slab.c 115.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
L
Linus Torvalds 已提交
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

L
Linus Torvalds 已提交
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
154 155 156 157 158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159 160 161 162 163 164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

184
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
185 186
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
187 188
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
205
	struct rcu_head head;
206
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
207
	void *addr;
L
Linus Torvalds 已提交
208 209
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
248
	spinlock_t lock;
249
	void *entry[];	/*
A
Andrew Morton 已提交
250 251 252
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
253 254 255 256
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
257
			 */
L
Linus Torvalds 已提交
258 259
};

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306
/*
 * Need this for bootstrapping a per node allocator.
 */
307
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309
#define	CACHE_CACHE 0
310 311
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
312

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
336
#include <linux/kmalloc_sizes.h>
337
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375 376 377 378

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
379 380 381
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
382
 *
A
Adrian Bunk 已提交
383
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392 393
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
394
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
395 396 397 398 399
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
400 401
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
402
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
403
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
404 405 406 407 408
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
418
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
419 420 421
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
422
#define	STATS_INC_NODEFREES(x)	do { } while (0)
423
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
424
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
425 426 427 428 429 430 431 432
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
433 434
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
435
 * 0		: objp
436
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
437 438
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
439
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
440
 * 		redzone word.
441
 * cachep->obj_offset: The real object.
442 443
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
444
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
445
 */
446
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
447
{
448
	return cachep->obj_offset;
L
Linus Torvalds 已提交
449 450
}

451
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
452 453
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
454 455
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
456 457
}

458
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
459 460 461
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
462
		return (unsigned long long *)(objp + cachep->size -
463
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
464
					      REDZONE_ALIGN);
465
	return (unsigned long long *) (objp + cachep->size -
466
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
467 468
}

469
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
470 471
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
472
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
473 474 475 476
}

#else

477
#define obj_offset(x)			0
478 479
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
480 481 482 483 484
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
485 486
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
487
 */
488 489 490
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
491
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
492

493 494
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
495
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
496
	return page->slab_cache;
497 498 499 500
}

static inline struct slab *virt_to_slab(const void *obj)
{
501
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
502 503 504

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
505 506
}

507 508 509
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
510
	return slab->s_mem + cache->size * idx;
511 512
}

513
/*
514 515 516
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
517 518 519 520
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
521
{
522 523
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
524 525
}

A
Andrew Morton 已提交
526 527 528
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
546
	{NULL,}
L
Linus Torvalds 已提交
547 548 549 550
#undef CACHE
};

static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
551
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
552 553

/* internal cache of cache description objs */
554
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
555 556 557
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
558
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
559
	.name = "kmem_cache",
L
Linus Torvalds 已提交
560 561
};

562 563
#define BAD_ALIEN_MAGIC 0x01020304ul

564 565 566 567 568 569 570 571
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
572 573 574 575
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
576
 */
577 578 579
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

625
static void init_node_lock_keys(int q)
626
{
627 628
	struct cache_sizes *s = malloc_sizes;

629
	if (slab_state < UP)
630 631 632 633 634 635 636
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
637
			continue;
638 639 640

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
641 642
	}
}
643 644 645 646 647 648 649 650

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
651
#else
652 653 654 655
static void init_node_lock_keys(int q)
{
}

656
static inline void init_lock_keys(void)
657 658
{
}
659 660 661 662 663 664 665 666

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
667 668
#endif

669
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
670

671
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
672 673 674 675
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
676 677
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
678 679 680 681 682
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
683 684 685
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
686
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
687
#endif
688 689 690
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
691 692 693 694
	while (size > csizep->cs_size)
		csizep++;

	/*
695
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
696 697 698
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
699
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
700 701
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
702
#endif
L
Linus Torvalds 已提交
703 704 705
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
706
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
707 708 709 710
{
	return __find_general_cachep(size, gfpflags);
}

711
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
712
{
713 714
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
715

A
Andrew Morton 已提交
716 717 718
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
719 720 721 722 723 724 725
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
775 776
}

777
#if DEBUG
778
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
779

A
Andrew Morton 已提交
780 781
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
782 783
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
784
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
785
	dump_stack();
786
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
787
}
788
#endif
L
Linus Torvalds 已提交
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

806 807 808 809 810 811 812 813 814 815 816
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

817 818 819 820 821 822 823
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
824
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
825 826 827 828 829

static void init_reap_node(int cpu)
{
	int node;

830
	node = next_node(cpu_to_mem(cpu), node_online_map);
831
	if (node == MAX_NUMNODES)
832
		node = first_node(node_online_map);
833

834
	per_cpu(slab_reap_node, cpu) = node;
835 836 837 838
}

static void next_reap_node(void)
{
839
	int node = __this_cpu_read(slab_reap_node);
840 841 842 843

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
844
	__this_cpu_write(slab_reap_node, node);
845 846 847 848 849 850 851
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
852 853 854 855 856 857 858
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
859
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
860
{
861
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
862 863 864 865 866 867

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
868
	if (keventd_up() && reap_work->work.func == NULL) {
869
		init_reap_node(cpu);
870
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
871 872
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
873 874 875
	}
}

876
static struct array_cache *alloc_arraycache(int node, int entries,
877
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
878
{
P
Pekka Enberg 已提交
879
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
880 881
	struct array_cache *nc = NULL;

882
	nc = kmalloc_node(memsize, gfp, node);
883 884
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
885
	 * However, when such objects are allocated or transferred to another
886 887 888 889 890
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
891 892 893 894 895
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
896
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
897 898 899 900
	}
	return nc;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

937
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
953
		for (i = 0; i < ac->avail; i++) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
970
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
971 972 973 974 975 976 977 978 979 980 981 982 983
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
998 999 1000 1001
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
1002
		struct page *page = virt_to_head_page(objp);
1003 1004 1005 1006
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1007 1008 1009 1010 1011 1012 1013 1014 1015
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1016 1017 1018
	ac->entry[ac->avail++] = objp;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1029
	int nr = min3(from->avail, max, to->limit - to->avail);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1042 1043 1044 1045 1046
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1047
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1067
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1068 1069 1070 1071 1072 1073 1074
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1075
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1076
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1077

1078
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1079 1080
{
	struct array_cache **ac_ptr;
1081
	int memsize = sizeof(void *) * nr_node_ids;
1082 1083 1084 1085
	int i;

	if (limit > 1)
		limit = 12;
1086
	ac_ptr = kzalloc_node(memsize, gfp, node);
1087 1088
	if (ac_ptr) {
		for_each_node(i) {
1089
			if (i == node || !node_online(i))
1090
				continue;
1091
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1092
			if (!ac_ptr[i]) {
1093
				for (i--; i >= 0; i--)
1094 1095 1096 1097 1098 1099 1100 1101 1102
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1103
static void free_alien_cache(struct array_cache **ac_ptr)
1104 1105 1106 1107 1108 1109
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1110
	    kfree(ac_ptr[i]);
1111 1112 1113
	kfree(ac_ptr);
}

1114
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1115
				struct array_cache *ac, int node)
1116 1117 1118 1119 1120
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1121 1122 1123 1124 1125
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1126 1127
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1128

1129
		free_block(cachep, ac->entry, ac->avail, node);
1130 1131 1132 1133 1134
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1135 1136 1137 1138 1139
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1140
	int node = __this_cpu_read(slab_reap_node);
1141 1142 1143

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1144 1145

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1146 1147 1148 1149 1150 1151
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1152 1153
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1154
{
P
Pekka Enberg 已提交
1155
	int i = 0;
1156 1157 1158 1159
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1160
		ac = alien[i];
1161 1162 1163 1164 1165 1166 1167
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1168

1169
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1170 1171 1172 1173 1174
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1175 1176
	int node;

1177
	node = numa_mem_id();
1178 1179 1180 1181 1182

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1183
	if (likely(slabp->nodeid == node))
1184 1185
		return 0;

P
Pekka Enberg 已提交
1186
	l3 = cachep->nodelists[node];
1187 1188 1189
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1190
		spin_lock(&alien->lock);
1191 1192 1193 1194
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1195
		ac_put_obj(cachep, alien, objp);
1196 1197 1198 1199 1200 1201 1202 1203
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1204 1205
#endif

1206 1207 1208 1209 1210 1211 1212
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1213
 * Must hold slab_mutex.
1214 1215 1216 1217 1218 1219 1220
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1221
	list_for_each_entry(cachep, &slab_caches, list) {
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1237
			 * go.  slab_mutex is sufficient
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1252 1253 1254 1255
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1256
	int node = cpu_to_mem(cpu);
1257
	const struct cpumask *mask = cpumask_of_node(node);
1258

1259
	list_for_each_entry(cachep, &slab_caches, list) {
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1279
		if (!cpumask_empty(mask)) {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1309
	list_for_each_entry(cachep, &slab_caches, list) {
1310 1311 1312 1313 1314 1315 1316 1317
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1318
{
1319
	struct kmem_cache *cachep;
1320
	struct kmem_list3 *l3 = NULL;
1321
	int node = cpu_to_mem(cpu);
1322
	int err;
L
Linus Torvalds 已提交
1323

1324 1325 1326 1327 1328 1329
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1330 1331 1332
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1333 1334 1335 1336 1337

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1338
	list_for_each_entry(cachep, &slab_caches, list) {
1339 1340 1341 1342 1343
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1344
					cachep->batchcount, GFP_KERNEL);
1345 1346 1347 1348 1349
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1350
				0xbaadf00d, GFP_KERNEL);
1351 1352
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1353
				goto bad;
1354
			}
1355 1356
		}
		if (use_alien_caches) {
1357
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1358 1359 1360
			if (!alien) {
				kfree(shared);
				kfree(nc);
1361
				goto bad;
1362
			}
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1377
#ifdef CONFIG_NUMA
1378 1379 1380
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1381
		}
1382 1383 1384 1385
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1386 1387
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1388
	}
1389 1390
	init_node_lock_keys(node);

1391 1392
	return 0;
bad:
1393
	cpuup_canceled(cpu);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1406
		mutex_lock(&slab_mutex);
1407
		err = cpuup_prepare(cpu);
1408
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1409 1410
		break;
	case CPU_ONLINE:
1411
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1412 1413 1414
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1415
  	case CPU_DOWN_PREPARE:
1416
  	case CPU_DOWN_PREPARE_FROZEN:
1417
		/*
1418
		 * Shutdown cache reaper. Note that the slab_mutex is
1419 1420 1421 1422
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1423
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1424
		/* Now the cache_reaper is guaranteed to be not running. */
1425
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1426 1427
  		break;
  	case CPU_DOWN_FAILED:
1428
  	case CPU_DOWN_FAILED_FROZEN:
1429 1430
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1431
	case CPU_DEAD:
1432
	case CPU_DEAD_FROZEN:
1433 1434 1435 1436 1437 1438 1439 1440
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1441
		/* fall through */
1442
#endif
L
Linus Torvalds 已提交
1443
	case CPU_UP_CANCELED:
1444
	case CPU_UP_CANCELED_FROZEN:
1445
		mutex_lock(&slab_mutex);
1446
		cpuup_canceled(cpu);
1447
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1448 1449
		break;
	}
1450
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1451 1452
}

1453 1454 1455
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1456

1457 1458 1459 1460 1461 1462
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1463
 * Must hold slab_mutex.
1464 1465 1466 1467 1468 1469
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1470
	list_for_each_entry(cachep, &slab_caches, list) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1501
		mutex_lock(&slab_mutex);
1502
		ret = init_cache_nodelists_node(nid);
1503
		mutex_unlock(&slab_mutex);
1504 1505
		break;
	case MEM_GOING_OFFLINE:
1506
		mutex_lock(&slab_mutex);
1507
		ret = drain_cache_nodelists_node(nid);
1508
		mutex_unlock(&slab_mutex);
1509 1510 1511 1512 1513 1514 1515 1516
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1517
	return notifier_from_errno(ret);
1518 1519 1520
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1521 1522 1523
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1524 1525
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1526 1527 1528
{
	struct kmem_list3 *ptr;

1529
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1530 1531 1532
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1533 1534 1535 1536 1537
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1538 1539 1540 1541
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566
/*
 * The memory after the last cpu cache pointer is used for the
 * the nodelists pointer.
 */
static void setup_nodelists_pointer(struct kmem_cache *cachep)
{
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
}

A
Andrew Morton 已提交
1567 1568 1569
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574
 */
void __init kmem_cache_init(void)
{
	struct cache_sizes *sizes;
	struct cache_names *names;
1575 1576
	int i;

1577
	kmem_cache = &kmem_cache_boot;
C
Christoph Lameter 已提交
1578
	setup_nodelists_pointer(kmem_cache);
1579

1580
	if (num_possible_nodes() == 1)
1581 1582
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1583
	for (i = 0; i < NUM_INIT_LISTS; i++)
1584
		kmem_list3_init(&initkmem_list3[i]);
C
Christoph Lameter 已提交
1585

1586
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1587 1588 1589

	/*
	 * Fragmentation resistance on low memory - only use bigger
1590 1591
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1592
	 */
1593
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1594
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1595 1596 1597

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1598 1599 1600
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1601 1602 1603
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1604
	 * 2) Create the first kmalloc cache.
1605
	 *    The struct kmem_cache for the new cache is allocated normally.
1606 1607 1608
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1609
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1610
	 *    kmalloc cache with kmalloc allocated arrays.
1611
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1612 1613
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1614 1615
	 */

1616
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1617

E
Eric Dumazet 已提交
1618
	/*
1619
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1620
	 */
1621 1622 1623 1624 1625
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
				  nr_node_ids * sizeof(struct kmem_list3 *),
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1631 1632 1633 1634
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1635 1636
	 */

1637 1638 1639 1640 1641 1642 1643
	sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
					sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
			create_kmalloc_cache(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1644

1645 1646
	slab_early_init = 0;

L
Linus Torvalds 已提交
1647
	while (sizes->cs_size != ULONG_MAX) {
1648 1649
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1650 1651 1652
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1653 1654
		 * allow tighter packing of the smaller caches.
		 */
1655 1656 1657 1658
		if (!sizes->cs_cachep)
			sizes->cs_cachep = create_kmalloc_cache(names->name,
					sizes->cs_size, ARCH_KMALLOC_FLAGS);

1659
#ifdef CONFIG_ZONE_DMA
1660 1661 1662
		sizes->cs_dmacachep = create_kmalloc_cache(
			names->name_dma, sizes->cs_size,
			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1663
#endif
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1669
		struct array_cache *ptr;
1670

1671
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1672

1673
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1674
		       sizeof(struct arraycache_init));
1675 1676 1677 1678 1679
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1680
		kmem_cache->array[smp_processor_id()] = ptr;
1681

1682
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1683

1684
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1685
		       != &initarray_generic.cache);
1686
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1687
		       sizeof(struct arraycache_init));
1688 1689 1690 1691 1692
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1693
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1694
		    ptr;
L
Linus Torvalds 已提交
1695
	}
1696 1697
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1698 1699
		int nid;

1700
		for_each_online_node(nid) {
1701
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1702

1703
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1704
				  &initkmem_list3[SIZE_AC + nid], nid);
1705 1706 1707

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1708
					  &initkmem_list3[SIZE_L3 + nid], nid);
1709 1710 1711
			}
		}
	}
L
Linus Torvalds 已提交
1712

1713
	slab_state = UP;
1714 1715 1716 1717 1718 1719
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1720
	slab_state = UP;
P
Peter Zijlstra 已提交
1721

1722
	/* 6) resize the head arrays to their final sizes */
1723 1724
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1725 1726
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1727
	mutex_unlock(&slab_mutex);
1728

1729 1730 1731
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1732 1733 1734
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1735 1736 1737
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1738 1739 1740
	 */
	register_cpu_notifier(&cpucache_notifier);

1741 1742 1743 1744 1745 1746 1747 1748
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1749 1750 1751
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757 1758
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1759 1760
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1761
	 */
1762
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1763
		start_cpu_timer(cpu);
1764 1765

	/* Done! */
1766
	slab_state = FULL;
L
Linus Torvalds 已提交
1767 1768 1769 1770
	return 0;
}
__initcall(cpucache_init);

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1783
		cachep->name, cachep->size, cachep->gfporder);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822 1823
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1824
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1825 1826
{
	struct page *page;
1827
	int nr_pages;
L
Linus Torvalds 已提交
1828 1829
	int i;

1830
#ifndef CONFIG_MMU
1831 1832 1833
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1834
	 */
1835
	flags |= __GFP_COMP;
1836
#endif
1837

1838
	flags |= cachep->allocflags;
1839 1840
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1841

L
Linus Torvalds 已提交
1842
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1843 1844 1845
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1846
		return NULL;
1847
	}
L
Linus Torvalds 已提交
1848

1849
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1850 1851 1852
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1853
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1854
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1855 1856 1857 1858 1859
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1860
	for (i = 0; i < nr_pages; i++) {
1861
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1862

1863 1864 1865 1866
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1867 1868 1869 1870 1871 1872 1873 1874
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1875

1876
	return page_address(page);
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881
}

/*
 * Interface to system's page release.
 */
1882
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1883
{
P
Pekka Enberg 已提交
1884
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1885 1886 1887
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1888
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1889

1890 1891 1892 1893 1894 1895
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1896
	while (i--) {
N
Nick Piggin 已提交
1897
		BUG_ON(!PageSlab(page));
1898
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1899
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1909
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1910
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1920
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1921
			    unsigned long caller)
L
Linus Torvalds 已提交
1922
{
1923
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1924

1925
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1926

P
Pekka Enberg 已提交
1927
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1928 1929
		return;

P
Pekka Enberg 已提交
1930 1931 1932 1933
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1941
				*addr++ = svalue;
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947 1948
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1949
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1950 1951 1952
}
#endif

1953
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1954
{
1955
	int size = cachep->object_size;
1956
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1957 1958

	memset(addr, val, size);
P
Pekka Enberg 已提交
1959
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1965 1966 1967
	unsigned char error = 0;
	int bad_count = 0;

1968
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1969 1970 1971 1972 1973 1974
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1975 1976
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1991 1992 1993 1994 1995
}
#endif

#if DEBUG

1996
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2002
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2003 2004
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2005 2006 2007 2008
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2009
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2010
		print_symbol("(%s)",
A
Andrew Morton 已提交
2011
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2012 2013
		printk("\n");
	}
2014
	realobj = (char *)objp + obj_offset(cachep);
2015
	size = cachep->object_size;
P
Pekka Enberg 已提交
2016
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2017 2018
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2019 2020
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2021 2022 2023 2024
		dump_line(realobj, i, limit);
	}
}

2025
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030
{
	char *realobj;
	int size, i;
	int lines = 0;

2031
	realobj = (char *)objp + obj_offset(cachep);
2032
	size = cachep->object_size;
L
Linus Torvalds 已提交
2033

P
Pekka Enberg 已提交
2034
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2035
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2036
		if (i == size - 1)
L
Linus Torvalds 已提交
2037 2038 2039 2040 2041 2042
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2043
				printk(KERN_ERR
2044 2045
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2046 2047 2048
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2049
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2050
			limit = 16;
P
Pekka Enberg 已提交
2051 2052
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2065
		struct slab *slabp = virt_to_slab(objp);
2066
		unsigned int objnr;
L
Linus Torvalds 已提交
2067

2068
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2069
		if (objnr) {
2070
			objp = index_to_obj(cachep, slabp, objnr - 1);
2071
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2072
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2073
			       realobj, size);
L
Linus Torvalds 已提交
2074 2075
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2076
		if (objnr + 1 < cachep->num) {
2077
			objp = index_to_obj(cachep, slabp, objnr + 1);
2078
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2079
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2080
			       realobj, size);
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2087
#if DEBUG
R
Rabin Vincent 已提交
2088
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2089 2090 2091
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2092
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2093 2094 2095

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2096
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2097
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2098
				kernel_map_pages(virt_to_page(objp),
2099
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2109
					   "was overwritten");
L
Linus Torvalds 已提交
2110 2111
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2112
					   "was overwritten");
L
Linus Torvalds 已提交
2113 2114
		}
	}
2115
}
L
Linus Torvalds 已提交
2116
#else
R
Rabin Vincent 已提交
2117
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2118 2119
{
}
L
Linus Torvalds 已提交
2120 2121
#endif

2122 2123 2124 2125 2126
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2127
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2128 2129
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2130
 */
2131
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2132 2133 2134
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2135
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2136 2137 2138
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2139
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2145 2146
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2147 2148 2149
	}
}

2150
/**
2151 2152 2153 2154 2155 2156 2157
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2158 2159 2160 2161 2162
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2163
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2164
			size_t size, size_t align, unsigned long flags)
2165
{
2166
	unsigned long offslab_limit;
2167
	size_t left_over = 0;
2168
	int gfporder;
2169

2170
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2171 2172 2173
		unsigned int num;
		size_t remainder;

2174
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2175 2176
		if (!num)
			continue;
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2190

2191
		/* Found something acceptable - save it away */
2192
		cachep->num = num;
2193
		cachep->gfporder = gfporder;
2194 2195
		left_over = remainder;

2196 2197 2198 2199 2200 2201 2202 2203
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2204 2205 2206 2207
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2208
		if (gfporder >= slab_max_order)
2209 2210
			break;

2211 2212 2213
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2214
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2215 2216 2217 2218 2219
			break;
	}
	return left_over;
}

2220
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2221
{
2222
	if (slab_state >= FULL)
2223
		return enable_cpucache(cachep, gfp);
2224

2225
	if (slab_state == DOWN) {
2226
		/*
2227 2228 2229 2230 2231 2232 2233 2234 2235
		 * Note: Creation of first cache (kmem_cache).
		 * The setup_list3s is taken care
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2236 2237 2238 2239 2240 2241 2242
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2243
		 * the second cache, then we need to set up all its list3s,
2244 2245 2246 2247
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2248
			slab_state = PARTIAL_L3;
2249
		else
2250
			slab_state = PARTIAL_ARRAYCACHE;
2251
	} else {
2252
		/* Remaining boot caches */
2253
		cachep->array[smp_processor_id()] =
2254
			kmalloc(sizeof(struct arraycache_init), gfp);
2255

2256
		if (slab_state == PARTIAL_ARRAYCACHE) {
2257
			set_up_list3s(cachep, SIZE_L3);
2258
			slab_state = PARTIAL_L3;
2259 2260
		} else {
			int node;
2261
			for_each_online_node(node) {
2262 2263
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2264
						gfp, node);
2265 2266 2267 2268 2269
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2270
	cachep->nodelists[numa_mem_id()]->next_reap =
2271 2272 2273 2274 2275 2276 2277 2278 2279
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2280
	return 0;
2281 2282
}

L
Linus Torvalds 已提交
2283
/**
2284
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2285
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2286 2287 2288 2289
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2290
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2304
int
2305
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2306 2307
{
	size_t left_over, slab_size, ralign;
2308
	gfp_t gfp;
2309
	int err;
2310
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2320 2321
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2322
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327 2328 2329
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2330 2331
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2332 2333 2334
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2335 2336 2337
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2338 2339
	}

2340
	/*
D
David Woodhouse 已提交
2341 2342 2343
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2344
	 */
D
David Woodhouse 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2355

2356
	/* 3) caller mandated alignment */
2357 2358
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2359
	}
2360 2361
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2362
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2363
	/*
2364
	 * 4) Store it.
L
Linus Torvalds 已提交
2365
	 */
2366
	cachep->align = ralign;
L
Linus Torvalds 已提交
2367

2368 2369 2370 2371 2372
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

C
Christoph Lameter 已提交
2373
	setup_nodelists_pointer(cachep);
L
Linus Torvalds 已提交
2374 2375
#if DEBUG

2376 2377 2378 2379
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2380 2381
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2382 2383
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2384 2385
	}
	if (flags & SLAB_STORE_USER) {
2386
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2387 2388
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2389
		 */
D
David Woodhouse 已提交
2390 2391 2392 2393
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2394 2395
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2396
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2397 2398 2399
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404
		size = PAGE_SIZE;
	}
#endif
#endif

2405 2406 2407
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2408 2409
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2410
	 */
2411 2412
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2419
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2420

2421
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2422

2423
	if (!cachep->num)
2424
		return -E2BIG;
L
Linus Torvalds 已提交
2425

P
Pekka Enberg 已提交
2426
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2427
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2440 2441
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2442 2443 2444 2445 2446 2447 2448 2449 2450

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2451 2452 2453 2454
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2455 2456
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2457
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2458 2459
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2460
	cachep->allocflags = 0;
2461
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2462
		cachep->allocflags |= GFP_DMA;
2463
	cachep->size = size;
2464
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2465

2466
	if (flags & CFLGS_OFF_SLAB) {
2467
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2468 2469 2470 2471 2472 2473 2474
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2475
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2476
	}
L
Linus Torvalds 已提交
2477

2478 2479
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2480
		__kmem_cache_shutdown(cachep);
2481
		return err;
2482
	}
L
Linus Torvalds 已提交
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

2494
	return 0;
L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2508
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2509 2510 2511
{
#ifdef CONFIG_SMP
	check_irq_off();
2512
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2513 2514
#endif
}
2515

2516
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2517 2518 2519 2520 2521 2522 2523
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2524 2525 2526 2527
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2528
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2529 2530
#endif

2531 2532 2533 2534
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2535 2536
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2537
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2538
	struct array_cache *ac;
2539
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2540 2541

	check_irq_off();
2542
	ac = cpu_cache_get(cachep);
2543 2544 2545
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2546 2547 2548
	ac->avail = 0;
}

2549
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2550
{
2551 2552 2553
	struct kmem_list3 *l3;
	int node;

2554
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2555
	check_irq_on();
P
Pekka Enberg 已提交
2556
	for_each_online_node(node) {
2557
		l3 = cachep->nodelists[node];
2558 2559 2560 2561 2562 2563 2564
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2565
			drain_array(cachep, l3, l3->shared, 1, node);
2566
	}
L
Linus Torvalds 已提交
2567 2568
}

2569 2570 2571 2572 2573 2574 2575 2576
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2577
{
2578 2579
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2580 2581
	struct slab *slabp;

2582 2583
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2584

2585
		spin_lock_irq(&l3->list_lock);
2586
		p = l3->slabs_free.prev;
2587 2588 2589 2590
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2591

2592
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2593
#if DEBUG
2594
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2595 2596
#endif
		list_del(&slabp->list);
2597 2598 2599 2600 2601
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2602
		spin_unlock_irq(&l3->list_lock);
2603 2604
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2605
	}
2606 2607
out:
	return nr_freed;
L
Linus Torvalds 已提交
2608 2609
}

2610
/* Called with slab_mutex held to protect against cpu hotplug */
2611
static int __cache_shrink(struct kmem_cache *cachep)
2612 2613 2614 2615 2616 2617 2618 2619 2620
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2621 2622 2623 2624 2625 2626 2627
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2628 2629 2630 2631
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2632 2633 2634 2635 2636 2637 2638
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2639
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2640
{
2641
	int ret;
2642
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2643

2644
	get_online_cpus();
2645
	mutex_lock(&slab_mutex);
2646
	ret = __cache_shrink(cachep);
2647
	mutex_unlock(&slab_mutex);
2648
	put_online_cpus();
2649
	return ret;
L
Linus Torvalds 已提交
2650 2651 2652
}
EXPORT_SYMBOL(kmem_cache_shrink);

2653
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2654
{
2655 2656 2657
	int i;
	struct kmem_list3 *l3;
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2658

2659 2660
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2661

2662 2663
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2675 2676
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2688
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2689 2690
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2691 2692
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2693

L
Linus Torvalds 已提交
2694 2695
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2696
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2697
					      local_flags, nodeid);
2698 2699 2700 2701 2702 2703
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2704 2705
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2706 2707 2708
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2709
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2710 2711 2712 2713
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2714
	slabp->s_mem = objp + colour_off;
2715
	slabp->nodeid = nodeid;
2716
	slabp->free = 0;
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2722
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2723 2724
}

2725
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2726
			    struct slab *slabp)
L
Linus Torvalds 已提交
2727 2728 2729 2730
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2731
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2744 2745 2746
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2747 2748
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2749
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2750 2751 2752 2753

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2754
					   " end of an object");
L
Linus Torvalds 已提交
2755 2756
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2757
					   " start of an object");
L
Linus Torvalds 已提交
2758
		}
2759
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2760
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2761
			kernel_map_pages(virt_to_page(objp),
2762
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2763 2764
#else
		if (cachep->ctor)
2765
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2766
#endif
P
Pekka Enberg 已提交
2767
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2768
	}
P
Pekka Enberg 已提交
2769
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2770 2771
}

2772
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2773
{
2774 2775
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2776
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2777
		else
2778
			BUG_ON(cachep->allocflags & GFP_DMA);
2779
	}
L
Linus Torvalds 已提交
2780 2781
}

A
Andrew Morton 已提交
2782 2783
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2784
{
2785
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2799 2800
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2801
{
2802
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2803 2804 2805 2806 2807

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2808
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2809
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2810
				"'%s', objp %p\n", cachep->name, objp);
2811 2812 2813 2814 2815 2816 2817 2818
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2819 2820 2821
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2822
 * virtual address for kfree, ksize, and slab debugging.
2823 2824 2825
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2826
{
2827
	int nr_pages;
L
Linus Torvalds 已提交
2828 2829
	struct page *page;

2830
	page = virt_to_page(addr);
2831

2832
	nr_pages = 1;
2833
	if (likely(!PageCompound(page)))
2834 2835
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2836
	do {
C
Christoph Lameter 已提交
2837 2838
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2839
		page++;
2840
	} while (--nr_pages);
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2847 2848
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2849
{
P
Pekka Enberg 已提交
2850 2851 2852
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2853
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2854

A
Andrew Morton 已提交
2855 2856 2857
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2858
	 */
C
Christoph Lameter 已提交
2859 2860
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2861

2862
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2863
	check_irq_off();
2864 2865
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2866 2867

	/* Get colour for the slab, and cal the next value. */
2868 2869 2870 2871 2872
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2873

2874
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2887 2888 2889
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2890
	 */
2891
	if (!objp)
2892
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2893
	if (!objp)
L
Linus Torvalds 已提交
2894 2895 2896
		goto failed;

	/* Get slab management. */
2897
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2898
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2899
	if (!slabp)
L
Linus Torvalds 已提交
2900 2901
		goto opps1;

2902
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2903

C
Christoph Lameter 已提交
2904
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2905 2906 2907 2908

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2909
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2910 2911

	/* Make slab active. */
2912
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2913
	STATS_INC_GROWN(cachep);
2914 2915
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2916
	return 1;
A
Andrew Morton 已提交
2917
opps1:
L
Linus Torvalds 已提交
2918
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2919
failed:
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2936 2937
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2938 2939 2940
	}
}

2941 2942
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2943
	unsigned long long redzone1, redzone2;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2959
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2960 2961 2962
			obj, redzone1, redzone2);
}

2963
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2964
				   unsigned long caller)
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2970 2971
	BUG_ON(virt_to_cache(objp) != cachep);

2972
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2973
	kfree_debugcheck(objp);
2974
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2975

C
Christoph Lameter 已提交
2976
	slabp = page->slab_page;
L
Linus Torvalds 已提交
2977 2978

	if (cachep->flags & SLAB_RED_ZONE) {
2979
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2980 2981 2982 2983
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2984
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2985

2986
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2987 2988

	BUG_ON(objnr >= cachep->num);
2989
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2990

2991 2992 2993
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2994 2995
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2996
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2997
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2998
			kernel_map_pages(virt_to_page(objp),
2999
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3010
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3011 3012 3013
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3014

L
Linus Torvalds 已提交
3015 3016 3017 3018 3019 3020 3021
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3022 3023
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3024 3025 3026
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3027 3028 3029
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3039 3040
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3041 3042 3043 3044
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3045 3046
	int node;

L
Linus Torvalds 已提交
3047
	check_irq_off();
3048
	node = numa_mem_id();
3049 3050 3051
	if (unlikely(force_refill))
		goto force_grow;
retry:
3052
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3053 3054
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3055 3056 3057 3058
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3059 3060 3061
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3062
	l3 = cachep->nodelists[node];
3063 3064 3065

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3066

3067
	/* See if we can refill from the shared array */
3068 3069
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3070
		goto alloc_done;
3071
	}
3072

L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3088 3089 3090 3091 3092 3093

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3094
		BUG_ON(slabp->inuse >= cachep->num);
3095

L
Linus Torvalds 已提交
3096 3097 3098 3099 3100
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3101 3102
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3114
must_grow:
L
Linus Torvalds 已提交
3115
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3116
alloc_done:
3117
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3118 3119 3120

	if (unlikely(!ac->avail)) {
		int x;
3121
force_grow:
3122
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3123

A
Andrew Morton 已提交
3124
		/* cache_grow can reenable interrupts, then ac could change. */
3125
		ac = cpu_cache_get(cachep);
3126
		node = numa_mem_id();
3127 3128 3129

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3130 3131
			return NULL;

A
Andrew Morton 已提交
3132
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3133 3134 3135
			goto retry;
	}
	ac->touched = 1;
3136 3137

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3138 3139
}

A
Andrew Morton 已提交
3140 3141
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147 3148 3149
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3150
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3151
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3152
{
P
Pekka Enberg 已提交
3153
	if (!objp)
L
Linus Torvalds 已提交
3154
		return objp;
P
Pekka Enberg 已提交
3155
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3156
#ifdef CONFIG_DEBUG_PAGEALLOC
3157
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3158
			kernel_map_pages(virt_to_page(objp),
3159
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3160 3161 3162 3163 3164 3165 3166 3167
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3168
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3169 3170

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3171 3172 3173 3174
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3175
			printk(KERN_ERR
3176
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3177 3178
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3179 3180 3181 3182
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3183 3184 3185 3186 3187
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3188
		slabp = virt_to_head_page(objp)->slab_page;
3189
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3190 3191 3192
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3193
	objp += obj_offset(cachep);
3194
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3195
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3196 3197
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3198
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3199
		       objp, (int)ARCH_SLAB_MINALIGN);
3200
	}
L
Linus Torvalds 已提交
3201 3202 3203 3204 3205 3206
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3207
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3208
{
3209
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3210
		return false;
3211

3212
	return should_failslab(cachep->object_size, flags, cachep->flags);
3213 3214
}

3215
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3216
{
P
Pekka Enberg 已提交
3217
	void *objp;
L
Linus Torvalds 已提交
3218
	struct array_cache *ac;
3219
	bool force_refill = false;
L
Linus Torvalds 已提交
3220

3221
	check_irq_off();
3222

3223
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3224 3225
	if (likely(ac->avail)) {
		ac->touched = 1;
3226 3227
		objp = ac_get_obj(cachep, ac, flags, false);

3228
		/*
3229 3230
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3231
		 */
3232 3233 3234 3235 3236
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3237
	}
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3248 3249 3250 3251 3252
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3253 3254
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3255 3256 3257
	return objp;
}

3258
#ifdef CONFIG_NUMA
3259
/*
3260
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3261 3262 3263 3264 3265 3266 3267 3268
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3269
	if (in_interrupt() || (flags & __GFP_THISNODE))
3270
		return NULL;
3271
	nid_alloc = nid_here = numa_mem_id();
3272
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3273
		nid_alloc = cpuset_slab_spread_node();
3274
	else if (current->mempolicy)
3275
		nid_alloc = slab_node();
3276
	if (nid_alloc != nid_here)
3277
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3278 3279 3280
	return NULL;
}

3281 3282
/*
 * Fallback function if there was no memory available and no objects on a
3283 3284 3285 3286 3287
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3288
 */
3289
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3290
{
3291 3292
	struct zonelist *zonelist;
	gfp_t local_flags;
3293
	struct zoneref *z;
3294 3295
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3296
	void *obj = NULL;
3297
	int nid;
3298
	unsigned int cpuset_mems_cookie;
3299 3300 3301 3302

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3303
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3304

3305 3306
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3307
	zonelist = node_zonelist(slab_node(), flags);
3308

3309 3310 3311 3312 3313
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3314 3315
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3316

3317
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3318
			cache->nodelists[nid] &&
3319
			cache->nodelists[nid]->free_objects) {
3320 3321
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3322 3323 3324
				if (obj)
					break;
		}
3325 3326
	}

3327
	if (!obj) {
3328 3329 3330 3331 3332 3333
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3334 3335 3336
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3337
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3338 3339
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3356
				/* cache_grow already freed obj */
3357 3358 3359
				obj = NULL;
			}
		}
3360
	}
3361 3362 3363

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3364 3365 3366
	return obj;
}

3367 3368
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3369
 */
3370
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3371
				int nodeid)
3372 3373
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3374 3375 3376 3377 3378 3379 3380 3381
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3382
retry:
3383
	check_irq_off();
P
Pekka Enberg 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3403
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3404 3405 3406 3407 3408
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3409
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3410
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3411
	else
P
Pekka Enberg 已提交
3412
		list_add(&slabp->list, &l3->slabs_partial);
3413

P
Pekka Enberg 已提交
3414 3415
	spin_unlock(&l3->list_lock);
	goto done;
3416

A
Andrew Morton 已提交
3417
must_grow:
P
Pekka Enberg 已提交
3418
	spin_unlock(&l3->list_lock);
3419
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3420 3421
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3422

3423
	return fallback_alloc(cachep, flags);
3424

A
Andrew Morton 已提交
3425
done:
P
Pekka Enberg 已提交
3426
	return obj;
3427
}
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3442
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3443
		   unsigned long caller)
3444 3445 3446
{
	unsigned long save_flags;
	void *ptr;
3447
	int slab_node = numa_mem_id();
3448

3449
	flags &= gfp_allowed_mask;
3450

3451 3452
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3453
	if (slab_should_failslab(cachep, flags))
3454 3455
		return NULL;

3456 3457 3458
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3459
	if (nodeid == NUMA_NO_NODE)
3460
		nodeid = slab_node;
3461 3462 3463 3464 3465 3466 3467

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3468
	if (nodeid == slab_node) {
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3484
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3485
				 flags);
3486

P
Pekka Enberg 已提交
3487
	if (likely(ptr))
3488
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3489

3490
	if (unlikely((flags & __GFP_ZERO) && ptr))
3491
		memset(ptr, 0, cachep->object_size);
3492

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3512 3513
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3529
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3530 3531 3532 3533
{
	unsigned long save_flags;
	void *objp;

3534
	flags &= gfp_allowed_mask;
3535

3536 3537
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3538
	if (slab_should_failslab(cachep, flags))
3539 3540
		return NULL;

3541 3542 3543 3544 3545
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3546
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3547
				 flags);
3548 3549
	prefetchw(objp);

P
Pekka Enberg 已提交
3550
	if (likely(objp))
3551
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3552

3553
	if (unlikely((flags & __GFP_ZERO) && objp))
3554
		memset(objp, 0, cachep->object_size);
3555

3556 3557
	return objp;
}
3558 3559 3560 3561

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3562
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3563
		       int node)
L
Linus Torvalds 已提交
3564 3565
{
	int i;
3566
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3567 3568

	for (i = 0; i < nr_objects; i++) {
3569
		void *objp;
L
Linus Torvalds 已提交
3570 3571
		struct slab *slabp;

3572 3573 3574
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3575
		slabp = virt_to_slab(objp);
3576
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3577
		list_del(&slabp->list);
3578
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3579
		check_slabp(cachep, slabp);
3580
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3581
		STATS_DEC_ACTIVE(cachep);
3582
		l3->free_objects++;
L
Linus Torvalds 已提交
3583 3584 3585 3586
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3587 3588
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3589 3590 3591 3592 3593 3594
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3595 3596
				slab_destroy(cachep, slabp);
			} else {
3597
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3598 3599 3600 3601 3602 3603
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3604
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3605 3606 3607 3608
		}
	}
}

3609
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3610 3611
{
	int batchcount;
3612
	struct kmem_list3 *l3;
3613
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3620
	l3 = cachep->nodelists[node];
3621
	spin_lock(&l3->list_lock);
3622 3623
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3624
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3625 3626 3627
		if (max) {
			if (batchcount > max)
				batchcount = max;
3628
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3629
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3630 3631 3632 3633 3634
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3635
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3636
free_done:
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641
#if STATS
	{
		int i = 0;
		struct list_head *p;

3642 3643
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3655
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3656
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3657
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3658 3659 3660
}

/*
A
Andrew Morton 已提交
3661 3662
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3663
 */
3664
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3665
				unsigned long caller)
L
Linus Torvalds 已提交
3666
{
3667
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3668 3669

	check_irq_off();
3670
	kmemleak_free_recursive(objp, cachep->flags);
3671
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3672

3673
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3674

3675 3676 3677 3678 3679 3680 3681
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3682
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3683 3684
		return;

L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3691

3692
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3703
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3704
{
3705
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3706

3707
	trace_kmem_cache_alloc(_RET_IP_, ret,
3708
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3709 3710

	return ret;
L
Linus Torvalds 已提交
3711 3712 3713
}
EXPORT_SYMBOL(kmem_cache_alloc);

3714
#ifdef CONFIG_TRACING
3715
void *
3716
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3717
{
3718 3719
	void *ret;

3720
	ret = slab_alloc(cachep, flags, _RET_IP_);
3721 3722

	trace_kmalloc(_RET_IP_, ret,
3723
		      size, cachep->size, flags);
3724
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3725
}
3726
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3727 3728
#endif

L
Linus Torvalds 已提交
3729
#ifdef CONFIG_NUMA
3730 3731
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3732
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3733

3734
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3735
				    cachep->object_size, cachep->size,
3736
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3737 3738

	return ret;
3739
}
L
Linus Torvalds 已提交
3740 3741
EXPORT_SYMBOL(kmem_cache_alloc_node);

3742
#ifdef CONFIG_TRACING
3743
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3744
				  gfp_t flags,
3745 3746
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3747
{
3748 3749
	void *ret;

3750
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3751

3752
	trace_kmalloc_node(_RET_IP_, ret,
3753
			   size, cachep->size,
3754 3755
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3756
}
3757
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3758 3759
#endif

3760
static __always_inline void *
3761
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3762
{
3763
	struct kmem_cache *cachep;
3764 3765

	cachep = kmem_find_general_cachep(size, flags);
3766 3767
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3768
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3769
}
3770

3771
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3772 3773
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3774
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3775
}
3776
EXPORT_SYMBOL(__kmalloc_node);
3777 3778

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3779
		int node, unsigned long caller)
3780
{
3781
	return __do_kmalloc_node(size, flags, node, caller);
3782 3783 3784 3785 3786
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3787
	return __do_kmalloc_node(size, flags, node, 0);
3788 3789
}
EXPORT_SYMBOL(__kmalloc_node);
3790
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3791
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3792 3793

/**
3794
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3795
 * @size: how many bytes of memory are required.
3796
 * @flags: the type of memory to allocate (see kmalloc).
3797
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3798
 */
3799
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3800
					  unsigned long caller)
L
Linus Torvalds 已提交
3801
{
3802
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3803
	void *ret;
L
Linus Torvalds 已提交
3804

3805 3806 3807 3808 3809 3810
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3811 3812
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3813
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3814

3815
	trace_kmalloc(caller, ret,
3816
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3817 3818

	return ret;
3819 3820 3821
}


3822
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3823 3824
void *__kmalloc(size_t size, gfp_t flags)
{
3825
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3826 3827 3828
}
EXPORT_SYMBOL(__kmalloc);

3829
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3830
{
3831
	return __do_kmalloc(size, flags, caller);
3832 3833
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3834 3835 3836 3837

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3838
	return __do_kmalloc(size, flags, 0);
3839 3840
}
EXPORT_SYMBOL(__kmalloc);
3841 3842
#endif

L
Linus Torvalds 已提交
3843 3844 3845 3846 3847 3848 3849 3850
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3851
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3852 3853 3854 3855
{
	unsigned long flags;

	local_irq_save(flags);
3856
	debug_check_no_locks_freed(objp, cachep->object_size);
3857
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3858
		debug_check_no_obj_freed(objp, cachep->object_size);
3859
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3860
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3861

3862
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3863 3864 3865 3866 3867 3868 3869
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3870 3871
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3877
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3878 3879
	unsigned long flags;

3880 3881
	trace_kfree(_RET_IP_, objp);

3882
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3883 3884 3885
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3886
	c = virt_to_cache(objp);
3887 3888 3889
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3890
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3891 3892 3893 3894
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3895
/*
S
Simon Arlott 已提交
3896
 * This initializes kmem_list3 or resizes various caches for all nodes.
3897
 */
3898
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3899 3900 3901
{
	int node;
	struct kmem_list3 *l3;
3902
	struct array_cache *new_shared;
3903
	struct array_cache **new_alien = NULL;
3904

3905
	for_each_online_node(node) {
3906

3907
                if (use_alien_caches) {
3908
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3909 3910 3911
                        if (!new_alien)
                                goto fail;
                }
3912

3913 3914 3915
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3916
				cachep->shared*cachep->batchcount,
3917
					0xbaadf00d, gfp);
3918 3919 3920 3921
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3922
		}
3923

A
Andrew Morton 已提交
3924 3925
		l3 = cachep->nodelists[node];
		if (l3) {
3926 3927
			struct array_cache *shared = l3->shared;

3928 3929
			spin_lock_irq(&l3->list_lock);

3930
			if (shared)
3931 3932
				free_block(cachep, shared->entry,
						shared->avail, node);
3933

3934 3935
			l3->shared = new_shared;
			if (!l3->alien) {
3936 3937 3938
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3939
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3940
					cachep->batchcount + cachep->num;
3941
			spin_unlock_irq(&l3->list_lock);
3942
			kfree(shared);
3943 3944 3945
			free_alien_cache(new_alien);
			continue;
		}
3946
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3947 3948 3949
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3950
			goto fail;
3951
		}
3952 3953 3954

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3955
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3956
		l3->shared = new_shared;
3957
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3958
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3959
					cachep->batchcount + cachep->num;
3960 3961
		cachep->nodelists[node] = l3;
	}
3962
	return 0;
3963

A
Andrew Morton 已提交
3964
fail:
3965
	if (!cachep->list.next) {
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3980
	return -ENOMEM;
3981 3982
}

L
Linus Torvalds 已提交
3983
struct ccupdate_struct {
3984
	struct kmem_cache *cachep;
3985
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3986 3987 3988 3989
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3990
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3991 3992 3993
	struct array_cache *old;

	check_irq_off();
3994
	old = cpu_cache_get(new->cachep);
3995

L
Linus Torvalds 已提交
3996 3997 3998 3999
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4000
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4001
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4002
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4003
{
4004
	struct ccupdate_struct *new;
4005
	int i;
L
Linus Torvalds 已提交
4006

4007 4008
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4009 4010 4011
	if (!new)
		return -ENOMEM;

4012
	for_each_online_cpu(i) {
4013
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4014
						batchcount, gfp);
4015
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4016
			for (i--; i >= 0; i--)
4017 4018
				kfree(new->new[i]);
			kfree(new);
4019
			return -ENOMEM;
L
Linus Torvalds 已提交
4020 4021
		}
	}
4022
	new->cachep = cachep;
L
Linus Torvalds 已提交
4023

4024
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4025

L
Linus Torvalds 已提交
4026 4027 4028
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4029
	cachep->shared = shared;
L
Linus Torvalds 已提交
4030

4031
	for_each_online_cpu(i) {
4032
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4033 4034
		if (!ccold)
			continue;
4035 4036 4037
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4038 4039
		kfree(ccold);
	}
4040
	kfree(new);
4041
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4042 4043
}

4044
/* Called with slab_mutex held always */
4045
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4046 4047 4048 4049
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4050 4051
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4052 4053
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4054
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4055 4056 4057 4058
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4059
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4060
		limit = 1;
4061
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4062
		limit = 8;
4063
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4064
		limit = 24;
4065
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4066 4067 4068 4069
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4070 4071
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4080
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4081 4082 4083
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4084 4085 4086
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4087 4088 4089 4090
	 */
	if (limit > 32)
		limit = 32;
#endif
4091
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4092 4093
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4094
		       cachep->name, -err);
4095
	return err;
L
Linus Torvalds 已提交
4096 4097
}

4098 4099
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4100 4101
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4102
 */
4103
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4104
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4105 4106 4107
{
	int tofree;

4108 4109
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4110 4111
	if (ac->touched && !force) {
		ac->touched = 0;
4112
	} else {
4113
		spin_lock_irq(&l3->list_lock);
4114 4115 4116 4117 4118 4119 4120 4121 4122
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4123
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4124 4125 4126 4127 4128
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4129
 * @w: work descriptor
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4136 4137
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4138
 */
4139
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4140
{
4141
	struct kmem_cache *searchp;
4142
	struct kmem_list3 *l3;
4143
	int node = numa_mem_id();
4144
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4145

4146
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4147
		/* Give up. Setup the next iteration. */
4148
		goto out;
L
Linus Torvalds 已提交
4149

4150
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4151 4152
		check_irq_on();

4153 4154 4155 4156 4157
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4158
		l3 = searchp->nodelists[node];
4159

4160
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4161

4162
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4163

4164 4165 4166 4167
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4168
		if (time_after(l3->next_reap, jiffies))
4169
			goto next;
L
Linus Torvalds 已提交
4170

4171
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4172

4173
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4174

4175
		if (l3->free_touched)
4176
			l3->free_touched = 0;
4177 4178
		else {
			int freed;
L
Linus Torvalds 已提交
4179

4180 4181 4182 4183
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4184
next:
L
Linus Torvalds 已提交
4185 4186 4187
		cond_resched();
	}
	check_irq_on();
4188
	mutex_unlock(&slab_mutex);
4189
	next_reap_node();
4190
out:
A
Andrew Morton 已提交
4191
	/* Set up the next iteration */
4192
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4193 4194
}

4195
#ifdef CONFIG_SLABINFO
4196
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4197
{
P
Pekka Enberg 已提交
4198 4199 4200 4201 4202
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4203
	const char *name;
L
Linus Torvalds 已提交
4204
	char *error = NULL;
4205 4206
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4207 4208 4209

	active_objs = 0;
	num_slabs = 0;
4210 4211 4212 4213 4214
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4215 4216
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4217

4218
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4219 4220 4221 4222 4223
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4224
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4225 4226 4227 4228 4229 4230 4231
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4232
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4233 4234 4235 4236 4237
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4238 4239
		if (l3->shared)
			shared_avail += l3->shared->avail;
4240

4241
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4242
	}
P
Pekka Enberg 已提交
4243 4244
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4245
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4246 4247
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4248
	name = cachep->name;
L
Linus Torvalds 已提交
4249 4250 4251
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4266
#if STATS
P
Pekka Enberg 已提交
4267
	{			/* list3 stats */
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4275
		unsigned long node_frees = cachep->node_frees;
4276
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4277

J
Joe Perches 已提交
4278 4279 4280 4281 4282
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4292
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4305
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4306
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4307
{
P
Pekka Enberg 已提交
4308
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4309
	int limit, batchcount, shared, res;
4310
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4311

L
Linus Torvalds 已提交
4312 4313 4314 4315
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4316
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4327
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4328
	res = -EINVAL;
4329
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4330
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4331 4332
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4333
				res = 0;
L
Linus Torvalds 已提交
4334
			} else {
4335
				res = do_tune_cpucache(cachep, limit,
4336 4337
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4338 4339 4340 4341
			}
			break;
		}
	}
4342
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4343 4344 4345 4346
	if (res >= 0)
		res = count;
	return res;
}
4347 4348 4349 4350 4351

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4352 4353
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4392
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4404
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4405

4406
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4407
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4408
		if (modname[0])
4409 4410 4411 4412 4413 4414 4415 4416 4417
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4418
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4443
		list_for_each_entry(slabp, &l3->slabs_full, list)
4444
			handle_slab(n, cachep, slabp);
4445
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4446 4447 4448 4449 4450 4451
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4452
		mutex_unlock(&slab_mutex);
4453 4454 4455 4456
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4457
			mutex_lock(&slab_mutex);
4458 4459 4460 4461
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4462
		mutex_lock(&slab_mutex);
4463 4464 4465 4466 4467 4468 4469 4470 4471
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4472

4473 4474 4475
	return 0;
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4486
static const struct seq_operations slabstats_op = {
4487 4488 4489 4490 4491
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4522
#endif
4523 4524 4525
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4526 4527
#endif

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4540
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4541
{
4542 4543
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4544
		return 0;
L
Linus Torvalds 已提交
4545

4546
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4547
}
K
Kirill A. Shutemov 已提交
4548
EXPORT_SYMBOL(ksize);