slab.c 120.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

501
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
502 503
size_t slab_buffer_size(struct kmem_cache *cachep)
{
504
	return cachep->size;
E
Eduard - Gabriel Munteanu 已提交
505 506 507 508
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
509
/*
510 511
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
512
 */
513 514 515
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
516
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
517

518 519
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
520
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
521
	return page->slab_cache;
522 523 524 525
}

static inline struct slab *virt_to_slab(const void *obj)
{
526
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
527 528 529

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
530 531
}

532 533 534
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
535
	return slab->s_mem + cache->size * idx;
536 537
}

538
/*
539 540 541
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
542 543 544 545
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
546
{
547 548
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 550
}

A
Andrew Morton 已提交
551 552 553
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
571
	{NULL,}
L
Linus Torvalds 已提交
572 573 574 575
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
576
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
577
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
578
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
579 580

/* internal cache of cache description objs */
581 582 583
static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
static struct kmem_cache kmem_cache_boot = {
	.nodelists = kmem_cache_nodelists,
P
Pekka Enberg 已提交
584 585 586
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
587
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
588
	.name = "kmem_cache",
L
Linus Torvalds 已提交
589 590
};

591 592
#define BAD_ALIEN_MAGIC 0x01020304ul

593 594 595 596 597 598 599 600
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
601 602 603 604
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
605
 */
606 607 608
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

654
static void init_node_lock_keys(int q)
655
{
656 657
	struct cache_sizes *s = malloc_sizes;

658
	if (slab_state < UP)
659 660 661 662 663 664 665
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
666
			continue;
667 668 669

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
670 671
	}
}
672 673 674 675 676 677 678 679

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
680
#else
681 682 683 684
static void init_node_lock_keys(int q)
{
}

685
static inline void init_lock_keys(void)
686 687
{
}
688 689 690 691 692 693 694 695

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696 697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
701 702 703 704
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
705 706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
707 708 709 710 711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
712 713 714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
716
#endif
717 718 719
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
720 721 722 723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
725 726 727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
729 730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
L
Linus Torvalds 已提交
732 733 734
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 737 738 739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
741
{
742 743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
744

A
Andrew Morton 已提交
745 746 747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748 749 750 751 752 753 754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
804 805
}

806
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
807

A
Andrew Morton 已提交
808 809
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
810 811
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
812
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
813 814 815
	dump_stack();
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

832 833 834 835 836 837 838 839 840 841 842
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

843 844 845 846 847 848 849
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
850
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851 852 853 854 855

static void init_reap_node(int cpu)
{
	int node;

856
	node = next_node(cpu_to_mem(cpu), node_online_map);
857
	if (node == MAX_NUMNODES)
858
		node = first_node(node_online_map);
859

860
	per_cpu(slab_reap_node, cpu) = node;
861 862 863 864
}

static void next_reap_node(void)
{
865
	int node = __this_cpu_read(slab_reap_node);
866 867 868 869

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
870
	__this_cpu_write(slab_reap_node, node);
871 872 873 874 875 876 877
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
878 879 880 881 882 883 884
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
885
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
886
{
887
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
888 889 890 891 892 893

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
894
	if (keventd_up() && reap_work->work.func == NULL) {
895
		init_reap_node(cpu);
896
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 898
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
899 900 901
	}
}

902
static struct array_cache *alloc_arraycache(int node, int entries,
903
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
904
{
P
Pekka Enberg 已提交
905
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
906 907
	struct array_cache *nc = NULL;

908
	nc = kmalloc_node(memsize, gfp, node);
909 910
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
911
	 * However, when such objects are allocated or transferred to another
912 913 914 915 916
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
917 918 919 920 921
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
922
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
923 924 925 926
	}
	return nc;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

963
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 1025 1026 1027 1028 1029 1030 1031 1032
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1033 1034 1035 1036 1037 1038 1039 1040 1041
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1042 1043 1044
	ac->entry[ac->avail++] = objp;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1055
	int nr = min3(from->avail, max, to->limit - to->avail);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1068 1069 1070 1071 1072
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1073
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1093
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 1095 1096 1097 1098 1099 1100
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1101
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103

1104
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 1106
{
	struct array_cache **ac_ptr;
1107
	int memsize = sizeof(void *) * nr_node_ids;
1108 1109 1110 1111
	int i;

	if (limit > 1)
		limit = 12;
1112
	ac_ptr = kzalloc_node(memsize, gfp, node);
1113 1114
	if (ac_ptr) {
		for_each_node(i) {
1115
			if (i == node || !node_online(i))
1116
				continue;
1117
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118
			if (!ac_ptr[i]) {
1119
				for (i--; i >= 0; i--)
1120 1121 1122 1123 1124 1125 1126 1127 1128
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1129
static void free_alien_cache(struct array_cache **ac_ptr)
1130 1131 1132 1133 1134 1135
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1136
	    kfree(ac_ptr[i]);
1137 1138 1139
	kfree(ac_ptr);
}

1140
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1141
				struct array_cache *ac, int node)
1142 1143 1144 1145 1146
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1147 1148 1149 1150 1151
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1152 1153
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1154

1155
		free_block(cachep, ac->entry, ac->avail, node);
1156 1157 1158 1159 1160
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1161 1162 1163 1164 1165
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1166
	int node = __this_cpu_read(slab_reap_node);
1167 1168 1169

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1170 1171

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 1173 1174 1175 1176 1177
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1178 1179
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1180
{
P
Pekka Enberg 已提交
1181
	int i = 0;
1182 1183 1184 1185
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1186
		ac = alien[i];
1187 1188 1189 1190 1191 1192 1193
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1194

1195
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 1197 1198 1199 1200
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1201 1202
	int node;

1203
	node = numa_mem_id();
1204 1205 1206 1207 1208

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1209
	if (likely(slabp->nodeid == node))
1210 1211
		return 0;

P
Pekka Enberg 已提交
1212
	l3 = cachep->nodelists[node];
1213 1214 1215
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1216
		spin_lock(&alien->lock);
1217 1218 1219 1220
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1221
		ac_put_obj(cachep, alien, objp);
1222 1223 1224 1225 1226 1227 1228 1229
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1230 1231
#endif

1232 1233 1234 1235 1236 1237 1238
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1239
 * Must hold slab_mutex.
1240 1241 1242 1243 1244 1245 1246
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1247
	list_for_each_entry(cachep, &slab_caches, list) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1263
			 * go.  slab_mutex is sufficient
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1278 1279 1280 1281
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1282
	int node = cpu_to_mem(cpu);
1283
	const struct cpumask *mask = cpumask_of_node(node);
1284

1285
	list_for_each_entry(cachep, &slab_caches, list) {
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1305
		if (!cpumask_empty(mask)) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1335
	list_for_each_entry(cachep, &slab_caches, list) {
1336 1337 1338 1339 1340 1341 1342 1343
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1344
{
1345
	struct kmem_cache *cachep;
1346
	struct kmem_list3 *l3 = NULL;
1347
	int node = cpu_to_mem(cpu);
1348
	int err;
L
Linus Torvalds 已提交
1349

1350 1351 1352 1353 1354 1355
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1356 1357 1358
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1359 1360 1361 1362 1363

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1364
	list_for_each_entry(cachep, &slab_caches, list) {
1365 1366 1367 1368 1369
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1370
					cachep->batchcount, GFP_KERNEL);
1371 1372 1373 1374 1375
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1376
				0xbaadf00d, GFP_KERNEL);
1377 1378
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1379
				goto bad;
1380
			}
1381 1382
		}
		if (use_alien_caches) {
1383
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 1385 1386
			if (!alien) {
				kfree(shared);
				kfree(nc);
1387
				goto bad;
1388
			}
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1403
#ifdef CONFIG_NUMA
1404 1405 1406
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1407
		}
1408 1409 1410 1411
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1412 1413
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1414
	}
1415 1416
	init_node_lock_keys(node);

1417 1418
	return 0;
bad:
1419
	cpuup_canceled(cpu);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1432
		mutex_lock(&slab_mutex);
1433
		err = cpuup_prepare(cpu);
1434
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1435 1436
		break;
	case CPU_ONLINE:
1437
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1438 1439 1440
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1441
  	case CPU_DOWN_PREPARE:
1442
  	case CPU_DOWN_PREPARE_FROZEN:
1443
		/*
1444
		 * Shutdown cache reaper. Note that the slab_mutex is
1445 1446 1447 1448
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1449
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450
		/* Now the cache_reaper is guaranteed to be not running. */
1451
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 1453
  		break;
  	case CPU_DOWN_FAILED:
1454
  	case CPU_DOWN_FAILED_FROZEN:
1455 1456
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1457
	case CPU_DEAD:
1458
	case CPU_DEAD_FROZEN:
1459 1460 1461 1462 1463 1464 1465 1466
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1467
		/* fall through */
1468
#endif
L
Linus Torvalds 已提交
1469
	case CPU_UP_CANCELED:
1470
	case CPU_UP_CANCELED_FROZEN:
1471
		mutex_lock(&slab_mutex);
1472
		cpuup_canceled(cpu);
1473
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1474 1475
		break;
	}
1476
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1477 1478
}

1479 1480 1481
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1482

1483 1484 1485 1486 1487 1488
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1489
 * Must hold slab_mutex.
1490 1491 1492 1493 1494 1495
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1496
	list_for_each_entry(cachep, &slab_caches, list) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1527
		mutex_lock(&slab_mutex);
1528
		ret = init_cache_nodelists_node(nid);
1529
		mutex_unlock(&slab_mutex);
1530 1531
		break;
	case MEM_GOING_OFFLINE:
1532
		mutex_lock(&slab_mutex);
1533
		ret = drain_cache_nodelists_node(nid);
1534
		mutex_unlock(&slab_mutex);
1535 1536 1537 1538 1539 1540 1541 1542
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1543
	return notifier_from_errno(ret);
1544 1545 1546
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1547 1548 1549
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1550 1551
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1552 1553 1554
{
	struct kmem_list3 *ptr;

1555
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 1557 1558
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1559 1560 1561 1562 1563
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1564 1565 1566 1567
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1584 1585 1586
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1593
	int i;
1594
	int order;
P
Pekka Enberg 已提交
1595
	int node;
1596

1597 1598
	kmem_cache = &kmem_cache_boot;

1599
	if (num_possible_nodes() == 1)
1600 1601
		use_alien_caches = 0;

1602 1603 1604
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
1605
			kmem_cache->nodelists[i] = NULL;
1606
	}
1607
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1608 1609 1610

	/*
	 * Fragmentation resistance on low memory - only use bigger
1611 1612
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1613
	 */
1614
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1615
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1616 1617 1618

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1619 1620 1621
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1622 1623 1624
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1625
	 * 2) Create the first kmalloc cache.
1626
	 *    The struct kmem_cache for the new cache is allocated normally.
1627 1628 1629
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1630
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1631
	 *    kmalloc cache with kmalloc allocated arrays.
1632
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1633 1634
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1635 1636
	 */

1637
	node = numa_mem_id();
P
Pekka Enberg 已提交
1638

1639
	/* 1) create the kmem_cache */
1640
	INIT_LIST_HEAD(&slab_caches);
1641 1642 1643 1644
	list_add(&kmem_cache->list, &slab_caches);
	kmem_cache->colour_off = cache_line_size();
	kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
	kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1645

E
Eric Dumazet 已提交
1646
	/*
1647
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1648
	 */
1649
	kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1650
				  nr_node_ids * sizeof(struct kmem_list3 *);
1651 1652
	kmem_cache->object_size = kmem_cache->size;
	kmem_cache->size = ALIGN(kmem_cache->object_size,
A
Andrew Morton 已提交
1653
					cache_line_size());
1654 1655
	kmem_cache->reciprocal_buffer_size =
		reciprocal_value(kmem_cache->size);
L
Linus Torvalds 已提交
1656

1657
	for (order = 0; order < MAX_ORDER; order++) {
1658 1659 1660
		cache_estimate(order, kmem_cache->size,
			cache_line_size(), 0, &left_over, &kmem_cache->num);
		if (kmem_cache->num)
1661 1662
			break;
	}
1663 1664 1665 1666
	BUG_ON(!kmem_cache->num);
	kmem_cache->gfporder = order;
	kmem_cache->colour = left_over / kmem_cache->colour_off;
	kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
P
Pekka Enberg 已提交
1667
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1673 1674 1675 1676
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1677 1678
	 */

1679
	sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1680 1681 1682
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1683
					NULL);
1684

1685
	list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1686
	if (INDEX_AC != INDEX_L3) {
1687
		sizes[INDEX_L3].cs_cachep =
1688
			__kmem_cache_create(names[INDEX_L3].name,
A
Andrew Morton 已提交
1689 1690 1691
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1692
				NULL);
1693
		list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1694
	}
1695

1696 1697
	slab_early_init = 0;

L
Linus Torvalds 已提交
1698
	while (sizes->cs_size != ULONG_MAX) {
1699 1700
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1701 1702 1703
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1704 1705
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1706
		if (!sizes->cs_cachep) {
1707
			sizes->cs_cachep = __kmem_cache_create(names->name,
A
Andrew Morton 已提交
1708 1709 1710
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1711
					NULL);
1712
			list_add(&sizes->cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1713
		}
1714
#ifdef CONFIG_ZONE_DMA
1715
		sizes->cs_dmacachep = __kmem_cache_create(
1716
					names->name_dma,
A
Andrew Morton 已提交
1717 1718 1719 1720
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1721
					NULL);
1722
		list_add(&sizes->cs_dmacachep->list, &slab_caches);
1723
#endif
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1729
		struct array_cache *ptr;
1730

1731
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1732

1733 1734
		BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1735
		       sizeof(struct arraycache_init));
1736 1737 1738 1739 1740
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1741
		kmem_cache->array[smp_processor_id()] = ptr;
1742

1743
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1744

1745
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1746
		       != &initarray_generic.cache);
1747
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1748
		       sizeof(struct arraycache_init));
1749 1750 1751 1752 1753
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1754
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1755
		    ptr;
L
Linus Torvalds 已提交
1756
	}
1757 1758
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1759 1760
		int nid;

1761
		for_each_online_node(nid) {
1762
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1763

1764
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1765
				  &initkmem_list3[SIZE_AC + nid], nid);
1766 1767 1768

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1769
					  &initkmem_list3[SIZE_L3 + nid], nid);
1770 1771 1772
			}
		}
	}
L
Linus Torvalds 已提交
1773

1774
	slab_state = UP;
1775 1776 1777 1778 1779 1780
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1781
	slab_state = UP;
P
Peter Zijlstra 已提交
1782

1783 1784 1785
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1786
	/* 6) resize the head arrays to their final sizes */
1787 1788
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1789 1790
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1791
	mutex_unlock(&slab_mutex);
1792

1793 1794 1795
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1796 1797 1798
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1799 1800 1801
	 */
	register_cpu_notifier(&cpucache_notifier);

1802 1803 1804 1805 1806 1807 1808 1809
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1810 1811 1812
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817 1818 1819
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1820 1821
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1822
	 */
1823
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1824
		start_cpu_timer(cpu);
1825 1826

	/* Done! */
1827
	slab_state = FULL;
L
Linus Torvalds 已提交
1828 1829 1830 1831
	return 0;
}
__initcall(cpucache_init);

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1844
		cachep->name, cachep->size, cachep->gfporder);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1878 1879 1880 1881 1882 1883 1884
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1885
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1886 1887
{
	struct page *page;
1888
	int nr_pages;
L
Linus Torvalds 已提交
1889 1890
	int i;

1891
#ifndef CONFIG_MMU
1892 1893 1894
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1895
	 */
1896
	flags |= __GFP_COMP;
1897
#endif
1898

1899
	flags |= cachep->allocflags;
1900 1901
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1902

L
Linus Torvalds 已提交
1903
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1904 1905 1906
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1907
		return NULL;
1908
	}
L
Linus Torvalds 已提交
1909

1910
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1911 1912 1913
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1914
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1915
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1916 1917 1918 1919 1920
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1921
	for (i = 0; i < nr_pages; i++) {
1922
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1923

1924 1925 1926 1927
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1928 1929 1930 1931 1932 1933 1934 1935
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1936

1937
	return page_address(page);
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942
}

/*
 * Interface to system's page release.
 */
1943
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1944
{
P
Pekka Enberg 已提交
1945
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1946 1947 1948
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1949
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1950

1951 1952 1953 1954 1955 1956
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1957
	while (i--) {
N
Nick Piggin 已提交
1958
		BUG_ON(!PageSlab(page));
1959
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1960
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1970
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1971
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1981
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1982
			    unsigned long caller)
L
Linus Torvalds 已提交
1983
{
1984
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1985

1986
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1987

P
Pekka Enberg 已提交
1988
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1989 1990
		return;

P
Pekka Enberg 已提交
1991 1992 1993 1994
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000 2001
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
2002
				*addr++ = svalue;
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
2010
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
2011 2012 2013
}
#endif

2014
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2015
{
2016
	int size = cachep->object_size;
2017
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2018 2019

	memset(addr, val, size);
P
Pekka Enberg 已提交
2020
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2026 2027 2028
	unsigned char error = 0;
	int bad_count = 0;

2029
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2030 2031 2032 2033 2034 2035
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2036 2037
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056
}
#endif

#if DEBUG

2057
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2063
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2064 2065
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2066 2067 2068 2069
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2070
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2071
		print_symbol("(%s)",
A
Andrew Morton 已提交
2072
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2073 2074
		printk("\n");
	}
2075
	realobj = (char *)objp + obj_offset(cachep);
2076
	size = cachep->object_size;
P
Pekka Enberg 已提交
2077
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2078 2079
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2080 2081
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2082 2083 2084 2085
		dump_line(realobj, i, limit);
	}
}

2086
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091
{
	char *realobj;
	int size, i;
	int lines = 0;

2092
	realobj = (char *)objp + obj_offset(cachep);
2093
	size = cachep->object_size;
L
Linus Torvalds 已提交
2094

P
Pekka Enberg 已提交
2095
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2096
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2097
		if (i == size - 1)
L
Linus Torvalds 已提交
2098 2099 2100 2101 2102 2103
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2104
				printk(KERN_ERR
2105 2106
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2107 2108 2109
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2110
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2111
			limit = 16;
P
Pekka Enberg 已提交
2112 2113
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2126
		struct slab *slabp = virt_to_slab(objp);
2127
		unsigned int objnr;
L
Linus Torvalds 已提交
2128

2129
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2130
		if (objnr) {
2131
			objp = index_to_obj(cachep, slabp, objnr - 1);
2132
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2133
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2134
			       realobj, size);
L
Linus Torvalds 已提交
2135 2136
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2137
		if (objnr + 1 < cachep->num) {
2138
			objp = index_to_obj(cachep, slabp, objnr + 1);
2139
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2140
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2141
			       realobj, size);
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2148
#if DEBUG
R
Rabin Vincent 已提交
2149
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2150 2151 2152
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2153
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2154 2155 2156

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2157
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2158
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2159
				kernel_map_pages(virt_to_page(objp),
2160
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2170
					   "was overwritten");
L
Linus Torvalds 已提交
2171 2172
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2173
					   "was overwritten");
L
Linus Torvalds 已提交
2174 2175
		}
	}
2176
}
L
Linus Torvalds 已提交
2177
#else
R
Rabin Vincent 已提交
2178
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2179 2180
{
}
L
Linus Torvalds 已提交
2181 2182
#endif

2183 2184 2185 2186 2187
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2188
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2189 2190
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2191
 */
2192
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2193 2194 2195
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2196
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2197 2198 2199
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2200
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2206 2207
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2208 2209 2210
	}
}

2211
/**
2212 2213 2214 2215 2216 2217 2218
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2219 2220 2221 2222 2223
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2224
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2225
			size_t size, size_t align, unsigned long flags)
2226
{
2227
	unsigned long offslab_limit;
2228
	size_t left_over = 0;
2229
	int gfporder;
2230

2231
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2232 2233 2234
		unsigned int num;
		size_t remainder;

2235
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2236 2237
		if (!num)
			continue;
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2251

2252
		/* Found something acceptable - save it away */
2253
		cachep->num = num;
2254
		cachep->gfporder = gfporder;
2255 2256
		left_over = remainder;

2257 2258 2259 2260 2261 2262 2263 2264
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2265 2266 2267 2268
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2269
		if (gfporder >= slab_max_order)
2270 2271
			break;

2272 2273 2274
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2275
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2276 2277 2278 2279 2280
			break;
	}
	return left_over;
}

2281
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2282
{
2283
	if (slab_state >= FULL)
2284
		return enable_cpucache(cachep, gfp);
2285

2286
	if (slab_state == DOWN) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2301
			slab_state = PARTIAL_L3;
2302
		else
2303
			slab_state = PARTIAL_ARRAYCACHE;
2304 2305
	} else {
		cachep->array[smp_processor_id()] =
2306
			kmalloc(sizeof(struct arraycache_init), gfp);
2307

2308
		if (slab_state == PARTIAL_ARRAYCACHE) {
2309
			set_up_list3s(cachep, SIZE_L3);
2310
			slab_state = PARTIAL_L3;
2311 2312
		} else {
			int node;
2313
			for_each_online_node(node) {
2314 2315
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2316
						gfp, node);
2317 2318 2319 2320 2321
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2322
	cachep->nodelists[numa_mem_id()]->next_reap =
2323 2324 2325 2326 2327 2328 2329 2330 2331
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2332
	return 0;
2333 2334
}

L
Linus Torvalds 已提交
2335
/**
2336
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2337 2338 2339 2340 2341 2342 2343 2344
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2345
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2359
struct kmem_cache *
2360
__kmem_cache_create (const char *name, size_t size, size_t align,
2361
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2362 2363
{
	size_t left_over, slab_size, ralign;
2364
	struct kmem_cache *cachep = NULL;
2365
	gfp_t gfp;
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2375 2376
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2377
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382 2383 2384
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2385 2386
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2387
	 */
2388
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2389

A
Andrew Morton 已提交
2390 2391
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2392 2393 2394
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2395 2396 2397
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2398 2399
	}

A
Andrew Morton 已提交
2400 2401
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2402 2403
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2404 2405 2406 2407
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2408 2409
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2410
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2411 2412 2413 2414
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2415 2416

	/*
D
David Woodhouse 已提交
2417 2418 2419
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2420
	 */
D
David Woodhouse 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2431

2432
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2433 2434 2435
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2436
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2437 2438 2439
	if (ralign < align) {
		ralign = align;
	}
2440 2441
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2442
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2443
	/*
2444
	 * 4) Store it.
L
Linus Torvalds 已提交
2445 2446 2447
	 */
	align = ralign;

2448 2449 2450 2451 2452
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2453
	/* Get cache's description obj. */
2454
	cachep = kmem_cache_zalloc(kmem_cache, gfp);
L
Linus Torvalds 已提交
2455
	if (!cachep)
2456
		return NULL;
L
Linus Torvalds 已提交
2457

2458
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2459 2460
	cachep->object_size = size;
	cachep->align = align;
L
Linus Torvalds 已提交
2461 2462
#if DEBUG

2463 2464 2465 2466
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2467 2468
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2469 2470
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2471 2472
	}
	if (flags & SLAB_STORE_USER) {
2473
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2474 2475
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2476
		 */
D
David Woodhouse 已提交
2477 2478 2479 2480
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2481 2482
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2483
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2484
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2485
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490
		size = PAGE_SIZE;
	}
#endif
#endif

2491 2492 2493
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2494 2495
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2496
	 */
2497 2498
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505 2506
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2507
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2508 2509

	if (!cachep->num) {
2510 2511
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
2512
		kmem_cache_free(kmem_cache, cachep);
2513
		return NULL;
L
Linus Torvalds 已提交
2514
	}
P
Pekka Enberg 已提交
2515 2516
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2529 2530
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2531 2532 2533 2534 2535 2536 2537 2538 2539

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544 2545
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2546
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2547 2548
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2549
	cachep->allocflags = 0;
2550
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2551
		cachep->allocflags |= GFP_DMA;
2552
	cachep->size = size;
2553
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2554

2555
	if (flags & CFLGS_OFF_SLAB) {
2556
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2557 2558 2559 2560 2561 2562 2563
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2564
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2565
	}
L
Linus Torvalds 已提交
2566 2567
	cachep->ctor = ctor;
	cachep->name = name;
2568
	cachep->refcount = 1;
L
Linus Torvalds 已提交
2569

2570
	if (setup_cpu_cache(cachep, gfp)) {
2571
		__kmem_cache_shutdown(cachep);
2572
		return NULL;
2573
	}
L
Linus Torvalds 已提交
2574

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	return cachep;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2599
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2600 2601 2602
{
#ifdef CONFIG_SMP
	check_irq_off();
2603
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2604 2605
#endif
}
2606

2607
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2608 2609 2610 2611 2612 2613 2614
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2615 2616 2617 2618
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2619
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2620 2621
#endif

2622 2623 2624 2625
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2626 2627
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2628
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2629
	struct array_cache *ac;
2630
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2631 2632

	check_irq_off();
2633
	ac = cpu_cache_get(cachep);
2634 2635 2636
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2637 2638 2639
	ac->avail = 0;
}

2640
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2641
{
2642 2643 2644
	struct kmem_list3 *l3;
	int node;

2645
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2646
	check_irq_on();
P
Pekka Enberg 已提交
2647
	for_each_online_node(node) {
2648
		l3 = cachep->nodelists[node];
2649 2650 2651 2652 2653 2654 2655
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2656
			drain_array(cachep, l3, l3->shared, 1, node);
2657
	}
L
Linus Torvalds 已提交
2658 2659
}

2660 2661 2662 2663 2664 2665 2666 2667
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2668
{
2669 2670
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2671 2672
	struct slab *slabp;

2673 2674
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2675

2676
		spin_lock_irq(&l3->list_lock);
2677
		p = l3->slabs_free.prev;
2678 2679 2680 2681
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2682

2683
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2684
#if DEBUG
2685
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2686 2687
#endif
		list_del(&slabp->list);
2688 2689 2690 2691 2692
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2693
		spin_unlock_irq(&l3->list_lock);
2694 2695
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2696
	}
2697 2698
out:
	return nr_freed;
L
Linus Torvalds 已提交
2699 2700
}

2701
/* Called with slab_mutex held to protect against cpu hotplug */
2702
static int __cache_shrink(struct kmem_cache *cachep)
2703 2704 2705 2706 2707 2708 2709 2710 2711
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2712 2713 2714 2715 2716 2717 2718
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2719 2720 2721 2722
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728 2729
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2730
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2731
{
2732
	int ret;
2733
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2734

2735
	get_online_cpus();
2736
	mutex_lock(&slab_mutex);
2737
	ret = __cache_shrink(cachep);
2738
	mutex_unlock(&slab_mutex);
2739
	put_online_cpus();
2740
	return ret;
L
Linus Torvalds 已提交
2741 2742 2743
}
EXPORT_SYMBOL(kmem_cache_shrink);

2744
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2745
{
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	int i;
	struct kmem_list3 *l3;
	int rc = __cache_shrink(cachep);

	if (rc)
		return rc;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2779
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2780 2781
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2782 2783
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2784

L
Linus Torvalds 已提交
2785 2786
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2787
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2788
					      local_flags, nodeid);
2789 2790 2791 2792 2793 2794
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2795 2796
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2797 2798 2799
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2800
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2801 2802 2803 2804
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2805
	slabp->s_mem = objp + colour_off;
2806
	slabp->nodeid = nodeid;
2807
	slabp->free = 0;
L
Linus Torvalds 已提交
2808 2809 2810 2811 2812
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2813
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2814 2815
}

2816
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2817
			    struct slab *slabp)
L
Linus Torvalds 已提交
2818 2819 2820 2821
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2822
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2835 2836 2837
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2838 2839
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2840
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2841 2842 2843 2844

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2845
					   " end of an object");
L
Linus Torvalds 已提交
2846 2847
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2848
					   " start of an object");
L
Linus Torvalds 已提交
2849
		}
2850
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2851
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2852
			kernel_map_pages(virt_to_page(objp),
2853
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2854 2855
#else
		if (cachep->ctor)
2856
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2857
#endif
P
Pekka Enberg 已提交
2858
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2859
	}
P
Pekka Enberg 已提交
2860
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2861 2862
}

2863
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2864
{
2865 2866
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2867
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2868
		else
2869
			BUG_ON(cachep->allocflags & GFP_DMA);
2870
	}
L
Linus Torvalds 已提交
2871 2872
}

A
Andrew Morton 已提交
2873 2874
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2875
{
2876
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2890 2891
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2892
{
2893
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2894 2895 2896 2897 2898

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2899
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2900
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2901
				"'%s', objp %p\n", cachep->name, objp);
2902 2903 2904 2905 2906 2907 2908 2909
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2910 2911 2912
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2913
 * virtual address for kfree, ksize, and slab debugging.
2914 2915 2916
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2917
{
2918
	int nr_pages;
L
Linus Torvalds 已提交
2919 2920
	struct page *page;

2921
	page = virt_to_page(addr);
2922

2923
	nr_pages = 1;
2924
	if (likely(!PageCompound(page)))
2925 2926
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2927
	do {
C
Christoph Lameter 已提交
2928 2929
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2930
		page++;
2931
	} while (--nr_pages);
L
Linus Torvalds 已提交
2932 2933 2934 2935 2936 2937
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2938 2939
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2940
{
P
Pekka Enberg 已提交
2941 2942 2943
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2944
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2945

A
Andrew Morton 已提交
2946 2947 2948
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2949
	 */
C
Christoph Lameter 已提交
2950 2951
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2952

2953
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2954
	check_irq_off();
2955 2956
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2957 2958

	/* Get colour for the slab, and cal the next value. */
2959 2960 2961 2962 2963
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2964

2965
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2978 2979 2980
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2981
	 */
2982
	if (!objp)
2983
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2984
	if (!objp)
L
Linus Torvalds 已提交
2985 2986 2987
		goto failed;

	/* Get slab management. */
2988
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2989
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2990
	if (!slabp)
L
Linus Torvalds 已提交
2991 2992
		goto opps1;

2993
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2994

C
Christoph Lameter 已提交
2995
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2996 2997 2998 2999

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
3000
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3001 3002

	/* Make slab active. */
3003
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
3004
	STATS_INC_GROWN(cachep);
3005 3006
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3007
	return 1;
A
Andrew Morton 已提交
3008
opps1:
L
Linus Torvalds 已提交
3009
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
3010
failed:
L
Linus Torvalds 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3027 3028
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3029 3030 3031
	}
}

3032 3033
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3034
	unsigned long long redzone1, redzone2;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3050
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3051 3052 3053
			obj, redzone1, redzone2);
}

3054
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
3055
				   void *caller)
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3061 3062
	BUG_ON(virt_to_cache(objp) != cachep);

3063
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3064
	kfree_debugcheck(objp);
3065
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3066

C
Christoph Lameter 已提交
3067
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3068 3069

	if (cachep->flags & SLAB_RED_ZONE) {
3070
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3077
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3078 3079

	BUG_ON(objnr >= cachep->num);
3080
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3081

3082 3083 3084
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3085 3086
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3087
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
3088
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
3089
			kernel_map_pages(virt_to_page(objp),
3090
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3101
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3102 3103 3104
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3105

L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3113 3114
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3115 3116 3117
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3118 3119 3120
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3130 3131
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3132 3133 3134 3135
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3136 3137
	int node;

L
Linus Torvalds 已提交
3138
	check_irq_off();
3139
	node = numa_mem_id();
3140 3141 3142
	if (unlikely(force_refill))
		goto force_grow;
retry:
3143
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3144 3145
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3146 3147 3148 3149
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3150 3151 3152
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3153
	l3 = cachep->nodelists[node];
3154 3155 3156

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3157

3158
	/* See if we can refill from the shared array */
3159 3160
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3161
		goto alloc_done;
3162
	}
3163

L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3179 3180 3181 3182 3183 3184

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3185
		BUG_ON(slabp->inuse >= cachep->num);
3186

L
Linus Torvalds 已提交
3187 3188 3189 3190 3191
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3192 3193
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3205
must_grow:
L
Linus Torvalds 已提交
3206
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3207
alloc_done:
3208
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3209 3210 3211

	if (unlikely(!ac->avail)) {
		int x;
3212
force_grow:
3213
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3214

A
Andrew Morton 已提交
3215
		/* cache_grow can reenable interrupts, then ac could change. */
3216
		ac = cpu_cache_get(cachep);
3217 3218 3219

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3220 3221
			return NULL;

A
Andrew Morton 已提交
3222
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3223 3224 3225
			goto retry;
	}
	ac->touched = 1;
3226 3227

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3228 3229
}

A
Andrew Morton 已提交
3230 3231
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236 3237 3238 3239
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3240 3241
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3242
{
P
Pekka Enberg 已提交
3243
	if (!objp)
L
Linus Torvalds 已提交
3244
		return objp;
P
Pekka Enberg 已提交
3245
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3246
#ifdef CONFIG_DEBUG_PAGEALLOC
3247
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3248
			kernel_map_pages(virt_to_page(objp),
3249
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3261 3262 3263 3264
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3265
			printk(KERN_ERR
3266
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3267 3268
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3269 3270 3271 3272
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3273 3274 3275 3276 3277
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3278
		slabp = virt_to_head_page(objp)->slab_page;
3279
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3280 3281 3282
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3283
	objp += obj_offset(cachep);
3284
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3285
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3286 3287
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3288
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3289
		       objp, (int)ARCH_SLAB_MINALIGN);
3290
	}
L
Linus Torvalds 已提交
3291 3292 3293 3294 3295 3296
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3297
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3298
{
3299
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3300
		return false;
3301

3302
	return should_failslab(cachep->object_size, flags, cachep->flags);
3303 3304
}

3305
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3306
{
P
Pekka Enberg 已提交
3307
	void *objp;
L
Linus Torvalds 已提交
3308
	struct array_cache *ac;
3309
	bool force_refill = false;
L
Linus Torvalds 已提交
3310

3311
	check_irq_off();
3312

3313
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3314 3315
	if (likely(ac->avail)) {
		ac->touched = 1;
3316 3317
		objp = ac_get_obj(cachep, ac, flags, false);

3318
		/*
3319 3320
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3321
		 */
3322 3323 3324 3325 3326
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3327
	}
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3338 3339 3340 3341 3342
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3343 3344
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3345 3346 3347
	return objp;
}

3348
#ifdef CONFIG_NUMA
3349
/*
3350
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3351 3352 3353 3354 3355 3356 3357 3358
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3359
	if (in_interrupt() || (flags & __GFP_THISNODE))
3360
		return NULL;
3361
	nid_alloc = nid_here = numa_mem_id();
3362
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3363
		nid_alloc = cpuset_slab_spread_node();
3364
	else if (current->mempolicy)
3365
		nid_alloc = slab_node();
3366
	if (nid_alloc != nid_here)
3367
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3368 3369 3370
	return NULL;
}

3371 3372
/*
 * Fallback function if there was no memory available and no objects on a
3373 3374 3375 3376 3377
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3378
 */
3379
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3380
{
3381 3382
	struct zonelist *zonelist;
	gfp_t local_flags;
3383
	struct zoneref *z;
3384 3385
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3386
	void *obj = NULL;
3387
	int nid;
3388
	unsigned int cpuset_mems_cookie;
3389 3390 3391 3392

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3393
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3394

3395 3396
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3397
	zonelist = node_zonelist(slab_node(), flags);
3398

3399 3400 3401 3402 3403
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3404 3405
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3406

3407
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3408
			cache->nodelists[nid] &&
3409
			cache->nodelists[nid]->free_objects) {
3410 3411
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3412 3413 3414
				if (obj)
					break;
		}
3415 3416
	}

3417
	if (!obj) {
3418 3419 3420 3421 3422 3423
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3424 3425 3426
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3427
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3428 3429
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3446
				/* cache_grow already freed obj */
3447 3448 3449
				obj = NULL;
			}
		}
3450
	}
3451 3452 3453

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3454 3455 3456
	return obj;
}

3457 3458
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3459
 */
3460
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3461
				int nodeid)
3462 3463
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3464 3465 3466 3467 3468 3469 3470 3471
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3472
retry:
3473
	check_irq_off();
P
Pekka Enberg 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3493
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3494 3495 3496 3497 3498
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3499
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3500
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3501
	else
P
Pekka Enberg 已提交
3502
		list_add(&slabp->list, &l3->slabs_partial);
3503

P
Pekka Enberg 已提交
3504 3505
	spin_unlock(&l3->list_lock);
	goto done;
3506

A
Andrew Morton 已提交
3507
must_grow:
P
Pekka Enberg 已提交
3508
	spin_unlock(&l3->list_lock);
3509
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3510 3511
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3512

3513
	return fallback_alloc(cachep, flags);
3514

A
Andrew Morton 已提交
3515
done:
P
Pekka Enberg 已提交
3516
	return obj;
3517
}
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3537
	int slab_node = numa_mem_id();
3538

3539
	flags &= gfp_allowed_mask;
3540

3541 3542
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3543
	if (slab_should_failslab(cachep, flags))
3544 3545
		return NULL;

3546 3547 3548
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3549
	if (nodeid == NUMA_NO_NODE)
3550
		nodeid = slab_node;
3551 3552 3553 3554 3555 3556 3557

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3558
	if (nodeid == slab_node) {
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3574
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3575
				 flags);
3576

P
Pekka Enberg 已提交
3577
	if (likely(ptr))
3578
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3579

3580
	if (unlikely((flags & __GFP_ZERO) && ptr))
3581
		memset(ptr, 0, cachep->object_size);
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3602 3603
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3624
	flags &= gfp_allowed_mask;
3625

3626 3627
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3628
	if (slab_should_failslab(cachep, flags))
3629 3630
		return NULL;

3631 3632 3633 3634 3635
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3636
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3637
				 flags);
3638 3639
	prefetchw(objp);

P
Pekka Enberg 已提交
3640
	if (likely(objp))
3641
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3642

3643
	if (unlikely((flags & __GFP_ZERO) && objp))
3644
		memset(objp, 0, cachep->object_size);
3645

3646 3647
	return objp;
}
3648 3649 3650 3651

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3652
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3653
		       int node)
L
Linus Torvalds 已提交
3654 3655
{
	int i;
3656
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3657 3658

	for (i = 0; i < nr_objects; i++) {
3659
		void *objp;
L
Linus Torvalds 已提交
3660 3661
		struct slab *slabp;

3662 3663 3664
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3665
		slabp = virt_to_slab(objp);
3666
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3667
		list_del(&slabp->list);
3668
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3669
		check_slabp(cachep, slabp);
3670
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3671
		STATS_DEC_ACTIVE(cachep);
3672
		l3->free_objects++;
L
Linus Torvalds 已提交
3673 3674 3675 3676
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3677 3678
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3679 3680 3681 3682 3683 3684
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3685 3686
				slab_destroy(cachep, slabp);
			} else {
3687
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3694
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3695 3696 3697 3698
		}
	}
}

3699
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3700 3701
{
	int batchcount;
3702
	struct kmem_list3 *l3;
3703
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3710
	l3 = cachep->nodelists[node];
3711
	spin_lock(&l3->list_lock);
3712 3713
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3714
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3715 3716 3717
		if (max) {
			if (batchcount > max)
				batchcount = max;
3718
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3719
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3720 3721 3722 3723 3724
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3725
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3726
free_done:
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731
#if STATS
	{
		int i = 0;
		struct list_head *p;

3732 3733
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3745
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3746
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3747
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3748 3749 3750
}

/*
A
Andrew Morton 已提交
3751 3752
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3753
 */
3754 3755
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3756
{
3757
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3758 3759

	check_irq_off();
3760
	kmemleak_free_recursive(objp, cachep->flags);
3761
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3762

3763
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3764

3765 3766 3767 3768 3769 3770 3771
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3772
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3773 3774
		return;

L
Linus Torvalds 已提交
3775 3776 3777 3778 3779 3780
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3781

3782
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3793
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3794
{
E
Eduard - Gabriel Munteanu 已提交
3795 3796
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3797
	trace_kmem_cache_alloc(_RET_IP_, ret,
3798
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3799 3800

	return ret;
L
Linus Torvalds 已提交
3801 3802 3803
}
EXPORT_SYMBOL(kmem_cache_alloc);

3804
#ifdef CONFIG_TRACING
3805 3806
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3807
{
3808 3809 3810 3811 3812 3813 3814
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3815
}
3816
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3817 3818
#endif

L
Linus Torvalds 已提交
3819
#ifdef CONFIG_NUMA
3820 3821
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3822 3823 3824
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3825
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3826
				    cachep->object_size, cachep->size,
3827
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3828 3829

	return ret;
3830
}
L
Linus Torvalds 已提交
3831 3832
EXPORT_SYMBOL(kmem_cache_alloc_node);

3833
#ifdef CONFIG_TRACING
3834 3835 3836 3837
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3838
{
3839 3840 3841
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3842
				  __builtin_return_address(0));
3843 3844 3845 3846
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3847
}
3848
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3849 3850
#endif

3851 3852
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3853
{
3854
	struct kmem_cache *cachep;
3855 3856

	cachep = kmem_find_general_cachep(size, flags);
3857 3858
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3859
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3860
}
3861

3862
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3863 3864 3865 3866 3867
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3868
EXPORT_SYMBOL(__kmalloc_node);
3869 3870

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3871
		int node, unsigned long caller)
3872
{
3873
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3874 3875 3876 3877 3878 3879 3880 3881
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3882
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3883
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3884 3885

/**
3886
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3887
 * @size: how many bytes of memory are required.
3888
 * @flags: the type of memory to allocate (see kmalloc).
3889
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3890
 */
3891 3892
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3893
{
3894
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3895
	void *ret;
L
Linus Torvalds 已提交
3896

3897 3898 3899 3900 3901 3902
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3903 3904
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3905 3906
	ret = __cache_alloc(cachep, flags, caller);

3907
	trace_kmalloc((unsigned long) caller, ret,
3908
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3909 3910

	return ret;
3911 3912 3913
}


3914
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3915 3916
void *__kmalloc(size_t size, gfp_t flags)
{
3917
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3918 3919 3920
}
EXPORT_SYMBOL(__kmalloc);

3921
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3922
{
3923
	return __do_kmalloc(size, flags, (void *)caller);
3924 3925
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3926 3927 3928 3929 3930 3931 3932

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3933 3934
#endif

L
Linus Torvalds 已提交
3935 3936 3937 3938 3939 3940 3941 3942
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3943
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3944 3945 3946 3947
{
	unsigned long flags;

	local_irq_save(flags);
3948
	debug_check_no_locks_freed(objp, cachep->object_size);
3949
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3950
		debug_check_no_obj_freed(objp, cachep->object_size);
3951
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3952
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3953

3954
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3962 3963
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3969
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3970 3971
	unsigned long flags;

3972 3973
	trace_kfree(_RET_IP_, objp);

3974
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3975 3976 3977
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3978
	c = virt_to_cache(objp);
3979 3980 3981
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3982
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3983 3984 3985 3986
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3987
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3988
{
3989
	return cachep->object_size;
L
Linus Torvalds 已提交
3990 3991 3992
}
EXPORT_SYMBOL(kmem_cache_size);

3993
/*
S
Simon Arlott 已提交
3994
 * This initializes kmem_list3 or resizes various caches for all nodes.
3995
 */
3996
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3997 3998 3999
{
	int node;
	struct kmem_list3 *l3;
4000
	struct array_cache *new_shared;
4001
	struct array_cache **new_alien = NULL;
4002

4003
	for_each_online_node(node) {
4004

4005
                if (use_alien_caches) {
4006
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4007 4008 4009
                        if (!new_alien)
                                goto fail;
                }
4010

4011 4012 4013
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
4014
				cachep->shared*cachep->batchcount,
4015
					0xbaadf00d, gfp);
4016 4017 4018 4019
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4020
		}
4021

A
Andrew Morton 已提交
4022 4023
		l3 = cachep->nodelists[node];
		if (l3) {
4024 4025
			struct array_cache *shared = l3->shared;

4026 4027
			spin_lock_irq(&l3->list_lock);

4028
			if (shared)
4029 4030
				free_block(cachep, shared->entry,
						shared->avail, node);
4031

4032 4033
			l3->shared = new_shared;
			if (!l3->alien) {
4034 4035 4036
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4037
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4038
					cachep->batchcount + cachep->num;
4039
			spin_unlock_irq(&l3->list_lock);
4040
			kfree(shared);
4041 4042 4043
			free_alien_cache(new_alien);
			continue;
		}
4044
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4045 4046 4047
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4048
			goto fail;
4049
		}
4050 4051 4052

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4053
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4054
		l3->shared = new_shared;
4055
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4056
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4057
					cachep->batchcount + cachep->num;
4058 4059
		cachep->nodelists[node] = l3;
	}
4060
	return 0;
4061

A
Andrew Morton 已提交
4062
fail:
4063
	if (!cachep->list.next) {
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4078
	return -ENOMEM;
4079 4080
}

L
Linus Torvalds 已提交
4081
struct ccupdate_struct {
4082
	struct kmem_cache *cachep;
4083
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4084 4085 4086 4087
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4088
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4089 4090 4091
	struct array_cache *old;

	check_irq_off();
4092
	old = cpu_cache_get(new->cachep);
4093

L
Linus Torvalds 已提交
4094 4095 4096 4097
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4098
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4099
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4100
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4101
{
4102
	struct ccupdate_struct *new;
4103
	int i;
L
Linus Torvalds 已提交
4104

4105 4106
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4107 4108 4109
	if (!new)
		return -ENOMEM;

4110
	for_each_online_cpu(i) {
4111
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4112
						batchcount, gfp);
4113
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4114
			for (i--; i >= 0; i--)
4115 4116
				kfree(new->new[i]);
			kfree(new);
4117
			return -ENOMEM;
L
Linus Torvalds 已提交
4118 4119
		}
	}
4120
	new->cachep = cachep;
L
Linus Torvalds 已提交
4121

4122
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4123

L
Linus Torvalds 已提交
4124 4125 4126
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4127
	cachep->shared = shared;
L
Linus Torvalds 已提交
4128

4129
	for_each_online_cpu(i) {
4130
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4131 4132
		if (!ccold)
			continue;
4133 4134 4135
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4136 4137
		kfree(ccold);
	}
4138
	kfree(new);
4139
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4140 4141
}

4142
/* Called with slab_mutex held always */
4143
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4144 4145 4146 4147
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4148 4149
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4150 4151
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4152
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4153 4154 4155 4156
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4157
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4158
		limit = 1;
4159
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4160
		limit = 8;
4161
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4162
		limit = 24;
4163
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4164 4165 4166 4167
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4168 4169
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176 4177
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4178
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4179 4180 4181
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4182 4183 4184
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4185 4186 4187 4188
	 */
	if (limit > 32)
		limit = 32;
#endif
4189
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4190 4191
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4192
		       cachep->name, -err);
4193
	return err;
L
Linus Torvalds 已提交
4194 4195
}

4196 4197
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4198 4199
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4200
 */
4201
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4202
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4203 4204 4205
{
	int tofree;

4206 4207
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4208 4209
	if (ac->touched && !force) {
		ac->touched = 0;
4210
	} else {
4211
		spin_lock_irq(&l3->list_lock);
4212 4213 4214 4215 4216 4217 4218 4219 4220
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4221
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4222 4223 4224 4225 4226
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4227
 * @w: work descriptor
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4234 4235
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4236
 */
4237
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4238
{
4239
	struct kmem_cache *searchp;
4240
	struct kmem_list3 *l3;
4241
	int node = numa_mem_id();
4242
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4243

4244
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4245
		/* Give up. Setup the next iteration. */
4246
		goto out;
L
Linus Torvalds 已提交
4247

4248
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4249 4250
		check_irq_on();

4251 4252 4253 4254 4255
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4256
		l3 = searchp->nodelists[node];
4257

4258
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4259

4260
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4261

4262 4263 4264 4265
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4266
		if (time_after(l3->next_reap, jiffies))
4267
			goto next;
L
Linus Torvalds 已提交
4268

4269
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4270

4271
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4272

4273
		if (l3->free_touched)
4274
			l3->free_touched = 0;
4275 4276
		else {
			int freed;
L
Linus Torvalds 已提交
4277

4278 4279 4280 4281
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4282
next:
L
Linus Torvalds 已提交
4283 4284 4285
		cond_resched();
	}
	check_irq_on();
4286
	mutex_unlock(&slab_mutex);
4287
	next_reap_node();
4288
out:
A
Andrew Morton 已提交
4289
	/* Set up the next iteration */
4290
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4291 4292
}

4293
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4294

4295
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4296
{
4297 4298 4299 4300
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4301
#if STATS
4302
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4303
#else
4304
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4305
#endif
4306 4307 4308 4309
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4310
#if STATS
4311
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4312
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4313
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4314
#endif
4315 4316 4317 4318 4319 4320 4321
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4322
	mutex_lock(&slab_mutex);
4323 4324
	if (!n)
		print_slabinfo_header(m);
4325

4326
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4327 4328 4329 4330
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4331
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4332 4333 4334 4335
}

static void s_stop(struct seq_file *m, void *p)
{
4336
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4337 4338 4339 4340
}

static int s_show(struct seq_file *m, void *p)
{
4341
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4342 4343 4344 4345 4346
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4347
	const char *name;
L
Linus Torvalds 已提交
4348
	char *error = NULL;
4349 4350
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4351 4352 4353

	active_objs = 0;
	num_slabs = 0;
4354 4355 4356 4357 4358
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4359 4360
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4361

4362
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4363 4364 4365 4366 4367
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4368
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4369 4370 4371 4372 4373 4374 4375
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4376
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4377 4378 4379 4380 4381
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4382 4383
		if (l3->shared)
			shared_avail += l3->shared->avail;
4384

4385
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4386
	}
P
Pekka Enberg 已提交
4387 4388
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4389
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4390 4391
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4392
	name = cachep->name;
L
Linus Torvalds 已提交
4393 4394 4395 4396
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4397
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4398
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4399
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4400
		   cachep->limit, cachep->batchcount, cachep->shared);
4401
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4402
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4403
#if STATS
P
Pekka Enberg 已提交
4404
	{			/* list3 stats */
L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410 4411
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4412
		unsigned long node_frees = cachep->node_frees;
4413
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4414

J
Joe Perches 已提交
4415 4416 4417 4418 4419
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4429
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4450
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4451 4452 4453 4454
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4465
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4466
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4467
{
P
Pekka Enberg 已提交
4468
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4469
	int limit, batchcount, shared, res;
4470
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4471

L
Linus Torvalds 已提交
4472 4473 4474 4475
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4476
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4487
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4488
	res = -EINVAL;
4489
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4490
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4491 4492
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4493
				res = 0;
L
Linus Torvalds 已提交
4494
			} else {
4495
				res = do_tune_cpucache(cachep, limit,
4496 4497
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4498 4499 4500 4501
			}
			break;
		}
	}
4502
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4503 4504 4505 4506
	if (res >= 0)
		res = count;
	return res;
}
4507

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4521 4522 4523 4524
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4525 4526
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4565
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4577
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4578

4579
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4580
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4581
		if (modname[0])
4582 4583 4584 4585 4586 4587 4588 4589 4590
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4591
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4616
		list_for_each_entry(slabp, &l3->slabs_full, list)
4617
			handle_slab(n, cachep, slabp);
4618
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4619 4620 4621 4622 4623 4624
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4625
		mutex_unlock(&slab_mutex);
4626 4627 4628 4629
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4630
			mutex_lock(&slab_mutex);
4631 4632 4633 4634
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4635
		mutex_lock(&slab_mutex);
4636 4637 4638 4639 4640 4641 4642 4643 4644
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4645

4646 4647 4648
	return 0;
}

4649
static const struct seq_operations slabstats_op = {
4650 4651 4652 4653 4654
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4683
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4684 4685
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4686
#endif
4687 4688 4689
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4690 4691
#endif

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4704
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4705
{
4706 4707
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4708
		return 0;
L
Linus Torvalds 已提交
4709

4710
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4711
}
K
Kirill A. Shutemov 已提交
4712
EXPORT_SYMBOL(ksize);