slab.c 110.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

166 167 168 169 170 171 172 173
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
174 175 176 177
	struct {
		struct list_head list;
		void *s_mem;		/* including colour offset */
		unsigned int inuse;	/* num of objs active in slab */
J
Joonsoo Kim 已提交
178
		unsigned int free;
179 180 181
	};
};

L
Linus Torvalds 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
199
	spinlock_t lock;
200
	void *entry[];	/*
A
Andrew Morton 已提交
201 202 203
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
204 205 206 207
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
208
			 */
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
228 229 230
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
231 232 233 234
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
235
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
236 237
};

238 239 240
/*
 * Need this for bootstrapping a per node allocator.
 */
241
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
242
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
243
#define	CACHE_CACHE 0
244
#define	SIZE_AC MAX_NUMNODES
245
#define	SIZE_NODE (2 * MAX_NUMNODES)
246

247
static int drain_freelist(struct kmem_cache *cache,
248
			struct kmem_cache_node *n, int tofree);
249 250
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
251
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252
static void cache_reap(struct work_struct *unused);
253

254 255
static int slab_early_init = 1;

256
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
258

259
static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 261 262 263 264 265
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
266
	parent->colour_next = 0;
267 268 269 270 271
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
272 273 274
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
275
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
276 277
	} while (0)

A
Andrew Morton 已提交
278 279
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
280 281 282 283
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
284 285 286 287 288

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
289 290 291
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
292
 *
A
Adrian Bunk 已提交
293
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
294 295 296 297 298 299 300 301 302 303
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
304
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
305 306 307 308 309
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
310 311
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
314 315 316 317 318
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
319 320 321 322 323 324 325 326 327
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
328
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
329 330 331
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332
#define	STATS_INC_NODEFREES(x)	do { } while (0)
333
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
334
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
343 344
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
345
 * 0		: objp
346
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
347 348
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
349
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
350
 * 		redzone word.
351
 * cachep->obj_offset: The real object.
352 353
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
354
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
355
 */
356
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
357
{
358
	return cachep->obj_offset;
L
Linus Torvalds 已提交
359 360
}

361
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
362 363
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 365
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
366 367
}

368
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
369 370 371
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
372
		return (unsigned long long *)(objp + cachep->size -
373
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
374
					      REDZONE_ALIGN);
375
	return (unsigned long long *) (objp + cachep->size -
376
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
377 378
}

379
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
380 381
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
383 384 385 386
}

#else

387
#define obj_offset(x)			0
388 389
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
390 391 392 393 394
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
395 396
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
397
 */
398 399 400
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
401
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
402

403 404
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
405
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
406
	return page->slab_cache;
407 408 409 410
}

static inline struct slab *virt_to_slab(const void *obj)
{
411
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
412 413 414

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
415 416
}

417 418 419
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
420
	return slab->s_mem + cache->size * idx;
421 422
}

423
/*
424 425 426
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
427 428 429 430
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
431
{
432 433
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
434 435
}

L
Linus Torvalds 已提交
436
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
437
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
438 439

/* internal cache of cache description objs */
440
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
441 442 443
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
444
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
445
	.name = "kmem_cache",
L
Linus Torvalds 已提交
446 447
};

448 449
#define BAD_ALIEN_MAGIC 0x01020304ul

450 451 452 453 454 455 456 457
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
458 459 460 461
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
462
 */
463 464 465
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

466 467 468 469 470 471 472 473
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
474
	struct kmem_cache_node *n;
475 476
	int r;

477 478
	n = cachep->node[q];
	if (!n)
479 480
		return;

481 482
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

511
static void init_node_lock_keys(int q)
512
{
513
	int i;
514

515
	if (slab_state < UP)
516 517
		return;

C
Christoph Lameter 已提交
518
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
519
		struct kmem_cache_node *n;
520 521 522 523
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
524

525 526
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
527
			continue;
528

529
		slab_set_lock_classes(cache, &on_slab_l3_key,
530
				&on_slab_alc_key, q);
531 532
	}
}
533

534 535
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
536
	if (!cachep->node[q])
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

552 553 554 555 556 557 558
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
559
#else
560 561 562 563
static void init_node_lock_keys(int q)
{
}

564
static inline void init_lock_keys(void)
565 566
{
}
567

568 569 570 571 572 573 574 575
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

576 577 578 579 580 581 582
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
583 584
#endif

585
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
586

587
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
588 589 590 591
{
	return cachep->array[smp_processor_id()];
}

592
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
593
{
J
Joonsoo Kim 已提交
594
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(unsigned int), align);
595
}
L
Linus Torvalds 已提交
596

A
Andrew Morton 已提交
597 598 599
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
600 601 602 603 604 605 606
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
607

608 609 610 611 612 613
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
J
Joonsoo Kim 已提交
614
	 * - One unsigned int for each object
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
J
Joonsoo Kim 已提交
637
			  (buffer_size + sizeof(unsigned int));
638 639 640 641 642 643 644 645 646 647 648 649 650

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
651 652
}

653
#if DEBUG
654
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
655

A
Andrew Morton 已提交
656 657
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
658 659
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
660
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
661
	dump_stack();
662
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
663
}
664
#endif
L
Linus Torvalds 已提交
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

682 683 684 685 686 687 688 689 690 691 692
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

693 694 695 696 697 698 699
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
700
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
701 702 703 704 705

static void init_reap_node(int cpu)
{
	int node;

706
	node = next_node(cpu_to_mem(cpu), node_online_map);
707
	if (node == MAX_NUMNODES)
708
		node = first_node(node_online_map);
709

710
	per_cpu(slab_reap_node, cpu) = node;
711 712 713 714
}

static void next_reap_node(void)
{
715
	int node = __this_cpu_read(slab_reap_node);
716 717 718 719

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
720
	__this_cpu_write(slab_reap_node, node);
721 722 723 724 725 726 727
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
728 729 730 731 732 733 734
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
735
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
736
{
737
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
738 739 740 741 742 743

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
744
	if (keventd_up() && reap_work->work.func == NULL) {
745
		init_reap_node(cpu);
746
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
747 748
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
749 750 751
	}
}

752
static struct array_cache *alloc_arraycache(int node, int entries,
753
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
754
{
P
Pekka Enberg 已提交
755
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
756 757
	struct array_cache *nc = NULL;

758
	nc = kmalloc_node(memsize, gfp, node);
759 760
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
761
	 * However, when such objects are allocated or transferred to another
762 763 764 765 766
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
767 768 769 770 771
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
772
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
773 774 775 776
	}
	return nc;
}

777 778 779 780 781 782 783 784 785 786 787
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
788
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
789 790 791 792 793 794
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

795 796
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
797 798 799
		if (is_slab_pfmemalloc(slabp))
			goto out;

800
	list_for_each_entry(slabp, &n->slabs_partial, list)
801 802 803
		if (is_slab_pfmemalloc(slabp))
			goto out;

804
	list_for_each_entry(slabp, &n->slabs_free, list)
805 806 807 808 809
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
810
	spin_unlock_irqrestore(&n->list_lock, flags);
811 812
}

813
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
814 815 816 817 818 819 820
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
821
		struct kmem_cache_node *n;
822 823 824 825 826 827 828

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
829
		for (i = 0; i < ac->avail; i++) {
830 831 832 833 834 835 836 837 838 839 840 841 842
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
843 844
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
845
			struct slab *slabp = virt_to_slab(objp);
846
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
847 848 849 850 851 852 853 854 855 856 857 858 859
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
874 875 876 877
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
J
Joonsoo Kim 已提交
878 879
		struct slab *slabp = virt_to_slab(objp);
		struct page *page = virt_to_head_page(slabp->s_mem);
880 881 882 883
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

884 885 886 887 888 889 890 891 892
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

893 894 895
	ac->entry[ac->avail++] = objp;
}

896 897 898 899 900 901 902 903 904 905
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
906
	int nr = min3(from->avail, max, to->limit - to->avail);
907 908 909 910 911 912 913 914 915 916 917 918

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

919 920 921
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
922
#define reap_alien(cachep, n) do { } while (0)
923

924
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

944
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
945 946 947 948 949 950 951
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

952
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
953
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
954

955
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
956 957
{
	struct array_cache **ac_ptr;
958
	int memsize = sizeof(void *) * nr_node_ids;
959 960 961 962
	int i;

	if (limit > 1)
		limit = 12;
963
	ac_ptr = kzalloc_node(memsize, gfp, node);
964 965
	if (ac_ptr) {
		for_each_node(i) {
966
			if (i == node || !node_online(i))
967
				continue;
968
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
969
			if (!ac_ptr[i]) {
970
				for (i--; i >= 0; i--)
971 972 973 974 975 976 977 978 979
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
980
static void free_alien_cache(struct array_cache **ac_ptr)
981 982 983 984 985 986
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
987
	    kfree(ac_ptr[i]);
988 989 990
	kfree(ac_ptr);
}

991
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
992
				struct array_cache *ac, int node)
993
{
994
	struct kmem_cache_node *n = cachep->node[node];
995 996

	if (ac->avail) {
997
		spin_lock(&n->list_lock);
998 999 1000 1001 1002
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1003 1004
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1005

1006
		free_block(cachep, ac->entry, ac->avail, node);
1007
		ac->avail = 0;
1008
		spin_unlock(&n->list_lock);
1009 1010 1011
	}
}

1012 1013 1014
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1015
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1016
{
1017
	int node = __this_cpu_read(slab_reap_node);
1018

1019 1020
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1021 1022

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1023 1024 1025 1026 1027 1028
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1029 1030
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1031
{
P
Pekka Enberg 已提交
1032
	int i = 0;
1033 1034 1035 1036
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1037
		ac = alien[i];
1038 1039 1040 1041 1042 1043 1044
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1045

1046
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1047
{
J
Joonsoo Kim 已提交
1048
	int nodeid = page_to_nid(virt_to_page(objp));
1049
	struct kmem_cache_node *n;
1050
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1051 1052
	int node;

1053
	node = numa_mem_id();
1054 1055 1056 1057 1058

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1059
	if (likely(nodeid == node))
1060 1061
		return 0;

1062
	n = cachep->node[node];
1063
	STATS_INC_NODEFREES(cachep);
1064 1065
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1066
		spin_lock(&alien->lock);
1067 1068 1069 1070
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1071
		ac_put_obj(cachep, alien, objp);
1072 1073
		spin_unlock(&alien->lock);
	} else {
1074
		spin_lock(&(cachep->node[nodeid])->list_lock);
1075
		free_block(cachep, &objp, 1, nodeid);
1076
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1077 1078 1079
	}
	return 1;
}
1080 1081
#endif

1082
/*
1083
 * Allocates and initializes node for a node on each slab cache, used for
1084
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1085
 * will be allocated off-node since memory is not yet online for the new node.
1086
 * When hotplugging memory or a cpu, existing node are not replaced if
1087 1088
 * already in use.
 *
1089
 * Must hold slab_mutex.
1090
 */
1091
static int init_cache_node_node(int node)
1092 1093
{
	struct kmem_cache *cachep;
1094
	struct kmem_cache_node *n;
1095
	const int memsize = sizeof(struct kmem_cache_node);
1096

1097
	list_for_each_entry(cachep, &slab_caches, list) {
1098 1099 1100 1101 1102
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1103
		if (!cachep->node[node]) {
1104 1105
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1106
				return -ENOMEM;
1107 1108
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1109 1110 1111 1112
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1113
			 * go.  slab_mutex is sufficient
1114 1115
			 * protection here.
			 */
1116
			cachep->node[node] = n;
1117 1118
		}

1119 1120
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1121 1122
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1123
		spin_unlock_irq(&cachep->node[node]->list_lock);
1124 1125 1126 1127
	}
	return 0;
}

1128 1129 1130 1131 1132 1133
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1134
static void cpuup_canceled(long cpu)
1135 1136
{
	struct kmem_cache *cachep;
1137
	struct kmem_cache_node *n = NULL;
1138
	int node = cpu_to_mem(cpu);
1139
	const struct cpumask *mask = cpumask_of_node(node);
1140

1141
	list_for_each_entry(cachep, &slab_caches, list) {
1142 1143 1144 1145 1146 1147 1148
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1149
		n = cachep->node[node];
1150

1151
		if (!n)
1152 1153
			goto free_array_cache;

1154
		spin_lock_irq(&n->list_lock);
1155

1156 1157
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1158 1159 1160
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1161
		if (!cpumask_empty(mask)) {
1162
			spin_unlock_irq(&n->list_lock);
1163 1164 1165
			goto free_array_cache;
		}

1166
		shared = n->shared;
1167 1168 1169
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1170
			n->shared = NULL;
1171 1172
		}

1173 1174
		alien = n->alien;
		n->alien = NULL;
1175

1176
		spin_unlock_irq(&n->list_lock);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1191
	list_for_each_entry(cachep, &slab_caches, list) {
1192 1193
		n = cachep->node[node];
		if (!n)
1194
			continue;
1195
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1196 1197 1198
	}
}

1199
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1200
{
1201
	struct kmem_cache *cachep;
1202
	struct kmem_cache_node *n = NULL;
1203
	int node = cpu_to_mem(cpu);
1204
	int err;
L
Linus Torvalds 已提交
1205

1206 1207 1208 1209
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1210
	 * kmem_cache_node and not this cpu's kmem_cache_node
1211
	 */
1212
	err = init_cache_node_node(node);
1213 1214
	if (err < 0)
		goto bad;
1215 1216 1217 1218 1219

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1220
	list_for_each_entry(cachep, &slab_caches, list) {
1221 1222 1223 1224 1225
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1226
					cachep->batchcount, GFP_KERNEL);
1227 1228 1229 1230 1231
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1232
				0xbaadf00d, GFP_KERNEL);
1233 1234
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1235
				goto bad;
1236
			}
1237 1238
		}
		if (use_alien_caches) {
1239
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1240 1241 1242
			if (!alien) {
				kfree(shared);
				kfree(nc);
1243
				goto bad;
1244
			}
1245 1246
		}
		cachep->array[cpu] = nc;
1247 1248
		n = cachep->node[node];
		BUG_ON(!n);
1249

1250 1251
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1252 1253 1254 1255
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1256
			n->shared = shared;
1257 1258
			shared = NULL;
		}
1259
#ifdef CONFIG_NUMA
1260 1261
		if (!n->alien) {
			n->alien = alien;
1262
			alien = NULL;
L
Linus Torvalds 已提交
1263
		}
1264
#endif
1265
		spin_unlock_irq(&n->list_lock);
1266 1267
		kfree(shared);
		free_alien_cache(alien);
1268 1269
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1270 1271 1272
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1273
	}
1274 1275
	init_node_lock_keys(node);

1276 1277
	return 0;
bad:
1278
	cpuup_canceled(cpu);
1279 1280 1281
	return -ENOMEM;
}

1282
static int cpuup_callback(struct notifier_block *nfb,
1283 1284 1285 1286 1287 1288 1289 1290
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1291
		mutex_lock(&slab_mutex);
1292
		err = cpuup_prepare(cpu);
1293
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1294 1295
		break;
	case CPU_ONLINE:
1296
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1297 1298 1299
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1300
  	case CPU_DOWN_PREPARE:
1301
  	case CPU_DOWN_PREPARE_FROZEN:
1302
		/*
1303
		 * Shutdown cache reaper. Note that the slab_mutex is
1304 1305 1306 1307
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1308
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1309
		/* Now the cache_reaper is guaranteed to be not running. */
1310
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1311 1312
  		break;
  	case CPU_DOWN_FAILED:
1313
  	case CPU_DOWN_FAILED_FROZEN:
1314 1315
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1316
	case CPU_DEAD:
1317
	case CPU_DEAD_FROZEN:
1318 1319
		/*
		 * Even if all the cpus of a node are down, we don't free the
1320
		 * kmem_cache_node of any cache. This to avoid a race between
1321
		 * cpu_down, and a kmalloc allocation from another cpu for
1322
		 * memory from the node of the cpu going down.  The node
1323 1324 1325
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1326
		/* fall through */
1327
#endif
L
Linus Torvalds 已提交
1328
	case CPU_UP_CANCELED:
1329
	case CPU_UP_CANCELED_FROZEN:
1330
		mutex_lock(&slab_mutex);
1331
		cpuup_canceled(cpu);
1332
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1333 1334
		break;
	}
1335
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1336 1337
}

1338
static struct notifier_block cpucache_notifier = {
1339 1340
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1341

1342 1343 1344 1345 1346 1347
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1348
 * Must hold slab_mutex.
1349
 */
1350
static int __meminit drain_cache_node_node(int node)
1351 1352 1353 1354
{
	struct kmem_cache *cachep;
	int ret = 0;

1355
	list_for_each_entry(cachep, &slab_caches, list) {
1356
		struct kmem_cache_node *n;
1357

1358 1359
		n = cachep->node[node];
		if (!n)
1360 1361
			continue;

1362
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1363

1364 1365
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1386
		mutex_lock(&slab_mutex);
1387
		ret = init_cache_node_node(nid);
1388
		mutex_unlock(&slab_mutex);
1389 1390
		break;
	case MEM_GOING_OFFLINE:
1391
		mutex_lock(&slab_mutex);
1392
		ret = drain_cache_node_node(nid);
1393
		mutex_unlock(&slab_mutex);
1394 1395 1396 1397 1398 1399 1400 1401
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1402
	return notifier_from_errno(ret);
1403 1404 1405
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1406
/*
1407
 * swap the static kmem_cache_node with kmalloced memory
1408
 */
1409
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1410
				int nodeid)
1411
{
1412
	struct kmem_cache_node *ptr;
1413

1414
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1415 1416
	BUG_ON(!ptr);

1417
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1418 1419 1420 1421 1422
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1423
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1424
	cachep->node[nodeid] = ptr;
1425 1426
}

1427
/*
1428 1429
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1430
 */
1431
static void __init set_up_node(struct kmem_cache *cachep, int index)
1432 1433 1434 1435
{
	int node;

	for_each_online_node(node) {
1436
		cachep->node[node] = &init_kmem_cache_node[index + node];
1437
		cachep->node[node]->next_reap = jiffies +
1438 1439 1440 1441 1442
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1443 1444
/*
 * The memory after the last cpu cache pointer is used for the
1445
 * the node pointer.
C
Christoph Lameter 已提交
1446
 */
1447
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1448
{
1449
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1450 1451
}

A
Andrew Morton 已提交
1452 1453 1454
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1455 1456 1457
 */
void __init kmem_cache_init(void)
{
1458 1459
	int i;

1460 1461
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1462
	kmem_cache = &kmem_cache_boot;
1463
	setup_node_pointer(kmem_cache);
1464

1465
	if (num_possible_nodes() == 1)
1466 1467
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1468
	for (i = 0; i < NUM_INIT_LISTS; i++)
1469
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1470

1471
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1472 1473 1474

	/*
	 * Fragmentation resistance on low memory - only use bigger
1475 1476
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1477
	 */
1478
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1479
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1480 1481 1482

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1483 1484 1485
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1486
	 *    Initially an __init data area is used for the head array and the
1487
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1488
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1489
	 * 2) Create the first kmalloc cache.
1490
	 *    The struct kmem_cache for the new cache is allocated normally.
1491 1492 1493
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1494
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1495
	 *    kmalloc cache with kmalloc allocated arrays.
1496
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1497 1498
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1499 1500
	 */

1501
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1502

E
Eric Dumazet 已提交
1503
	/*
1504
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1505
	 */
1506 1507
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1508
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1509 1510
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1511 1512 1513

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1514 1515
	/*
	 * Initialize the caches that provide memory for the array cache and the
1516
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1517
	 * bug.
1518 1519
	 */

1520 1521
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1522

1523 1524 1525 1526
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1527

1528 1529
	slab_early_init = 0;

L
Linus Torvalds 已提交
1530 1531
	/* 4) Replace the bootstrap head arrays */
	{
1532
		struct array_cache *ptr;
1533

1534
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1535

1536
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1537
		       sizeof(struct arraycache_init));
1538 1539 1540 1541 1542
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1543
		kmem_cache->array[smp_processor_id()] = ptr;
1544

1545
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1546

1547
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1548
		       != &initarray_generic.cache);
1549
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1550
		       sizeof(struct arraycache_init));
1551 1552 1553 1554 1555
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1556
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1557
	}
1558
	/* 5) Replace the bootstrap kmem_cache_node */
1559
	{
P
Pekka Enberg 已提交
1560 1561
		int nid;

1562
		for_each_online_node(nid) {
1563
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1564

1565
			init_list(kmalloc_caches[INDEX_AC],
1566
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1567

1568 1569 1570
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1571 1572 1573
			}
		}
	}
L
Linus Torvalds 已提交
1574

1575
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1576 1577 1578 1579 1580 1581
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1582
	slab_state = UP;
P
Peter Zijlstra 已提交
1583

1584
	/* 6) resize the head arrays to their final sizes */
1585 1586
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1587 1588
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1589
	mutex_unlock(&slab_mutex);
1590

1591 1592 1593
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1594 1595 1596
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1597 1598 1599
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1600 1601 1602
	 */
	register_cpu_notifier(&cpucache_notifier);

1603 1604 1605
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1606
	 * node.
1607 1608 1609 1610
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1611 1612 1613
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1621 1622
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1623
	 */
1624
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1625
		start_cpu_timer(cpu);
1626 1627

	/* Done! */
1628
	slab_state = FULL;
L
Linus Torvalds 已提交
1629 1630 1631 1632
	return 0;
}
__initcall(cpucache_init);

1633 1634 1635
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1636
	struct kmem_cache_node *n;
1637 1638 1639 1640 1641 1642 1643 1644
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1645
		cachep->name, cachep->size, cachep->gfporder);
1646 1647 1648 1649 1650

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1651 1652
		n = cachep->node[node];
		if (!n)
1653 1654
			continue;

1655 1656
		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(slabp, &n->slabs_full, list) {
1657 1658 1659
			active_objs += cachep->num;
			active_slabs++;
		}
1660
		list_for_each_entry(slabp, &n->slabs_partial, list) {
1661 1662 1663
			active_objs += slabp->inuse;
			active_slabs++;
		}
1664
		list_for_each_entry(slabp, &n->slabs_free, list)
1665 1666
			num_slabs++;

1667 1668
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1686 1687
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1688 1689
{
	struct page *page;
1690
	int nr_pages;
1691

1692
	flags |= cachep->allocflags;
1693 1694
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1695

L
Linus Torvalds 已提交
1696
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1697 1698 1699
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1700
		return NULL;
1701
	}
L
Linus Torvalds 已提交
1702

1703
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1704 1705 1706
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1707
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1708
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1709 1710 1711 1712 1713
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1714 1715 1716
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
G
Glauber Costa 已提交
1717
	memcg_bind_pages(cachep, cachep->gfporder);
1718

1719 1720 1721 1722 1723 1724 1725 1726
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1727

1728
	return page;
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733
}

/*
 * Interface to system's page release.
 */
1734
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1735
{
1736
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1737

1738
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1739

1740 1741 1742 1743 1744 1745
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1746

1747
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1748
	__ClearPageSlabPfmemalloc(page);
1749
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1750 1751

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1752 1753
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1754
	__free_memcg_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1755 1756 1757 1758
}

static void kmem_rcu_free(struct rcu_head *head)
{
1759 1760
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1761

1762 1763 1764 1765
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1771
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1772
			    unsigned long caller)
L
Linus Torvalds 已提交
1773
{
1774
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1775

1776
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1777

P
Pekka Enberg 已提交
1778
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1779 1780
		return;

P
Pekka Enberg 已提交
1781 1782 1783 1784
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790 1791
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1792
				*addr++ = svalue;
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798 1799
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1800
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1801 1802 1803
}
#endif

1804
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1805
{
1806
	int size = cachep->object_size;
1807
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1808 1809

	memset(addr, val, size);
P
Pekka Enberg 已提交
1810
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1816 1817 1818
	unsigned char error = 0;
	int bad_count = 0;

1819
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1820 1821 1822 1823 1824 1825
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1826 1827
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846
}
#endif

#if DEBUG

1847
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1853
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1854 1855
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1856 1857 1858
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1859 1860 1861
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1862
	}
1863
	realobj = (char *)objp + obj_offset(cachep);
1864
	size = cachep->object_size;
P
Pekka Enberg 已提交
1865
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1866 1867
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1868 1869
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1870 1871 1872 1873
		dump_line(realobj, i, limit);
	}
}

1874
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879
{
	char *realobj;
	int size, i;
	int lines = 0;

1880
	realobj = (char *)objp + obj_offset(cachep);
1881
	size = cachep->object_size;
L
Linus Torvalds 已提交
1882

P
Pekka Enberg 已提交
1883
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1884
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1885
		if (i == size - 1)
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1892
				printk(KERN_ERR
1893 1894
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1895 1896 1897
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1898
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1899
			limit = 16;
P
Pekka Enberg 已提交
1900 1901
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1914
		struct slab *slabp = virt_to_slab(objp);
1915
		unsigned int objnr;
L
Linus Torvalds 已提交
1916

1917
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1918
		if (objnr) {
1919
			objp = index_to_obj(cachep, slabp, objnr - 1);
1920
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1921
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1922
			       realobj, size);
L
Linus Torvalds 已提交
1923 1924
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1925
		if (objnr + 1 < cachep->num) {
1926
			objp = index_to_obj(cachep, slabp, objnr + 1);
1927
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1928
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1929
			       realobj, size);
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1936
#if DEBUG
R
Rabin Vincent 已提交
1937
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1938 1939 1940
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1941
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1942 1943 1944

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1945
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1946
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1947
				kernel_map_pages(virt_to_page(objp),
1948
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1958
					   "was overwritten");
L
Linus Torvalds 已提交
1959 1960
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1961
					   "was overwritten");
L
Linus Torvalds 已提交
1962 1963
		}
	}
1964
}
L
Linus Torvalds 已提交
1965
#else
R
Rabin Vincent 已提交
1966
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1967 1968
{
}
L
Linus Torvalds 已提交
1969 1970
#endif

1971 1972 1973 1974 1975
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1976
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1977 1978
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1979
 */
1980
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1981
{
1982
	struct page *page = virt_to_head_page(slabp->s_mem);
1983

R
Rabin Vincent 已提交
1984
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1985
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1996 1997

	} else {
1998
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1999
	}
2000 2001 2002 2003 2004 2005 2006

	/*
	 * From now on, we don't use slab management
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2007 2008
}

2009
/**
2010 2011 2012 2013 2014 2015 2016
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2017 2018 2019 2020 2021
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2022
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2023
			size_t size, size_t align, unsigned long flags)
2024
{
2025
	unsigned long offslab_limit;
2026
	size_t left_over = 0;
2027
	int gfporder;
2028

2029
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2030 2031 2032
		unsigned int num;
		size_t remainder;

2033
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2034 2035
		if (!num)
			continue;
2036

2037 2038 2039 2040 2041 2042 2043
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
J
Joonsoo Kim 已提交
2044
			offslab_limit /= sizeof(unsigned int);
2045 2046 2047 2048

 			if (num > offslab_limit)
				break;
		}
2049

2050
		/* Found something acceptable - save it away */
2051
		cachep->num = num;
2052
		cachep->gfporder = gfporder;
2053 2054
		left_over = remainder;

2055 2056 2057 2058 2059 2060 2061 2062
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2063 2064 2065 2066
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2067
		if (gfporder >= slab_max_order)
2068 2069
			break;

2070 2071 2072
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2073
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2074 2075 2076 2077 2078
			break;
	}
	return left_over;
}

2079
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2080
{
2081
	if (slab_state >= FULL)
2082
		return enable_cpucache(cachep, gfp);
2083

2084
	if (slab_state == DOWN) {
2085
		/*
2086
		 * Note: Creation of first cache (kmem_cache).
2087
		 * The setup_node is taken care
2088 2089 2090 2091 2092 2093 2094
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2095 2096 2097 2098 2099 2100
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2101 2102
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2103 2104
		 * otherwise the creation of further caches will BUG().
		 */
2105 2106 2107
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2108
		else
2109
			slab_state = PARTIAL_ARRAYCACHE;
2110
	} else {
2111
		/* Remaining boot caches */
2112
		cachep->array[smp_processor_id()] =
2113
			kmalloc(sizeof(struct arraycache_init), gfp);
2114

2115
		if (slab_state == PARTIAL_ARRAYCACHE) {
2116 2117
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2118 2119
		} else {
			int node;
2120
			for_each_online_node(node) {
2121
				cachep->node[node] =
2122
				    kmalloc_node(sizeof(struct kmem_cache_node),
2123
						gfp, node);
2124
				BUG_ON(!cachep->node[node]);
2125
				kmem_cache_node_init(cachep->node[node]);
2126 2127 2128
			}
		}
	}
2129
	cachep->node[numa_mem_id()]->next_reap =
2130 2131 2132 2133 2134 2135 2136 2137 2138
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2139
	return 0;
2140 2141
}

L
Linus Torvalds 已提交
2142
/**
2143
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2144
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2145 2146 2147 2148
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2149
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2163
int
2164
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2165 2166
{
	size_t left_over, slab_size, ralign;
2167
	gfp_t gfp;
2168
	int err;
2169
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2179 2180
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2181
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2182 2183 2184 2185 2186 2187 2188
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2189 2190
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2191 2192 2193
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2194 2195 2196
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2197 2198
	}

2199
	/*
D
David Woodhouse 已提交
2200 2201 2202
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2203
	 */
D
David Woodhouse 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2214

2215
	/* 3) caller mandated alignment */
2216 2217
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2218
	}
2219 2220
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2221
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2222
	/*
2223
	 * 4) Store it.
L
Linus Torvalds 已提交
2224
	 */
2225
	cachep->align = ralign;
L
Linus Torvalds 已提交
2226

2227 2228 2229 2230 2231
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2232
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2233 2234
#if DEBUG

2235 2236 2237 2238
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2239 2240
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2241 2242
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2243 2244
	}
	if (flags & SLAB_STORE_USER) {
2245
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2246 2247
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2248
		 */
D
David Woodhouse 已提交
2249 2250 2251 2252
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2253 2254
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2255
	if (size >= kmalloc_size(INDEX_NODE + 1)
2256 2257 2258
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263
		size = PAGE_SIZE;
	}
#endif
#endif

2264 2265 2266
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2267 2268
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2269
	 */
2270 2271
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2278
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2279

2280
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2281

2282
	if (!cachep->num)
2283
		return -E2BIG;
L
Linus Torvalds 已提交
2284

J
Joonsoo Kim 已提交
2285
	slab_size = ALIGN(cachep->num * sizeof(unsigned int)
2286
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2299
		slab_size =
J
Joonsoo Kim 已提交
2300
		    cachep->num * sizeof(unsigned int) + sizeof(struct slab);
2301 2302 2303 2304 2305 2306 2307 2308 2309

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2310 2311 2312 2313
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2314 2315
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2316
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2317 2318
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2319
	cachep->allocflags = __GFP_COMP;
2320
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2321
		cachep->allocflags |= GFP_DMA;
2322
	cachep->size = size;
2323
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2324

2325
	if (flags & CFLGS_OFF_SLAB) {
2326
		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2327 2328 2329 2330 2331 2332 2333
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2334
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2335
	}
L
Linus Torvalds 已提交
2336

2337 2338
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2339
		__kmem_cache_shutdown(cachep);
2340
		return err;
2341
	}
L
Linus Torvalds 已提交
2342

2343 2344 2345 2346 2347 2348 2349 2350
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2351 2352
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2353

2354
	return 0;
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2368
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2369 2370 2371
{
#ifdef CONFIG_SMP
	check_irq_off();
2372
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2373 2374
#endif
}
2375

2376
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2377 2378 2379
{
#ifdef CONFIG_SMP
	check_irq_off();
2380
	assert_spin_locked(&cachep->node[node]->list_lock);
2381 2382 2383
#endif
}

L
Linus Torvalds 已提交
2384 2385 2386 2387
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2388
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2389 2390
#endif

2391
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2392 2393 2394
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2395 2396
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2397
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2398
	struct array_cache *ac;
2399
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2400 2401

	check_irq_off();
2402
	ac = cpu_cache_get(cachep);
2403
	spin_lock(&cachep->node[node]->list_lock);
2404
	free_block(cachep, ac->entry, ac->avail, node);
2405
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2406 2407 2408
	ac->avail = 0;
}

2409
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2410
{
2411
	struct kmem_cache_node *n;
2412 2413
	int node;

2414
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2415
	check_irq_on();
P
Pekka Enberg 已提交
2416
	for_each_online_node(node) {
2417 2418 2419
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2420 2421 2422
	}

	for_each_online_node(node) {
2423 2424 2425
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2426
	}
L
Linus Torvalds 已提交
2427 2428
}

2429 2430 2431 2432 2433 2434 2435
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2436
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2437
{
2438 2439
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2440 2441
	struct slab *slabp;

2442
	nr_freed = 0;
2443
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2444

2445 2446 2447 2448
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2449 2450
			goto out;
		}
L
Linus Torvalds 已提交
2451

2452
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2453
#if DEBUG
2454
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2455 2456
#endif
		list_del(&slabp->list);
2457 2458 2459 2460
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2461 2462
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2463 2464
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2465
	}
2466 2467
out:
	return nr_freed;
L
Linus Torvalds 已提交
2468 2469
}

2470
/* Called with slab_mutex held to protect against cpu hotplug */
2471
static int __cache_shrink(struct kmem_cache *cachep)
2472 2473
{
	int ret = 0, i = 0;
2474
	struct kmem_cache_node *n;
2475 2476 2477 2478 2479

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2480 2481
		n = cachep->node[i];
		if (!n)
2482 2483
			continue;

2484
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2485

2486 2487
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2488 2489 2490 2491
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2492 2493 2494 2495 2496 2497 2498
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2499
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2500
{
2501
	int ret;
2502
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2503

2504
	get_online_cpus();
2505
	mutex_lock(&slab_mutex);
2506
	ret = __cache_shrink(cachep);
2507
	mutex_unlock(&slab_mutex);
2508
	put_online_cpus();
2509
	return ret;
L
Linus Torvalds 已提交
2510 2511 2512
}
EXPORT_SYMBOL(kmem_cache_shrink);

2513
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2514
{
2515
	int i;
2516
	struct kmem_cache_node *n;
2517
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2518

2519 2520
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2521

2522 2523
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2524

2525
	/* NUMA: free the node structures */
2526
	for_each_online_node(i) {
2527 2528 2529 2530 2531
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2532 2533 2534
		}
	}
	return 0;
L
Linus Torvalds 已提交
2535 2536
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2548 2549 2550
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2551 2552
{
	struct slab *slabp;
2553
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2554

L
Linus Torvalds 已提交
2555 2556
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2557
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2558
					      local_flags, nodeid);
2559 2560 2561 2562 2563 2564
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2565 2566
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2567 2568 2569
		if (!slabp)
			return NULL;
	} else {
2570
		slabp = addr + colour_off;
L
Linus Torvalds 已提交
2571 2572 2573
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
2574
	slabp->s_mem = addr + colour_off;
2575
	slabp->free = 0;
L
Linus Torvalds 已提交
2576 2577 2578
	return slabp;
}

J
Joonsoo Kim 已提交
2579
static inline unsigned int *slab_bufctl(struct slab *slabp)
L
Linus Torvalds 已提交
2580
{
J
Joonsoo Kim 已提交
2581
	return (unsigned int *) (slabp + 1);
L
Linus Torvalds 已提交
2582 2583
}

2584
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2585
			    struct slab *slabp)
L
Linus Torvalds 已提交
2586 2587 2588 2589
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2590
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2603 2604 2605
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2606 2607
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2608
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2609 2610 2611 2612

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2613
					   " end of an object");
L
Linus Torvalds 已提交
2614 2615
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2616
					   " start of an object");
L
Linus Torvalds 已提交
2617
		}
2618
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2619
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2620
			kernel_map_pages(virt_to_page(objp),
2621
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2622 2623
#else
		if (cachep->ctor)
2624
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2625
#endif
2626
		slab_bufctl(slabp)[i] = i;
L
Linus Torvalds 已提交
2627 2628 2629
	}
}

2630
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2631
{
2632 2633
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2634
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2635
		else
2636
			BUG_ON(cachep->allocflags & GFP_DMA);
2637
	}
L
Linus Torvalds 已提交
2638 2639
}

A
Andrew Morton 已提交
2640 2641
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2642
{
2643
	void *objp;
2644 2645

	slabp->inuse++;
2646
	objp = index_to_obj(cachep, slabp, slab_bufctl(slabp)[slabp->free]);
2647
#if DEBUG
J
Joonsoo Kim 已提交
2648
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2649
#endif
2650
	slabp->free++;
2651 2652 2653 2654

	return objp;
}

A
Andrew Morton 已提交
2655 2656
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2657
{
2658
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2659
#if DEBUG
J
Joonsoo Kim 已提交
2660
	unsigned int i;
2661

2662
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2663
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2664

2665 2666 2667 2668 2669 2670 2671
	/* Verify double free bug */
	for (i = slabp->free; i < cachep->num; i++) {
		if (slab_bufctl(slabp)[i] == objnr) {
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2672 2673
	}
#endif
2674 2675
	slabp->free--;
	slab_bufctl(slabp)[slabp->free] = objnr;
2676 2677 2678
	slabp->inuse--;
}

2679 2680 2681
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2682
 * virtual address for kfree, ksize, and slab debugging.
2683 2684
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2685
			   struct page *page)
L
Linus Torvalds 已提交
2686
{
2687 2688
	page->slab_cache = cache;
	page->slab_page = slab;
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2695
static int cache_grow(struct kmem_cache *cachep,
2696
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2697
{
P
Pekka Enberg 已提交
2698 2699 2700
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2701
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2702

A
Andrew Morton 已提交
2703 2704 2705
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2706
	 */
C
Christoph Lameter 已提交
2707 2708
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2709

2710
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2711
	check_irq_off();
2712 2713
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2714 2715

	/* Get colour for the slab, and cal the next value. */
2716 2717 2718 2719 2720
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2721

2722
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2735 2736 2737
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2738
	 */
2739 2740 2741
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2742 2743 2744
		goto failed;

	/* Get slab management. */
2745
	slabp = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2746
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2747
	if (!slabp)
L
Linus Torvalds 已提交
2748 2749
		goto opps1;

2750
	slab_map_pages(cachep, slabp, page);
L
Linus Torvalds 已提交
2751

C
Christoph Lameter 已提交
2752
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2753 2754 2755 2756

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2757
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2758 2759

	/* Make slab active. */
2760
	list_add_tail(&slabp->list, &(n->slabs_free));
L
Linus Torvalds 已提交
2761
	STATS_INC_GROWN(cachep);
2762 2763
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2764
	return 1;
A
Andrew Morton 已提交
2765
opps1:
2766
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2767
failed:
L
Linus Torvalds 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2784 2785
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2786 2787 2788
	}
}

2789 2790
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2791
	unsigned long long redzone1, redzone2;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2807
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2808 2809 2810
			obj, redzone1, redzone2);
}

2811
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2812
				   unsigned long caller)
L
Linus Torvalds 已提交
2813 2814 2815 2816
{
	unsigned int objnr;
	struct slab *slabp;

2817 2818
	BUG_ON(virt_to_cache(objp) != cachep);

2819
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2820
	kfree_debugcheck(objp);
2821
	slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
2822 2823

	if (cachep->flags & SLAB_RED_ZONE) {
2824
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2825 2826 2827 2828
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2829
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2830

2831
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2832 2833

	BUG_ON(objnr >= cachep->num);
2834
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2835 2836 2837

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2838
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2839
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2840
			kernel_map_pages(virt_to_page(objp),
2841
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2857 2858
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2859 2860
{
	int batchcount;
2861
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2862
	struct array_cache *ac;
P
Pekka Enberg 已提交
2863 2864
	int node;

L
Linus Torvalds 已提交
2865
	check_irq_off();
2866
	node = numa_mem_id();
2867 2868 2869
	if (unlikely(force_refill))
		goto force_grow;
retry:
2870
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2871 2872
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2873 2874 2875 2876
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2877 2878 2879
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2880
	n = cachep->node[node];
2881

2882 2883
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2884

2885
	/* See if we can refill from the shared array */
2886 2887
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2888
		goto alloc_done;
2889
	}
2890

L
Linus Torvalds 已提交
2891 2892 2893 2894
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
2895 2896 2897 2898 2899
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_spinlock_acquired(cachep);
2905 2906 2907 2908 2909 2910

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2911
		BUG_ON(slabp->inuse >= cachep->num);
2912

L
Linus Torvalds 已提交
2913 2914 2915 2916 2917
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2918 2919
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
2920 2921 2922 2923
		}

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
2924
		if (slabp->free == cachep->num)
2925
			list_add(&slabp->list, &n->slabs_full);
L
Linus Torvalds 已提交
2926
		else
2927
			list_add(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
2928 2929
	}

A
Andrew Morton 已提交
2930
must_grow:
2931
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2932
alloc_done:
2933
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2934 2935 2936

	if (unlikely(!ac->avail)) {
		int x;
2937
force_grow:
2938
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2939

A
Andrew Morton 已提交
2940
		/* cache_grow can reenable interrupts, then ac could change. */
2941
		ac = cpu_cache_get(cachep);
2942
		node = numa_mem_id();
2943 2944 2945

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2946 2947
			return NULL;

A
Andrew Morton 已提交
2948
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2949 2950 2951
			goto retry;
	}
	ac->touched = 1;
2952 2953

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2954 2955
}

A
Andrew Morton 已提交
2956 2957
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964 2965
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2966
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2967
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2968
{
P
Pekka Enberg 已提交
2969
	if (!objp)
L
Linus Torvalds 已提交
2970
		return objp;
P
Pekka Enberg 已提交
2971
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2972
#ifdef CONFIG_DEBUG_PAGEALLOC
2973
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2974
			kernel_map_pages(virt_to_page(objp),
2975
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2976 2977 2978 2979 2980 2981 2982 2983
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2984
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2985 2986

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2987 2988 2989 2990
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2991
			printk(KERN_ERR
2992
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2993 2994
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2995 2996 2997 2998
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2999
	objp += obj_offset(cachep);
3000
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3001
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3002 3003
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3004
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3005
		       objp, (int)ARCH_SLAB_MINALIGN);
3006
	}
L
Linus Torvalds 已提交
3007 3008 3009 3010 3011 3012
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3013
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3014
{
3015
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3016
		return false;
3017

3018
	return should_failslab(cachep->object_size, flags, cachep->flags);
3019 3020
}

3021
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3022
{
P
Pekka Enberg 已提交
3023
	void *objp;
L
Linus Torvalds 已提交
3024
	struct array_cache *ac;
3025
	bool force_refill = false;
L
Linus Torvalds 已提交
3026

3027
	check_irq_off();
3028

3029
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3030 3031
	if (likely(ac->avail)) {
		ac->touched = 1;
3032 3033
		objp = ac_get_obj(cachep, ac, flags, false);

3034
		/*
3035 3036
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3037
		 */
3038 3039 3040 3041 3042
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3043
	}
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3054 3055 3056 3057 3058
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3059 3060
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3061 3062 3063
	return objp;
}

3064
#ifdef CONFIG_NUMA
3065
/*
3066
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3067 3068 3069 3070 3071 3072 3073 3074
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3075
	if (in_interrupt() || (flags & __GFP_THISNODE))
3076
		return NULL;
3077
	nid_alloc = nid_here = numa_mem_id();
3078
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3079
		nid_alloc = cpuset_slab_spread_node();
3080
	else if (current->mempolicy)
3081
		nid_alloc = slab_node();
3082
	if (nid_alloc != nid_here)
3083
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3084 3085 3086
	return NULL;
}

3087 3088
/*
 * Fallback function if there was no memory available and no objects on a
3089
 * certain node and fall back is permitted. First we scan all the
3090
 * available node for available objects. If that fails then we
3091 3092 3093
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3094
 */
3095
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3096
{
3097 3098
	struct zonelist *zonelist;
	gfp_t local_flags;
3099
	struct zoneref *z;
3100 3101
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3102
	void *obj = NULL;
3103
	int nid;
3104
	unsigned int cpuset_mems_cookie;
3105 3106 3107 3108

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3109
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3110

3111 3112
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3113
	zonelist = node_zonelist(slab_node(), flags);
3114

3115 3116 3117 3118 3119
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3120 3121
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3122

3123
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3124 3125
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3126 3127
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3128 3129 3130
				if (obj)
					break;
		}
3131 3132
	}

3133
	if (!obj) {
3134 3135 3136 3137 3138 3139
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3140 3141
		struct page *page;

3142 3143 3144
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3145
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3146 3147
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3148
		if (page) {
3149 3150 3151
			/*
			 * Insert into the appropriate per node queues
			 */
3152 3153
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3164
				/* cache_grow already freed obj */
3165 3166 3167
				obj = NULL;
			}
		}
3168
	}
3169 3170 3171

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3172 3173 3174
	return obj;
}

3175 3176
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3177
 */
3178
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3179
				int nodeid)
3180 3181
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3182
	struct slab *slabp;
3183
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3184 3185 3186
	void *obj;
	int x;

3187
	VM_BUG_ON(nodeid > num_online_nodes());
3188 3189
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3190

A
Andrew Morton 已提交
3191
retry:
3192
	check_irq_off();
3193 3194 3195 3196 3197 3198
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3211
	obj = slab_get_obj(cachep, slabp, nodeid);
3212
	n->free_objects--;
P
Pekka Enberg 已提交
3213 3214 3215
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

3216
	if (slabp->free == cachep->num)
3217
		list_add(&slabp->list, &n->slabs_full);
A
Andrew Morton 已提交
3218
	else
3219
		list_add(&slabp->list, &n->slabs_partial);
3220

3221
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3222
	goto done;
3223

A
Andrew Morton 已提交
3224
must_grow:
3225
	spin_unlock(&n->list_lock);
3226
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3227 3228
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3229

3230
	return fallback_alloc(cachep, flags);
3231

A
Andrew Morton 已提交
3232
done:
P
Pekka Enberg 已提交
3233
	return obj;
3234
}
3235 3236

static __always_inline void *
3237
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3238
		   unsigned long caller)
3239 3240 3241
{
	unsigned long save_flags;
	void *ptr;
3242
	int slab_node = numa_mem_id();
3243

3244
	flags &= gfp_allowed_mask;
3245

3246 3247
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3248
	if (slab_should_failslab(cachep, flags))
3249 3250
		return NULL;

3251 3252
	cachep = memcg_kmem_get_cache(cachep, flags);

3253 3254 3255
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3256
	if (nodeid == NUMA_NO_NODE)
3257
		nodeid = slab_node;
3258

3259
	if (unlikely(!cachep->node[nodeid])) {
3260 3261 3262 3263 3264
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3265
	if (nodeid == slab_node) {
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3281
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3282
				 flags);
3283

P
Pekka Enberg 已提交
3284
	if (likely(ptr))
3285
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3286

3287
	if (unlikely((flags & __GFP_ZERO) && ptr))
3288
		memset(ptr, 0, cachep->object_size);
3289

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3309 3310
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3326
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3327 3328 3329 3330
{
	unsigned long save_flags;
	void *objp;

3331
	flags &= gfp_allowed_mask;
3332

3333 3334
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3335
	if (slab_should_failslab(cachep, flags))
3336 3337
		return NULL;

3338 3339
	cachep = memcg_kmem_get_cache(cachep, flags);

3340 3341 3342 3343 3344
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3345
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3346
				 flags);
3347 3348
	prefetchw(objp);

P
Pekka Enberg 已提交
3349
	if (likely(objp))
3350
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3351

3352
	if (unlikely((flags & __GFP_ZERO) && objp))
3353
		memset(objp, 0, cachep->object_size);
3354

3355 3356
	return objp;
}
3357 3358 3359 3360

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3361
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3362
		       int node)
L
Linus Torvalds 已提交
3363 3364
{
	int i;
3365
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3366 3367

	for (i = 0; i < nr_objects; i++) {
3368
		void *objp;
L
Linus Torvalds 已提交
3369 3370
		struct slab *slabp;

3371 3372 3373
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3374
		slabp = virt_to_slab(objp);
3375
		n = cachep->node[node];
L
Linus Torvalds 已提交
3376
		list_del(&slabp->list);
3377
		check_spinlock_acquired_node(cachep, node);
3378
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3379
		STATS_DEC_ACTIVE(cachep);
3380
		n->free_objects++;
L
Linus Torvalds 已提交
3381 3382 3383

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3384 3385
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3386 3387 3388 3389 3390 3391
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3392 3393
				slab_destroy(cachep, slabp);
			} else {
3394
				list_add(&slabp->list, &n->slabs_free);
L
Linus Torvalds 已提交
3395 3396 3397 3398 3399 3400
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3401
			list_add_tail(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3402 3403 3404 3405
		}
	}
}

3406
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3407 3408
{
	int batchcount;
3409
	struct kmem_cache_node *n;
3410
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415 3416

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3417 3418 3419 3420
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3421
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3422 3423 3424
		if (max) {
			if (batchcount > max)
				batchcount = max;
3425
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3426
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3427 3428 3429 3430 3431
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3432
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3433
free_done:
L
Linus Torvalds 已提交
3434 3435 3436 3437 3438
#if STATS
	{
		int i = 0;
		struct list_head *p;

3439 3440
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
L
Linus Torvalds 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3452
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3453
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3454
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3455 3456 3457
}

/*
A
Andrew Morton 已提交
3458 3459
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3460
 */
3461
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3462
				unsigned long caller)
L
Linus Torvalds 已提交
3463
{
3464
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3465 3466

	check_irq_off();
3467
	kmemleak_free_recursive(objp, cachep->flags);
3468
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3469

3470
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3471

3472 3473 3474 3475 3476 3477 3478
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3479
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3480 3481
		return;

L
Linus Torvalds 已提交
3482 3483 3484 3485 3486 3487
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3488

3489
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3500
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3501
{
3502
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3503

3504
	trace_kmem_cache_alloc(_RET_IP_, ret,
3505
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3506 3507

	return ret;
L
Linus Torvalds 已提交
3508 3509 3510
}
EXPORT_SYMBOL(kmem_cache_alloc);

3511
#ifdef CONFIG_TRACING
3512
void *
3513
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3514
{
3515 3516
	void *ret;

3517
	ret = slab_alloc(cachep, flags, _RET_IP_);
3518 3519

	trace_kmalloc(_RET_IP_, ret,
3520
		      size, cachep->size, flags);
3521
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3522
}
3523
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3524 3525
#endif

L
Linus Torvalds 已提交
3526
#ifdef CONFIG_NUMA
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3538 3539
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3540
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3541

3542
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3543
				    cachep->object_size, cachep->size,
3544
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3545 3546

	return ret;
3547
}
L
Linus Torvalds 已提交
3548 3549
EXPORT_SYMBOL(kmem_cache_alloc_node);

3550
#ifdef CONFIG_TRACING
3551
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3552
				  gfp_t flags,
3553 3554
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3555
{
3556 3557
	void *ret;

3558
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3559

3560
	trace_kmalloc_node(_RET_IP_, ret,
3561
			   size, cachep->size,
3562 3563
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3564
}
3565
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3566 3567
#endif

3568
static __always_inline void *
3569
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3570
{
3571
	struct kmem_cache *cachep;
3572

3573
	cachep = kmalloc_slab(size, flags);
3574 3575
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3576
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3577
}
3578

3579
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3580 3581
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3582
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3583
}
3584
EXPORT_SYMBOL(__kmalloc_node);
3585 3586

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3587
		int node, unsigned long caller)
3588
{
3589
	return __do_kmalloc_node(size, flags, node, caller);
3590 3591 3592 3593 3594
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3595
	return __do_kmalloc_node(size, flags, node, 0);
3596 3597
}
EXPORT_SYMBOL(__kmalloc_node);
3598
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3599
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3600 3601

/**
3602
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3603
 * @size: how many bytes of memory are required.
3604
 * @flags: the type of memory to allocate (see kmalloc).
3605
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3606
 */
3607
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3608
					  unsigned long caller)
L
Linus Torvalds 已提交
3609
{
3610
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3611
	void *ret;
L
Linus Torvalds 已提交
3612

3613 3614 3615 3616 3617
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3618
	cachep = kmalloc_slab(size, flags);
3619 3620
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3621
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3622

3623
	trace_kmalloc(caller, ret,
3624
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3625 3626

	return ret;
3627 3628 3629
}


3630
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3631 3632
void *__kmalloc(size_t size, gfp_t flags)
{
3633
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3634 3635 3636
}
EXPORT_SYMBOL(__kmalloc);

3637
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3638
{
3639
	return __do_kmalloc(size, flags, caller);
3640 3641
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3642 3643 3644 3645

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3646
	return __do_kmalloc(size, flags, 0);
3647 3648
}
EXPORT_SYMBOL(__kmalloc);
3649 3650
#endif

L
Linus Torvalds 已提交
3651 3652 3653 3654 3655 3656 3657 3658
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3659
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3660 3661
{
	unsigned long flags;
3662 3663 3664
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3665 3666

	local_irq_save(flags);
3667
	debug_check_no_locks_freed(objp, cachep->object_size);
3668
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3669
		debug_check_no_obj_freed(objp, cachep->object_size);
3670
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3671
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3672

3673
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3681 3682
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3683 3684 3685 3686 3687
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3688
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3689 3690
	unsigned long flags;

3691 3692
	trace_kfree(_RET_IP_, objp);

3693
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3694 3695 3696
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3697
	c = virt_to_cache(objp);
3698 3699 3700
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3701
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3702 3703 3704 3705
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3706
/*
3707
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3708
 */
3709
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3710 3711
{
	int node;
3712
	struct kmem_cache_node *n;
3713
	struct array_cache *new_shared;
3714
	struct array_cache **new_alien = NULL;
3715

3716
	for_each_online_node(node) {
3717

3718
                if (use_alien_caches) {
3719
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3720 3721 3722
                        if (!new_alien)
                                goto fail;
                }
3723

3724 3725 3726
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3727
				cachep->shared*cachep->batchcount,
3728
					0xbaadf00d, gfp);
3729 3730 3731 3732
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3733
		}
3734

3735 3736 3737
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3738

3739
			spin_lock_irq(&n->list_lock);
3740

3741
			if (shared)
3742 3743
				free_block(cachep, shared->entry,
						shared->avail, node);
3744

3745 3746 3747
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3748 3749
				new_alien = NULL;
			}
3750
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3751
					cachep->batchcount + cachep->num;
3752
			spin_unlock_irq(&n->list_lock);
3753
			kfree(shared);
3754 3755 3756
			free_alien_cache(new_alien);
			continue;
		}
3757 3758
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3759 3760
			free_alien_cache(new_alien);
			kfree(new_shared);
3761
			goto fail;
3762
		}
3763

3764 3765
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3766
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3767 3768 3769
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3770
					cachep->batchcount + cachep->num;
3771
		cachep->node[node] = n;
3772
	}
3773
	return 0;
3774

A
Andrew Morton 已提交
3775
fail:
3776
	if (!cachep->list.next) {
3777 3778 3779
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3780
			if (cachep->node[node]) {
3781
				n = cachep->node[node];
3782

3783 3784 3785
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3786
				cachep->node[node] = NULL;
3787 3788 3789 3790
			}
			node--;
		}
	}
3791
	return -ENOMEM;
3792 3793
}

L
Linus Torvalds 已提交
3794
struct ccupdate_struct {
3795
	struct kmem_cache *cachep;
3796
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3797 3798 3799 3800
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3801
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3802 3803 3804
	struct array_cache *old;

	check_irq_off();
3805
	old = cpu_cache_get(new->cachep);
3806

L
Linus Torvalds 已提交
3807 3808 3809 3810
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3811
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3812
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3813
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3814
{
3815
	struct ccupdate_struct *new;
3816
	int i;
L
Linus Torvalds 已提交
3817

3818 3819
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3820 3821 3822
	if (!new)
		return -ENOMEM;

3823
	for_each_online_cpu(i) {
3824
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3825
						batchcount, gfp);
3826
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3827
			for (i--; i >= 0; i--)
3828 3829
				kfree(new->new[i]);
			kfree(new);
3830
			return -ENOMEM;
L
Linus Torvalds 已提交
3831 3832
		}
	}
3833
	new->cachep = cachep;
L
Linus Torvalds 已提交
3834

3835
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3836

L
Linus Torvalds 已提交
3837 3838 3839
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3840
	cachep->shared = shared;
L
Linus Torvalds 已提交
3841

3842
	for_each_online_cpu(i) {
3843
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3844 3845
		if (!ccold)
			continue;
3846
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3847
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3848
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3849 3850
		kfree(ccold);
	}
3851
	kfree(new);
3852
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3853 3854
}

G
Glauber Costa 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3870
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3881
/* Called with slab_mutex held always */
3882
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3883 3884
{
	int err;
G
Glauber Costa 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3895

G
Glauber Costa 已提交
3896 3897
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3898 3899
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3900 3901
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3902
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3903 3904 3905 3906
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3907
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3908
		limit = 1;
3909
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3910
		limit = 8;
3911
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3912
		limit = 24;
3913
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3914 3915 3916 3917
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3918 3919
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926 3927
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3928
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3929 3930 3931
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3932 3933 3934
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3935 3936 3937 3938
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3939 3940 3941
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3942 3943
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3944
		       cachep->name, -err);
3945
	return err;
L
Linus Torvalds 已提交
3946 3947
}

3948
/*
3949 3950
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3951
 * if drain_array() is used on the shared array.
3952
 */
3953
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3954
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3955 3956 3957
{
	int tofree;

3958 3959
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3960 3961
	if (ac->touched && !force) {
		ac->touched = 0;
3962
	} else {
3963
		spin_lock_irq(&n->list_lock);
3964 3965 3966 3967 3968 3969 3970 3971 3972
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3973
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3974 3975 3976 3977 3978
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3979
 * @w: work descriptor
L
Linus Torvalds 已提交
3980 3981 3982 3983 3984 3985
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3986 3987
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3988
 */
3989
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3990
{
3991
	struct kmem_cache *searchp;
3992
	struct kmem_cache_node *n;
3993
	int node = numa_mem_id();
3994
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3995

3996
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3997
		/* Give up. Setup the next iteration. */
3998
		goto out;
L
Linus Torvalds 已提交
3999

4000
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4001 4002
		check_irq_on();

4003
		/*
4004
		 * We only take the node lock if absolutely necessary and we
4005 4006 4007
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4008
		n = searchp->node[node];
4009

4010
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4011

4012
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4013

4014 4015 4016 4017
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4018
		if (time_after(n->next_reap, jiffies))
4019
			goto next;
L
Linus Torvalds 已提交
4020

4021
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4022

4023
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4024

4025 4026
		if (n->free_touched)
			n->free_touched = 0;
4027 4028
		else {
			int freed;
L
Linus Torvalds 已提交
4029

4030
			freed = drain_freelist(searchp, n, (n->free_limit +
4031 4032 4033
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4034
next:
L
Linus Torvalds 已提交
4035 4036 4037
		cond_resched();
	}
	check_irq_on();
4038
	mutex_unlock(&slab_mutex);
4039
	next_reap_node();
4040
out:
A
Andrew Morton 已提交
4041
	/* Set up the next iteration */
4042
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4043 4044
}

4045
#ifdef CONFIG_SLABINFO
4046
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4047
{
P
Pekka Enberg 已提交
4048 4049 4050 4051 4052
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4053
	const char *name;
L
Linus Torvalds 已提交
4054
	char *error = NULL;
4055
	int node;
4056
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4057 4058 4059

	active_objs = 0;
	num_slabs = 0;
4060
	for_each_online_node(node) {
4061 4062
		n = cachep->node[node];
		if (!n)
4063 4064
			continue;

4065
		check_irq_on();
4066
		spin_lock_irq(&n->list_lock);
4067

4068
		list_for_each_entry(slabp, &n->slabs_full, list) {
4069 4070 4071 4072 4073
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4074
		list_for_each_entry(slabp, &n->slabs_partial, list) {
4075 4076 4077 4078 4079 4080 4081
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4082
		list_for_each_entry(slabp, &n->slabs_free, list) {
4083 4084 4085 4086
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
4087 4088 4089
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4090

4091
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4092
	}
P
Pekka Enberg 已提交
4093 4094
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4095
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4096 4097
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4098
	name = cachep->name;
L
Linus Torvalds 已提交
4099 4100 4101
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4116
#if STATS
4117
	{			/* node stats */
L
Linus Torvalds 已提交
4118 4119 4120 4121 4122 4123 4124
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4125
		unsigned long node_frees = cachep->node_frees;
4126
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4127

J
Joe Perches 已提交
4128 4129 4130 4131 4132
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4142
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4155
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4156
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4157
{
P
Pekka Enberg 已提交
4158
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4159
	int limit, batchcount, shared, res;
4160
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4161

L
Linus Torvalds 已提交
4162 4163 4164 4165
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4166
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4177
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4178
	res = -EINVAL;
4179
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4180
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4181 4182
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4183
				res = 0;
L
Linus Torvalds 已提交
4184
			} else {
4185
				res = do_tune_cpucache(cachep, limit,
4186 4187
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4188 4189 4190 4191
			}
			break;
		}
	}
4192
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4193 4194 4195 4196
	if (res >= 0)
		res = count;
	return res;
}
4197 4198 4199 4200 4201

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4202 4203
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
4239 4240
	int i, j;

4241 4242
	if (n[0] == n[1])
		return;
4243
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
		bool active = true;

		for (j = s->free; j < c->num; j++) {
			/* Skip freed item */
			if (slab_bufctl(s)[j] == i) {
				active = false;
				break;
			}
		}
		if (!active)
4254
			continue;
4255

4256 4257 4258 4259 4260 4261 4262 4263 4264
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4265
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4266

4267
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4268
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4269
		if (modname[0])
4270 4271 4272 4273 4274 4275 4276 4277 4278
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4279
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4280
	struct slab *slabp;
4281
	struct kmem_cache_node *n;
4282
	const char *name;
4283
	unsigned long *x = m->private;
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4294
	x[1] = 0;
4295 4296

	for_each_online_node(node) {
4297 4298
		n = cachep->node[node];
		if (!n)
4299 4300 4301
			continue;

		check_irq_on();
4302
		spin_lock_irq(&n->list_lock);
4303

4304
		list_for_each_entry(slabp, &n->slabs_full, list)
4305
			handle_slab(x, cachep, slabp);
4306
		list_for_each_entry(slabp, &n->slabs_partial, list)
4307
			handle_slab(x, cachep, slabp);
4308
		spin_unlock_irq(&n->list_lock);
4309 4310
	}
	name = cachep->name;
4311
	if (x[0] == x[1]) {
4312
		/* Increase the buffer size */
4313
		mutex_unlock(&slab_mutex);
4314
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4315 4316
		if (!m->private) {
			/* Too bad, we are really out */
4317
			m->private = x;
4318
			mutex_lock(&slab_mutex);
4319 4320
			return -ENOMEM;
		}
4321 4322
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4323
		mutex_lock(&slab_mutex);
4324 4325 4326 4327
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4328 4329 4330
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4331 4332
		seq_putc(m, '\n');
	}
4333

4334 4335 4336
	return 0;
}

4337
static const struct seq_operations slabstats_op = {
4338
	.start = leaks_start,
4339 4340
	.next = slab_next,
	.stop = slab_stop,
4341 4342
	.show = leaks_show,
};
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4373
#endif
4374 4375 4376
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4377 4378
#endif

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4391
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4392
{
4393 4394
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4395
		return 0;
L
Linus Torvalds 已提交
4396

4397
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4398
}
K
Kirill A. Shutemov 已提交
4399
EXPORT_SYMBOL(ksize);