KERN_ERR "slab: double free detected in cache "
		       "'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2340
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347 2348
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2349 2350
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2351 2352 2353 2354 2355 2356 2357 2358
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2359
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2360
{
P
Pekka Enberg 已提交
2361 2362 2363 2364 2365
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2366
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2367 2368

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2369
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2370
	 */
P
Pekka Enberg 已提交
2371
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2385
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2386
	check_irq_off();
2387 2388
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2389 2390

	/* Get colour for the slab, and cal the next value. */
2391 2392 2393 2394 2395
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2396

2397
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2410 2411 2412
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418 2419
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2420
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426 2427
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2428
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2429 2430

	/* Make slab active. */
2431
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2432
	STATS_INC_GROWN(cachep);
2433 2434
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2435
	return 1;
P
Pekka Enberg 已提交
2436
      opps1:
L
Linus Torvalds 已提交
2437
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2438
      failed:
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2458 2459
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2460 2461 2462
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2463 2464
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2465 2466 2467 2468
		BUG();
	}
}

2469
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2470
				   void *caller)
L
Linus Torvalds 已提交
2471 2472 2473 2474 2475
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2476
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2477 2478 2479
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2480
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2481 2482 2483
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2484
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2485 2486
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2487 2488
		WARN_ON(1);
	}
2489
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2490 2491

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2501 2502 2503 2504 2505 2506 2507
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2508
	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
2509 2510

	BUG_ON(objnr >= cachep->num);
2511
	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2518
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2519
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2525
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2526 2527 2528
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2529
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2530
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2531
			kernel_map_pages(virt_to_page(objp),
2532
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2543
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2544 2545 2546
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2547

L
Linus Torvalds 已提交
2548 2549 2550 2551 2552 2553 2554
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2555 2556 2557 2558 2559
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
2560
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2561 2562
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2563
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2564
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2576
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2583
	ac = cpu_cache_get(cachep);
P
Pekka Enberg 已提交
2584
      retry:
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591 2592
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2593 2594 2595 2596
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602 2603 2604

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2605
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2606 2607
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2632 2633
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2645
      must_grow:
L
Linus Torvalds 已提交
2646
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2647
      alloc_done:
2648
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2649 2650 2651

	if (unlikely(!ac->avail)) {
		int x;
2652 2653
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2654
		// cache_grow can reenable interrupts, then ac could change.
2655
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2656 2657 2658
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2659
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2660 2661 2662
			goto retry;
	}
	ac->touched = 1;
2663
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2664 2665 2666
}

static inline void
2667
cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672 2673 2674 2675
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
2676
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
P
Pekka Enberg 已提交
2677
					void *objp, void *caller)
L
Linus Torvalds 已提交
2678
{
P
Pekka Enberg 已提交
2679
	if (!objp)
L
Linus Torvalds 已提交
2680
		return objp;
P
Pekka Enberg 已提交
2681
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2682
#ifdef CONFIG_DEBUG_PAGEALLOC
2683
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2684
			kernel_map_pages(virt_to_page(objp),
2685
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2706 2707 2708 2709
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2710
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2711
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2712
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2718
	}
L
Linus Torvalds 已提交
2719 2720 2721 2722 2723 2724
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2725
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2726
{
P
Pekka Enberg 已提交
2727
	void *objp;
L
Linus Torvalds 已提交
2728 2729
	struct array_cache *ac;

2730
#ifdef CONFIG_NUMA
2731
	if (unlikely(current->mempolicy && !in_interrupt())) {
2732 2733 2734 2735 2736 2737 2738
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2739
	check_irq_off();
2740
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2741 2742 2743
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2744
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2745 2746 2747 2748
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2749 2750 2751
	return objp;
}

2752 2753
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2754 2755
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2756
	void *objp;
2757 2758 2759 2760 2761

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2762
	local_irq_restore(save_flags);
2763
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2764
					    caller);
2765
	prefetchw(objp);
L
Linus Torvalds 已提交
2766 2767 2768
	return objp;
}

2769 2770 2771
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2772
 */
2773
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2774 2775
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
2785
	check_irq_off();
P
Pekka Enberg 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2805
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2816

P
Pekka Enberg 已提交
2817 2818
	spin_unlock(&l3->list_lock);
	goto done;
2819

P
Pekka Enberg 已提交
2820 2821 2822
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2823

P
Pekka Enberg 已提交
2824 2825
	if (!x)
		return NULL;
2826

P
Pekka Enberg 已提交
2827 2828 2829
	goto retry;
      done:
	return obj;
2830 2831 2832 2833 2834 2835
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2836
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2837
		       int node)
L
Linus Torvalds 已提交
2838 2839
{
	int i;
2840
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2846
		slabp = virt_to_slab(objp);
2847
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2848
		list_del(&slabp->list);
2849
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2850
		check_slabp(cachep, slabp);
2851
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2852
		STATS_DEC_ACTIVE(cachep);
2853
		l3->free_objects++;
L
Linus Torvalds 已提交
2854 2855 2856 2857
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2858 2859
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2860 2861
				slab_destroy(cachep, slabp);
			} else {
2862
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2869
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2870 2871 2872 2873
		}
	}
}

2874
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
2875 2876
{
	int batchcount;
2877
	struct kmem_list3 *l3;
2878
	int node = numa_node_id();
L
Linus Torvalds 已提交
2879 2880 2881 2882 2883 2884

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2885
	l3 = cachep->nodelists[node];
2886 2887 2888
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2889
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2890 2891 2892
		if (max) {
			if (batchcount > max)
				batchcount = max;
2893
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2894
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2895 2896 2897 2898 2899
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2900
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2901
      free_done:
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906
#if STATS
	{
		int i = 0;
		struct list_head *p;

2907 2908
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2920
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2921
	ac->avail -= batchcount;
2922
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2923
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
2933
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2934
{
2935
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2936 2937 2938 2939

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

2940 2941 2942 2943 2944 2945
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
2946
		slabp = virt_to_slab(objp);
2947 2948 2949
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
2950 2951
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
2952 2953 2954 2955 2956 2957 2958

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
2959
							    alien, nodeid);
2960 2961 2962 2963
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2964
					  list_lock);
2965
				free_block(cachep, &objp, 1, nodeid);
2966
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2967
					    list_lock);
2968 2969 2970 2971 2972
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
2973 2974
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
2975
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2976 2977 2978 2979
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
2980
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
2992
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2993
{
2994
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3012
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3013
{
P
Pekka Enberg 已提交
3014
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3015
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3016
	unsigned long align_mask = BYTES_PER_WORD - 1;
3017
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3033
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3034 3035
		goto out;
	return 1;
P
Pekka Enberg 已提交
3036
      out:
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3050 3051
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3052
 */
3053
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3054
{
3055 3056
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3057

3058 3059
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3060 3061 3062

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
3063 3064 3065
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3066
	local_irq_restore(save_flags);
3067 3068 3069

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3070

3071
	return ptr;
L
Linus Torvalds 已提交
3072 3073 3074
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3075
void *kmalloc_node(size_t size, gfp_t flags, int node)
3076
{
3077
	struct kmem_cache *cachep;
3078 3079 3080 3081 3082 3083 3084

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3108 3109
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3110
{
3111
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3112

3113 3114 3115 3116 3117 3118
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3119 3120
	if (unlikely(cachep == NULL))
		return NULL;
3121 3122 3123 3124 3125 3126 3127 3128
	return __cache_alloc(cachep, flags, caller);
}

#ifndef CONFIG_DEBUG_SLAB

void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
L
Linus Torvalds 已提交
3129 3130 3131
}
EXPORT_SYMBOL(__kmalloc);

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
#else

void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#endif

L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147 3148 3149
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3150
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3151 3152
{
	int i;
P
Pekka Enberg 已提交
3153
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3154 3155 3156 3157

	if (!pdata)
		return NULL;

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3170 3171 3172 3173 3174 3175 3176

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3177
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3178

P
Pekka Enberg 已提交
3179
      unwind_oom:
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3199
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3213 3214
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3215 3216 3217 3218 3219
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3220
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3227
	c = virt_to_cache(objp);
3228
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3229
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3242
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3243 3244
{
	int i;
P
Pekka Enberg 已提交
3245
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3246

3247 3248 3249 3250
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3251
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3252 3253 3254 3255 3256
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3257
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3258
{
3259
	return obj_size(cachep);
L
Linus Torvalds 已提交
3260 3261 3262
}
EXPORT_SYMBOL(kmem_cache_size);

3263
const char *kmem_cache_name(struct kmem_cache *cachep)
3264 3265 3266 3267 3268
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3269 3270 3271
/*
 * This initializes kmem_list3 for all nodes.
 */
3272
static int alloc_kmemlist(struct kmem_cache *cachep)
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3285 3286 3287
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3288 3289 3290 3291 3292 3293
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3294
				free_block(cachep, nc->entry, nc->avail, node);
3295 3296 3297 3298 3299 3300

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3301 3302
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3303 3304 3305 3306 3307 3308
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3309
					GFP_KERNEL, node)))
3310 3311 3312 3313
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3314
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3315 3316
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3317 3318
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3319 3320 3321
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3322
      fail:
3323 3324 3325 3326
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3327
struct ccupdate_struct {
3328
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
3338
	old = cpu_cache_get(new->cachep);
3339

L
Linus Torvalds 已提交
3340 3341 3342 3343
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3344
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3345
			    int shared)
L
Linus Torvalds 已提交
3346 3347
{
	struct ccupdate_struct new;
3348
	int i, err;
L
Linus Torvalds 已提交
3349

P
Pekka Enberg 已提交
3350
	memset(&new.new, 0, sizeof(new.new));
3351
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3352 3353
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3354
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3355 3356
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3357
			return -ENOMEM;
L
Linus Torvalds 已提交
3358 3359 3360 3361 3362
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3363

L
Linus Torvalds 已提交
3364
	check_irq_on();
3365
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3366 3367
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3368
	cachep->shared = shared;
3369
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3370

3371
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3372 3373 3374
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3375
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3376
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3377
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3378 3379 3380
		kfree(ccold);
	}

3381 3382 3383
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3384
		       cachep->name, -err);
3385
		BUG();
L
Linus Torvalds 已提交
3386 3387 3388 3389
	}
	return 0;
}

3390
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3403
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3404
		limit = 1;
3405
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3406
		limit = 8;
3407
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3408
		limit = 24;
3409
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3424
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3436
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3437 3438
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3439
		       cachep->name, -err);
L
Linus Torvalds 已提交
3440 3441
}

3442
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
3443
				int force, int node)
L
Linus Torvalds 已提交
3444 3445 3446
{
	int tofree;

3447
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3448 3449 3450
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3451
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3452
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3453
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3454
		}
3455
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3456
		ac->avail -= tofree;
3457
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3458
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3459 3460 3461 3462 3463
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3464
 * @unused: unused parameter
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469 3470
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3471
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3477
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3478

I
Ingo Molnar 已提交
3479
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3480
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3481 3482
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3483 3484 3485 3486
		return;
	}

	list_for_each(walk, &cache_chain) {
3487
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3488
		struct list_head *p;
L
Linus Torvalds 已提交
3489 3490 3491
		int tofree;
		struct slab *slabp;

3492
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3499 3500
		l3 = searchp->nodelists[numa_node_id()];
		if (l3->alien)
3501
			drain_alien_cache(searchp, l3->alien);
3502
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3503

3504
		drain_array_locked(searchp, cpu_cache_get(searchp), 0,
P
Pekka Enberg 已提交
3505
				   numa_node_id());
L
Linus Torvalds 已提交
3506

3507
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3508 3509
			goto next_unlock;

3510
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3511

3512 3513
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3514
					   numa_node_id());
L
Linus Torvalds 已提交
3515

3516 3517
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3518 3519 3520
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3521 3522 3523
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3524
		do {
3525 3526
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3539 3540
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3541
			slab_destroy(searchp, slabp);
3542
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3543 3544
		} while (--tofree > 0);
	      next_unlock:
3545
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3546
	      next:
L
Linus Torvalds 已提交
3547 3548 3549
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3550
	mutex_unlock(&cache_chain_mutex);
3551
	drain_remote_pages();
L
Linus Torvalds 已提交
3552
	/* Setup the next iteration */
3553
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3554 3555 3556 3557
}

#ifdef CONFIG_PROC_FS

3558
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3559
{
3560 3561 3562 3563
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3564
#if STATS
3565
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3566
#else
3567
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3568
#endif
3569 3570 3571 3572
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3573
#if STATS
3574 3575 3576
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3577
#endif
3578 3579 3580 3581 3582 3583 3584 3585
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3586
	mutex_lock(&cache_chain_mutex);
3587 3588
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3589 3590 3591 3592 3593 3594
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3595
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3596 3597 3598 3599
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3600
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3601 3602
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
3603
	    : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3604 3605 3606 3607
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3608
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3609 3610 3611 3612
}

static int s_show(struct seq_file *m, void *p)
{
3613
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3614
	struct list_head *q;
P
Pekka Enberg 已提交
3615 3616 3617 3618 3619
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3620
	const char *name;
L
Linus Torvalds 已提交
3621
	char *error = NULL;
3622 3623
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3624

3625
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3626 3627
	active_objs = 0;
	num_slabs = 0;
3628 3629 3630 3631 3632
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3633 3634
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3635

P
Pekka Enberg 已提交
3636
		list_for_each(q, &l3->slabs_full) {
3637 3638 3639 3640 3641 3642
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3643
		list_for_each(q, &l3->slabs_partial) {
3644 3645 3646 3647 3648 3649 3650 3651
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3652
		list_for_each(q, &l3->slabs_free) {
3653 3654 3655 3656 3657 3658
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3659 3660
		if (l3->shared)
			shared_avail += l3->shared->avail;
3661

3662
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3663
	}
P
Pekka Enberg 已提交
3664 3665
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3666
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3667 3668
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3669
	name = cachep->name;
L
Linus Torvalds 已提交
3670 3671 3672 3673
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3674
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3675
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3676
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3677
		   cachep->limit, cachep->batchcount, cachep->shared);
3678
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3679
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3680
#if STATS
P
Pekka Enberg 已提交
3681
	{			/* list3 stats */
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687 3688
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3689
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3690

3691
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3692
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3702
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3703 3704 3705
	}
#endif
	seq_putc(m, '\n');
3706
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3725 3726 3727 3728
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3739 3740
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3741
{
P
Pekka Enberg 已提交
3742
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3743 3744
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3745

L
Linus Torvalds 已提交
3746 3747 3748 3749
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3750
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3761
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3762
	res = -EINVAL;
P
Pekka Enberg 已提交
3763
	list_for_each(p, &cache_chain) {
3764 3765
		struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
						       next);
L
Linus Torvalds 已提交
3766 3767 3768 3769

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3770
			    batchcount > limit || shared < 0) {
3771
				res = 0;
L
Linus Torvalds 已提交
3772
			} else {
3773
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3774
						       batchcount, shared);
L
Linus Torvalds 已提交
3775 3776 3777 3778
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3779
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3780 3781 3782 3783 3784 3785
	if (res >= 0)
		res = count;
	return res;
}
#endif

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3798 3799
unsigned int ksize(const void *objp)
{
3800 3801
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3802

3803
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
3804
}