slab.c 121.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
202 203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204 205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
224
	void *addr;
L
Linus Torvalds 已提交
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
A
Andrew Morton 已提交
267 268 269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270 271 272 273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
274
			 */
L
Linus Torvalds 已提交
275 276
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
294 295 296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
297 298 299 300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
302 303 304
};

/*
305
 * The slab lists for all objects.
L
Linus Torvalds 已提交
306 307
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
308 309 310 311 312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
314 315 316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317 318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
319 320
};

321 322 323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327 328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330 331 332 333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
A
Andrew Morton 已提交
338 339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343 344
	extern void __bad_size(void);

345 346 347 348 349 350 351 352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358 359 360
	return 0;
}

361 362
static int slab_early_init = 1;

363 364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
365

P
Pekka Enberg 已提交
366
static void kmem_list3_init(struct kmem_list3 *parent)
367 368 369 370 371 372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374 375 376 377 378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
379 380 381 382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383 384
	} while (0)

A
Andrew Morton 已提交
385 386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387 388 389 390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
396 397 398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
399
 *
A
Adrian Bunk 已提交
400
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
412 413 414 415 416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
417 418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
421 422 423 424 425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
436 437 438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
442 443 444 445 446 447 448 449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
450 451
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
454 455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459 460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
461
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
464
{
465
	return cachep->obj_offset;
L
Linus Torvalds 已提交
466 467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
469 470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471 472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
473 474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
476 477 478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
484 485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
487 488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
490 491 492 493
}

#else

494
#define obj_offset(x)			0
495 496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
497 498 499 500
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

501
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
502 503
size_t slab_buffer_size(struct kmem_cache *cachep)
{
504
	return cachep->size;
E
Eduard - Gabriel Munteanu 已提交
505 506 507 508
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
509
/*
510 511
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
512
 */
513 514 515
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
516
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
517

518 519
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
520
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
521
	return page->slab_cache;
522 523 524 525
}

static inline struct slab *virt_to_slab(const void *obj)
{
526
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
527 528 529

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
530 531
}

532 533 534
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
535
	return slab->s_mem + cache->size * idx;
536 537
}

538
/*
539 540 541
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
542 543 544 545
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
546
{
547 548
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549 550
}

A
Andrew Morton 已提交
551 552 553
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
571
	{NULL,}
L
Linus Torvalds 已提交
572 573 574 575
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
576
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
577
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
578
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
579 580

/* internal cache of cache description objs */
581
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582
static struct kmem_cache cache_cache = {
583
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
584 585 586
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
587
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
588
	.name = "kmem_cache",
L
Linus Torvalds 已提交
589 590
};

591 592
#define BAD_ALIEN_MAGIC 0x01020304ul

593 594 595 596 597 598 599 600
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
601 602 603 604
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
605
 */
606 607 608
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

654
static void init_node_lock_keys(int q)
655
{
656 657
	struct cache_sizes *s = malloc_sizes;

658
	if (slab_state < UP)
659 660 661 662 663 664 665
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
666
			continue;
667 668 669

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
670 671
	}
}
672 673 674 675 676 677 678 679

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
680
#else
681 682 683 684
static void init_node_lock_keys(int q)
{
}

685
static inline void init_lock_keys(void)
686 687
{
}
688 689 690 691 692 693 694 695

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696 697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
701 702 703 704
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
705 706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
707 708 709 710 711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
712 713 714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
716
#endif
717 718 719
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
720 721 722 723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
725 726 727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
729 730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
L
Linus Torvalds 已提交
732 733 734
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 737 738 739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
741
{
742 743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
744

A
Andrew Morton 已提交
745 746 747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748 749 750 751 752 753 754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
804 805
}

806
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
807

A
Andrew Morton 已提交
808 809
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
810 811
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
812
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
813 814 815
	dump_stack();
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

832 833 834 835 836 837 838 839 840 841 842
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

843 844 845 846 847 848 849
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
850
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851 852 853 854 855

static void init_reap_node(int cpu)
{
	int node;

856
	node = next_node(cpu_to_mem(cpu), node_online_map);
857
	if (node == MAX_NUMNODES)
858
		node = first_node(node_online_map);
859

860
	per_cpu(slab_reap_node, cpu) = node;
861 862 863 864
}

static void next_reap_node(void)
{
865
	int node = __this_cpu_read(slab_reap_node);
866 867 868 869

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
870
	__this_cpu_write(slab_reap_node, node);
871 872 873 874 875 876 877
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
878 879 880 881 882 883 884
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
885
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
886
{
887
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
888 889 890 891 892 893

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
894
	if (keventd_up() && reap_work->work.func == NULL) {
895
		init_reap_node(cpu);
896
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897 898
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
899 900 901
	}
}

902
static struct array_cache *alloc_arraycache(int node, int entries,
903
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
904
{
P
Pekka Enberg 已提交
905
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
906 907
	struct array_cache *nc = NULL;

908
	nc = kmalloc_node(memsize, gfp, node);
909 910
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
911
	 * However, when such objects are allocated or transferred to another
912 913 914 915 916
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
917 918 919 920 921
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
922
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
923 924 925 926
	}
	return nc;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

963
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024 1025 1026 1027 1028 1029 1030 1031 1032
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1033 1034 1035 1036 1037 1038 1039 1040 1041
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1042 1043 1044
	ac->entry[ac->avail++] = objp;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1055
	int nr = min3(from->avail, max, to->limit - to->avail);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1068 1069 1070 1071 1072
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1073
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1093
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094 1095 1096 1097 1098 1099 1100
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1101
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103

1104
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105 1106
{
	struct array_cache **ac_ptr;
1107
	int memsize = sizeof(void *) * nr_node_ids;
1108 1109 1110 1111
	int i;

	if (limit > 1)
		limit = 12;
1112
	ac_ptr = kzalloc_node(memsize, gfp, node);
1113 1114
	if (ac_ptr) {
		for_each_node(i) {
1115
			if (i == node || !node_online(i))
1116
				continue;
1117
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118
			if (!ac_ptr[i]) {
1119
				for (i--; i >= 0; i--)
1120 1121 1122 1123 1124 1125 1126 1127 1128
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1129
static void free_alien_cache(struct array_cache **ac_ptr)
1130 1131 1132 1133 1134 1135
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1136
	    kfree(ac_ptr[i]);
1137 1138 1139
	kfree(ac_ptr);
}

1140
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1141
				struct array_cache *ac, int node)
1142 1143 1144 1145 1146
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1147 1148 1149 1150 1151
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1152 1153
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1154

1155
		free_block(cachep, ac->entry, ac->avail, node);
1156 1157 1158 1159 1160
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1161 1162 1163 1164 1165
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1166
	int node = __this_cpu_read(slab_reap_node);
1167 1168 1169

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1170 1171

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172 1173 1174 1175 1176 1177
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1178 1179
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1180
{
P
Pekka Enberg 已提交
1181
	int i = 0;
1182 1183 1184 1185
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1186
		ac = alien[i];
1187 1188 1189 1190 1191 1192 1193
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1194

1195
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196 1197 1198 1199 1200
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1201 1202
	int node;

1203
	node = numa_mem_id();
1204 1205 1206 1207 1208

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1209
	if (likely(slabp->nodeid == node))
1210 1211
		return 0;

P
Pekka Enberg 已提交
1212
	l3 = cachep->nodelists[node];
1213 1214 1215
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1216
		spin_lock(&alien->lock);
1217 1218 1219 1220
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1221
		ac_put_obj(cachep, alien, objp);
1222 1223 1224 1225 1226 1227 1228 1229
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1230 1231
#endif

1232 1233 1234 1235 1236 1237 1238
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1239
 * Must hold slab_mutex.
1240 1241 1242 1243 1244 1245 1246
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1247
	list_for_each_entry(cachep, &slab_caches, list) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1263
			 * go.  slab_mutex is sufficient
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1278 1279 1280 1281
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1282
	int node = cpu_to_mem(cpu);
1283
	const struct cpumask *mask = cpumask_of_node(node);
1284

1285
	list_for_each_entry(cachep, &slab_caches, list) {
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1305
		if (!cpumask_empty(mask)) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1335
	list_for_each_entry(cachep, &slab_caches, list) {
1336 1337 1338 1339 1340 1341 1342 1343
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1344
{
1345
	struct kmem_cache *cachep;
1346
	struct kmem_list3 *l3 = NULL;
1347
	int node = cpu_to_mem(cpu);
1348
	int err;
L
Linus Torvalds 已提交
1349

1350 1351 1352 1353 1354 1355
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1356 1357 1358
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1359 1360 1361 1362 1363

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1364
	list_for_each_entry(cachep, &slab_caches, list) {
1365 1366 1367 1368 1369
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1370
					cachep->batchcount, GFP_KERNEL);
1371 1372 1373 1374 1375
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1376
				0xbaadf00d, GFP_KERNEL);
1377 1378
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1379
				goto bad;
1380
			}
1381 1382
		}
		if (use_alien_caches) {
1383
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1384 1385 1386
			if (!alien) {
				kfree(shared);
				kfree(nc);
1387
				goto bad;
1388
			}
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1403
#ifdef CONFIG_NUMA
1404 1405 1406
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1407
		}
1408 1409 1410 1411
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1412 1413
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1414
	}
1415 1416
	init_node_lock_keys(node);

1417 1418
	return 0;
bad:
1419
	cpuup_canceled(cpu);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1432
		mutex_lock(&slab_mutex);
1433
		err = cpuup_prepare(cpu);
1434
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1435 1436
		break;
	case CPU_ONLINE:
1437
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1438 1439 1440
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1441
  	case CPU_DOWN_PREPARE:
1442
  	case CPU_DOWN_PREPARE_FROZEN:
1443
		/*
1444
		 * Shutdown cache reaper. Note that the slab_mutex is
1445 1446 1447 1448
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1449
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1450
		/* Now the cache_reaper is guaranteed to be not running. */
1451
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1452 1453
  		break;
  	case CPU_DOWN_FAILED:
1454
  	case CPU_DOWN_FAILED_FROZEN:
1455 1456
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1457
	case CPU_DEAD:
1458
	case CPU_DEAD_FROZEN:
1459 1460 1461 1462 1463 1464 1465 1466
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1467
		/* fall through */
1468
#endif
L
Linus Torvalds 已提交
1469
	case CPU_UP_CANCELED:
1470
	case CPU_UP_CANCELED_FROZEN:
1471
		mutex_lock(&slab_mutex);
1472
		cpuup_canceled(cpu);
1473
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1474 1475
		break;
	}
1476
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1477 1478
}

1479 1480 1481
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1482

1483 1484 1485 1486 1487 1488
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1489
 * Must hold slab_mutex.
1490 1491 1492 1493 1494 1495
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1496
	list_for_each_entry(cachep, &slab_caches, list) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1527
		mutex_lock(&slab_mutex);
1528
		ret = init_cache_nodelists_node(nid);
1529
		mutex_unlock(&slab_mutex);
1530 1531
		break;
	case MEM_GOING_OFFLINE:
1532
		mutex_lock(&slab_mutex);
1533
		ret = drain_cache_nodelists_node(nid);
1534
		mutex_unlock(&slab_mutex);
1535 1536 1537 1538 1539 1540 1541 1542
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1543
	return notifier_from_errno(ret);
1544 1545 1546
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1547 1548 1549
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1550 1551
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1552 1553 1554
{
	struct kmem_list3 *ptr;

1555
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1556 1557 1558
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1559 1560 1561 1562 1563
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1564 1565 1566 1567
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1584 1585 1586
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1593
	int i;
1594
	int order;
P
Pekka Enberg 已提交
1595
	int node;
1596

1597
	if (num_possible_nodes() == 1)
1598 1599
		use_alien_caches = 0;

1600 1601 1602 1603 1604
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1605
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1606 1607 1608

	/*
	 * Fragmentation resistance on low memory - only use bigger
1609 1610
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1611
	 */
1612
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1613
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1614 1615 1616

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1617 1618 1619
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1620 1621 1622
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1623
	 * 2) Create the first kmalloc cache.
1624
	 *    The struct kmem_cache for the new cache is allocated normally.
1625 1626 1627
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1628 1629
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1630 1631 1632
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1633 1634
	 */

1635
	node = numa_mem_id();
P
Pekka Enberg 已提交
1636

L
Linus Torvalds 已提交
1637
	/* 1) create the cache_cache */
1638 1639
	INIT_LIST_HEAD(&slab_caches);
	list_add(&cache_cache.list, &slab_caches);
L
Linus Torvalds 已提交
1640 1641
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1642
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1643

E
Eric Dumazet 已提交
1644
	/*
1645
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1646
	 */
1647
	cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1648
				  nr_node_ids * sizeof(struct kmem_list3 *);
1649 1650
	cache_cache.object_size = cache_cache.size;
	cache_cache.size = ALIGN(cache_cache.size,
A
Andrew Morton 已提交
1651
					cache_line_size());
1652
	cache_cache.reciprocal_buffer_size =
1653
		reciprocal_value(cache_cache.size);
L
Linus Torvalds 已提交
1654

1655
	for (order = 0; order < MAX_ORDER; order++) {
1656
		cache_estimate(order, cache_cache.size,
1657 1658 1659 1660
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1661
	BUG_ON(!cache_cache.num);
1662
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1663 1664 1665
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1671 1672 1673 1674
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1675 1676
	 */

1677
	sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1678 1679 1680
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1681
					NULL);
1682

1683
	list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1684
	if (INDEX_AC != INDEX_L3) {
1685
		sizes[INDEX_L3].cs_cachep =
1686
			__kmem_cache_create(names[INDEX_L3].name,
A
Andrew Morton 已提交
1687 1688 1689
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1690
				NULL);
1691
		list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1692
	}
1693

1694 1695
	slab_early_init = 0;

L
Linus Torvalds 已提交
1696
	while (sizes->cs_size != ULONG_MAX) {
1697 1698
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1699 1700 1701
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1702 1703
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1704
		if (!sizes->cs_cachep) {
1705
			sizes->cs_cachep = __kmem_cache_create(names->name,
A
Andrew Morton 已提交
1706 1707 1708
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1709
					NULL);
1710
			list_add(&sizes->cs_cachep->list, &slab_caches);
A
Andrew Morton 已提交
1711
		}
1712
#ifdef CONFIG_ZONE_DMA
1713
		sizes->cs_dmacachep = __kmem_cache_create(
1714
					names->name_dma,
A
Andrew Morton 已提交
1715 1716 1717 1718
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1719
					NULL);
1720
		list_add(&sizes->cs_dmacachep->list, &slab_caches);
1721
#endif
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1727
		struct array_cache *ptr;
1728

1729
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1730

1731 1732
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1733
		       sizeof(struct arraycache_init));
1734 1735 1736 1737 1738
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1739
		cache_cache.array[smp_processor_id()] = ptr;
1740

1741
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1742

1743
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1744
		       != &initarray_generic.cache);
1745
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1746
		       sizeof(struct arraycache_init));
1747 1748 1749 1750 1751
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1752
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1753
		    ptr;
L
Linus Torvalds 已提交
1754
	}
1755 1756
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1757 1758
		int nid;

1759
		for_each_online_node(nid) {
1760
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1761

1762
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1763
				  &initkmem_list3[SIZE_AC + nid], nid);
1764 1765 1766

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1767
					  &initkmem_list3[SIZE_L3 + nid], nid);
1768 1769 1770
			}
		}
	}
L
Linus Torvalds 已提交
1771

1772
	slab_state = UP;
1773 1774 1775 1776 1777 1778
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1779
	slab_state = UP;
P
Peter Zijlstra 已提交
1780

1781 1782 1783
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1784
	/* 6) resize the head arrays to their final sizes */
1785 1786
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1787 1788
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1789
	mutex_unlock(&slab_mutex);
1790

1791 1792 1793
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1794 1795 1796
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1797 1798 1799
	 */
	register_cpu_notifier(&cpucache_notifier);

1800 1801 1802 1803 1804 1805 1806 1807
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1808 1809 1810
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815 1816 1817
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1818 1819
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1820
	 */
1821
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1822
		start_cpu_timer(cpu);
1823 1824

	/* Done! */
1825
	slab_state = FULL;
L
Linus Torvalds 已提交
1826 1827 1828 1829
	return 0;
}
__initcall(cpucache_init);

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1842
		cachep->name, cachep->size, cachep->gfporder);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881 1882
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1883
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1884 1885
{
	struct page *page;
1886
	int nr_pages;
L
Linus Torvalds 已提交
1887 1888
	int i;

1889
#ifndef CONFIG_MMU
1890 1891 1892
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1893
	 */
1894
	flags |= __GFP_COMP;
1895
#endif
1896

1897
	flags |= cachep->allocflags;
1898 1899
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1900

L
Linus Torvalds 已提交
1901
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1902 1903 1904
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1905
		return NULL;
1906
	}
L
Linus Torvalds 已提交
1907

1908
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1909 1910 1911
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1912
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1913
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1914 1915 1916 1917 1918
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1919
	for (i = 0; i < nr_pages; i++) {
1920
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1921

1922 1923 1924 1925
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1926 1927 1928 1929 1930 1931 1932 1933
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1934

1935
	return page_address(page);
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940
}

/*
 * Interface to system's page release.
 */
1941
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1942
{
P
Pekka Enberg 已提交
1943
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1944 1945 1946
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1947
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1948

1949 1950 1951 1952 1953 1954
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1955
	while (i--) {
N
Nick Piggin 已提交
1956
		BUG_ON(!PageSlab(page));
1957
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1958
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1968
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1969
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1979
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1980
			    unsigned long caller)
L
Linus Torvalds 已提交
1981
{
1982
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1983

1984
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1985

P
Pekka Enberg 已提交
1986
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1987 1988
		return;

P
Pekka Enberg 已提交
1989 1990 1991 1992
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
2000
				*addr++ = svalue;
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
2008
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
2009 2010 2011
}
#endif

2012
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
2013
{
2014
	int size = cachep->object_size;
2015
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
2016 2017

	memset(addr, val, size);
P
Pekka Enberg 已提交
2018
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
2019 2020 2021 2022 2023
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2024 2025 2026
	unsigned char error = 0;
	int bad_count = 0;

2027
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2028 2029 2030 2031 2032 2033
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2034 2035
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054
}
#endif

#if DEBUG

2055
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2061
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2062 2063
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2064 2065 2066 2067
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2068
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2069
		print_symbol("(%s)",
A
Andrew Morton 已提交
2070
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2071 2072
		printk("\n");
	}
2073
	realobj = (char *)objp + obj_offset(cachep);
2074
	size = cachep->object_size;
P
Pekka Enberg 已提交
2075
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2076 2077
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2078 2079
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2080 2081 2082 2083
		dump_line(realobj, i, limit);
	}
}

2084
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089
{
	char *realobj;
	int size, i;
	int lines = 0;

2090
	realobj = (char *)objp + obj_offset(cachep);
2091
	size = cachep->object_size;
L
Linus Torvalds 已提交
2092

P
Pekka Enberg 已提交
2093
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2094
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2095
		if (i == size - 1)
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2102
				printk(KERN_ERR
2103 2104
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2105 2106 2107
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2108
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2109
			limit = 16;
P
Pekka Enberg 已提交
2110 2111
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2124
		struct slab *slabp = virt_to_slab(objp);
2125
		unsigned int objnr;
L
Linus Torvalds 已提交
2126

2127
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2128
		if (objnr) {
2129
			objp = index_to_obj(cachep, slabp, objnr - 1);
2130
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2131
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2132
			       realobj, size);
L
Linus Torvalds 已提交
2133 2134
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2135
		if (objnr + 1 < cachep->num) {
2136
			objp = index_to_obj(cachep, slabp, objnr + 1);
2137
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2138
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2139
			       realobj, size);
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2146
#if DEBUG
R
Rabin Vincent 已提交
2147
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2148 2149 2150
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2151
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2152 2153 2154

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2155
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2156
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2157
				kernel_map_pages(virt_to_page(objp),
2158
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2168
					   "was overwritten");
L
Linus Torvalds 已提交
2169 2170
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2171
					   "was overwritten");
L
Linus Torvalds 已提交
2172 2173
		}
	}
2174
}
L
Linus Torvalds 已提交
2175
#else
R
Rabin Vincent 已提交
2176
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2177 2178
{
}
L
Linus Torvalds 已提交
2179 2180
#endif

2181 2182 2183 2184 2185
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2186
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2187 2188
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2189
 */
2190
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2191 2192 2193
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2194
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2195 2196 2197
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2198
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2204 2205
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2206 2207 2208
	}
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2230
/**
2231 2232 2233 2234 2235 2236 2237
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2238 2239 2240 2241 2242
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2243
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2244
			size_t size, size_t align, unsigned long flags)
2245
{
2246
	unsigned long offslab_limit;
2247
	size_t left_over = 0;
2248
	int gfporder;
2249

2250
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2251 2252 2253
		unsigned int num;
		size_t remainder;

2254
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2255 2256
		if (!num)
			continue;
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2270

2271
		/* Found something acceptable - save it away */
2272
		cachep->num = num;
2273
		cachep->gfporder = gfporder;
2274 2275
		left_over = remainder;

2276 2277 2278 2279 2280 2281 2282 2283
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2284 2285 2286 2287
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2288
		if (gfporder >= slab_max_order)
2289 2290
			break;

2291 2292 2293
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2294
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2295 2296 2297 2298 2299
			break;
	}
	return left_over;
}

2300
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2301
{
2302
	if (slab_state >= FULL)
2303
		return enable_cpucache(cachep, gfp);
2304

2305
	if (slab_state == DOWN) {
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2320
			slab_state = PARTIAL_L3;
2321
		else
2322
			slab_state = PARTIAL_ARRAYCACHE;
2323 2324
	} else {
		cachep->array[smp_processor_id()] =
2325
			kmalloc(sizeof(struct arraycache_init), gfp);
2326

2327
		if (slab_state == PARTIAL_ARRAYCACHE) {
2328
			set_up_list3s(cachep, SIZE_L3);
2329
			slab_state = PARTIAL_L3;
2330 2331
		} else {
			int node;
2332
			for_each_online_node(node) {
2333 2334
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2335
						gfp, node);
2336 2337 2338 2339 2340
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2341
	cachep->nodelists[numa_mem_id()]->next_reap =
2342 2343 2344 2345 2346 2347 2348 2349 2350
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2351
	return 0;
2352 2353
}

L
Linus Torvalds 已提交
2354
/**
2355
 * __kmem_cache_create - Create a cache.
L
Linus Torvalds 已提交
2356 2357 2358 2359 2360 2361 2362 2363
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2364
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2365 2366
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2367 2368
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2381
struct kmem_cache *
2382
__kmem_cache_create (const char *name, size_t size, size_t align,
2383
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2384 2385
{
	size_t left_over, slab_size, ralign;
2386
	struct kmem_cache *cachep = NULL;
2387
	gfp_t gfp;
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2397 2398
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2399
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2407 2408
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2409
	 */
2410
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2411

A
Andrew Morton 已提交
2412 2413
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2414 2415 2416
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2417 2418 2419
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2420 2421
	}

A
Andrew Morton 已提交
2422 2423
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2424 2425
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2426 2427 2428 2429
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2430 2431
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2432
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2433 2434 2435 2436
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2437 2438

	/*
D
David Woodhouse 已提交
2439 2440 2441
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2442
	 */
D
David Woodhouse 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2453

2454
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2455 2456 2457
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2458
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2459 2460 2461
	if (ralign < align) {
		ralign = align;
	}
2462 2463
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2464
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2465
	/*
2466
	 * 4) Store it.
L
Linus Torvalds 已提交
2467 2468 2469
	 */
	align = ralign;

2470 2471 2472 2473 2474
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2475
	/* Get cache's description obj. */
2476
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2477
	if (!cachep)
2478
		return NULL;
L
Linus Torvalds 已提交
2479

2480
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2481 2482
	cachep->object_size = size;
	cachep->align = align;
L
Linus Torvalds 已提交
2483 2484
#if DEBUG

2485 2486 2487 2488
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2489 2490
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2491 2492
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2493 2494
	}
	if (flags & SLAB_STORE_USER) {
2495
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2496 2497
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2498
		 */
D
David Woodhouse 已提交
2499 2500 2501 2502
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2503 2504
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2505
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2506
	    && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
C
Carsten Otte 已提交
2507
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512
		size = PAGE_SIZE;
	}
#endif
#endif

2513 2514 2515
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2516 2517
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2518
	 */
2519 2520
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527 2528
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2529
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2530 2531

	if (!cachep->num) {
2532 2533
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2534
		kmem_cache_free(&cache_cache, cachep);
2535
		return NULL;
L
Linus Torvalds 已提交
2536
	}
P
Pekka Enberg 已提交
2537 2538
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2551 2552
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2553 2554 2555 2556 2557 2558 2559 2560 2561

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2568
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2569 2570
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2571
	cachep->allocflags = 0;
2572
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2573
		cachep->allocflags |= GFP_DMA;
2574
	cachep->size = size;
2575
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2576

2577
	if (flags & CFLGS_OFF_SLAB) {
2578
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2579 2580 2581 2582 2583 2584 2585
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2586
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2587
	}
L
Linus Torvalds 已提交
2588 2589
	cachep->ctor = ctor;
	cachep->name = name;
2590
	cachep->refcount = 1;
L
Linus Torvalds 已提交
2591

2592
	if (setup_cpu_cache(cachep, gfp)) {
2593
		__kmem_cache_destroy(cachep);
2594
		return NULL;
2595
	}
L
Linus Torvalds 已提交
2596

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	return cachep;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2621
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2622 2623 2624
{
#ifdef CONFIG_SMP
	check_irq_off();
2625
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2626 2627
#endif
}
2628

2629
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2630 2631 2632 2633 2634 2635 2636
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2637 2638 2639 2640
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2641
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2642 2643
#endif

2644 2645 2646 2647
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2648 2649
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2650
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2651
	struct array_cache *ac;
2652
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2653 2654

	check_irq_off();
2655
	ac = cpu_cache_get(cachep);
2656 2657 2658
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2659 2660 2661
	ac->avail = 0;
}

2662
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2663
{
2664 2665 2666
	struct kmem_list3 *l3;
	int node;

2667
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2668
	check_irq_on();
P
Pekka Enberg 已提交
2669
	for_each_online_node(node) {
2670
		l3 = cachep->nodelists[node];
2671 2672 2673 2674 2675 2676 2677
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2678
			drain_array(cachep, l3, l3->shared, 1, node);
2679
	}
L
Linus Torvalds 已提交
2680 2681
}

2682 2683 2684 2685 2686 2687 2688 2689
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2690
{
2691 2692
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2693 2694
	struct slab *slabp;

2695 2696
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2697

2698
		spin_lock_irq(&l3->list_lock);
2699
		p = l3->slabs_free.prev;
2700 2701 2702 2703
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2704

2705
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2706
#if DEBUG
2707
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2708 2709
#endif
		list_del(&slabp->list);
2710 2711 2712 2713 2714
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2715
		spin_unlock_irq(&l3->list_lock);
2716 2717
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2718
	}
2719 2720
out:
	return nr_freed;
L
Linus Torvalds 已提交
2721 2722
}

2723
/* Called with slab_mutex held to protect against cpu hotplug */
2724
static int __cache_shrink(struct kmem_cache *cachep)
2725 2726 2727 2728 2729 2730 2731 2732 2733
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2734 2735 2736 2737 2738 2739 2740
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2741 2742 2743 2744
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750 2751
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2752
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2753
{
2754
	int ret;
2755
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2756

2757
	get_online_cpus();
2758
	mutex_lock(&slab_mutex);
2759
	ret = __cache_shrink(cachep);
2760
	mutex_unlock(&slab_mutex);
2761
	put_online_cpus();
2762
	return ret;
L
Linus Torvalds 已提交
2763 2764 2765 2766 2767 2768 2769
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2770
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775 2776 2777 2778
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2779
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2780 2781
 * during the kmem_cache_destroy().
 */
2782
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2783
{
2784
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2785 2786

	/* Find the cache in the chain of caches. */
2787
	get_online_cpus();
2788
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
2789 2790 2791
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
2792
	list_del(&cachep->list);
L
Linus Torvalds 已提交
2793 2794
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
2795 2796
		list_add(&cachep->list, &slab_caches);
		mutex_unlock(&slab_mutex);
2797
		put_online_cpus();
2798
		return;
L
Linus Torvalds 已提交
2799 2800 2801
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2802
		rcu_barrier();
L
Linus Torvalds 已提交
2803

2804
	__kmem_cache_destroy(cachep);
2805
	mutex_unlock(&slab_mutex);
2806
	put_online_cpus();
L
Linus Torvalds 已提交
2807 2808 2809
}
EXPORT_SYMBOL(kmem_cache_destroy);

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2821
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2822 2823
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2824 2825
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2826

L
Linus Torvalds 已提交
2827 2828
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2829
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2830
					      local_flags, nodeid);
2831 2832 2833 2834 2835 2836
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2837 2838
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2839 2840 2841
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2842
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2843 2844 2845 2846
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2847
	slabp->s_mem = objp + colour_off;
2848
	slabp->nodeid = nodeid;
2849
	slabp->free = 0;
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2855
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2856 2857
}

2858
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2859
			    struct slab *slabp)
L
Linus Torvalds 已提交
2860 2861 2862 2863
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2864
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2877 2878 2879
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2880 2881
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2882
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2883 2884 2885 2886

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2887
					   " end of an object");
L
Linus Torvalds 已提交
2888 2889
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2890
					   " start of an object");
L
Linus Torvalds 已提交
2891
		}
2892
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2893
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2894
			kernel_map_pages(virt_to_page(objp),
2895
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2896 2897
#else
		if (cachep->ctor)
2898
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2899
#endif
P
Pekka Enberg 已提交
2900
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2901
	}
P
Pekka Enberg 已提交
2902
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2903 2904
}

2905
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2906
{
2907 2908
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2909
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2910
		else
2911
			BUG_ON(cachep->allocflags & GFP_DMA);
2912
	}
L
Linus Torvalds 已提交
2913 2914
}

A
Andrew Morton 已提交
2915 2916
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2917
{
2918
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2932 2933
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2934
{
2935
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2936 2937 2938 2939 2940

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2941
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2942
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2943
				"'%s', objp %p\n", cachep->name, objp);
2944 2945 2946 2947 2948 2949 2950 2951
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2952 2953 2954
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2955
 * virtual address for kfree, ksize, and slab debugging.
2956 2957 2958
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2959
{
2960
	int nr_pages;
L
Linus Torvalds 已提交
2961 2962
	struct page *page;

2963
	page = virt_to_page(addr);
2964

2965
	nr_pages = 1;
2966
	if (likely(!PageCompound(page)))
2967 2968
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2969
	do {
C
Christoph Lameter 已提交
2970 2971
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2972
		page++;
2973
	} while (--nr_pages);
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2980 2981
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2982
{
P
Pekka Enberg 已提交
2983 2984 2985
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2986
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2987

A
Andrew Morton 已提交
2988 2989 2990
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2991
	 */
C
Christoph Lameter 已提交
2992 2993
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2994

2995
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2996
	check_irq_off();
2997 2998
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2999 3000

	/* Get colour for the slab, and cal the next value. */
3001 3002 3003 3004 3005
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3006

3007
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
3020 3021 3022
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
3023
	 */
3024
	if (!objp)
3025
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
3026
	if (!objp)
L
Linus Torvalds 已提交
3027 3028 3029
		goto failed;

	/* Get slab management. */
3030
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
3031
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
3032
	if (!slabp)
L
Linus Torvalds 已提交
3033 3034
		goto opps1;

3035
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
3036

C
Christoph Lameter 已提交
3037
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
3038 3039 3040 3041

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
3042
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3043 3044

	/* Make slab active. */
3045
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
3046
	STATS_INC_GROWN(cachep);
3047 3048
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3049
	return 1;
A
Andrew Morton 已提交
3050
opps1:
L
Linus Torvalds 已提交
3051
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
3052
failed:
L
Linus Torvalds 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
3069 3070
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
3071 3072 3073
	}
}

3074 3075
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
3076
	unsigned long long redzone1, redzone2;
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

3092
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3093 3094 3095
			obj, redzone1, redzone2);
}

3096
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
3097
				   void *caller)
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3103 3104
	BUG_ON(virt_to_cache(objp) != cachep);

3105
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3106
	kfree_debugcheck(objp);
3107
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3108

C
Christoph Lameter 已提交
3109
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3110 3111

	if (cachep->flags & SLAB_RED_ZONE) {
3112
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3119
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3120 3121

	BUG_ON(objnr >= cachep->num);
3122
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3123

3124 3125 3126
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3127 3128
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3129
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
3130
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
3131
			kernel_map_pages(virt_to_page(objp),
3132
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3143
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3144 3145 3146
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3147

L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153 3154
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3155 3156
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3157 3158 3159
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3160 3161 3162
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3172 3173
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3174 3175 3176 3177
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3178 3179
	int node;

L
Linus Torvalds 已提交
3180
	check_irq_off();
3181
	node = numa_mem_id();
3182 3183 3184
	if (unlikely(force_refill))
		goto force_grow;
retry:
3185
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3186 3187
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3188 3189 3190 3191
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3192 3193 3194
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3195
	l3 = cachep->nodelists[node];
3196 3197 3198

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3199

3200
	/* See if we can refill from the shared array */
3201 3202
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3203
		goto alloc_done;
3204
	}
3205

L
Linus Torvalds 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3221 3222 3223 3224 3225 3226

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3227
		BUG_ON(slabp->inuse >= cachep->num);
3228

L
Linus Torvalds 已提交
3229 3230 3231 3232 3233
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3234 3235
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3247
must_grow:
L
Linus Torvalds 已提交
3248
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3249
alloc_done:
3250
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3251 3252 3253

	if (unlikely(!ac->avail)) {
		int x;
3254
force_grow:
3255
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3256

A
Andrew Morton 已提交
3257
		/* cache_grow can reenable interrupts, then ac could change. */
3258
		ac = cpu_cache_get(cachep);
3259 3260 3261

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3262 3263
			return NULL;

A
Andrew Morton 已提交
3264
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3265 3266 3267
			goto retry;
	}
	ac->touched = 1;
3268 3269

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3270 3271
}

A
Andrew Morton 已提交
3272 3273
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3274 3275 3276 3277 3278 3279 3280 3281
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3282 3283
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3284
{
P
Pekka Enberg 已提交
3285
	if (!objp)
L
Linus Torvalds 已提交
3286
		return objp;
P
Pekka Enberg 已提交
3287
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3288
#ifdef CONFIG_DEBUG_PAGEALLOC
3289
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3290
			kernel_map_pages(virt_to_page(objp),
3291
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3303 3304 3305 3306
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3307
			printk(KERN_ERR
3308
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3309 3310
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3311 3312 3313 3314
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3315 3316 3317 3318 3319
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3320
		slabp = virt_to_head_page(objp)->slab_page;
3321
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3322 3323 3324
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3325
	objp += obj_offset(cachep);
3326
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3327
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3328 3329
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3330
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3331
		       objp, (int)ARCH_SLAB_MINALIGN);
3332
	}
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3339
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3340 3341
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3342
		return false;
3343

3344
	return should_failslab(cachep->object_size, flags, cachep->flags);
3345 3346
}

3347
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3348
{
P
Pekka Enberg 已提交
3349
	void *objp;
L
Linus Torvalds 已提交
3350
	struct array_cache *ac;
3351
	bool force_refill = false;
L
Linus Torvalds 已提交
3352

3353
	check_irq_off();
3354

3355
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3356 3357
	if (likely(ac->avail)) {
		ac->touched = 1;
3358 3359
		objp = ac_get_obj(cachep, ac, flags, false);

3360
		/*
3361 3362
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3363
		 */
3364 3365 3366 3367 3368
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3369
	}
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3380 3381 3382 3383 3384
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3385 3386
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3387 3388 3389
	return objp;
}

3390
#ifdef CONFIG_NUMA
3391
/*
3392
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3393 3394 3395 3396 3397 3398 3399 3400
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3401
	if (in_interrupt() || (flags & __GFP_THISNODE))
3402
		return NULL;
3403
	nid_alloc = nid_here = numa_mem_id();
3404
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3405
		nid_alloc = cpuset_slab_spread_node();
3406
	else if (current->mempolicy)
3407
		nid_alloc = slab_node();
3408
	if (nid_alloc != nid_here)
3409
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3410 3411 3412
	return NULL;
}

3413 3414
/*
 * Fallback function if there was no memory available and no objects on a
3415 3416 3417 3418 3419
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3420
 */
3421
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3422
{
3423 3424
	struct zonelist *zonelist;
	gfp_t local_flags;
3425
	struct zoneref *z;
3426 3427
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3428
	void *obj = NULL;
3429
	int nid;
3430
	unsigned int cpuset_mems_cookie;
3431 3432 3433 3434

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3435
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3436

3437 3438
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3439
	zonelist = node_zonelist(slab_node(), flags);
3440

3441 3442 3443 3444 3445
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3446 3447
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3448

3449
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3450
			cache->nodelists[nid] &&
3451
			cache->nodelists[nid]->free_objects) {
3452 3453
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3454 3455 3456
				if (obj)
					break;
		}
3457 3458
	}

3459
	if (!obj) {
3460 3461 3462 3463 3464 3465
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3466 3467 3468
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3469
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3470 3471
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3488
				/* cache_grow already freed obj */
3489 3490 3491
				obj = NULL;
			}
		}
3492
	}
3493 3494 3495

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3496 3497 3498
	return obj;
}

3499 3500
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3501
 */
3502
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3503
				int nodeid)
3504 3505
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3506 3507 3508 3509 3510 3511 3512 3513
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3514
retry:
3515
	check_irq_off();
P
Pekka Enberg 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3535
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3536 3537 3538 3539 3540
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3541
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3542
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3543
	else
P
Pekka Enberg 已提交
3544
		list_add(&slabp->list, &l3->slabs_partial);
3545

P
Pekka Enberg 已提交
3546 3547
	spin_unlock(&l3->list_lock);
	goto done;
3548

A
Andrew Morton 已提交
3549
must_grow:
P
Pekka Enberg 已提交
3550
	spin_unlock(&l3->list_lock);
3551
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3552 3553
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3554

3555
	return fallback_alloc(cachep, flags);
3556

A
Andrew Morton 已提交
3557
done:
P
Pekka Enberg 已提交
3558
	return obj;
3559
}
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3579
	int slab_node = numa_mem_id();
3580

3581
	flags &= gfp_allowed_mask;
3582

3583 3584
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3585
	if (slab_should_failslab(cachep, flags))
3586 3587
		return NULL;

3588 3589 3590
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3591
	if (nodeid == NUMA_NO_NODE)
3592
		nodeid = slab_node;
3593 3594 3595 3596 3597 3598 3599

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3600
	if (nodeid == slab_node) {
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3616
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3617
				 flags);
3618

P
Pekka Enberg 已提交
3619
	if (likely(ptr))
3620
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3621

3622
	if (unlikely((flags & __GFP_ZERO) && ptr))
3623
		memset(ptr, 0, cachep->object_size);
3624

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3644 3645
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3666
	flags &= gfp_allowed_mask;
3667

3668 3669
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3670
	if (slab_should_failslab(cachep, flags))
3671 3672
		return NULL;

3673 3674 3675 3676 3677
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3678
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3679
				 flags);
3680 3681
	prefetchw(objp);

P
Pekka Enberg 已提交
3682
	if (likely(objp))
3683
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3684

3685
	if (unlikely((flags & __GFP_ZERO) && objp))
3686
		memset(objp, 0, cachep->object_size);
3687

3688 3689
	return objp;
}
3690 3691 3692 3693

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3694
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3695
		       int node)
L
Linus Torvalds 已提交
3696 3697
{
	int i;
3698
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3699 3700

	for (i = 0; i < nr_objects; i++) {
3701
		void *objp;
L
Linus Torvalds 已提交
3702 3703
		struct slab *slabp;

3704 3705 3706
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3707
		slabp = virt_to_slab(objp);
3708
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3709
		list_del(&slabp->list);
3710
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3711
		check_slabp(cachep, slabp);
3712
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3713
		STATS_DEC_ACTIVE(cachep);
3714
		l3->free_objects++;
L
Linus Torvalds 已提交
3715 3716 3717 3718
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3719 3720
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3721 3722 3723 3724 3725 3726
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3727 3728
				slab_destroy(cachep, slabp);
			} else {
3729
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3736
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3737 3738 3739 3740
		}
	}
}

3741
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3742 3743
{
	int batchcount;
3744
	struct kmem_list3 *l3;
3745
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750 3751

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3752
	l3 = cachep->nodelists[node];
3753
	spin_lock(&l3->list_lock);
3754 3755
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3756
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3757 3758 3759
		if (max) {
			if (batchcount > max)
				batchcount = max;
3760
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3761
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3762 3763 3764 3765 3766
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3767
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3768
free_done:
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773
#if STATS
	{
		int i = 0;
		struct list_head *p;

3774 3775
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3787
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3788
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3789
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3790 3791 3792
}

/*
A
Andrew Morton 已提交
3793 3794
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3795
 */
3796 3797
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3798
{
3799
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3800 3801

	check_irq_off();
3802
	kmemleak_free_recursive(objp, cachep->flags);
3803
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3804

3805
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3806

3807 3808 3809 3810 3811 3812 3813
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3814
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3815 3816
		return;

L
Linus Torvalds 已提交
3817 3818 3819 3820 3821 3822
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3823

3824
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3835
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3836
{
E
Eduard - Gabriel Munteanu 已提交
3837 3838
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3839
	trace_kmem_cache_alloc(_RET_IP_, ret,
3840
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3841 3842

	return ret;
L
Linus Torvalds 已提交
3843 3844 3845
}
EXPORT_SYMBOL(kmem_cache_alloc);

3846
#ifdef CONFIG_TRACING
3847 3848
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3849
{
3850 3851 3852 3853 3854 3855 3856
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3857
}
3858
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3859 3860
#endif

L
Linus Torvalds 已提交
3861
#ifdef CONFIG_NUMA
3862 3863
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3864 3865 3866
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3867
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3868
				    cachep->object_size, cachep->size,
3869
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3870 3871

	return ret;
3872
}
L
Linus Torvalds 已提交
3873 3874
EXPORT_SYMBOL(kmem_cache_alloc_node);

3875
#ifdef CONFIG_TRACING
3876 3877 3878 3879
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3880
{
3881 3882 3883
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3884
				  __builtin_return_address(0));
3885 3886 3887 3888
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3889
}
3890
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3891 3892
#endif

3893 3894
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3895
{
3896
	struct kmem_cache *cachep;
3897 3898

	cachep = kmem_find_general_cachep(size, flags);
3899 3900
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3901
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3902
}
3903

3904
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3905 3906 3907 3908 3909
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3910
EXPORT_SYMBOL(__kmalloc_node);
3911 3912

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3913
		int node, unsigned long caller)
3914
{
3915
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3916 3917 3918 3919 3920 3921 3922 3923
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3924
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3925
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3926 3927

/**
3928
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3929
 * @size: how many bytes of memory are required.
3930
 * @flags: the type of memory to allocate (see kmalloc).
3931
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3932
 */
3933 3934
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3935
{
3936
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3937
	void *ret;
L
Linus Torvalds 已提交
3938

3939 3940 3941 3942 3943 3944
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3945 3946
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3947 3948
	ret = __cache_alloc(cachep, flags, caller);

3949
	trace_kmalloc((unsigned long) caller, ret,
3950
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3951 3952

	return ret;
3953 3954 3955
}


3956
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3957 3958
void *__kmalloc(size_t size, gfp_t flags)
{
3959
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3960 3961 3962
}
EXPORT_SYMBOL(__kmalloc);

3963
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3964
{
3965
	return __do_kmalloc(size, flags, (void *)caller);
3966 3967
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3968 3969 3970 3971 3972 3973 3974

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3975 3976
#endif

L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982 3983 3984
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3985
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3986 3987 3988 3989
{
	unsigned long flags;

	local_irq_save(flags);
3990
	debug_check_no_locks_freed(objp, cachep->object_size);
3991
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3992
		debug_check_no_obj_freed(objp, cachep->object_size);
3993
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3994
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3995

3996
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002 4003
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
4004 4005
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
4011
	struct kmem_cache *c;
L
Linus Torvalds 已提交
4012 4013
	unsigned long flags;

4014 4015
	trace_kfree(_RET_IP_, objp);

4016
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
4017 4018 4019
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
4020
	c = virt_to_cache(objp);
4021 4022 4023
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
4024
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
4025 4026 4027 4028
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

4029
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4030
{
4031
	return cachep->object_size;
L
Linus Torvalds 已提交
4032 4033 4034
}
EXPORT_SYMBOL(kmem_cache_size);

4035
/*
S
Simon Arlott 已提交
4036
 * This initializes kmem_list3 or resizes various caches for all nodes.
4037
 */
4038
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
4039 4040 4041
{
	int node;
	struct kmem_list3 *l3;
4042
	struct array_cache *new_shared;
4043
	struct array_cache **new_alien = NULL;
4044

4045
	for_each_online_node(node) {
4046

4047
                if (use_alien_caches) {
4048
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
4049 4050 4051
                        if (!new_alien)
                                goto fail;
                }
4052

4053 4054 4055
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
4056
				cachep->shared*cachep->batchcount,
4057
					0xbaadf00d, gfp);
4058 4059 4060 4061
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
4062
		}
4063

A
Andrew Morton 已提交
4064 4065
		l3 = cachep->nodelists[node];
		if (l3) {
4066 4067
			struct array_cache *shared = l3->shared;

4068 4069
			spin_lock_irq(&l3->list_lock);

4070
			if (shared)
4071 4072
				free_block(cachep, shared->entry,
						shared->avail, node);
4073

4074 4075
			l3->shared = new_shared;
			if (!l3->alien) {
4076 4077 4078
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
4079
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4080
					cachep->batchcount + cachep->num;
4081
			spin_unlock_irq(&l3->list_lock);
4082
			kfree(shared);
4083 4084 4085
			free_alien_cache(new_alien);
			continue;
		}
4086
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
4087 4088 4089
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
4090
			goto fail;
4091
		}
4092 4093 4094

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
4095
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
4096
		l3->shared = new_shared;
4097
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4098
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4099
					cachep->batchcount + cachep->num;
4100 4101
		cachep->nodelists[node] = l3;
	}
4102
	return 0;
4103

A
Andrew Morton 已提交
4104
fail:
4105
	if (!cachep->list.next) {
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4120
	return -ENOMEM;
4121 4122
}

L
Linus Torvalds 已提交
4123
struct ccupdate_struct {
4124
	struct kmem_cache *cachep;
4125
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4126 4127 4128 4129
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4130
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4131 4132 4133
	struct array_cache *old;

	check_irq_off();
4134
	old = cpu_cache_get(new->cachep);
4135

L
Linus Torvalds 已提交
4136 4137 4138 4139
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4140
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4141
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4142
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4143
{
4144
	struct ccupdate_struct *new;
4145
	int i;
L
Linus Torvalds 已提交
4146

4147 4148
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4149 4150 4151
	if (!new)
		return -ENOMEM;

4152
	for_each_online_cpu(i) {
4153
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4154
						batchcount, gfp);
4155
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4156
			for (i--; i >= 0; i--)
4157 4158
				kfree(new->new[i]);
			kfree(new);
4159
			return -ENOMEM;
L
Linus Torvalds 已提交
4160 4161
		}
	}
4162
	new->cachep = cachep;
L
Linus Torvalds 已提交
4163

4164
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4165

L
Linus Torvalds 已提交
4166 4167 4168
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4169
	cachep->shared = shared;
L
Linus Torvalds 已提交
4170

4171
	for_each_online_cpu(i) {
4172
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4173 4174
		if (!ccold)
			continue;
4175 4176 4177
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4178 4179
		kfree(ccold);
	}
4180
	kfree(new);
4181
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4182 4183
}

4184
/* Called with slab_mutex held always */
4185
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4186 4187 4188 4189
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4190 4191
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4192 4193
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4194
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4195 4196 4197 4198
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4199
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4200
		limit = 1;
4201
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4202
		limit = 8;
4203
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4204
		limit = 24;
4205
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4206 4207 4208 4209
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4210 4211
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4212 4213 4214 4215 4216 4217 4218 4219
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4220
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4221 4222 4223
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4224 4225 4226
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4227 4228 4229 4230
	 */
	if (limit > 32)
		limit = 32;
#endif
4231
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4232 4233
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4234
		       cachep->name, -err);
4235
	return err;
L
Linus Torvalds 已提交
4236 4237
}

4238 4239
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4240 4241
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4242
 */
4243
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4244
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4245 4246 4247
{
	int tofree;

4248 4249
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4250 4251
	if (ac->touched && !force) {
		ac->touched = 0;
4252
	} else {
4253
		spin_lock_irq(&l3->list_lock);
4254 4255 4256 4257 4258 4259 4260 4261 4262
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4263
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4269
 * @w: work descriptor
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4276 4277
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4278
 */
4279
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4280
{
4281
	struct kmem_cache *searchp;
4282
	struct kmem_list3 *l3;
4283
	int node = numa_mem_id();
4284
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4285

4286
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4287
		/* Give up. Setup the next iteration. */
4288
		goto out;
L
Linus Torvalds 已提交
4289

4290
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4291 4292
		check_irq_on();

4293 4294 4295 4296 4297
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4298
		l3 = searchp->nodelists[node];
4299

4300
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4301

4302
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4303

4304 4305 4306 4307
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4308
		if (time_after(l3->next_reap, jiffies))
4309
			goto next;
L
Linus Torvalds 已提交
4310

4311
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4312

4313
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4314

4315
		if (l3->free_touched)
4316
			l3->free_touched = 0;
4317 4318
		else {
			int freed;
L
Linus Torvalds 已提交
4319

4320 4321 4322 4323
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4324
next:
L
Linus Torvalds 已提交
4325 4326 4327
		cond_resched();
	}
	check_irq_on();
4328
	mutex_unlock(&slab_mutex);
4329
	next_reap_node();
4330
out:
A
Andrew Morton 已提交
4331
	/* Set up the next iteration */
4332
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4333 4334
}

4335
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4336

4337
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4338
{
4339 4340 4341 4342
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4343
#if STATS
4344
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4345
#else
4346
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4347
#endif
4348 4349 4350 4351
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4352
#if STATS
4353
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4354
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4355
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4356
#endif
4357 4358 4359 4360 4361 4362 4363
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

4364
	mutex_lock(&slab_mutex);
4365 4366
	if (!n)
		print_slabinfo_header(m);
4367

4368
	return seq_list_start(&slab_caches, *pos);
L
Linus Torvalds 已提交
4369 4370 4371 4372
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4373
	return seq_list_next(p, &slab_caches, pos);
L
Linus Torvalds 已提交
4374 4375 4376 4377
}

static void s_stop(struct seq_file *m, void *p)
{
4378
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4379 4380 4381 4382
}

static int s_show(struct seq_file *m, void *p)
{
4383
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
P
Pekka Enberg 已提交
4384 4385 4386 4387 4388
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4389
	const char *name;
L
Linus Torvalds 已提交
4390
	char *error = NULL;
4391 4392
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4393 4394 4395

	active_objs = 0;
	num_slabs = 0;
4396 4397 4398 4399 4400
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4401 4402
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4403

4404
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4405 4406 4407 4408 4409
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4410
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4411 4412 4413 4414 4415 4416 4417
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4418
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4419 4420 4421 4422 4423
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4424 4425
		if (l3->shared)
			shared_avail += l3->shared->avail;
4426

4427
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4428
	}
P
Pekka Enberg 已提交
4429 4430
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4431
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4432 4433
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4434
	name = cachep->name;
L
Linus Torvalds 已提交
4435 4436 4437 4438
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4439
		   name, active_objs, num_objs, cachep->size,
P
Pekka Enberg 已提交
4440
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4441
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4442
		   cachep->limit, cachep->batchcount, cachep->shared);
4443
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4444
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4445
#if STATS
P
Pekka Enberg 已提交
4446
	{			/* list3 stats */
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452 4453
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4454
		unsigned long node_frees = cachep->node_frees;
4455
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4456

J
Joe Perches 已提交
4457 4458 4459 4460 4461
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4471
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4492
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4493 4494 4495 4496
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4507
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4508
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4509
{
P
Pekka Enberg 已提交
4510
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4511
	int limit, batchcount, shared, res;
4512
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4513

L
Linus Torvalds 已提交
4514 4515 4516 4517
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4518
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4529
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4530
	res = -EINVAL;
4531
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4532
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4533 4534
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4535
				res = 0;
L
Linus Torvalds 已提交
4536
			} else {
4537
				res = do_tune_cpucache(cachep, limit,
4538 4539
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4540 4541 4542 4543
			}
			break;
		}
	}
4544
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4545 4546 4547 4548
	if (res >= 0)
		res = count;
	return res;
}
4549

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4563 4564 4565 4566
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4567 4568
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4607
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4619
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4620

4621
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4622
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4623
		if (modname[0])
4624 4625 4626 4627 4628 4629 4630 4631 4632
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4633
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4658
		list_for_each_entry(slabp, &l3->slabs_full, list)
4659
			handle_slab(n, cachep, slabp);
4660
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4661 4662 4663 4664 4665 4666
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4667
		mutex_unlock(&slab_mutex);
4668 4669 4670 4671
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4672
			mutex_lock(&slab_mutex);
4673 4674 4675 4676
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4677
		mutex_lock(&slab_mutex);
4678 4679 4680 4681 4682 4683 4684 4685 4686
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4687

4688 4689 4690
	return 0;
}

4691
static const struct seq_operations slabstats_op = {
4692 4693 4694 4695 4696
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4725
	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4726 4727
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4728
#endif
4729 4730 4731
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4732 4733
#endif

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4746
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4747
{
4748 4749
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4750
		return 0;
L
Linus Torvalds 已提交
4751

4752
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4753
}
K
Kirill A. Shutemov 已提交
4754
EXPORT_SYMBOL(ksize);