slab.c 111.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	spinlock_t lock;
195
	void *entry[];	/*
A
Andrew Morton 已提交
196 197 198
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
199 200 201 202
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
203
			 */
L
Linus Torvalds 已提交
204 205
};

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
223 224 225
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
226 227 228 229
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
230
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
231 232
};

233 234 235
/*
 * Need this for bootstrapping a per node allocator.
 */
236
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238
#define	CACHE_CACHE 0
239
#define	SIZE_AC MAX_NUMNODES
240
#define	SIZE_NODE (2 * MAX_NUMNODES)
241

242
static int drain_freelist(struct kmem_cache *cache,
243
			struct kmem_cache_node *n, int tofree);
244 245
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
246
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247
static void cache_reap(struct work_struct *unused);
248

249 250
static int slab_early_init = 1;

251
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
253

254
static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 256 257 258 259 260
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
261
	parent->colour_next = 0;
262 263 264 265 266
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
267 268 269
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
270
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
271 272
	} while (0)

A
Andrew Morton 已提交
273 274
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
275 276 277 278
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
279 280 281 282 283

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
284 285 286
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
287
 *
A
Adrian Bunk 已提交
288
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
289 290
 * which could lock up otherwise freeable slabs.
 */
291 292
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
293 294 295 296 297 298

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
299
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
300 301 302 303 304
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
305 306
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
307
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
308
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
309 310 311 312 313
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
323
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
324 325 326
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
327
#define	STATS_INC_NODEFREES(x)	do { } while (0)
328
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
329
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
338 339
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
340
 * 0		: objp
341
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
342 343
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
344
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
345
 * 		redzone word.
346
 * cachep->obj_offset: The real object.
347 348
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
349
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
350
 */
351
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
352
{
353
	return cachep->obj_offset;
L
Linus Torvalds 已提交
354 355
}

356
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
357 358
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 360
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
361 362
}

363
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
364 365 366
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
367
		return (unsigned long long *)(objp + cachep->size -
368
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
369
					      REDZONE_ALIGN);
370
	return (unsigned long long *) (objp + cachep->size -
371
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
372 373
}

374
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
375 376
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
378 379 380 381
}

#else

382
#define obj_offset(x)			0
383 384
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
385 386 387 388
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

L
Linus Torvalds 已提交
422
/*
423 424
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
425
 */
426 427 428
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
429
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
430

431 432
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
433
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
434
	return page->slab_cache;
435 436
}

437
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
438 439
				 unsigned int idx)
{
440
	return page->s_mem + cache->size * idx;
441 442
}

443
/*
444 445 446
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
447 448 449
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
450
					const struct page *page, void *obj)
451
{
452
	u32 offset = (obj - page->s_mem);
453
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
454 455
}

L
Linus Torvalds 已提交
456
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
457
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
458 459

/* internal cache of cache description objs */
460
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
461 462 463
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
464
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
465
	.name = "kmem_cache",
L
Linus Torvalds 已提交
466 467
};

468 469
#define BAD_ALIEN_MAGIC 0x01020304ul

470 471 472 473 474 475 476 477
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
478 479 480 481
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
482
 */
483 484 485
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

486 487 488 489 490
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
491
		struct kmem_cache_node *n)
492 493 494 495
{
	struct array_cache **alc;
	int r;

496 497
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

513 514
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
515
{
516
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, n);
517 518 519 520 521
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;
522
	struct kmem_cache_node *n;
523

524 525
	for_each_kmem_cache_node(cachep, node, n)
		slab_set_debugobj_lock_classes_node(cachep, n);
526 527
}

528
static void init_node_lock_keys(int q)
529
{
530
	int i;
531

532
	if (slab_state < UP)
533 534
		return;

C
Christoph Lameter 已提交
535
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
536
		struct kmem_cache_node *n;
537 538 539 540
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
541

542
		n = get_node(cache, q);
543
		if (!n || OFF_SLAB(cache))
544
			continue;
545

546
		slab_set_lock_classes(cache, &on_slab_l3_key,
547
				&on_slab_alc_key, n);
548 549
	}
}
550

551 552
static void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
553 554
{
	slab_set_lock_classes(cachep, &on_slab_l3_key,
555
			&on_slab_alc_key, n);
556 557 558 559 560
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;
561
	struct kmem_cache_node *n;
562 563

	VM_BUG_ON(OFF_SLAB(cachep));
564 565
	for_each_kmem_cache_node(cachep, node, n)
		on_slab_lock_classes_node(cachep, n);
566 567
}

568
static inline void __init init_lock_keys(void)
569 570 571 572 573 574
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
575
#else
576
static void __init init_node_lock_keys(int q)
577 578 579
{
}

580
static inline void init_lock_keys(void)
581 582
{
}
583

584 585 586 587
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

588 589
static inline void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
590 591 592
{
}

593 594
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
595 596 597 598 599 600
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
601 602
#endif

603
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
604

605
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
606 607 608 609
{
	return cachep->array[smp_processor_id()];
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

624 625
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
626
{
627
	int nr_objs;
628
	size_t remained_size;
629
	size_t freelist_size;
630
	int extra_space = 0;
631

632 633
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
634 635 636 637 638 639 640 641
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
642
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
643 644 645 646 647

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
648 649 650
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
651 652 653
		nr_objs--;

	return nr_objs;
654
}
L
Linus Torvalds 已提交
655

A
Andrew Morton 已提交
656 657 658
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
659 660 661 662 663 664 665
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
666

667 668 669 670 671
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
672
	 * - One unsigned int for each object
673 674 675 676 677 678 679 680 681 682 683 684 685
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
686
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
687
					sizeof(freelist_idx_t), align);
688
		mgmt_size = calculate_freelist_size(nr_objs, align);
689 690 691
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
692 693
}

694
#if DEBUG
695
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
696

A
Andrew Morton 已提交
697 698
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
699 700
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
701
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
702
	dump_stack();
703
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
704
}
705
#endif
L
Linus Torvalds 已提交
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

723 724 725 726 727 728 729 730 731 732 733
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

734 735 736 737 738 739 740
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
741
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
742 743 744 745 746

static void init_reap_node(int cpu)
{
	int node;

747
	node = next_node(cpu_to_mem(cpu), node_online_map);
748
	if (node == MAX_NUMNODES)
749
		node = first_node(node_online_map);
750

751
	per_cpu(slab_reap_node, cpu) = node;
752 753 754 755
}

static void next_reap_node(void)
{
756
	int node = __this_cpu_read(slab_reap_node);
757 758 759 760

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
761
	__this_cpu_write(slab_reap_node, node);
762 763 764 765 766 767 768
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
769 770 771 772 773 774 775
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
776
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
777
{
778
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
779 780 781 782 783 784

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
785
	if (keventd_up() && reap_work->work.func == NULL) {
786
		init_reap_node(cpu);
787
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
788 789
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
790 791 792
	}
}

793
static struct array_cache *alloc_arraycache(int node, int entries,
794
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
795
{
P
Pekka Enberg 已提交
796
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
797 798
	struct array_cache *nc = NULL;

799
	nc = kmalloc_node(memsize, gfp, node);
800 801
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
802
	 * However, when such objects are allocated or transferred to another
803 804 805 806 807
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
808 809 810 811 812
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
813
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
814 815 816 817
	}
	return nc;
}

818
static inline bool is_slab_pfmemalloc(struct page *page)
819 820 821 822 823 824 825 826
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
827
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
828
	struct page *page;
829 830 831 832 833
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

834
	spin_lock_irqsave(&n->list_lock, flags);
835 836
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
837 838
			goto out;

839 840
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
841 842
			goto out;

843 844
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
845 846 847 848
			goto out;

	pfmemalloc_active = false;
out:
849
	spin_unlock_irqrestore(&n->list_lock, flags);
850 851
}

852
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
853 854 855 856 857 858 859
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
860
		struct kmem_cache_node *n;
861 862 863 864 865 866 867

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
868
		for (i = 0; i < ac->avail; i++) {
869 870 871 872 873 874 875 876 877 878 879 880 881
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
882
		n = get_node(cachep, numa_mem_id());
883
		if (!list_empty(&n->slabs_free) && force_refill) {
884
			struct page *page = virt_to_head_page(objp);
885
			ClearPageSlabPfmemalloc(page);
886 887 888 889 890 891 892 893 894 895 896 897 898
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
913 914 915 916
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
917
		struct page *page = virt_to_head_page(objp);
918 919 920 921
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

922 923 924 925 926 927 928 929 930
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

931 932 933
	ac->entry[ac->avail++] = objp;
}

934 935 936 937 938 939 940 941 942 943
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
944
	int nr = min3(from->avail, max, to->limit - to->avail);
945 946 947 948 949 950 951 952 953 954 955 956

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

957 958 959
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
960
#define reap_alien(cachep, n) do { } while (0)
961

962
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

982
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
983 984 985 986 987 988 989
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

990
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
991
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
992

993
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
994 995
{
	struct array_cache **ac_ptr;
996
	int memsize = sizeof(void *) * nr_node_ids;
997 998 999 1000
	int i;

	if (limit > 1)
		limit = 12;
1001
	ac_ptr = kzalloc_node(memsize, gfp, node);
1002 1003
	if (ac_ptr) {
		for_each_node(i) {
1004
			if (i == node || !node_online(i))
1005
				continue;
1006
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1007
			if (!ac_ptr[i]) {
1008
				for (i--; i >= 0; i--)
1009 1010 1011 1012 1013 1014 1015 1016 1017
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1018
static void free_alien_cache(struct array_cache **ac_ptr)
1019 1020 1021 1022 1023 1024
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1025
	    kfree(ac_ptr[i]);
1026 1027 1028
	kfree(ac_ptr);
}

1029
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1030
				struct array_cache *ac, int node)
1031
{
1032
	struct kmem_cache_node *n = get_node(cachep, node);
1033 1034

	if (ac->avail) {
1035
		spin_lock(&n->list_lock);
1036 1037 1038 1039 1040
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1041 1042
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1043

1044
		free_block(cachep, ac->entry, ac->avail, node);
1045
		ac->avail = 0;
1046
		spin_unlock(&n->list_lock);
1047 1048 1049
	}
}

1050 1051 1052
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1053
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1054
{
1055
	int node = __this_cpu_read(slab_reap_node);
1056

1057 1058
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1059 1060

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1061 1062 1063 1064 1065 1066
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1067 1068
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1069
{
P
Pekka Enberg 已提交
1070
	int i = 0;
1071 1072 1073 1074
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1075
		ac = alien[i];
1076 1077 1078 1079 1080 1081 1082
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1083

1084
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1085
{
J
Joonsoo Kim 已提交
1086
	int nodeid = page_to_nid(virt_to_page(objp));
1087
	struct kmem_cache_node *n;
1088
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1089 1090
	int node;

1091
	node = numa_mem_id();
1092 1093 1094 1095 1096

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1097
	if (likely(nodeid == node))
1098 1099
		return 0;

1100
	n = get_node(cachep, node);
1101
	STATS_INC_NODEFREES(cachep);
1102 1103
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1104
		spin_lock(&alien->lock);
1105 1106 1107 1108
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1109
		ac_put_obj(cachep, alien, objp);
1110 1111
		spin_unlock(&alien->lock);
	} else {
1112 1113
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1114
		free_block(cachep, &objp, 1, nodeid);
1115
		spin_unlock(&n->list_lock);
1116 1117 1118
	}
	return 1;
}
1119 1120
#endif

1121
/*
1122
 * Allocates and initializes node for a node on each slab cache, used for
1123
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1124
 * will be allocated off-node since memory is not yet online for the new node.
1125
 * When hotplugging memory or a cpu, existing node are not replaced if
1126 1127
 * already in use.
 *
1128
 * Must hold slab_mutex.
1129
 */
1130
static int init_cache_node_node(int node)
1131 1132
{
	struct kmem_cache *cachep;
1133
	struct kmem_cache_node *n;
1134
	const int memsize = sizeof(struct kmem_cache_node);
1135

1136
	list_for_each_entry(cachep, &slab_caches, list) {
1137
		/*
1138
		 * Set up the kmem_cache_node for cpu before we can
1139 1140 1141
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1142 1143
		n = get_node(cachep, node);
		if (!n) {
1144 1145
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1146
				return -ENOMEM;
1147
			kmem_cache_node_init(n);
1148 1149
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1150 1151

			/*
1152 1153
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1154 1155
			 * protection here.
			 */
1156
			cachep->node[node] = n;
1157 1158
		}

1159 1160
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1161 1162
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1163
		spin_unlock_irq(&n->list_lock);
1164 1165 1166 1167
	}
	return 0;
}

1168 1169 1170 1171 1172 1173
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1174
static void cpuup_canceled(long cpu)
1175 1176
{
	struct kmem_cache *cachep;
1177
	struct kmem_cache_node *n = NULL;
1178
	int node = cpu_to_mem(cpu);
1179
	const struct cpumask *mask = cpumask_of_node(node);
1180

1181
	list_for_each_entry(cachep, &slab_caches, list) {
1182 1183 1184 1185 1186 1187 1188
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1189
		n = get_node(cachep, node);
1190

1191
		if (!n)
1192 1193
			goto free_array_cache;

1194
		spin_lock_irq(&n->list_lock);
1195

1196 1197
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1198 1199 1200
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1201
		if (!cpumask_empty(mask)) {
1202
			spin_unlock_irq(&n->list_lock);
1203 1204 1205
			goto free_array_cache;
		}

1206
		shared = n->shared;
1207 1208 1209
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1210
			n->shared = NULL;
1211 1212
		}

1213 1214
		alien = n->alien;
		n->alien = NULL;
1215

1216
		spin_unlock_irq(&n->list_lock);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1231
	list_for_each_entry(cachep, &slab_caches, list) {
1232
		n = get_node(cachep, node);
1233
		if (!n)
1234
			continue;
1235
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1236 1237 1238
	}
}

1239
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1240
{
1241
	struct kmem_cache *cachep;
1242
	struct kmem_cache_node *n = NULL;
1243
	int node = cpu_to_mem(cpu);
1244
	int err;
L
Linus Torvalds 已提交
1245

1246 1247 1248 1249
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1250
	 * kmem_cache_node and not this cpu's kmem_cache_node
1251
	 */
1252
	err = init_cache_node_node(node);
1253 1254
	if (err < 0)
		goto bad;
1255 1256 1257 1258 1259

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1260
	list_for_each_entry(cachep, &slab_caches, list) {
1261 1262 1263 1264 1265
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1266
					cachep->batchcount, GFP_KERNEL);
1267 1268 1269 1270 1271
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1272
				0xbaadf00d, GFP_KERNEL);
1273 1274
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1275
				goto bad;
1276
			}
1277 1278
		}
		if (use_alien_caches) {
1279
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1280 1281 1282
			if (!alien) {
				kfree(shared);
				kfree(nc);
1283
				goto bad;
1284
			}
1285 1286
		}
		cachep->array[cpu] = nc;
1287
		n = get_node(cachep, node);
1288
		BUG_ON(!n);
1289

1290 1291
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1292 1293 1294 1295
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1296
			n->shared = shared;
1297 1298
			shared = NULL;
		}
1299
#ifdef CONFIG_NUMA
1300 1301
		if (!n->alien) {
			n->alien = alien;
1302
			alien = NULL;
L
Linus Torvalds 已提交
1303
		}
1304
#endif
1305
		spin_unlock_irq(&n->list_lock);
1306 1307
		kfree(shared);
		free_alien_cache(alien);
1308
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1309
			slab_set_debugobj_lock_classes_node(cachep, n);
1310 1311
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1312
			on_slab_lock_classes_node(cachep, n);
1313
	}
1314 1315
	init_node_lock_keys(node);

1316 1317
	return 0;
bad:
1318
	cpuup_canceled(cpu);
1319 1320 1321
	return -ENOMEM;
}

1322
static int cpuup_callback(struct notifier_block *nfb,
1323 1324 1325 1326 1327 1328 1329 1330
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1331
		mutex_lock(&slab_mutex);
1332
		err = cpuup_prepare(cpu);
1333
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1334 1335
		break;
	case CPU_ONLINE:
1336
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1337 1338 1339
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1340
  	case CPU_DOWN_PREPARE:
1341
  	case CPU_DOWN_PREPARE_FROZEN:
1342
		/*
1343
		 * Shutdown cache reaper. Note that the slab_mutex is
1344 1345 1346 1347
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1348
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1349
		/* Now the cache_reaper is guaranteed to be not running. */
1350
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1351 1352
  		break;
  	case CPU_DOWN_FAILED:
1353
  	case CPU_DOWN_FAILED_FROZEN:
1354 1355
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1356
	case CPU_DEAD:
1357
	case CPU_DEAD_FROZEN:
1358 1359
		/*
		 * Even if all the cpus of a node are down, we don't free the
1360
		 * kmem_cache_node of any cache. This to avoid a race between
1361
		 * cpu_down, and a kmalloc allocation from another cpu for
1362
		 * memory from the node of the cpu going down.  The node
1363 1364 1365
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1366
		/* fall through */
1367
#endif
L
Linus Torvalds 已提交
1368
	case CPU_UP_CANCELED:
1369
	case CPU_UP_CANCELED_FROZEN:
1370
		mutex_lock(&slab_mutex);
1371
		cpuup_canceled(cpu);
1372
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1373 1374
		break;
	}
1375
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1376 1377
}

1378
static struct notifier_block cpucache_notifier = {
1379 1380
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1381

1382 1383 1384 1385 1386 1387
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1388
 * Must hold slab_mutex.
1389
 */
1390
static int __meminit drain_cache_node_node(int node)
1391 1392 1393 1394
{
	struct kmem_cache *cachep;
	int ret = 0;

1395
	list_for_each_entry(cachep, &slab_caches, list) {
1396
		struct kmem_cache_node *n;
1397

1398
		n = get_node(cachep, node);
1399
		if (!n)
1400 1401
			continue;

1402
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1403

1404 1405
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1426
		mutex_lock(&slab_mutex);
1427
		ret = init_cache_node_node(nid);
1428
		mutex_unlock(&slab_mutex);
1429 1430
		break;
	case MEM_GOING_OFFLINE:
1431
		mutex_lock(&slab_mutex);
1432
		ret = drain_cache_node_node(nid);
1433
		mutex_unlock(&slab_mutex);
1434 1435 1436 1437 1438 1439 1440 1441
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1442
	return notifier_from_errno(ret);
1443 1444 1445
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1446
/*
1447
 * swap the static kmem_cache_node with kmalloced memory
1448
 */
1449
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1450
				int nodeid)
1451
{
1452
	struct kmem_cache_node *ptr;
1453

1454
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1455 1456
	BUG_ON(!ptr);

1457
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1458 1459 1460 1461 1462
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1463
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1464
	cachep->node[nodeid] = ptr;
1465 1466
}

1467
/*
1468 1469
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1470
 */
1471
static void __init set_up_node(struct kmem_cache *cachep, int index)
1472 1473 1474 1475
{
	int node;

	for_each_online_node(node) {
1476
		cachep->node[node] = &init_kmem_cache_node[index + node];
1477
		cachep->node[node]->next_reap = jiffies +
1478 1479
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1480 1481 1482
	}
}

C
Christoph Lameter 已提交
1483 1484
/*
 * The memory after the last cpu cache pointer is used for the
1485
 * the node pointer.
C
Christoph Lameter 已提交
1486
 */
1487
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1488
{
1489
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1490 1491
}

A
Andrew Morton 已提交
1492 1493 1494
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1495 1496 1497
 */
void __init kmem_cache_init(void)
{
1498 1499
	int i;

1500 1501
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1502
	kmem_cache = &kmem_cache_boot;
1503
	setup_node_pointer(kmem_cache);
1504

1505
	if (num_possible_nodes() == 1)
1506 1507
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1508
	for (i = 0; i < NUM_INIT_LISTS; i++)
1509
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1510

1511
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1512 1513 1514

	/*
	 * Fragmentation resistance on low memory - only use bigger
1515 1516
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1517
	 */
1518
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1519
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1520 1521 1522

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1523 1524 1525
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1526
	 *    Initially an __init data area is used for the head array and the
1527
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1528
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1529
	 * 2) Create the first kmalloc cache.
1530
	 *    The struct kmem_cache for the new cache is allocated normally.
1531 1532 1533
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1534
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1535
	 *    kmalloc cache with kmalloc allocated arrays.
1536
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1537 1538
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1539 1540
	 */

1541
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1542

E
Eric Dumazet 已提交
1543
	/*
1544
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1545
	 */
1546 1547
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1548
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1549 1550
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1551 1552 1553

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1554 1555
	/*
	 * Initialize the caches that provide memory for the array cache and the
1556
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1557
	 * bug.
1558 1559
	 */

1560 1561
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1562

1563 1564 1565 1566
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1567

1568 1569
	slab_early_init = 0;

L
Linus Torvalds 已提交
1570 1571
	/* 4) Replace the bootstrap head arrays */
	{
1572
		struct array_cache *ptr;
1573

1574
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1575

1576
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1577
		       sizeof(struct arraycache_init));
1578 1579 1580 1581 1582
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1583
		kmem_cache->array[smp_processor_id()] = ptr;
1584

1585
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1586

1587
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1588
		       != &initarray_generic.cache);
1589
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1590
		       sizeof(struct arraycache_init));
1591 1592 1593 1594 1595
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1596
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1597
	}
1598
	/* 5) Replace the bootstrap kmem_cache_node */
1599
	{
P
Pekka Enberg 已提交
1600 1601
		int nid;

1602
		for_each_online_node(nid) {
1603
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1604

1605
			init_list(kmalloc_caches[INDEX_AC],
1606
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1607

1608 1609 1610
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1611 1612 1613
			}
		}
	}
L
Linus Torvalds 已提交
1614

1615
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1616 1617 1618 1619 1620 1621
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1622
	slab_state = UP;
P
Peter Zijlstra 已提交
1623

1624
	/* 6) resize the head arrays to their final sizes */
1625 1626
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1627 1628
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1629
	mutex_unlock(&slab_mutex);
1630

1631 1632 1633
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1634 1635 1636
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1637 1638 1639
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1640 1641 1642
	 */
	register_cpu_notifier(&cpucache_notifier);

1643 1644 1645
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1646
	 * node.
1647 1648 1649 1650
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1651 1652 1653
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1661 1662
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1663
	 */
1664
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1665
		start_cpu_timer(cpu);
1666 1667

	/* Done! */
1668
	slab_state = FULL;
L
Linus Torvalds 已提交
1669 1670 1671 1672
	return 0;
}
__initcall(cpucache_init);

1673 1674 1675
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1676
#if DEBUG
1677
	struct kmem_cache_node *n;
1678
	struct page *page;
1679 1680
	unsigned long flags;
	int node;
1681 1682 1683 1684 1685
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1686 1687 1688 1689 1690

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1691
		cachep->name, cachep->size, cachep->gfporder);
1692

1693
	for_each_kmem_cache_node(cachep, node, n) {
1694 1695 1696
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1697
		spin_lock_irqsave(&n->list_lock, flags);
1698
		list_for_each_entry(page, &n->slabs_full, lru) {
1699 1700 1701
			active_objs += cachep->num;
			active_slabs++;
		}
1702 1703
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1704 1705
			active_slabs++;
		}
1706
		list_for_each_entry(page, &n->slabs_free, lru)
1707 1708
			num_slabs++;

1709 1710
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1711 1712 1713 1714 1715 1716 1717 1718

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1719
#endif
1720 1721
}

L
Linus Torvalds 已提交
1722 1723 1724 1725 1726 1727 1728
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1729 1730
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1731 1732
{
	struct page *page;
1733
	int nr_pages;
1734

1735
	flags |= cachep->allocflags;
1736 1737
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1738

1739 1740 1741
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1742
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1743
	if (!page) {
1744
		memcg_uncharge_slab(cachep, cachep->gfporder);
1745
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1746
		return NULL;
1747
	}
L
Linus Torvalds 已提交
1748

1749
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1750 1751 1752
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1753
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1754
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1755 1756 1757 1758 1759
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1760 1761 1762
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
1763

1764 1765 1766 1767 1768 1769 1770 1771
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1772

1773
	return page;
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778
}

/*
 * Interface to system's page release.
 */
1779
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1780
{
1781
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1782

1783
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1784

1785 1786 1787 1788 1789 1790
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1791

1792
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1793
	__ClearPageSlabPfmemalloc(page);
1794
	__ClearPageSlab(page);
1795 1796
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1797

L
Linus Torvalds 已提交
1798 1799
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1800 1801
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1802 1803 1804 1805
}

static void kmem_rcu_free(struct rcu_head *head)
{
1806 1807
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1808

1809 1810 1811 1812
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1818
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1819
			    unsigned long caller)
L
Linus Torvalds 已提交
1820
{
1821
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1822

1823
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1824

P
Pekka Enberg 已提交
1825
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1826 1827
		return;

P
Pekka Enberg 已提交
1828 1829 1830 1831
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1839
				*addr++ = svalue;
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844 1845 1846
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1847
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1848 1849 1850
}
#endif

1851
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1852
{
1853
	int size = cachep->object_size;
1854
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1855 1856

	memset(addr, val, size);
P
Pekka Enberg 已提交
1857
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1863 1864 1865
	unsigned char error = 0;
	int bad_count = 0;

1866
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1867 1868 1869 1870 1871 1872
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1873 1874
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893
}
#endif

#if DEBUG

1894
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1900
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1901 1902
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1903 1904 1905
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1906 1907 1908
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1909
	}
1910
	realobj = (char *)objp + obj_offset(cachep);
1911
	size = cachep->object_size;
P
Pekka Enberg 已提交
1912
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1913 1914
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1915 1916
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1917 1918 1919 1920
		dump_line(realobj, i, limit);
	}
}

1921
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926
{
	char *realobj;
	int size, i;
	int lines = 0;

1927
	realobj = (char *)objp + obj_offset(cachep);
1928
	size = cachep->object_size;
L
Linus Torvalds 已提交
1929

P
Pekka Enberg 已提交
1930
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1931
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1932
		if (i == size - 1)
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1939
				printk(KERN_ERR
1940 1941
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1942 1943 1944
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1945
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1946
			limit = 16;
P
Pekka Enberg 已提交
1947 1948
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1961
		struct page *page = virt_to_head_page(objp);
1962
		unsigned int objnr;
L
Linus Torvalds 已提交
1963

1964
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1965
		if (objnr) {
1966
			objp = index_to_obj(cachep, page, objnr - 1);
1967
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1968
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1969
			       realobj, size);
L
Linus Torvalds 已提交
1970 1971
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1972
		if (objnr + 1 < cachep->num) {
1973
			objp = index_to_obj(cachep, page, objnr + 1);
1974
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1975
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1976
			       realobj, size);
L
Linus Torvalds 已提交
1977 1978 1979 1980 1981 1982
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1983
#if DEBUG
1984 1985
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1986 1987 1988
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1989
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1990 1991 1992

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1993
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1994
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1995
				kernel_map_pages(virt_to_page(objp),
1996
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2006
					   "was overwritten");
L
Linus Torvalds 已提交
2007 2008
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2009
					   "was overwritten");
L
Linus Torvalds 已提交
2010 2011
		}
	}
2012
}
L
Linus Torvalds 已提交
2013
#else
2014 2015
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
2016 2017
{
}
L
Linus Torvalds 已提交
2018 2019
#endif

2020 2021 2022
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
2023
 * @page: page pointer being destroyed
2024
 *
2025
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2026 2027
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2028
 */
2029
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
2030
{
2031
	void *freelist;
2032

2033 2034
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
2035
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
2046 2047

	} else {
2048
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2049
	}
2050 2051

	/*
2052
	 * From now on, we don't use freelist
2053 2054 2055
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
2056
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
2057 2058
}

2059
/**
2060 2061 2062 2063 2064 2065 2066
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2067 2068 2069 2070 2071
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2072
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2073
			size_t size, size_t align, unsigned long flags)
2074
{
2075
	unsigned long offslab_limit;
2076
	size_t left_over = 0;
2077
	int gfporder;
2078

2079
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2080 2081 2082
		unsigned int num;
		size_t remainder;

2083
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2084 2085
		if (!num)
			continue;
2086

2087 2088 2089 2090
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

2091
		if (flags & CFLGS_OFF_SLAB) {
2092
			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
2093 2094 2095 2096 2097
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2098 2099
			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
				freelist_size_per_obj += sizeof(char);
2100
			offslab_limit = size;
2101
			offslab_limit /= freelist_size_per_obj;
2102 2103 2104 2105

 			if (num > offslab_limit)
				break;
		}
2106

2107
		/* Found something acceptable - save it away */
2108
		cachep->num = num;
2109
		cachep->gfporder = gfporder;
2110 2111
		left_over = remainder;

2112 2113 2114 2115 2116 2117 2118 2119
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2120 2121 2122 2123
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2124
		if (gfporder >= slab_max_order)
2125 2126
			break;

2127 2128 2129
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2130
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2131 2132 2133 2134 2135
			break;
	}
	return left_over;
}

2136
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2137
{
2138
	if (slab_state >= FULL)
2139
		return enable_cpucache(cachep, gfp);
2140

2141
	if (slab_state == DOWN) {
2142
		/*
2143
		 * Note: Creation of first cache (kmem_cache).
2144
		 * The setup_node is taken care
2145 2146 2147 2148 2149 2150 2151
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2152 2153 2154 2155 2156 2157
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2158 2159
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2160 2161
		 * otherwise the creation of further caches will BUG().
		 */
2162 2163 2164
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2165
		else
2166
			slab_state = PARTIAL_ARRAYCACHE;
2167
	} else {
2168
		/* Remaining boot caches */
2169
		cachep->array[smp_processor_id()] =
2170
			kmalloc(sizeof(struct arraycache_init), gfp);
2171

2172
		if (slab_state == PARTIAL_ARRAYCACHE) {
2173 2174
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2175 2176
		} else {
			int node;
2177
			for_each_online_node(node) {
2178
				cachep->node[node] =
2179
				    kmalloc_node(sizeof(struct kmem_cache_node),
2180
						gfp, node);
2181
				BUG_ON(!cachep->node[node]);
2182
				kmem_cache_node_init(cachep->node[node]);
2183 2184 2185
			}
		}
	}
2186
	cachep->node[numa_mem_id()]->next_reap =
2187 2188
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2189 2190 2191 2192 2193 2194 2195

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2196
	return 0;
2197 2198
}

L
Linus Torvalds 已提交
2199
/**
2200
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2201
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2202 2203 2204 2205
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2206
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2220
int
2221
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2222
{
2223
	size_t left_over, freelist_size, ralign;
2224
	gfp_t gfp;
2225
	int err;
2226
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2236 2237
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2238
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244 2245
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2246 2247
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2248 2249 2250
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2251 2252 2253
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2254 2255
	}

2256
	/*
D
David Woodhouse 已提交
2257 2258 2259
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2260
	 */
D
David Woodhouse 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2271

2272
	/* 3) caller mandated alignment */
2273 2274
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2275
	}
2276 2277
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2278
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2279
	/*
2280
	 * 4) Store it.
L
Linus Torvalds 已提交
2281
	 */
2282
	cachep->align = ralign;
L
Linus Torvalds 已提交
2283

2284 2285 2286 2287 2288
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2289
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2290 2291
#if DEBUG

2292 2293 2294 2295
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2296 2297
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2298 2299
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2300 2301
	}
	if (flags & SLAB_STORE_USER) {
2302
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2303 2304
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2305
		 */
D
David Woodhouse 已提交
2306 2307 2308 2309
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2310 2311
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2312
	if (size >= kmalloc_size(INDEX_NODE + 1)
2313 2314 2315
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2316 2317 2318 2319 2320
		size = PAGE_SIZE;
	}
#endif
#endif

2321 2322 2323
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2324 2325
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2326
	 */
2327
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2328
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2335
	size = ALIGN(size, cachep->align);
2336 2337 2338 2339 2340 2341
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2342

2343
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2344

2345
	if (!cachep->num)
2346
		return -E2BIG;
L
Linus Torvalds 已提交
2347

2348
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2354
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2355
		flags &= ~CFLGS_OFF_SLAB;
2356
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2357 2358 2359 2360
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2361
		freelist_size = calculate_freelist_size(cachep->num, 0);
2362 2363 2364 2365 2366 2367 2368 2369 2370

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2371 2372 2373 2374
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2375 2376
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2377
	cachep->colour = left_over / cachep->colour_off;
2378
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2379
	cachep->flags = flags;
2380
	cachep->allocflags = __GFP_COMP;
2381
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2382
		cachep->allocflags |= GFP_DMA;
2383
	cachep->size = size;
2384
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2385

2386
	if (flags & CFLGS_OFF_SLAB) {
2387
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2388
		/*
2389
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2390
		 * But since we go off slab only for object size greater than
2391 2392
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2393 2394
		 * But leave a BUG_ON for some lucky dude.
		 */
2395
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2396
	}
L
Linus Torvalds 已提交
2397

2398 2399
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2400
		__kmem_cache_shutdown(cachep);
2401
		return err;
2402
	}
L
Linus Torvalds 已提交
2403

2404 2405 2406 2407 2408 2409 2410 2411
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2412 2413
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2414

2415
	return 0;
L
Linus Torvalds 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2429
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2430 2431 2432
{
#ifdef CONFIG_SMP
	check_irq_off();
2433
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2434 2435
#endif
}
2436

2437
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2438 2439 2440
{
#ifdef CONFIG_SMP
	check_irq_off();
2441
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2442 2443 2444
#endif
}

L
Linus Torvalds 已提交
2445 2446 2447 2448
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2449
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2450 2451
#endif

2452
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2453 2454 2455
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2456 2457
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2458
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2459
	struct array_cache *ac;
2460
	int node = numa_mem_id();
2461
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2462 2463

	check_irq_off();
2464
	ac = cpu_cache_get(cachep);
2465 2466
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2467
	free_block(cachep, ac->entry, ac->avail, node);
2468
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2469 2470 2471
	ac->avail = 0;
}

2472
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2473
{
2474
	struct kmem_cache_node *n;
2475 2476
	int node;

2477
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2478
	check_irq_on();
2479 2480
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2481
			drain_alien_cache(cachep, n->alien);
2482

2483 2484
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2485 2486
}

2487 2488 2489 2490 2491 2492 2493
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2494
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2495
{
2496 2497
	struct list_head *p;
	int nr_freed;
2498
	struct page *page;
L
Linus Torvalds 已提交
2499

2500
	nr_freed = 0;
2501
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2502

2503 2504 2505 2506
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2507 2508
			goto out;
		}
L
Linus Torvalds 已提交
2509

2510
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2511
#if DEBUG
2512
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2513
#endif
2514
		list_del(&page->lru);
2515 2516 2517 2518
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2519 2520
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2521
		slab_destroy(cache, page);
2522
		nr_freed++;
L
Linus Torvalds 已提交
2523
	}
2524 2525
out:
	return nr_freed;
L
Linus Torvalds 已提交
2526 2527
}

2528
int __kmem_cache_shrink(struct kmem_cache *cachep)
2529
{
2530 2531
	int ret = 0;
	int node;
2532
	struct kmem_cache_node *n;
2533 2534 2535 2536

	drain_cpu_caches(cachep);

	check_irq_on();
2537
	for_each_kmem_cache_node(cachep, node, n) {
2538
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2539

2540 2541
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2542 2543 2544 2545
	}
	return (ret ? 1 : 0);
}

2546
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2547
{
2548
	int i;
2549
	struct kmem_cache_node *n;
2550
	int rc = __kmem_cache_shrink(cachep);
L
Linus Torvalds 已提交
2551

2552 2553
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2554

2555 2556
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2557

2558
	/* NUMA: free the node structures */
2559 2560 2561 2562 2563
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2564 2565
	}
	return 0;
L
Linus Torvalds 已提交
2566 2567
}

2568 2569
/*
 * Get the memory for a slab management obj.
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2581
 */
2582
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2583 2584
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2585
{
2586
	void *freelist;
2587
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2588

L
Linus Torvalds 已提交
2589 2590
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2591
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2592
					      local_flags, nodeid);
2593
		if (!freelist)
L
Linus Torvalds 已提交
2594 2595
			return NULL;
	} else {
2596 2597
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2598
	}
2599 2600 2601
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2602 2603
}

2604
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2605
{
2606
	return ((freelist_idx_t *)page->freelist)[idx];
2607 2608 2609
}

static inline void set_free_obj(struct page *page,
2610
					unsigned int idx, freelist_idx_t val)
2611
{
2612
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2613 2614
}

2615
static void cache_init_objs(struct kmem_cache *cachep,
2616
			    struct page *page)
L
Linus Torvalds 已提交
2617 2618 2619 2620
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2621
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2634 2635 2636
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2637 2638
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2639
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2640 2641 2642 2643

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2644
					   " end of an object");
L
Linus Torvalds 已提交
2645 2646
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2647
					   " start of an object");
L
Linus Torvalds 已提交
2648
		}
2649
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2650
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2651
			kernel_map_pages(virt_to_page(objp),
2652
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2653 2654
#else
		if (cachep->ctor)
2655
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2656
#endif
2657
		set_obj_status(page, i, OBJECT_FREE);
2658
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2659 2660 2661
	}
}

2662
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2663
{
2664 2665
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2666
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2667
		else
2668
			BUG_ON(cachep->allocflags & GFP_DMA);
2669
	}
L
Linus Torvalds 已提交
2670 2671
}

2672
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2673
				int nodeid)
2674
{
2675
	void *objp;
2676

2677
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2678
	page->active++;
2679
#if DEBUG
J
Joonsoo Kim 已提交
2680
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2681 2682 2683 2684 2685
#endif

	return objp;
}

2686
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2687
				void *objp, int nodeid)
2688
{
2689
	unsigned int objnr = obj_to_index(cachep, page, objp);
2690
#if DEBUG
J
Joonsoo Kim 已提交
2691
	unsigned int i;
2692

2693
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2694
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2695

2696
	/* Verify double free bug */
2697
	for (i = page->active; i < cachep->num; i++) {
2698
		if (get_free_obj(page, i) == objnr) {
2699 2700 2701 2702
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2703 2704
	}
#endif
2705
	page->active--;
2706
	set_free_obj(page, page->active, objnr);
2707 2708
}

2709 2710 2711
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2712
 * virtual address for kfree, ksize, and slab debugging.
2713
 */
2714
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2715
			   void *freelist)
L
Linus Torvalds 已提交
2716
{
2717
	page->slab_cache = cache;
2718
	page->freelist = freelist;
L
Linus Torvalds 已提交
2719 2720 2721 2722 2723 2724
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2725
static int cache_grow(struct kmem_cache *cachep,
2726
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2727
{
2728
	void *freelist;
P
Pekka Enberg 已提交
2729 2730
	size_t offset;
	gfp_t local_flags;
2731
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2732

A
Andrew Morton 已提交
2733 2734 2735
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2736
	 */
C
Christoph Lameter 已提交
2737 2738
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2739

2740
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2741
	check_irq_off();
2742
	n = get_node(cachep, nodeid);
2743
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2744 2745

	/* Get colour for the slab, and cal the next value. */
2746 2747 2748 2749 2750
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2751

2752
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2765 2766 2767
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2768
	 */
2769 2770 2771
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2772 2773 2774
		goto failed;

	/* Get slab management. */
2775
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2776
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2777
	if (!freelist)
L
Linus Torvalds 已提交
2778 2779
		goto opps1;

2780
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2781

2782
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2783 2784 2785 2786

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2787
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2788 2789

	/* Make slab active. */
2790
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2791
	STATS_INC_GROWN(cachep);
2792 2793
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2794
	return 1;
A
Andrew Morton 已提交
2795
opps1:
2796
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2797
failed:
L
Linus Torvalds 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2814 2815
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2816 2817 2818
	}
}

2819 2820
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2821
	unsigned long long redzone1, redzone2;
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2837
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2838 2839 2840
			obj, redzone1, redzone2);
}

2841
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2842
				   unsigned long caller)
L
Linus Torvalds 已提交
2843 2844
{
	unsigned int objnr;
2845
	struct page *page;
L
Linus Torvalds 已提交
2846

2847 2848
	BUG_ON(virt_to_cache(objp) != cachep);

2849
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2850
	kfree_debugcheck(objp);
2851
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2852 2853

	if (cachep->flags & SLAB_RED_ZONE) {
2854
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2855 2856 2857 2858
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2859
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2860

2861
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2862 2863

	BUG_ON(objnr >= cachep->num);
2864
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2865

2866
	set_obj_status(page, objnr, OBJECT_FREE);
L
Linus Torvalds 已提交
2867 2868
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2869
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2870
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2871
			kernel_map_pages(virt_to_page(objp),
2872
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2888 2889
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2890 2891
{
	int batchcount;
2892
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2893
	struct array_cache *ac;
P
Pekka Enberg 已提交
2894 2895
	int node;

L
Linus Torvalds 已提交
2896
	check_irq_off();
2897
	node = numa_mem_id();
2898 2899 2900
	if (unlikely(force_refill))
		goto force_grow;
retry:
2901
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2902 2903
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2904 2905 2906 2907
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2908 2909 2910
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2911
	n = get_node(cachep, node);
2912

2913 2914
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2915

2916
	/* See if we can refill from the shared array */
2917 2918
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2919
		goto alloc_done;
2920
	}
2921

L
Linus Torvalds 已提交
2922 2923
	while (batchcount > 0) {
		struct list_head *entry;
2924
		struct page *page;
L
Linus Torvalds 已提交
2925
		/* Get slab alloc is to come from. */
2926 2927 2928 2929 2930
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2931 2932 2933
				goto must_grow;
		}

2934
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2935
		check_spinlock_acquired(cachep);
2936 2937 2938 2939 2940 2941

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2942
		BUG_ON(page->active >= cachep->num);
2943

2944
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2945 2946 2947 2948
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2949
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2950
									node));
L
Linus Torvalds 已提交
2951 2952 2953
		}

		/* move slabp to correct slabp list: */
2954 2955
		list_del(&page->lru);
		if (page->active == cachep->num)
2956
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2957
		else
2958
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2959 2960
	}

A
Andrew Morton 已提交
2961
must_grow:
2962
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2963
alloc_done:
2964
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2965 2966 2967

	if (unlikely(!ac->avail)) {
		int x;
2968
force_grow:
2969
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2970

A
Andrew Morton 已提交
2971
		/* cache_grow can reenable interrupts, then ac could change. */
2972
		ac = cpu_cache_get(cachep);
2973
		node = numa_mem_id();
2974 2975 2976

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2977 2978
			return NULL;

A
Andrew Morton 已提交
2979
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2980 2981 2982
			goto retry;
	}
	ac->touched = 1;
2983 2984

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2985 2986
}

A
Andrew Morton 已提交
2987 2988
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2989 2990 2991 2992 2993 2994 2995 2996
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2997
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2998
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2999
{
3000 3001
	struct page *page;

P
Pekka Enberg 已提交
3002
	if (!objp)
L
Linus Torvalds 已提交
3003
		return objp;
P
Pekka Enberg 已提交
3004
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3005
#ifdef CONFIG_DEBUG_PAGEALLOC
3006
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3007
			kernel_map_pages(virt_to_page(objp),
3008
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3017
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3018 3019

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3020 3021 3022 3023
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3024
			printk(KERN_ERR
3025
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3026 3027
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3028 3029 3030 3031
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3032 3033 3034

	page = virt_to_head_page(objp);
	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3035
	objp += obj_offset(cachep);
3036
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3037
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3038 3039
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3040
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3041
		       objp, (int)ARCH_SLAB_MINALIGN);
3042
	}
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3049
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3050
{
3051
	if (unlikely(cachep == kmem_cache))
A
Akinobu Mita 已提交
3052
		return false;
3053

3054
	return should_failslab(cachep->object_size, flags, cachep->flags);
3055 3056
}

3057
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3058
{
P
Pekka Enberg 已提交
3059
	void *objp;
L
Linus Torvalds 已提交
3060
	struct array_cache *ac;
3061
	bool force_refill = false;
L
Linus Torvalds 已提交
3062

3063
	check_irq_off();
3064

3065
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3066 3067
	if (likely(ac->avail)) {
		ac->touched = 1;
3068 3069
		objp = ac_get_obj(cachep, ac, flags, false);

3070
		/*
3071 3072
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3073
		 */
3074 3075 3076 3077 3078
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3079
	}
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3090 3091 3092 3093 3094
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3095 3096
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3097 3098 3099
	return objp;
}

3100
#ifdef CONFIG_NUMA
3101
/*
3102
 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3103 3104 3105 3106 3107 3108 3109 3110
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3111
	if (in_interrupt() || (flags & __GFP_THISNODE))
3112
		return NULL;
3113
	nid_alloc = nid_here = numa_mem_id();
3114
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3115
		nid_alloc = cpuset_slab_spread_node();
3116
	else if (current->mempolicy)
3117
		nid_alloc = mempolicy_slab_node();
3118
	if (nid_alloc != nid_here)
3119
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3120 3121 3122
	return NULL;
}

3123 3124
/*
 * Fallback function if there was no memory available and no objects on a
3125
 * certain node and fall back is permitted. First we scan all the
3126
 * available node for available objects. If that fails then we
3127 3128 3129
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3130
 */
3131
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3132
{
3133 3134
	struct zonelist *zonelist;
	gfp_t local_flags;
3135
	struct zoneref *z;
3136 3137
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3138
	void *obj = NULL;
3139
	int nid;
3140
	unsigned int cpuset_mems_cookie;
3141 3142 3143 3144

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3145
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3146

3147
retry_cpuset:
3148
	cpuset_mems_cookie = read_mems_allowed_begin();
3149
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3150

3151 3152 3153 3154 3155
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3156 3157
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3158

3159
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3160 3161
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3162 3163
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3164 3165 3166
				if (obj)
					break;
		}
3167 3168
	}

3169
	if (!obj) {
3170 3171 3172 3173 3174 3175
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3176 3177
		struct page *page;

3178 3179 3180
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3181
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3182 3183
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3184
		if (page) {
3185 3186 3187
			/*
			 * Insert into the appropriate per node queues
			 */
3188 3189
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3200
				/* cache_grow already freed obj */
3201 3202 3203
				obj = NULL;
			}
		}
3204
	}
3205

3206
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3207
		goto retry_cpuset;
3208 3209 3210
	return obj;
}

3211 3212
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3213
 */
3214
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3215
				int nodeid)
3216 3217
{
	struct list_head *entry;
3218
	struct page *page;
3219
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3220 3221 3222
	void *obj;
	int x;

3223
	VM_BUG_ON(nodeid > num_online_nodes());
3224
	n = get_node(cachep, nodeid);
3225
	BUG_ON(!n);
P
Pekka Enberg 已提交
3226

A
Andrew Morton 已提交
3227
retry:
3228
	check_irq_off();
3229 3230 3231 3232 3233 3234
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3235 3236 3237
			goto must_grow;
	}

3238
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3239 3240 3241 3242 3243 3244
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3245
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3246

3247
	obj = slab_get_obj(cachep, page, nodeid);
3248
	n->free_objects--;
P
Pekka Enberg 已提交
3249
	/* move slabp to correct slabp list: */
3250
	list_del(&page->lru);
P
Pekka Enberg 已提交
3251

3252 3253
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3254
	else
3255
		list_add(&page->lru, &n->slabs_partial);
3256

3257
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3258
	goto done;
3259

A
Andrew Morton 已提交
3260
must_grow:
3261
	spin_unlock(&n->list_lock);
3262
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3263 3264
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3265

3266
	return fallback_alloc(cachep, flags);
3267

A
Andrew Morton 已提交
3268
done:
P
Pekka Enberg 已提交
3269
	return obj;
3270
}
3271 3272

static __always_inline void *
3273
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3274
		   unsigned long caller)
3275 3276 3277
{
	unsigned long save_flags;
	void *ptr;
3278
	int slab_node = numa_mem_id();
3279

3280
	flags &= gfp_allowed_mask;
3281

3282 3283
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3284
	if (slab_should_failslab(cachep, flags))
3285 3286
		return NULL;

3287 3288
	cachep = memcg_kmem_get_cache(cachep, flags);

3289 3290 3291
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3292
	if (nodeid == NUMA_NO_NODE)
3293
		nodeid = slab_node;
3294

3295
	if (unlikely(!get_node(cachep, nodeid))) {
3296 3297 3298 3299 3300
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3301
	if (nodeid == slab_node) {
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3317
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3318
				 flags);
3319

3320
	if (likely(ptr)) {
3321
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3322 3323 3324
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3325

3326 3327 3328 3329 3330 3331 3332 3333
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3334
	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3345 3346
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3362
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3363 3364 3365 3366
{
	unsigned long save_flags;
	void *objp;

3367
	flags &= gfp_allowed_mask;
3368

3369 3370
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3371
	if (slab_should_failslab(cachep, flags))
3372 3373
		return NULL;

3374 3375
	cachep = memcg_kmem_get_cache(cachep, flags);

3376 3377 3378 3379 3380
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3381
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3382
				 flags);
3383 3384
	prefetchw(objp);

3385
	if (likely(objp)) {
3386
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3387 3388 3389
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3390

3391 3392
	return objp;
}
3393 3394

/*
3395
 * Caller needs to acquire correct kmem_cache_node's list_lock
3396
 */
3397
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3398
		       int node)
L
Linus Torvalds 已提交
3399 3400
{
	int i;
3401
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3402 3403

	for (i = 0; i < nr_objects; i++) {
3404
		void *objp;
3405
		struct page *page;
L
Linus Torvalds 已提交
3406

3407 3408 3409
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3410 3411
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3412
		check_spinlock_acquired_node(cachep, node);
3413
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3414
		STATS_DEC_ACTIVE(cachep);
3415
		n->free_objects++;
L
Linus Torvalds 已提交
3416 3417

		/* fixup slab chains */
3418
		if (page->active == 0) {
3419 3420
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3421 3422 3423 3424 3425 3426
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
3427
				slab_destroy(cachep, page);
L
Linus Torvalds 已提交
3428
			} else {
3429
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3436
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3437 3438 3439 3440
		}
	}
}

3441
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3442 3443
{
	int batchcount;
3444
	struct kmem_cache_node *n;
3445
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3446 3447 3448 3449 3450 3451

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3452
	n = get_node(cachep, node);
3453 3454 3455
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3456
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3457 3458 3459
		if (max) {
			if (batchcount > max)
				batchcount = max;
3460
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3461
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3462 3463 3464 3465 3466
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3467
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3468
free_done:
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473
#if STATS
	{
		int i = 0;
		struct list_head *p;

3474 3475
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3476
			struct page *page;
L
Linus Torvalds 已提交
3477

3478 3479
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3480 3481 3482 3483 3484 3485 3486

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3487
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3488
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3489
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3490 3491 3492
}

/*
A
Andrew Morton 已提交
3493 3494
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3495
 */
3496
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3497
				unsigned long caller)
L
Linus Torvalds 已提交
3498
{
3499
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3500 3501

	check_irq_off();
3502
	kmemleak_free_recursive(objp, cachep->flags);
3503
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3504

3505
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3506

3507 3508 3509 3510 3511 3512 3513
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3514
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3515 3516
		return;

L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3523

3524
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3535
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3536
{
3537
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3538

3539
	trace_kmem_cache_alloc(_RET_IP_, ret,
3540
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3541 3542

	return ret;
L
Linus Torvalds 已提交
3543 3544 3545
}
EXPORT_SYMBOL(kmem_cache_alloc);

3546
#ifdef CONFIG_TRACING
3547
void *
3548
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3549
{
3550 3551
	void *ret;

3552
	ret = slab_alloc(cachep, flags, _RET_IP_);
3553 3554

	trace_kmalloc(_RET_IP_, ret,
3555
		      size, cachep->size, flags);
3556
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3557
}
3558
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3559 3560
#endif

L
Linus Torvalds 已提交
3561
#ifdef CONFIG_NUMA
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3573 3574
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3575
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3576

3577
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3578
				    cachep->object_size, cachep->size,
3579
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3580 3581

	return ret;
3582
}
L
Linus Torvalds 已提交
3583 3584
EXPORT_SYMBOL(kmem_cache_alloc_node);

3585
#ifdef CONFIG_TRACING
3586
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3587
				  gfp_t flags,
3588 3589
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3590
{
3591 3592
	void *ret;

3593
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3594

3595
	trace_kmalloc_node(_RET_IP_, ret,
3596
			   size, cachep->size,
3597 3598
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3599
}
3600
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3601 3602
#endif

3603
static __always_inline void *
3604
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3605
{
3606
	struct kmem_cache *cachep;
3607

3608
	cachep = kmalloc_slab(size, flags);
3609 3610
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3611
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3612
}
3613

3614
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3615 3616
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3617
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3618
}
3619
EXPORT_SYMBOL(__kmalloc_node);
3620 3621

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3622
		int node, unsigned long caller)
3623
{
3624
	return __do_kmalloc_node(size, flags, node, caller);
3625 3626 3627 3628 3629
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3630
	return __do_kmalloc_node(size, flags, node, 0);
3631 3632
}
EXPORT_SYMBOL(__kmalloc_node);
3633
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3634
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3635 3636

/**
3637
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3638
 * @size: how many bytes of memory are required.
3639
 * @flags: the type of memory to allocate (see kmalloc).
3640
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3641
 */
3642
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3643
					  unsigned long caller)
L
Linus Torvalds 已提交
3644
{
3645
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3646
	void *ret;
L
Linus Torvalds 已提交
3647

3648
	cachep = kmalloc_slab(size, flags);
3649 3650
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3651
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3652

3653
	trace_kmalloc(caller, ret,
3654
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3655 3656

	return ret;
3657 3658 3659
}


3660
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3661 3662
void *__kmalloc(size_t size, gfp_t flags)
{
3663
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3664 3665 3666
}
EXPORT_SYMBOL(__kmalloc);

3667
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3668
{
3669
	return __do_kmalloc(size, flags, caller);
3670 3671
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3672 3673 3674 3675

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3676
	return __do_kmalloc(size, flags, 0);
3677 3678
}
EXPORT_SYMBOL(__kmalloc);
3679 3680
#endif

L
Linus Torvalds 已提交
3681 3682 3683 3684 3685 3686 3687 3688
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3689
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3690 3691
{
	unsigned long flags;
3692 3693 3694
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3695 3696

	local_irq_save(flags);
3697
	debug_check_no_locks_freed(objp, cachep->object_size);
3698
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3699
		debug_check_no_obj_freed(objp, cachep->object_size);
3700
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3701
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3702

3703
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709 3710
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3711 3712
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3713 3714 3715 3716 3717
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3718
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3719 3720
	unsigned long flags;

3721 3722
	trace_kfree(_RET_IP_, objp);

3723
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3724 3725 3726
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3727
	c = virt_to_cache(objp);
3728 3729 3730
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3731
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3732 3733 3734 3735
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3736
/*
3737
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3738
 */
3739
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3740 3741
{
	int node;
3742
	struct kmem_cache_node *n;
3743
	struct array_cache *new_shared;
3744
	struct array_cache **new_alien = NULL;
3745

3746
	for_each_online_node(node) {
3747

3748
                if (use_alien_caches) {
3749
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3750 3751 3752
                        if (!new_alien)
                                goto fail;
                }
3753

3754 3755 3756
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3757
				cachep->shared*cachep->batchcount,
3758
					0xbaadf00d, gfp);
3759 3760 3761 3762
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3763
		}
3764

3765
		n = get_node(cachep, node);
3766 3767
		if (n) {
			struct array_cache *shared = n->shared;
3768

3769
			spin_lock_irq(&n->list_lock);
3770

3771
			if (shared)
3772 3773
				free_block(cachep, shared->entry,
						shared->avail, node);
3774

3775 3776 3777
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3778 3779
				new_alien = NULL;
			}
3780
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3781
					cachep->batchcount + cachep->num;
3782
			spin_unlock_irq(&n->list_lock);
3783
			kfree(shared);
3784 3785 3786
			free_alien_cache(new_alien);
			continue;
		}
3787 3788
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3789 3790
			free_alien_cache(new_alien);
			kfree(new_shared);
3791
			goto fail;
3792
		}
3793

3794
		kmem_cache_node_init(n);
3795 3796
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3797 3798 3799
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3800
					cachep->batchcount + cachep->num;
3801
		cachep->node[node] = n;
3802
	}
3803
	return 0;
3804

A
Andrew Morton 已提交
3805
fail:
3806
	if (!cachep->list.next) {
3807 3808 3809
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3810 3811
			n = get_node(cachep, node);
			if (n) {
3812 3813 3814
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3815
				cachep->node[node] = NULL;
3816 3817 3818 3819
			}
			node--;
		}
	}
3820
	return -ENOMEM;
3821 3822
}

L
Linus Torvalds 已提交
3823
struct ccupdate_struct {
3824
	struct kmem_cache *cachep;
3825
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3826 3827 3828 3829
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3830
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3831 3832 3833
	struct array_cache *old;

	check_irq_off();
3834
	old = cpu_cache_get(new->cachep);
3835

L
Linus Torvalds 已提交
3836 3837 3838 3839
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3840
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3841
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3842
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3843
{
3844
	struct ccupdate_struct *new;
3845
	int i;
L
Linus Torvalds 已提交
3846

3847 3848
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3849 3850 3851
	if (!new)
		return -ENOMEM;

3852
	for_each_online_cpu(i) {
3853
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3854
						batchcount, gfp);
3855
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3856
			for (i--; i >= 0; i--)
3857 3858
				kfree(new->new[i]);
			kfree(new);
3859
			return -ENOMEM;
L
Linus Torvalds 已提交
3860 3861
		}
	}
3862
	new->cachep = cachep;
L
Linus Torvalds 已提交
3863

3864
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3865

L
Linus Torvalds 已提交
3866 3867 3868
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3869
	cachep->shared = shared;
L
Linus Torvalds 已提交
3870

3871
	for_each_online_cpu(i) {
3872
		struct array_cache *ccold = new->new[i];
3873 3874 3875
		int node;
		struct kmem_cache_node *n;

L
Linus Torvalds 已提交
3876 3877
		if (!ccold)
			continue;
3878 3879 3880 3881 3882 3883

		node = cpu_to_mem(i);
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, node);
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3884 3885
		kfree(ccold);
	}
3886
	kfree(new);
3887
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3888 3889
}

G
Glauber Costa 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3905
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3906
	for_each_memcg_cache_index(i) {
3907
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3908 3909 3910 3911 3912 3913 3914 3915
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3916
/* Called with slab_mutex held always */
3917
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3918 3919
{
	int err;
G
Glauber Costa 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3930

G
Glauber Costa 已提交
3931 3932
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3933 3934
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3935 3936
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3937
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3938 3939 3940 3941
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3942
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3943
		limit = 1;
3944
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3945
		limit = 8;
3946
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3947
		limit = 24;
3948
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3949 3950 3951 3952
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3953 3954
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961 3962
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3963
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3964 3965 3966
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3967 3968 3969
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3970 3971 3972 3973
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3974 3975 3976
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3977 3978
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3979
		       cachep->name, -err);
3980
	return err;
L
Linus Torvalds 已提交
3981 3982
}

3983
/*
3984 3985
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3986
 * if drain_array() is used on the shared array.
3987
 */
3988
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3989
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3990 3991 3992
{
	int tofree;

3993 3994
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3995 3996
	if (ac->touched && !force) {
		ac->touched = 0;
3997
	} else {
3998
		spin_lock_irq(&n->list_lock);
3999 4000 4001 4002 4003 4004 4005 4006 4007
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4008
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4009 4010 4011 4012 4013
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4014
 * @w: work descriptor
L
Linus Torvalds 已提交
4015 4016 4017 4018 4019 4020
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4021 4022
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4023
 */
4024
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4025
{
4026
	struct kmem_cache *searchp;
4027
	struct kmem_cache_node *n;
4028
	int node = numa_mem_id();
4029
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4030

4031
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4032
		/* Give up. Setup the next iteration. */
4033
		goto out;
L
Linus Torvalds 已提交
4034

4035
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4036 4037
		check_irq_on();

4038
		/*
4039
		 * We only take the node lock if absolutely necessary and we
4040 4041 4042
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4043
		n = get_node(searchp, node);
4044

4045
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4046

4047
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4048

4049 4050 4051 4052
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4053
		if (time_after(n->next_reap, jiffies))
4054
			goto next;
L
Linus Torvalds 已提交
4055

4056
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4057

4058
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4059

4060 4061
		if (n->free_touched)
			n->free_touched = 0;
4062 4063
		else {
			int freed;
L
Linus Torvalds 已提交
4064

4065
			freed = drain_freelist(searchp, n, (n->free_limit +
4066 4067 4068
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4069
next:
L
Linus Torvalds 已提交
4070 4071 4072
		cond_resched();
	}
	check_irq_on();
4073
	mutex_unlock(&slab_mutex);
4074
	next_reap_node();
4075
out:
A
Andrew Morton 已提交
4076
	/* Set up the next iteration */
4077
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4078 4079
}

4080
#ifdef CONFIG_SLABINFO
4081
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4082
{
4083
	struct page *page;
P
Pekka Enberg 已提交
4084 4085 4086 4087
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4088
	const char *name;
L
Linus Torvalds 已提交
4089
	char *error = NULL;
4090
	int node;
4091
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4092 4093 4094

	active_objs = 0;
	num_slabs = 0;
4095
	for_each_kmem_cache_node(cachep, node, n) {
4096

4097
		check_irq_on();
4098
		spin_lock_irq(&n->list_lock);
4099

4100 4101
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4102 4103 4104 4105
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4106 4107
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4108
				error = "slabs_partial accounting error";
4109
			if (!page->active && !error)
4110
				error = "slabs_partial accounting error";
4111
			active_objs += page->active;
4112 4113
			active_slabs++;
		}
4114 4115
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4116
				error = "slabs_free accounting error";
4117 4118
			num_slabs++;
		}
4119 4120 4121
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4122

4123
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4124
	}
P
Pekka Enberg 已提交
4125 4126
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4127
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4128 4129
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4130
	name = cachep->name;
L
Linus Torvalds 已提交
4131 4132 4133
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4148
#if STATS
4149
	{			/* node stats */
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155 4156
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4157
		unsigned long node_frees = cachep->node_frees;
4158
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4159

J
Joe Perches 已提交
4160 4161 4162 4163 4164
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4174
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4187
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4188
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4189
{
P
Pekka Enberg 已提交
4190
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4191
	int limit, batchcount, shared, res;
4192
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4193

L
Linus Torvalds 已提交
4194 4195 4196 4197
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4198
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4209
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4210
	res = -EINVAL;
4211
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4212
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4213 4214
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4215
				res = 0;
L
Linus Torvalds 已提交
4216
			} else {
4217
				res = do_tune_cpucache(cachep, limit,
4218 4219
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4220 4221 4222 4223
			}
			break;
		}
	}
4224
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4225 4226 4227 4228
	if (res >= 0)
		res = count;
	return res;
}
4229 4230 4231 4232 4233

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4234 4235
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4268 4269
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4270 4271
{
	void *p;
4272
	int i;
4273

4274 4275
	if (n[0] == n[1])
		return;
4276
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4277
		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4278
			continue;
4279

4280 4281 4282 4283 4284 4285 4286 4287 4288
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4289
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4290

4291
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4292
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4293
		if (modname[0])
4294 4295 4296 4297 4298 4299 4300 4301 4302
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4303
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4304
	struct page *page;
4305
	struct kmem_cache_node *n;
4306
	const char *name;
4307
	unsigned long *x = m->private;
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4318
	x[1] = 0;
4319

4320
	for_each_kmem_cache_node(cachep, node, n) {
4321 4322

		check_irq_on();
4323
		spin_lock_irq(&n->list_lock);
4324

4325 4326 4327 4328
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4329
		spin_unlock_irq(&n->list_lock);
4330 4331
	}
	name = cachep->name;
4332
	if (x[0] == x[1]) {
4333
		/* Increase the buffer size */
4334
		mutex_unlock(&slab_mutex);
4335
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4336 4337
		if (!m->private) {
			/* Too bad, we are really out */
4338
			m->private = x;
4339
			mutex_lock(&slab_mutex);
4340 4341
			return -ENOMEM;
		}
4342 4343
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4344
		mutex_lock(&slab_mutex);
4345 4346 4347 4348
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4349 4350 4351
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4352 4353
		seq_putc(m, '\n');
	}
4354

4355 4356 4357
	return 0;
}

4358
static const struct seq_operations slabstats_op = {
4359
	.start = leaks_start,
4360 4361
	.next = slab_next,
	.stop = slab_stop,
4362 4363
	.show = leaks_show,
};
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4394
#endif
4395 4396 4397
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4398 4399
#endif

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4412
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4413
{
4414 4415
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4416
		return 0;
L
Linus Torvalds 已提交
4417

4418
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4419
}
K
Kirill A. Shutemov 已提交
4420
EXPORT_SYMBOL(ksize);