slab.c 117.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119 120 121 122 123 124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
125
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
146
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
147 148 149 150 151 152 153

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
154
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
155
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156
			 SLAB_CACHE_DMA | \
157
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
158
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
160
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
161
#else
162
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
164
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
166
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

188
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
189 190
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191 192
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
209
	struct rcu_head head;
210
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
211
	void *addr;
L
Linus Torvalds 已提交
212 213
};

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
252
	spinlock_t lock;
253
	void *entry[];	/*
A
Andrew Morton 已提交
254 255 256 257
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
258 259
};

A
Andrew Morton 已提交
260 261 262
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
263 264 265 266
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
267
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
268 269 270
};

/*
271
 * The slab lists for all objects.
L
Linus Torvalds 已提交
272 273
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
274 275 276 277 278
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
279
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
280 281 282
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
283 284
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
285 286
};

287 288 289
/*
 * Need this for bootstrapping a per node allocator.
 */
290
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292
#define	CACHE_CACHE 0
293 294
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
295

296 297 298 299
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
300
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301
static void cache_reap(struct work_struct *unused);
302

303
/*
A
Andrew Morton 已提交
304 305
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
306
 */
307
static __always_inline int index_of(const size_t size)
308
{
309 310
	extern void __bad_size(void);

311 312 313 314 315 316 317 318
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
319
#include <linux/kmalloc_sizes.h>
320
#undef CACHE
321
		__bad_size();
322
	} else
323
		__bad_size();
324 325 326
	return 0;
}

327 328
static int slab_early_init = 1;

329 330
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
331

P
Pekka Enberg 已提交
332
static void kmem_list3_init(struct kmem_list3 *parent)
333 334 335 336 337 338
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
339
	parent->colour_next = 0;
340 341 342 343 344
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
345 346 347 348
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
349 350
	} while (0)

A
Andrew Morton 已提交
351 352
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
353 354 355 356
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
357 358 359 360 361

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
362 363 364
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
365
 *
A
Adrian Bunk 已提交
366
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
367 368 369 370 371 372 373 374 375 376
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
377
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
378 379 380 381 382
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
383 384
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
385
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
386
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
387 388 389 390 391
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
392 393 394 395 396 397 398 399 400
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
401
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
402 403 404
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
405
#define	STATS_INC_NODEFREES(x)	do { } while (0)
406
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
407
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
408 409 410 411 412 413 414 415
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
416 417
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
418
 * 0		: objp
419
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
420 421
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
422
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
423
 * 		redzone word.
424 425
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
426 427
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
428
 */
429
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
430
{
431
	return cachep->obj_offset;
L
Linus Torvalds 已提交
432 433
}

434
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return cachep->obj_size;
L
Linus Torvalds 已提交
437 438
}

439
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
440 441
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442 443
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
444 445
}

446
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
447 448 449
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
450 451
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
452
					      REDZONE_ALIGN);
453 454
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
455 456
}

457
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
458 459
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
461 462 463 464
}

#else

465 466
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
467 468
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
469 470 471 472
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

473
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
474 475 476 477 478 479 480
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
481 482 483 484 485 486 487
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
488 489 490 491
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
492
 */
493 494 495 496 497 498 499
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
500
	page = compound_head(page);
501
	BUG_ON(!PageSlab(page));
502 503 504 505 506 507 508 509 510 511
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
512
	BUG_ON(!PageSlab(page));
513 514
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
515

516 517
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
518
	struct page *page = virt_to_head_page(obj);
519 520 521 522 523
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
524
	struct page *page = virt_to_head_page(obj);
525 526 527
	return page_get_slab(page);
}

528 529 530 531 532 533
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

534 535 536 537 538 539 540 541
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
542
{
543 544
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545 546
}

A
Andrew Morton 已提交
547 548 549
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
567
	{NULL,}
L
Linus Torvalds 已提交
568 569 570 571
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
572
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
573
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
574
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
575 576

/* internal cache of cache description objs */
577
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
578 579 580
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
581
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
582
	.name = "kmem_cache",
L
Linus Torvalds 已提交
583 584
};

585 586
#define BAD_ALIEN_MAGIC 0x01020304ul

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

607 608 609 610 611 612 613 614
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
615 616 617 618
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
619
 */
620 621 622
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

623
static void init_node_lock_keys(int q)
624
{
625 626
	struct cache_sizes *s = malloc_sizes;

627 628 629 630 631 632 633 634 635 636
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
637
			continue;
638 639 640 641 642 643 644 645 646 647
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
648
			continue;
649 650 651 652
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
653
		}
654 655
	}
}
656 657 658 659 660 661 662 663

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
664
#else
665 666 667 668
static void init_node_lock_keys(int q)
{
}

669
static inline void init_lock_keys(void)
670 671 672 673
{
}
#endif

674
/*
675
 * Guard access to the cache-chain.
676
 */
I
Ingo Molnar 已提交
677
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
678 679
static struct list_head cache_chain;

680
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
681

682
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
683 684 685 686
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
687 688
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
689 690 691 692 693
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
694 695 696
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
697
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
698
#endif
699 700 701
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
702 703 704 705
	while (size > csizep->cs_size)
		csizep++;

	/*
706
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
707 708 709
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
710
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
711 712
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
713
#endif
L
Linus Torvalds 已提交
714 715 716
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
717
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
718 719 720 721
{
	return __find_general_cachep(size, gfpflags);
}

722
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
723
{
724 725
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
726

A
Andrew Morton 已提交
727 728 729
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
730 731 732 733 734 735 736
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
786 787
}

788
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
789

A
Andrew Morton 已提交
790 791
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
792 793
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
794
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
795 796 797
	dump_stack();
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

814 815 816 817 818 819 820
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
821
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
822 823 824 825 826

static void init_reap_node(int cpu)
{
	int node;

827
	node = next_node(cpu_to_mem(cpu), node_online_map);
828
	if (node == MAX_NUMNODES)
829
		node = first_node(node_online_map);
830

831
	per_cpu(slab_reap_node, cpu) = node;
832 833 834 835
}

static void next_reap_node(void)
{
836
	int node = __this_cpu_read(slab_reap_node);
837 838 839 840

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
841
	__this_cpu_write(slab_reap_node, node);
842 843 844 845 846 847 848
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
849 850 851 852 853 854 855
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
856
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
857
{
858
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
859 860 861 862 863 864

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
865
	if (keventd_up() && reap_work->work.func == NULL) {
866
		init_reap_node(cpu);
867
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
868 869
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
870 871 872
	}
}

873
static struct array_cache *alloc_arraycache(int node, int entries,
874
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
875
{
P
Pekka Enberg 已提交
876
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
877 878
	struct array_cache *nc = NULL;

879
	nc = kmalloc_node(memsize, gfp, node);
880 881
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
882
	 * However, when such objects are allocated or transferred to another
883 884 885 886 887
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
888 889 890 891 892
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
893
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
894 895 896 897
	}
	return nc;
}

898 899 900 901 902 903 904 905 906 907
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
908
	int nr = min3(from->avail, max, to->limit - to->avail);
909 910 911 912 913 914 915 916 917 918 919 920

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

921 922 923 924 925
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

926
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

946
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
947 948 949 950 951 952 953
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

954
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
955
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
956

957
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
958 959
{
	struct array_cache **ac_ptr;
960
	int memsize = sizeof(void *) * nr_node_ids;
961 962 963 964
	int i;

	if (limit > 1)
		limit = 12;
965
	ac_ptr = kzalloc_node(memsize, gfp, node);
966 967
	if (ac_ptr) {
		for_each_node(i) {
968
			if (i == node || !node_online(i))
969
				continue;
970
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
971
			if (!ac_ptr[i]) {
972
				for (i--; i >= 0; i--)
973 974 975 976 977 978 979 980 981
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
982
static void free_alien_cache(struct array_cache **ac_ptr)
983 984 985 986 987 988
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
989
	    kfree(ac_ptr[i]);
990 991 992
	kfree(ac_ptr);
}

993
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
994
				struct array_cache *ac, int node)
995 996 997 998 999
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1000 1001 1002 1003 1004
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1005 1006
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1007

1008
		free_block(cachep, ac->entry, ac->avail, node);
1009 1010 1011 1012 1013
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1014 1015 1016 1017 1018
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1019
	int node = __this_cpu_read(slab_reap_node);
1020 1021 1022

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1023 1024

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1025 1026 1027 1028 1029 1030
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1031 1032
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1033
{
P
Pekka Enberg 已提交
1034
	int i = 0;
1035 1036 1037 1038
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1039
		ac = alien[i];
1040 1041 1042 1043 1044 1045 1046
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1047

1048
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1049 1050 1051 1052 1053
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1054 1055
	int node;

1056
	node = numa_mem_id();
1057 1058 1059 1060 1061

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1062
	if (likely(slabp->nodeid == node))
1063 1064
		return 0;

P
Pekka Enberg 已提交
1065
	l3 = cachep->nodelists[node];
1066 1067 1068
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1069
		spin_lock(&alien->lock);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1083 1084
#endif

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1131 1132 1133 1134
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1135
	int node = cpu_to_mem(cpu);
1136
	const struct cpumask *mask = cpumask_of_node(node);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1158
		if (!cpumask_empty(mask)) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1197
{
1198
	struct kmem_cache *cachep;
1199
	struct kmem_list3 *l3 = NULL;
1200
	int node = cpu_to_mem(cpu);
1201
	int err;
L
Linus Torvalds 已提交
1202

1203 1204 1205 1206 1207 1208
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1209 1210 1211
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1223
					cachep->batchcount, GFP_KERNEL);
1224 1225 1226 1227 1228
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1229
				0xbaadf00d, GFP_KERNEL);
1230 1231
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1232
				goto bad;
1233
			}
1234 1235
		}
		if (use_alien_caches) {
1236
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1237 1238 1239
			if (!alien) {
				kfree(shared);
				kfree(nc);
1240
				goto bad;
1241
			}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1256
#ifdef CONFIG_NUMA
1257 1258 1259
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1260
		}
1261 1262 1263 1264 1265
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1266 1267
	init_node_lock_keys(node);

1268 1269
	return 0;
bad:
1270
	cpuup_canceled(cpu);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1283
		mutex_lock(&cache_chain_mutex);
1284
		err = cpuup_prepare(cpu);
1285
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1286 1287
		break;
	case CPU_ONLINE:
1288
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1289 1290 1291
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1292
  	case CPU_DOWN_PREPARE:
1293
  	case CPU_DOWN_PREPARE_FROZEN:
1294 1295 1296 1297 1298 1299
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1300
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1301
		/* Now the cache_reaper is guaranteed to be not running. */
1302
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1303 1304
  		break;
  	case CPU_DOWN_FAILED:
1305
  	case CPU_DOWN_FAILED_FROZEN:
1306 1307
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1308
	case CPU_DEAD:
1309
	case CPU_DEAD_FROZEN:
1310 1311 1312 1313 1314 1315 1316 1317
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1318
		/* fall through */
1319
#endif
L
Linus Torvalds 已提交
1320
	case CPU_UP_CANCELED:
1321
	case CPU_UP_CANCELED_FROZEN:
1322
		mutex_lock(&cache_chain_mutex);
1323
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1324
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1325 1326
		break;
	}
1327
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1328 1329
}

1330 1331 1332
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold cache_chain_mutex.
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &cache_chain, next) {
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&cache_chain_mutex);
		ret = init_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&cache_chain_mutex);
		ret = drain_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1394
	return notifier_from_errno(ret);
1395 1396 1397
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1398 1399 1400
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1401 1402
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1403 1404 1405
{
	struct kmem_list3 *ptr;

1406
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1407 1408 1409
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1410 1411 1412 1413 1414
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1415 1416 1417 1418
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1435 1436 1437
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1444
	int i;
1445
	int order;
P
Pekka Enberg 已提交
1446
	int node;
1447

1448
	if (num_possible_nodes() == 1)
1449 1450
		use_alien_caches = 0;

1451 1452 1453 1454 1455
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1456
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1462
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1463 1464 1465 1466
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1467 1468 1469
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1470 1471 1472
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1473
	 * 2) Create the first kmalloc cache.
1474
	 *    The struct kmem_cache for the new cache is allocated normally.
1475 1476 1477
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1478 1479
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1480 1481 1482
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1483 1484
	 */

1485
	node = numa_mem_id();
P
Pekka Enberg 已提交
1486

L
Linus Torvalds 已提交
1487 1488 1489 1490 1491
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1492
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1493

E
Eric Dumazet 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1503 1504
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1505 1506
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1507

1508 1509 1510 1511 1512 1513
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1514
	BUG_ON(!cache_cache.num);
1515
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1516 1517 1518
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1524 1525 1526 1527
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1528 1529 1530
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1531 1532 1533
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1534
					NULL);
1535

A
Andrew Morton 已提交
1536
	if (INDEX_AC != INDEX_L3) {
1537
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1538 1539 1540 1541
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1542
				NULL);
A
Andrew Morton 已提交
1543
	}
1544

1545 1546
	slab_early_init = 0;

L
Linus Torvalds 已提交
1547
	while (sizes->cs_size != ULONG_MAX) {
1548 1549
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1550 1551 1552
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1553 1554
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1555
		if (!sizes->cs_cachep) {
1556
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1557 1558 1559
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1560
					NULL);
A
Andrew Morton 已提交
1561
		}
1562 1563 1564
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1565 1566 1567 1568
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1569
					NULL);
1570
#endif
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1576
		struct array_cache *ptr;
1577

1578
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1579

1580 1581
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1582
		       sizeof(struct arraycache_init));
1583 1584 1585 1586 1587
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1588
		cache_cache.array[smp_processor_id()] = ptr;
1589

1590
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1591

1592
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1593
		       != &initarray_generic.cache);
1594
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1595
		       sizeof(struct arraycache_init));
1596 1597 1598 1599 1600
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1601
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1602
		    ptr;
L
Linus Torvalds 已提交
1603
	}
1604 1605
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1606 1607
		int nid;

1608
		for_each_online_node(nid) {
1609
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1610

1611
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1612
				  &initkmem_list3[SIZE_AC + nid], nid);
1613 1614 1615

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1616
					  &initkmem_list3[SIZE_L3 + nid], nid);
1617 1618 1619
			}
		}
	}
L
Linus Torvalds 已提交
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1634

L
Linus Torvalds 已提交
1635 1636 1637
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1638 1639 1640
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1641 1642 1643
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1644 1645 1646
	 */
	register_cpu_notifier(&cpucache_notifier);

1647 1648 1649 1650 1651 1652 1653 1654
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1655 1656 1657
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1658 1659 1660 1661 1662 1663 1664
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1665 1666
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1667
	 */
1668
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1669
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1681
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1682 1683
{
	struct page *page;
1684
	int nr_pages;
L
Linus Torvalds 已提交
1685 1686
	int i;

1687
#ifndef CONFIG_MMU
1688 1689 1690
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1691
	 */
1692
	flags |= __GFP_COMP;
1693
#endif
1694

1695
	flags |= cachep->gfpflags;
1696 1697
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1698

L
Linus Torvalds 已提交
1699
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1700 1701 1702
	if (!page)
		return NULL;

1703
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1704
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1705 1706 1707 1708 1709
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1710 1711
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1712

1713 1714 1715 1716 1717 1718 1719 1720
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1721

1722
	return page_address(page);
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727
}

/*
 * Interface to system's page release.
 */
1728
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1729
{
P
Pekka Enberg 已提交
1730
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1731 1732 1733
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1734
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1735

1736 1737 1738 1739 1740 1741
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1742
	while (i--) {
N
Nick Piggin 已提交
1743 1744
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1754
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1755
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1765
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1766
			    unsigned long caller)
L
Linus Torvalds 已提交
1767
{
1768
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1769

1770
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1771

P
Pekka Enberg 已提交
1772
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1773 1774
		return;

P
Pekka Enberg 已提交
1775 1776 1777 1778
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783 1784 1785
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1786
				*addr++ = svalue;
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791 1792 1793
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1794
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1795 1796 1797
}
#endif

1798
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1799
{
1800 1801
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1802 1803

	memset(addr, val, size);
P
Pekka Enberg 已提交
1804
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1810 1811 1812
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1813
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1814 1815 1816 1817 1818
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1819
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1820
	}
L
Linus Torvalds 已提交
1821
	printk("\n");
D
Dave Jones 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840
}
#endif

#if DEBUG

1841
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1847
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1848 1849
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1850 1851 1852 1853
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1854
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1855
		print_symbol("(%s)",
A
Andrew Morton 已提交
1856
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1857 1858
		printk("\n");
	}
1859 1860
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1861
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1862 1863
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1864 1865
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1866 1867 1868 1869
		dump_line(realobj, i, limit);
	}
}

1870
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875
{
	char *realobj;
	int size, i;
	int lines = 0;

1876 1877
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1878

P
Pekka Enberg 已提交
1879
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1880
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1881
		if (i == size - 1)
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1888
				printk(KERN_ERR
1889 1890
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1891 1892 1893
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1894
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1895
			limit = 16;
P
Pekka Enberg 已提交
1896 1897
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1910
		struct slab *slabp = virt_to_slab(objp);
1911
		unsigned int objnr;
L
Linus Torvalds 已提交
1912

1913
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1914
		if (objnr) {
1915
			objp = index_to_obj(cachep, slabp, objnr - 1);
1916
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1917
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1918
			       realobj, size);
L
Linus Torvalds 已提交
1919 1920
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1921
		if (objnr + 1 < cachep->num) {
1922
			objp = index_to_obj(cachep, slabp, objnr + 1);
1923
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1924
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1925
			       realobj, size);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1932
#if DEBUG
R
Rabin Vincent 已提交
1933
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1934 1935 1936
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1937
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1938 1939 1940

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1941 1942
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1943
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1944
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1954
					   "was overwritten");
L
Linus Torvalds 已提交
1955 1956
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1957
					   "was overwritten");
L
Linus Torvalds 已提交
1958 1959
		}
	}
1960
}
L
Linus Torvalds 已提交
1961
#else
R
Rabin Vincent 已提交
1962
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1963 1964
{
}
L
Linus Torvalds 已提交
1965 1966
#endif

1967 1968 1969 1970 1971
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1972
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1973 1974
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1975
 */
1976
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1977 1978 1979
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1980
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1981 1982 1983
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1984
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1990 1991
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1992 1993 1994
	}
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2016
/**
2017 2018 2019 2020 2021 2022 2023
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2024 2025 2026 2027 2028
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2029
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2030
			size_t size, size_t align, unsigned long flags)
2031
{
2032
	unsigned long offslab_limit;
2033
	size_t left_over = 0;
2034
	int gfporder;
2035

2036
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2037 2038 2039
		unsigned int num;
		size_t remainder;

2040
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2041 2042
		if (!num)
			continue;
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2056

2057
		/* Found something acceptable - save it away */
2058
		cachep->num = num;
2059
		cachep->gfporder = gfporder;
2060 2061
		left_over = remainder;

2062 2063 2064 2065 2066 2067 2068 2069
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2070 2071 2072 2073
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2074
		if (gfporder >= slab_break_gfp_order)
2075 2076
			break;

2077 2078 2079
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2080
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2081 2082 2083 2084 2085
			break;
	}
	return left_over;
}

2086
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2087
{
2088
	if (g_cpucache_up == FULL)
2089
		return enable_cpucache(cachep, gfp);
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2111
			kmalloc(sizeof(struct arraycache_init), gfp);
2112 2113 2114 2115 2116 2117

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2118
			for_each_online_node(node) {
2119 2120
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2121
						gfp, node);
2122 2123 2124 2125 2126
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2127
	cachep->nodelists[numa_mem_id()]->next_reap =
2128 2129 2130 2131 2132 2133 2134 2135 2136
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2137
	return 0;
2138 2139
}

L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2150
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2151 2152
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2153 2154
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2167
struct kmem_cache *
L
Linus Torvalds 已提交
2168
kmem_cache_create (const char *name, size_t size, size_t align,
2169
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2170 2171
{
	size_t left_over, slab_size, ralign;
2172
	struct kmem_cache *cachep = NULL, *pc;
2173
	gfp_t gfp;
L
Linus Torvalds 已提交
2174 2175 2176 2177

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2178
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2179
	    size > KMALLOC_MAX_SIZE) {
2180
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2181
				name);
P
Pekka Enberg 已提交
2182 2183
		BUG();
	}
L
Linus Torvalds 已提交
2184

2185
	/*
2186
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2187
	 * cpu_online_mask as well.  Please see cpuup_callback
2188
	 */
2189 2190 2191 2192
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2193

2194
	list_for_each_entry(pc, &cache_chain, next) {
2195 2196 2197 2198 2199 2200 2201 2202
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2203
		res = probe_kernel_address(pc->name, tmp);
2204
		if (res) {
2205 2206
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2207
			       pc->buffer_size);
2208 2209 2210
			continue;
		}

P
Pekka Enberg 已提交
2211
		if (!strcmp(pc->name, name)) {
2212 2213
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2214 2215 2216 2217 2218
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2228 2229
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2230
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2231 2232 2233 2234 2235 2236 2237
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2238 2239
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2240
	 */
2241
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2242

A
Andrew Morton 已提交
2243 2244
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2245 2246 2247
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2248 2249 2250
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2251 2252
	}

A
Andrew Morton 已提交
2253 2254
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2255 2256
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2257 2258 2259 2260
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2261 2262
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2263
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2264 2265 2266 2267
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2268 2269

	/*
D
David Woodhouse 已提交
2270 2271 2272
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2273
	 */
D
David Woodhouse 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2284

2285
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2286 2287 2288
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2289
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2290 2291 2292
	if (ralign < align) {
		ralign = align;
	}
2293 2294
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2295
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2296
	/*
2297
	 * 4) Store it.
L
Linus Torvalds 已提交
2298 2299 2300
	 */
	align = ralign;

2301 2302 2303 2304 2305
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2306
	/* Get cache's description obj. */
2307
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2308
	if (!cachep)
2309
		goto oops;
L
Linus Torvalds 已提交
2310 2311

#if DEBUG
2312
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2313

2314 2315 2316 2317
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2318 2319
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2320 2321
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2322 2323
	}
	if (flags & SLAB_STORE_USER) {
2324
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2325 2326
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2327
		 */
D
David Woodhouse 已提交
2328 2329 2330 2331
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2332 2333
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2334
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
C
Carsten Otte 已提交
2335 2336
	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2337 2338 2339 2340 2341
		size = PAGE_SIZE;
	}
#endif
#endif

2342 2343 2344
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2345 2346
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2347
	 */
2348 2349
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356 2357
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2358
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2359 2360

	if (!cachep->num) {
2361 2362
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2363 2364
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2365
		goto oops;
L
Linus Torvalds 已提交
2366
	}
P
Pekka Enberg 已提交
2367 2368
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2381 2382
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2383 2384 2385 2386 2387 2388 2389 2390 2391

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2398
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2399 2400 2401
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2402
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2403
		cachep->gfpflags |= GFP_DMA;
2404
	cachep->buffer_size = size;
2405
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2406

2407
	if (flags & CFLGS_OFF_SLAB) {
2408
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2409 2410 2411 2412 2413 2414 2415
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2416
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2417
	}
L
Linus Torvalds 已提交
2418 2419 2420
	cachep->ctor = ctor;
	cachep->name = name;

2421
	if (setup_cpu_cache(cachep, gfp)) {
2422 2423 2424 2425
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2426 2427 2428

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2429
oops:
L
Linus Torvalds 已提交
2430 2431
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2432
		      name);
2433 2434 2435 2436
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2452
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2453 2454 2455
{
#ifdef CONFIG_SMP
	check_irq_off();
2456
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2457 2458
#endif
}
2459

2460
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2461 2462 2463 2464 2465 2466 2467
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2468 2469 2470 2471
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2472
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2473 2474
#endif

2475 2476 2477 2478
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2479 2480
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2481
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2482
	struct array_cache *ac;
2483
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2484 2485

	check_irq_off();
2486
	ac = cpu_cache_get(cachep);
2487 2488 2489
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2490 2491 2492
	ac->avail = 0;
}

2493
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2494
{
2495 2496 2497
	struct kmem_list3 *l3;
	int node;

2498
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2499
	check_irq_on();
P
Pekka Enberg 已提交
2500
	for_each_online_node(node) {
2501
		l3 = cachep->nodelists[node];
2502 2503 2504 2505 2506 2507 2508
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2509
			drain_array(cachep, l3, l3->shared, 1, node);
2510
	}
L
Linus Torvalds 已提交
2511 2512
}

2513 2514 2515 2516 2517 2518 2519 2520
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2521
{
2522 2523
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2524 2525
	struct slab *slabp;

2526 2527
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2528

2529
		spin_lock_irq(&l3->list_lock);
2530
		p = l3->slabs_free.prev;
2531 2532 2533 2534
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2535

2536
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2537
#if DEBUG
2538
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2539 2540
#endif
		list_del(&slabp->list);
2541 2542 2543 2544 2545
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2546
		spin_unlock_irq(&l3->list_lock);
2547 2548
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2549
	}
2550 2551
out:
	return nr_freed;
L
Linus Torvalds 已提交
2552 2553
}

2554
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2555
static int __cache_shrink(struct kmem_cache *cachep)
2556 2557 2558 2559 2560 2561 2562 2563 2564
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2565 2566 2567 2568 2569 2570 2571
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2572 2573 2574 2575
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2583
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2584
{
2585
	int ret;
2586
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2587

2588
	get_online_cpus();
2589 2590 2591
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2592
	put_online_cpus();
2593
	return ret;
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599 2600
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2601
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607 2608 2609
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2610
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2611 2612
 * during the kmem_cache_destroy().
 */
2613
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2614
{
2615
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2616 2617

	/* Find the cache in the chain of caches. */
2618
	get_online_cpus();
I
Ingo Molnar 已提交
2619
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2626
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2627
		mutex_unlock(&cache_chain_mutex);
2628
		put_online_cpus();
2629
		return;
L
Linus Torvalds 已提交
2630 2631 2632
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2633
		rcu_barrier();
L
Linus Torvalds 已提交
2634

2635
	__kmem_cache_destroy(cachep);
2636
	mutex_unlock(&cache_chain_mutex);
2637
	put_online_cpus();
L
Linus Torvalds 已提交
2638 2639 2640
}
EXPORT_SYMBOL(kmem_cache_destroy);

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2652
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2653 2654
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2655 2656
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2657

L
Linus Torvalds 已提交
2658 2659
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2660
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2661
					      local_flags, nodeid);
2662 2663 2664 2665 2666 2667
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2668 2669
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2670 2671 2672
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2673
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2674 2675 2676 2677
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2678
	slabp->s_mem = objp + colour_off;
2679
	slabp->nodeid = nodeid;
2680
	slabp->free = 0;
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2686
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2687 2688
}

2689
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2690
			    struct slab *slabp)
L
Linus Torvalds 已提交
2691 2692 2693 2694
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2695
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2708 2709 2710
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2711 2712
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2713
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2714 2715 2716 2717

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2718
					   " end of an object");
L
Linus Torvalds 已提交
2719 2720
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2721
					   " start of an object");
L
Linus Torvalds 已提交
2722
		}
A
Andrew Morton 已提交
2723 2724
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2725
			kernel_map_pages(virt_to_page(objp),
2726
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2727 2728
#else
		if (cachep->ctor)
2729
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2730
#endif
P
Pekka Enberg 已提交
2731
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2732
	}
P
Pekka Enberg 已提交
2733
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2734 2735
}

2736
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2737
{
2738 2739 2740 2741 2742 2743
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2744 2745
}

A
Andrew Morton 已提交
2746 2747
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2748
{
2749
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2763 2764
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2765
{
2766
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2767 2768 2769 2770 2771

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2772
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2773
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2774
				"'%s', objp %p\n", cachep->name, objp);
2775 2776 2777 2778 2779 2780 2781 2782
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2783 2784 2785
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2786
 * virtual address for kfree, ksize, and slab debugging.
2787 2788 2789
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2790
{
2791
	int nr_pages;
L
Linus Torvalds 已提交
2792 2793
	struct page *page;

2794
	page = virt_to_page(addr);
2795

2796
	nr_pages = 1;
2797
	if (likely(!PageCompound(page)))
2798 2799
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2800
	do {
2801 2802
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2803
		page++;
2804
	} while (--nr_pages);
L
Linus Torvalds 已提交
2805 2806 2807 2808 2809 2810
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2811 2812
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2813
{
P
Pekka Enberg 已提交
2814 2815 2816
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2817
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2818

A
Andrew Morton 已提交
2819 2820 2821
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2822
	 */
C
Christoph Lameter 已提交
2823 2824
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2825

2826
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2827
	check_irq_off();
2828 2829
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2830 2831

	/* Get colour for the slab, and cal the next value. */
2832 2833 2834 2835 2836
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2837

2838
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2851 2852 2853
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2854
	 */
2855
	if (!objp)
2856
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2857
	if (!objp)
L
Linus Torvalds 已提交
2858 2859 2860
		goto failed;

	/* Get slab management. */
2861
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2862
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2863
	if (!slabp)
L
Linus Torvalds 已提交
2864 2865
		goto opps1;

2866
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2867

C
Christoph Lameter 已提交
2868
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2869 2870 2871 2872

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2873
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2874 2875

	/* Make slab active. */
2876
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2877
	STATS_INC_GROWN(cachep);
2878 2879
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2880
	return 1;
A
Andrew Morton 已提交
2881
opps1:
L
Linus Torvalds 已提交
2882
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2883
failed:
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2900 2901
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2902 2903 2904
	}
}

2905 2906
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2907
	unsigned long long redzone1, redzone2;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2923
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2924 2925 2926
			obj, redzone1, redzone2);
}

2927
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2928
				   void *caller)
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2934 2935
	BUG_ON(virt_to_cache(objp) != cachep);

2936
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2937
	kfree_debugcheck(objp);
2938
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2939

2940
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2941 2942

	if (cachep->flags & SLAB_RED_ZONE) {
2943
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2950
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2951 2952

	BUG_ON(objnr >= cachep->num);
2953
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2954

2955 2956 2957
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2958 2959
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2960
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2961
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2962
			kernel_map_pages(virt_to_page(objp),
2963
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2974
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2975 2976 2977
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2978

L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984 2985
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2986 2987 2988 2989
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2990
		for (i = 0;
2991
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2992
		     i++) {
A
Andrew Morton 已提交
2993
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2994
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2995
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3007
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3008 3009 3010 3011
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3012 3013
	int node;

3014
retry:
L
Linus Torvalds 已提交
3015
	check_irq_off();
3016
	node = numa_mem_id();
3017
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3018 3019
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3020 3021 3022 3023
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3024 3025 3026
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3027
	l3 = cachep->nodelists[node];
3028 3029 3030

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3031

3032
	/* See if we can refill from the shared array */
3033 3034
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3035
		goto alloc_done;
3036
	}
3037

L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3053 3054 3055 3056 3057 3058

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3059
		BUG_ON(slabp->inuse >= cachep->num);
3060

L
Linus Torvalds 已提交
3061 3062 3063 3064 3065
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3066
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3067
							    node);
L
Linus Torvalds 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3079
must_grow:
L
Linus Torvalds 已提交
3080
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3081
alloc_done:
3082
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3083 3084 3085

	if (unlikely(!ac->avail)) {
		int x;
3086
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3087

A
Andrew Morton 已提交
3088
		/* cache_grow can reenable interrupts, then ac could change. */
3089
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3090
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3091 3092
			return NULL;

A
Andrew Morton 已提交
3093
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3094 3095 3096
			goto retry;
	}
	ac->touched = 1;
3097
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3098 3099
}

A
Andrew Morton 已提交
3100 3101
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3102 3103 3104 3105 3106 3107 3108 3109
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3110 3111
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3112
{
P
Pekka Enberg 已提交
3113
	if (!objp)
L
Linus Torvalds 已提交
3114
		return objp;
P
Pekka Enberg 已提交
3115
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3116
#ifdef CONFIG_DEBUG_PAGEALLOC
3117
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3118
			kernel_map_pages(virt_to_page(objp),
3119
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3131 3132 3133 3134
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3135
			printk(KERN_ERR
3136
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3137 3138
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3139 3140 3141 3142
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3143 3144 3145 3146 3147
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3148
		slabp = page_get_slab(virt_to_head_page(objp));
3149 3150 3151 3152
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3153
	objp += obj_offset(cachep);
3154
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3155
		cachep->ctor(objp);
H
Hugh Dickins 已提交
3156
	if ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1)) {
3157
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3158
		       objp, (int)ARCH_SLAB_MINALIGN);
3159
	}
L
Linus Torvalds 已提交
3160 3161 3162 3163 3164 3165
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3166
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3167 3168
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3169
		return false;
3170

3171
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3172 3173
}

3174
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3175
{
P
Pekka Enberg 已提交
3176
	void *objp;
L
Linus Torvalds 已提交
3177 3178
	struct array_cache *ac;

3179
	check_irq_off();
3180

3181
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3182 3183 3184
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3185
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3186 3187 3188
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3189 3190 3191 3192 3193
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3194
	}
3195 3196 3197 3198 3199
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3200 3201
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3202 3203 3204
	return objp;
}

3205
#ifdef CONFIG_NUMA
3206
/*
3207
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3208 3209 3210 3211 3212 3213 3214 3215
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3216
	if (in_interrupt() || (flags & __GFP_THISNODE))
3217
		return NULL;
3218
	nid_alloc = nid_here = numa_mem_id();
3219
	get_mems_allowed();
3220
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3221
		nid_alloc = cpuset_slab_spread_node();
3222 3223
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
3224
	put_mems_allowed();
3225
	if (nid_alloc != nid_here)
3226
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3227 3228 3229
	return NULL;
}

3230 3231
/*
 * Fallback function if there was no memory available and no objects on a
3232 3233 3234 3235 3236
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3237
 */
3238
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3239
{
3240 3241
	struct zonelist *zonelist;
	gfp_t local_flags;
3242
	struct zoneref *z;
3243 3244
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3245
	void *obj = NULL;
3246
	int nid;
3247 3248 3249 3250

	if (flags & __GFP_THISNODE)
		return NULL;

3251
	get_mems_allowed();
3252
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3253
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3254

3255 3256 3257 3258 3259
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3260 3261
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3262

3263
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3264
			cache->nodelists[nid] &&
3265
			cache->nodelists[nid]->free_objects) {
3266 3267
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3268 3269 3270
				if (obj)
					break;
		}
3271 3272
	}

3273
	if (!obj) {
3274 3275 3276 3277 3278 3279
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3280 3281 3282
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3283
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3284 3285
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3302
				/* cache_grow already freed obj */
3303 3304 3305
				obj = NULL;
			}
		}
3306
	}
3307
	put_mems_allowed();
3308 3309 3310
	return obj;
}

3311 3312
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3313
 */
3314
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3315
				int nodeid)
3316 3317
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3318 3319 3320 3321 3322 3323 3324 3325
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3326
retry:
3327
	check_irq_off();
P
Pekka Enberg 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3347
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3348 3349 3350 3351 3352
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3353
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3354
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3355
	else
P
Pekka Enberg 已提交
3356
		list_add(&slabp->list, &l3->slabs_partial);
3357

P
Pekka Enberg 已提交
3358 3359
	spin_unlock(&l3->list_lock);
	goto done;
3360

A
Andrew Morton 已提交
3361
must_grow:
P
Pekka Enberg 已提交
3362
	spin_unlock(&l3->list_lock);
3363
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3364 3365
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3366

3367
	return fallback_alloc(cachep, flags);
3368

A
Andrew Morton 已提交
3369
done:
P
Pekka Enberg 已提交
3370
	return obj;
3371
}
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3391
	int slab_node = numa_mem_id();
3392

3393
	flags &= gfp_allowed_mask;
3394

3395 3396
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3397
	if (slab_should_failslab(cachep, flags))
3398 3399
		return NULL;

3400 3401 3402
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3403
	if (nodeid == -1)
3404
		nodeid = slab_node;
3405 3406 3407 3408 3409 3410 3411

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3412
	if (nodeid == slab_node) {
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3428 3429
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3430

P
Pekka Enberg 已提交
3431 3432 3433
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3434 3435 3436
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3456 3457
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3478
	flags &= gfp_allowed_mask;
3479

3480 3481
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3482
	if (slab_should_failslab(cachep, flags))
3483 3484
		return NULL;

3485 3486 3487 3488 3489
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3490 3491
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3492 3493
	prefetchw(objp);

P
Pekka Enberg 已提交
3494 3495 3496
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3497 3498 3499
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3500 3501
	return objp;
}
3502 3503 3504 3505

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3506
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3507
		       int node)
L
Linus Torvalds 已提交
3508 3509
{
	int i;
3510
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3511 3512 3513 3514 3515

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3516
		slabp = virt_to_slab(objp);
3517
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3518
		list_del(&slabp->list);
3519
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3520
		check_slabp(cachep, slabp);
3521
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3522
		STATS_DEC_ACTIVE(cachep);
3523
		l3->free_objects++;
L
Linus Torvalds 已提交
3524 3525 3526 3527
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3528 3529
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3530 3531 3532 3533 3534 3535
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3536 3537
				slab_destroy(cachep, slabp);
			} else {
3538
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3545
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3546 3547 3548 3549
		}
	}
}

3550
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3551 3552
{
	int batchcount;
3553
	struct kmem_list3 *l3;
3554
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3561
	l3 = cachep->nodelists[node];
3562
	spin_lock(&l3->list_lock);
3563 3564
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3565
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3566 3567 3568
		if (max) {
			if (batchcount > max)
				batchcount = max;
3569
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3570
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3571 3572 3573 3574 3575
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3576
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3577
free_done:
L
Linus Torvalds 已提交
3578 3579 3580 3581 3582
#if STATS
	{
		int i = 0;
		struct list_head *p;

3583 3584
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3596
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3597
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3598
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3599 3600 3601
}

/*
A
Andrew Morton 已提交
3602 3603
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3604
 */
3605
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3606
{
3607
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3608 3609

	check_irq_off();
3610
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3611 3612
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3613 3614
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3615 3616 3617 3618 3619 3620 3621
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3622
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3623 3624
		return;

L
Linus Torvalds 已提交
3625 3626
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3627
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3628 3629 3630 3631
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3632
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3644
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3645
{
E
Eduard - Gabriel Munteanu 已提交
3646 3647
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3648 3649
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3650 3651

	return ret;
L
Linus Torvalds 已提交
3652 3653 3654
}
EXPORT_SYMBOL(kmem_cache_alloc);

3655
#ifdef CONFIG_TRACING
3656 3657
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3658
{
3659 3660 3661 3662 3663 3664 3665
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3666
}
3667
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3668 3669
#endif

L
Linus Torvalds 已提交
3670
#ifdef CONFIG_NUMA
3671 3672
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3673 3674 3675
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3676 3677 3678
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3679 3680

	return ret;
3681
}
L
Linus Torvalds 已提交
3682 3683
EXPORT_SYMBOL(kmem_cache_alloc_node);

3684
#ifdef CONFIG_TRACING
3685 3686 3687 3688
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3689
{
3690 3691 3692
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3693
				  __builtin_return_address(0));
3694 3695 3696 3697
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3698
}
3699
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3700 3701
#endif

3702 3703
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3704
{
3705
	struct kmem_cache *cachep;
3706 3707

	cachep = kmem_find_general_cachep(size, flags);
3708 3709
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3710
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3711
}
3712

3713
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3714 3715 3716 3717 3718
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3719
EXPORT_SYMBOL(__kmalloc_node);
3720 3721

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3722
		int node, unsigned long caller)
3723
{
3724
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3725 3726 3727 3728 3729 3730 3731 3732
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3733
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3734
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3735 3736

/**
3737
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3738
 * @size: how many bytes of memory are required.
3739
 * @flags: the type of memory to allocate (see kmalloc).
3740
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3741
 */
3742 3743
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3744
{
3745
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3746
	void *ret;
L
Linus Torvalds 已提交
3747

3748 3749 3750 3751 3752 3753
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3754 3755
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3756 3757
	ret = __cache_alloc(cachep, flags, caller);

3758 3759
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3760 3761

	return ret;
3762 3763 3764
}


3765
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3766 3767
void *__kmalloc(size_t size, gfp_t flags)
{
3768
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3769 3770 3771
}
EXPORT_SYMBOL(__kmalloc);

3772
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3773
{
3774
	return __do_kmalloc(size, flags, (void *)caller);
3775 3776
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3777 3778 3779 3780 3781 3782 3783

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3784 3785
#endif

L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791 3792 3793
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3794
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3795 3796 3797 3798
{
	unsigned long flags;

	local_irq_save(flags);
3799
	debug_check_no_locks_freed(objp, obj_size(cachep));
3800 3801
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3802
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3803
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3804

3805
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3806 3807 3808 3809 3810 3811 3812
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3813 3814
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3820
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3821 3822
	unsigned long flags;

3823 3824
	trace_kfree(_RET_IP_, objp);

3825
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3826 3827 3828
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3829
	c = virt_to_cache(objp);
3830
	debug_check_no_locks_freed(objp, obj_size(c));
3831
	debug_check_no_obj_freed(objp, obj_size(c));
3832
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3833 3834 3835 3836
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3837
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3838
{
3839
	return obj_size(cachep);
L
Linus Torvalds 已提交
3840 3841 3842
}
EXPORT_SYMBOL(kmem_cache_size);

3843
/*
S
Simon Arlott 已提交
3844
 * This initializes kmem_list3 or resizes various caches for all nodes.
3845
 */
3846
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3847 3848 3849
{
	int node;
	struct kmem_list3 *l3;
3850
	struct array_cache *new_shared;
3851
	struct array_cache **new_alien = NULL;
3852

3853
	for_each_online_node(node) {
3854

3855
                if (use_alien_caches) {
3856
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3857 3858 3859
                        if (!new_alien)
                                goto fail;
                }
3860

3861 3862 3863
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3864
				cachep->shared*cachep->batchcount,
3865
					0xbaadf00d, gfp);
3866 3867 3868 3869
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3870
		}
3871

A
Andrew Morton 已提交
3872 3873
		l3 = cachep->nodelists[node];
		if (l3) {
3874 3875
			struct array_cache *shared = l3->shared;

3876 3877
			spin_lock_irq(&l3->list_lock);

3878
			if (shared)
3879 3880
				free_block(cachep, shared->entry,
						shared->avail, node);
3881

3882 3883
			l3->shared = new_shared;
			if (!l3->alien) {
3884 3885 3886
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3887
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3888
					cachep->batchcount + cachep->num;
3889
			spin_unlock_irq(&l3->list_lock);
3890
			kfree(shared);
3891 3892 3893
			free_alien_cache(new_alien);
			continue;
		}
3894
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3895 3896 3897
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3898
			goto fail;
3899
		}
3900 3901 3902

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3903
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3904
		l3->shared = new_shared;
3905
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3906
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3907
					cachep->batchcount + cachep->num;
3908 3909
		cachep->nodelists[node] = l3;
	}
3910
	return 0;
3911

A
Andrew Morton 已提交
3912
fail:
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3928
	return -ENOMEM;
3929 3930
}

L
Linus Torvalds 已提交
3931
struct ccupdate_struct {
3932
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3933 3934 3935 3936 3937
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3938
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3939 3940 3941
	struct array_cache *old;

	check_irq_off();
3942
	old = cpu_cache_get(new->cachep);
3943

L
Linus Torvalds 已提交
3944 3945 3946 3947
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3948
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3949
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3950
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3951
{
3952
	struct ccupdate_struct *new;
3953
	int i;
L
Linus Torvalds 已提交
3954

3955
	new = kzalloc(sizeof(*new), gfp);
3956 3957 3958
	if (!new)
		return -ENOMEM;

3959
	for_each_online_cpu(i) {
3960
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3961
						batchcount, gfp);
3962
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3963
			for (i--; i >= 0; i--)
3964 3965
				kfree(new->new[i]);
			kfree(new);
3966
			return -ENOMEM;
L
Linus Torvalds 已提交
3967 3968
		}
	}
3969
	new->cachep = cachep;
L
Linus Torvalds 已提交
3970

3971
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3972

L
Linus Torvalds 已提交
3973 3974 3975
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3976
	cachep->shared = shared;
L
Linus Torvalds 已提交
3977

3978
	for_each_online_cpu(i) {
3979
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3980 3981
		if (!ccold)
			continue;
3982 3983 3984
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3985 3986
		kfree(ccold);
	}
3987
	kfree(new);
3988
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3989 3990
}

3991
/* Called with cache_chain_mutex held always */
3992
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3993 3994 3995 3996
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3997 3998
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3999 4000
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4001
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4002 4003 4004 4005
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4006
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4007
		limit = 1;
4008
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4009
		limit = 8;
4010
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4011
		limit = 24;
4012
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4013 4014 4015 4016
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4017 4018
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4019 4020 4021 4022 4023 4024 4025 4026
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4027
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4028 4029 4030
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4031 4032 4033
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4034 4035 4036 4037
	 */
	if (limit > 32)
		limit = 32;
#endif
4038
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4039 4040
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4041
		       cachep->name, -err);
4042
	return err;
L
Linus Torvalds 已提交
4043 4044
}

4045 4046
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4047 4048
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4049
 */
4050
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4051
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4052 4053 4054
{
	int tofree;

4055 4056
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4057 4058
	if (ac->touched && !force) {
		ac->touched = 0;
4059
	} else {
4060
		spin_lock_irq(&l3->list_lock);
4061 4062 4063 4064 4065 4066 4067 4068 4069
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4070
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4076
 * @w: work descriptor
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4083 4084
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4085
 */
4086
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4087
{
4088
	struct kmem_cache *searchp;
4089
	struct kmem_list3 *l3;
4090
	int node = numa_mem_id();
4091
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4092

4093
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4094
		/* Give up. Setup the next iteration. */
4095
		goto out;
L
Linus Torvalds 已提交
4096

4097
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4098 4099
		check_irq_on();

4100 4101 4102 4103 4104
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4105
		l3 = searchp->nodelists[node];
4106

4107
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4108

4109
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4110

4111 4112 4113 4114
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4115
		if (time_after(l3->next_reap, jiffies))
4116
			goto next;
L
Linus Torvalds 已提交
4117

4118
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4119

4120
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4121

4122
		if (l3->free_touched)
4123
			l3->free_touched = 0;
4124 4125
		else {
			int freed;
L
Linus Torvalds 已提交
4126

4127 4128 4129 4130
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4131
next:
L
Linus Torvalds 已提交
4132 4133 4134
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4135
	mutex_unlock(&cache_chain_mutex);
4136
	next_reap_node();
4137
out:
A
Andrew Morton 已提交
4138
	/* Set up the next iteration */
4139
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4140 4141
}

4142
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4143

4144
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4145
{
4146 4147 4148 4149
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4150
#if STATS
4151
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4152
#else
4153
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4154
#endif
4155 4156 4157 4158
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4159
#if STATS
4160
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4161
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4162
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4163
#endif
4164 4165 4166 4167 4168 4169 4170
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4171
	mutex_lock(&cache_chain_mutex);
4172 4173
	if (!n)
		print_slabinfo_header(m);
4174 4175

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4176 4177 4178 4179
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4180
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4181 4182 4183 4184
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4185
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4186 4187 4188 4189
}

static int s_show(struct seq_file *m, void *p)
{
4190
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4191 4192 4193 4194 4195
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4196
	const char *name;
L
Linus Torvalds 已提交
4197
	char *error = NULL;
4198 4199
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4200 4201 4202

	active_objs = 0;
	num_slabs = 0;
4203 4204 4205 4206 4207
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4208 4209
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4210

4211
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4212 4213 4214 4215 4216
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4217
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4218 4219 4220 4221 4222 4223 4224
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4225
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4226 4227 4228 4229 4230
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4231 4232
		if (l3->shared)
			shared_avail += l3->shared->avail;
4233

4234
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4235
	}
P
Pekka Enberg 已提交
4236 4237
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4238
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4239 4240
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4241
	name = cachep->name;
L
Linus Torvalds 已提交
4242 4243 4244 4245
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4246
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4247
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4248
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4249
		   cachep->limit, cachep->batchcount, cachep->shared);
4250
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4251
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4252
#if STATS
P
Pekka Enberg 已提交
4253
	{			/* list3 stats */
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259 4260
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4261
		unsigned long node_frees = cachep->node_frees;
4262
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4263

J
Joe Perches 已提交
4264 4265 4266 4267 4268
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4278
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4299
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4300 4301 4302 4303
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4314
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4315
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4316
{
P
Pekka Enberg 已提交
4317
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4318
	int limit, batchcount, shared, res;
4319
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4320

L
Linus Torvalds 已提交
4321 4322 4323 4324
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4325
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4336
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4337
	res = -EINVAL;
4338
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4339
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4340 4341
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4342
				res = 0;
L
Linus Torvalds 已提交
4343
			} else {
4344
				res = do_tune_cpucache(cachep, limit,
4345 4346
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4347 4348 4349 4350
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4351
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4352 4353 4354 4355
	if (res >= 0)
		res = count;
	return res;
}
4356

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4370 4371 4372 4373 4374
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4375
	return seq_list_start(&cache_chain, *pos);
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4426
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4427

4428
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4429
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4430
		if (modname[0])
4431 4432 4433 4434 4435 4436 4437 4438 4439
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4440
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4465
		list_for_each_entry(slabp, &l3->slabs_full, list)
4466
			handle_slab(n, cachep, slabp);
4467
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4494

4495 4496 4497
	return 0;
}

4498
static const struct seq_operations slabstats_op = {
4499 4500 4501 4502 4503
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4532
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4533 4534
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4535
#endif
4536 4537 4538
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4539 4540
#endif

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4553
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4554
{
4555 4556
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4557
		return 0;
L
Linus Torvalds 已提交
4558

4559
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4560
}
K
Kirill A. Shutemov 已提交
4561
EXPORT_SYMBOL(ksize);