memcontrol.c 146.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61 62
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
63
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
64

A
Andrew Morton 已提交
65
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
66
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67
int do_swap_account __read_mostly;
68 69

/* for remember boot option*/
A
Andrew Morton 已提交
70
#ifdef CONFIG_MEMCG_SWAP_ENABLED
71 72 73 74 75
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

76
#else
77
#define do_swap_account		0
78 79 80
#endif


81 82 83 84 85 86 87 88
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
89
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
90
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
91
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98 99 100 101
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

102 103 104
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
105 106
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
107 108
	MEM_CGROUP_EVENTS_NSTATS,
};
109 110 111 112 113 114 115 116

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

117 118 119 120 121 122 123 124 125
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
126
	MEM_CGROUP_TARGET_NUMAINFO,
127 128
	MEM_CGROUP_NTARGETS,
};
129 130 131
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
132

133
struct mem_cgroup_stat_cpu {
134
	long count[MEM_CGROUP_STAT_NSTATS];
135
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136
	unsigned long nr_page_events;
137
	unsigned long targets[MEM_CGROUP_NTARGETS];
138 139
};

140 141 142 143 144 145 146
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

147 148 149 150
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
151
	struct lruvec		lruvec;
152
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
153

154 155
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

156 157 158 159
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
160
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
161
						/* use container_of	   */
162 163 164 165 166 167 168 169 170 171
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

192 193 194 195 196
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
197
/* For threshold */
198
struct mem_cgroup_threshold_ary {
199
	/* An array index points to threshold just below or equal to usage. */
200
	int current_threshold;
201 202 203 204 205
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
206 207 208 209 210 211 212 213 214 215 216 217

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
218 219 220 221 222
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
223

224 225
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226

B
Balbir Singh 已提交
227 228 229 230 231 232 233
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 235 236
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
237 238 239 240 241 242 243
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
262 263
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
264 265 266 267
		 */
		struct work_struct work_freeing;
	};

268 269 270 271
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
272
	struct mem_cgroup_lru_info info;
273 274 275
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
276 277
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
278
#endif
279 280 281 282
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
283 284 285 286

	bool		oom_lock;
	atomic_t	under_oom;

287
	atomic_t	refcnt;
288

289
	int	swappiness;
290 291
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
292

293 294 295
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311 312
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
313 314 315 316
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
317 318
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
319
	/*
320
	 * percpu counter.
321
	 */
322
	struct mem_cgroup_stat_cpu __percpu *stat;
323 324 325 326 327 328
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
329

M
Michal Hocko 已提交
330
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
331 332
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
333 334
};

335 336 337 338 339 340
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
341
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 344 345
	NR_MOVE_TYPE,
};

346 347
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
348
	spinlock_t	  lock; /* for from, to */
349 350 351
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
352
	unsigned long moved_charge;
353
	unsigned long moved_swap;
354 355 356
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
357
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 359
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
360

D
Daisuke Nishimura 已提交
361 362 363 364 365 366
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

367 368 369 370 371 372
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

373 374 375 376
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
377 378
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
379

380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408

409 410 411 412 413 414
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

415 416 417 418 419
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
420
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
421
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
422 423 424

void sock_update_memcg(struct sock *sk)
{
425
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
426
		struct mem_cgroup *memcg;
427
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
428 429 430

		BUG_ON(!sk->sk_prot->proto_cgroup);

431 432 433 434 435 436 437 438 439 440 441 442 443 444
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
445 446
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
447 448
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
449
			mem_cgroup_get(memcg);
450
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
451 452 453 454 455 456 457 458
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
459
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
460 461 462 463 464 465
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
466 467 468 469 470 471 472 473 474

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

488
static void drain_all_stock_async(struct mem_cgroup *memcg);
489

490
static struct mem_cgroup_per_zone *
491
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492
{
493
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 495
}

496
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497
{
498
	return &memcg->css;
499 500
}

501
static struct mem_cgroup_per_zone *
502
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503
{
504 505
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
506

507
	return mem_cgroup_zoneinfo(memcg, nid, zid);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
526
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527
				struct mem_cgroup_per_zone *mz,
528 529
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
530 531 532 533 534 535 536 537
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

538 539 540
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
557 558 559
}

static void
560
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 562 563 564 565 566 567 568 569
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

570
static void
571
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 573 574 575
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
576
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 578 579 580
	spin_unlock(&mctz->lock);
}


581
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582
{
583
	unsigned long long excess;
584 585
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
586 587
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
588 589 590
	mctz = soft_limit_tree_from_page(page);

	/*
591 592
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
593
	 */
594 595 596
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
597 598 599 600
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
601
		if (excess || mz->on_tree) {
602 603 604
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
605
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
606
			/*
607 608
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
609
			 */
610
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 612
			spin_unlock(&mctz->lock);
		}
613 614 615
	}
}

616
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 618 619 620 621
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
622
	for_each_node(node) {
623
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
625
			mctz = soft_limit_tree_node_zone(node, zone);
626
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 628 629 630
		}
	}
}

631 632 633 634
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
635
	struct mem_cgroup_per_zone *mz;
636 637

retry:
638
	mz = NULL;
639 640 641 642 643 644 645 646 647 648
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
649 650 651
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
687
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688
				 enum mem_cgroup_stat_index idx)
689
{
690
	long val = 0;
691 692
	int cpu;

693 694
	get_online_cpus();
	for_each_online_cpu(cpu)
695
		val += per_cpu(memcg->stat->count[idx], cpu);
696
#ifdef CONFIG_HOTPLUG_CPU
697 698 699
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
700 701
#endif
	put_online_cpus();
702 703 704
	return val;
}

705
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 707 708
					 bool charge)
{
	int val = (charge) ? 1 : -1;
709
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 711
}

712
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 714 715 716 717 718
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
719
		val += per_cpu(memcg->stat->events[idx], cpu);
720
#ifdef CONFIG_HOTPLUG_CPU
721 722 723
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
724 725 726 727
#endif
	return val;
}

728
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729
					 bool anon, int nr_pages)
730
{
731 732
	preempt_disable();

733 734 735 736 737 738
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739
				nr_pages);
740
	else
741
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742
				nr_pages);
743

744 745
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
746
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747
	else {
748
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 750
		nr_pages = -nr_pages; /* for event */
	}
751

752
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753

754
	preempt_enable();
755 756
}

757
unsigned long
758
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 760 761 762 763 764 765 766
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
767
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768
			unsigned int lru_mask)
769 770
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
771
	enum lru_list lru;
772 773
	unsigned long ret = 0;

774
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775

H
Hugh Dickins 已提交
776 777 778
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
779 780 781 782 783
	}
	return ret;
}

static unsigned long
784
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 786
			int nid, unsigned int lru_mask)
{
787 788 789
	u64 total = 0;
	int zid;

790
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 792
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
793

794 795
	return total;
}
796

797
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798
			unsigned int lru_mask)
799
{
800
	int nid;
801 802
	u64 total = 0;

803
	for_each_node_state(nid, N_HIGH_MEMORY)
804
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805
	return total;
806 807
}

808 809
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
810 811 812
{
	unsigned long val, next;

813
	val = __this_cpu_read(memcg->stat->nr_page_events);
814
	next = __this_cpu_read(memcg->stat->targets[target]);
815
	/* from time_after() in jiffies.h */
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
832
	}
833
	return false;
834 835 836 837 838 839
}

/*
 * Check events in order.
 *
 */
840
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841
{
842
	preempt_disable();
843
	/* threshold event is triggered in finer grain than soft limit */
844 845
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
846 847
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
848 849 850 851 852 853 854 855 856

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

857
		mem_cgroup_threshold(memcg);
858
		if (unlikely(do_softlimit))
859
			mem_cgroup_update_tree(memcg, page);
860
#if MAX_NUMNODES > 1
861
		if (unlikely(do_numainfo))
862
			atomic_inc(&memcg->numainfo_events);
863
#endif
864 865
	} else
		preempt_enable();
866 867
}

G
Glauber Costa 已提交
868
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
869
{
870 871
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
872 873
}

874
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875
{
876 877 878 879 880 881 882 883
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

884
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 886
}

887
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888
{
889
	struct mem_cgroup *memcg = NULL;
890 891 892

	if (!mm)
		return NULL;
893 894 895 896 897 898 899
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
900 901
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
902
			break;
903
	} while (!css_tryget(&memcg->css));
904
	rcu_read_unlock();
905
	return memcg;
906 907
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
928
{
929 930
	struct mem_cgroup *memcg = NULL;
	int id = 0;
931

932 933 934
	if (mem_cgroup_disabled())
		return NULL;

935 936
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
937

938 939
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
940

941 942
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
943

944 945 946 947 948
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
949

950
	while (!memcg) {
951
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952
		struct cgroup_subsys_state *css;
953

954 955 956 957 958 959 960 961 962 963 964
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
965

966 967 968 969
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
970
				memcg = mem_cgroup_from_css(css);
971 972
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
973 974
		rcu_read_unlock();

975 976 977 978 979 980 981
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
982 983 984 985 986

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
987
}
K
KAMEZAWA Hiroyuki 已提交
988

989 990 991 992 993 994 995
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
996 997 998 999 1000 1001
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1002

1003 1004 1005 1006 1007 1008
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1009
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010
	     iter != NULL;				\
1011
	     iter = mem_cgroup_iter(root, iter, NULL))
1012

1013
#define for_each_mem_cgroup(iter)			\
1014
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015
	     iter != NULL;				\
1016
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1017

1018 1019
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1020
	struct mem_cgroup *memcg;
1021 1022 1023 1024 1025

	if (!mm)
		return;

	rcu_read_lock();
1026 1027
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1028 1029 1030 1031
		goto out;

	switch (idx) {
	case PGFAULT:
1032 1033 1034 1035
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 1037 1038 1039 1040 1041 1042 1043 1044
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1045 1046 1047
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1048
 * @memcg: memcg of the wanted lruvec
1049 1050 1051 1052 1053 1054 1055 1056 1057
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1058
	struct lruvec *lruvec;
1059

1060 1061 1062 1063
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1064 1065

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1076 1077
}

K
KAMEZAWA Hiroyuki 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1091

1092
/**
1093
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1094
 * @page: the page
1095
 * @zone: zone of the page
1096
 */
1097
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1098 1099
{
	struct mem_cgroup_per_zone *mz;
1100 1101
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1102
	struct lruvec *lruvec;
1103

1104 1105 1106 1107
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1108

K
KAMEZAWA Hiroyuki 已提交
1109
	pc = lookup_page_cgroup(page);
1110
	memcg = pc->mem_cgroup;
1111 1112

	/*
1113
	 * Surreptitiously switch any uncharged offlist page to root:
1114 1115 1116 1117 1118 1119 1120
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1121
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1122 1123
		pc->mem_cgroup = memcg = root_mem_cgroup;

1124
	mz = page_cgroup_zoneinfo(memcg, page);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1135
}
1136

1137
/**
1138 1139 1140 1141
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1142
 *
1143 1144
 * This function must be called when a page is added to or removed from an
 * lru list.
1145
 */
1146 1147
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1148 1149
{
	struct mem_cgroup_per_zone *mz;
1150
	unsigned long *lru_size;
1151 1152 1153 1154

	if (mem_cgroup_disabled())
		return;

1155 1156 1157 1158
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1159
}
1160

1161
/*
1162
 * Checks whether given mem is same or in the root_mem_cgroup's
1163 1164
 * hierarchy subtree
 */
1165 1166
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1167
{
1168 1169
	if (root_memcg == memcg)
		return true;
1170
	if (!root_memcg->use_hierarchy || !memcg)
1171
		return false;
1172 1173 1174 1175 1176 1177 1178 1179
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1180
	rcu_read_lock();
1181
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1182 1183
	rcu_read_unlock();
	return ret;
1184 1185
}

1186
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1187 1188
{
	int ret;
1189
	struct mem_cgroup *curr = NULL;
1190
	struct task_struct *p;
1191

1192
	p = find_lock_task_mm(task);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1208 1209
	if (!curr)
		return 0;
1210
	/*
1211
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1212
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1213 1214
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1215
	 */
1216
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1217
	css_put(&curr->css);
1218 1219 1220
	return ret;
}

1221
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1222
{
1223
	unsigned long inactive_ratio;
1224
	unsigned long inactive;
1225
	unsigned long active;
1226
	unsigned long gb;
1227

1228 1229
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1230

1231 1232 1233 1234 1235 1236
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1237
	return inactive * inactive_ratio < active;
1238 1239
}

1240
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1241 1242 1243 1244
{
	unsigned long active;
	unsigned long inactive;

1245 1246
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1247 1248 1249 1250

	return (active > inactive);
}

1251 1252 1253
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1254
/**
1255
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1256
 * @memcg: the memory cgroup
1257
 *
1258
 * Returns the maximum amount of memory @mem can be charged with, in
1259
 * pages.
1260
 */
1261
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1262
{
1263 1264
	unsigned long long margin;

1265
	margin = res_counter_margin(&memcg->res);
1266
	if (do_swap_account)
1267
		margin = min(margin, res_counter_margin(&memcg->memsw));
1268
	return margin >> PAGE_SHIFT;
1269 1270
}

1271
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1272 1273 1274 1275 1276 1277 1278
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1279
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1296 1297 1298 1299

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1300
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1301
{
1302
	atomic_inc(&memcg_moving);
1303
	atomic_inc(&memcg->moving_account);
1304 1305 1306
	synchronize_rcu();
}

1307
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1308
{
1309 1310 1311 1312
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1313 1314
	if (memcg) {
		atomic_dec(&memcg_moving);
1315
		atomic_dec(&memcg->moving_account);
1316
	}
1317
}
1318

1319 1320 1321
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1322 1323
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1324 1325 1326 1327 1328 1329 1330
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1331
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1332 1333
{
	VM_BUG_ON(!rcu_read_lock_held());
1334
	return atomic_read(&memcg->moving_account) > 0;
1335
}
1336

1337
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1338
{
1339 1340
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1341
	bool ret = false;
1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1351

1352 1353
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1354 1355
unlock:
	spin_unlock(&mc.lock);
1356 1357 1358
	return ret;
}

1359
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1360 1361
{
	if (mc.moving_task && current != mc.moving_task) {
1362
		if (mem_cgroup_under_move(memcg)) {
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1375 1376 1377 1378
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1379
 * see mem_cgroup_stolen(), too.
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1393
/**
1394
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1413
	if (!memcg || !p)
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1459 1460 1461 1462
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1463
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1464 1465
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1466 1467
	struct mem_cgroup *iter;

1468
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1469
		num++;
1470 1471 1472
	return num;
}

D
David Rientjes 已提交
1473 1474 1475
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1476
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1477 1478 1479
{
	u64 limit;

1480 1481
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1482
	/*
1483
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1484
	 */
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1499 1500
}

1501 1502
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1503 1504 1505 1506 1507 1508 1509
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1604 1605
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1606
 * @memcg: the target memcg
1607 1608 1609 1610 1611 1612 1613
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1614
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1615 1616
		int nid, bool noswap)
{
1617
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1618 1619 1620
		return true;
	if (noswap || !total_swap_pages)
		return false;
1621
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1622 1623 1624 1625
		return true;
	return false;

}
1626 1627 1628 1629 1630 1631 1632 1633
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1634
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1635 1636
{
	int nid;
1637 1638 1639 1640
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1641
	if (!atomic_read(&memcg->numainfo_events))
1642
		return;
1643
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1644 1645 1646
		return;

	/* make a nodemask where this memcg uses memory from */
1647
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1648 1649 1650

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1651 1652
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1653
	}
1654

1655 1656
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1671
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 1673 1674
{
	int node;

1675 1676
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1677

1678
	node = next_node(node, memcg->scan_nodes);
1679
	if (node == MAX_NUMNODES)
1680
		node = first_node(memcg->scan_nodes);
1681 1682 1683 1684 1685 1686 1687 1688 1689
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1690
	memcg->last_scanned_node = node;
1691 1692 1693
	return node;
}

1694 1695 1696 1697 1698 1699
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1700
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1701 1702 1703 1704 1705 1706 1707
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1708 1709
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1710
		     nid < MAX_NUMNODES;
1711
		     nid = next_node(nid, memcg->scan_nodes)) {
1712

1713
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1714 1715 1716 1717 1718 1719 1720
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1721
		if (node_isset(nid, memcg->scan_nodes))
1722
			continue;
1723
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1724 1725 1726 1727 1728
			return true;
	}
	return false;
}

1729
#else
1730
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1731 1732 1733
{
	return 0;
}
1734

1735
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1736
{
1737
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1738
}
1739 1740
#endif

1741 1742 1743 1744
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1745
{
1746
	struct mem_cgroup *victim = NULL;
1747
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1748
	int loop = 0;
1749
	unsigned long excess;
1750
	unsigned long nr_scanned;
1751 1752 1753 1754
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1755

1756
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1757

1758
	while (1) {
1759
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1760
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1761
			loop++;
1762 1763 1764 1765 1766 1767
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1768
				if (!total)
1769 1770
					break;
				/*
L
Lucas De Marchi 已提交
1771
				 * We want to do more targeted reclaim.
1772 1773 1774 1775 1776
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1777
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1778 1779
					break;
			}
1780
			continue;
1781
		}
1782
		if (!mem_cgroup_reclaimable(victim, false))
1783
			continue;
1784 1785 1786 1787
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1788
			break;
1789
	}
1790
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1791
	return total;
1792 1793
}

K
KAMEZAWA Hiroyuki 已提交
1794 1795 1796
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1797
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1798
 */
1799
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1800
{
1801
	struct mem_cgroup *iter, *failed = NULL;
1802

1803
	for_each_mem_cgroup_tree(iter, memcg) {
1804
		if (iter->oom_lock) {
1805 1806 1807 1808 1809
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1810 1811
			mem_cgroup_iter_break(memcg, iter);
			break;
1812 1813
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1814
	}
K
KAMEZAWA Hiroyuki 已提交
1815

1816
	if (!failed)
1817
		return true;
1818 1819 1820 1821 1822

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1823
	for_each_mem_cgroup_tree(iter, memcg) {
1824
		if (iter == failed) {
1825 1826
			mem_cgroup_iter_break(memcg, iter);
			break;
1827 1828 1829
		}
		iter->oom_lock = false;
	}
1830
	return false;
1831
}
1832

1833
/*
1834
 * Has to be called with memcg_oom_lock
1835
 */
1836
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1837
{
K
KAMEZAWA Hiroyuki 已提交
1838 1839
	struct mem_cgroup *iter;

1840
	for_each_mem_cgroup_tree(iter, memcg)
1841 1842 1843 1844
		iter->oom_lock = false;
	return 0;
}

1845
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1846 1847 1848
{
	struct mem_cgroup *iter;

1849
	for_each_mem_cgroup_tree(iter, memcg)
1850 1851 1852
		atomic_inc(&iter->under_oom);
}

1853
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1854 1855 1856
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1857 1858 1859 1860 1861
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1862
	for_each_mem_cgroup_tree(iter, memcg)
1863
		atomic_add_unless(&iter->under_oom, -1, 0);
1864 1865
}

1866
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1867 1868
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1869
struct oom_wait_info {
1870
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1871 1872 1873 1874 1875 1876
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1877 1878
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1879 1880 1881
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1882
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1883 1884

	/*
1885
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1886 1887
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1888 1889
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1890 1891 1892 1893
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1894
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1895
{
1896 1897
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1898 1899
}

1900
static void memcg_oom_recover(struct mem_cgroup *memcg)
1901
{
1902 1903
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1904 1905
}

K
KAMEZAWA Hiroyuki 已提交
1906 1907 1908
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1909 1910
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1911
{
K
KAMEZAWA Hiroyuki 已提交
1912
	struct oom_wait_info owait;
1913
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1914

1915
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1916 1917 1918 1919
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1920
	need_to_kill = true;
1921
	mem_cgroup_mark_under_oom(memcg);
1922

1923
	/* At first, try to OOM lock hierarchy under memcg.*/
1924
	spin_lock(&memcg_oom_lock);
1925
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928 1929 1930
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1931
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1932
	if (!locked || memcg->oom_kill_disable)
1933 1934
		need_to_kill = false;
	if (locked)
1935
		mem_cgroup_oom_notify(memcg);
1936
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1937

1938 1939
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1940
		mem_cgroup_out_of_memory(memcg, mask, order);
1941
	} else {
K
KAMEZAWA Hiroyuki 已提交
1942
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1943
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1944
	}
1945
	spin_lock(&memcg_oom_lock);
1946
	if (locked)
1947 1948
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1949
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1950

1951
	mem_cgroup_unmark_under_oom(memcg);
1952

K
KAMEZAWA Hiroyuki 已提交
1953 1954 1955
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1956
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1957
	return true;
1958 1959
}

1960 1961 1962
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1980 1981
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1982
 */
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1997
	 * need to take move_lock_mem_cgroup(). Because we already hold
1998
	 * rcu_read_lock(), any calls to move_account will be delayed until
1999
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2000
	 */
2001
	if (!mem_cgroup_stolen(memcg))
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2019
	 * should take move_lock_mem_cgroup().
2020 2021 2022 2023
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2024 2025
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2026
{
2027
	struct mem_cgroup *memcg;
2028
	struct page_cgroup *pc = lookup_page_cgroup(page);
2029
	unsigned long uninitialized_var(flags);
2030

2031
	if (mem_cgroup_disabled())
2032
		return;
2033

2034 2035
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2036
		return;
2037 2038

	switch (idx) {
2039 2040
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2041 2042 2043
		break;
	default:
		BUG();
2044
	}
2045

2046
	this_cpu_add(memcg->stat->count[idx], val);
2047
}
2048

2049 2050 2051 2052
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2053
#define CHARGE_BATCH	32U
2054 2055
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2056
	unsigned int nr_pages;
2057
	struct work_struct work;
2058
	unsigned long flags;
2059
#define FLUSHING_CACHED_CHARGE	0
2060 2061
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062
static DEFINE_MUTEX(percpu_charge_mutex);
2063 2064

/*
2065
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2066 2067 2068 2069
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2070
static bool consume_stock(struct mem_cgroup *memcg)
2071 2072 2073 2074 2075
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2076
	if (memcg == stock->cached && stock->nr_pages)
2077
		stock->nr_pages--;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2091 2092 2093 2094
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2095
		if (do_swap_account)
2096 2097
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2110
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2111 2112 2113 2114
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2115
 * This will be consumed by consume_stock() function, later.
2116
 */
2117
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 2119 2120
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2121
	if (stock->cached != memcg) { /* reset if necessary */
2122
		drain_stock(stock);
2123
		stock->cached = memcg;
2124
	}
2125
	stock->nr_pages += nr_pages;
2126 2127 2128 2129
	put_cpu_var(memcg_stock);
}

/*
2130
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131 2132
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2133
 */
2134
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2135
{
2136
	int cpu, curcpu;
2137

2138 2139
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2140
	curcpu = get_cpu();
2141 2142
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143
		struct mem_cgroup *memcg;
2144

2145 2146
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2147
			continue;
2148
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2149
			continue;
2150 2151 2152 2153 2154 2155
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2156
	}
2157
	put_cpu();
2158 2159 2160 2161 2162 2163

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2165 2166 2167
			flush_work(&stock->work);
	}
out:
2168
 	put_online_cpus();
2169 2170 2171 2172 2173 2174 2175 2176
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2177
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2178
{
2179 2180 2181 2182 2183
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2184
	drain_all_stock(root_memcg, false);
2185
	mutex_unlock(&percpu_charge_mutex);
2186 2187 2188
}

/* This is a synchronous drain interface. */
2189
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2190 2191
{
	/* called when force_empty is called */
2192
	mutex_lock(&percpu_charge_mutex);
2193
	drain_all_stock(root_memcg, true);
2194
	mutex_unlock(&percpu_charge_mutex);
2195 2196
}

2197 2198 2199 2200
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2201
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2202 2203 2204
{
	int i;

2205
	spin_lock(&memcg->pcp_counter_lock);
2206
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2207
		long x = per_cpu(memcg->stat->count[i], cpu);
2208

2209 2210
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2211
	}
2212
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2213
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2214

2215 2216
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2217
	}
2218
	spin_unlock(&memcg->pcp_counter_lock);
2219 2220 2221
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2222 2223 2224 2225 2226
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2227
	struct mem_cgroup *iter;
2228

2229
	if (action == CPU_ONLINE)
2230 2231
		return NOTIFY_OK;

2232
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2233
		return NOTIFY_OK;
2234

2235
	for_each_mem_cgroup(iter)
2236 2237
		mem_cgroup_drain_pcp_counter(iter, cpu);

2238 2239 2240 2241 2242
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2253
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2254
				unsigned int nr_pages, bool oom_check)
2255
{
2256
	unsigned long csize = nr_pages * PAGE_SIZE;
2257 2258 2259 2260 2261
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2262
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2263 2264 2265 2266

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2267
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2268 2269 2270
		if (likely(!ret))
			return CHARGE_OK;

2271
		res_counter_uncharge(&memcg->res, csize);
2272 2273 2274 2275
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2276
	/*
2277 2278
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2279 2280 2281 2282
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2283
	if (nr_pages == CHARGE_BATCH)
2284 2285 2286 2287 2288
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2289
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2290
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2291
		return CHARGE_RETRY;
2292
	/*
2293 2294 2295 2296 2297 2298 2299
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2300
	 */
2301
	if (nr_pages == 1 && ret)
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2315
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2316 2317 2318 2319 2320
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2321
/*
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2341
 */
2342
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2343
				   gfp_t gfp_mask,
2344
				   unsigned int nr_pages,
2345
				   struct mem_cgroup **ptr,
2346
				   bool oom)
2347
{
2348
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2349
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2350
	struct mem_cgroup *memcg = NULL;
2351
	int ret;
2352

K
KAMEZAWA Hiroyuki 已提交
2353 2354 2355 2356 2357 2358 2359 2360
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2361

2362
	/*
2363 2364
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2365
	 * thread group leader migrates. It's possible that mm is not
2366
	 * set, if so charge the root memcg (happens for pagecache usage).
2367
	 */
2368
	if (!*ptr && !mm)
2369
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2370
again:
2371 2372 2373 2374
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2375
			goto done;
2376
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2377
			goto done;
2378
		css_get(&memcg->css);
2379
	} else {
K
KAMEZAWA Hiroyuki 已提交
2380
		struct task_struct *p;
2381

K
KAMEZAWA Hiroyuki 已提交
2382 2383 2384
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2385
		 * Because we don't have task_lock(), "p" can exit.
2386
		 * In that case, "memcg" can point to root or p can be NULL with
2387 2388 2389 2390 2391 2392
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2393
		 */
2394
		memcg = mem_cgroup_from_task(p);
2395 2396 2397
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2398 2399 2400
			rcu_read_unlock();
			goto done;
		}
2401
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2414
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2415 2416 2417 2418 2419
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2420

2421 2422
	do {
		bool oom_check;
2423

2424
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2425
		if (fatal_signal_pending(current)) {
2426
			css_put(&memcg->css);
2427
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2428
		}
2429

2430 2431 2432 2433
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2434
		}
2435

2436
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2437 2438 2439 2440
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2441
			batch = nr_pages;
2442 2443
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2444
			goto again;
2445
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2446
			css_put(&memcg->css);
2447 2448
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2449
			if (!oom) {
2450
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2451
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2452
			}
2453 2454 2455 2456
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2457
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2458
			goto bypass;
2459
		}
2460 2461
	} while (ret != CHARGE_OK);

2462
	if (batch > nr_pages)
2463 2464
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2465
done:
2466
	*ptr = memcg;
2467 2468
	return 0;
nomem:
2469
	*ptr = NULL;
2470
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2471
bypass:
2472 2473
	*ptr = root_mem_cgroup;
	return -EINTR;
2474
}
2475

2476 2477 2478 2479 2480
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2481
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2482
				       unsigned int nr_pages)
2483
{
2484
	if (!mem_cgroup_is_root(memcg)) {
2485 2486
		unsigned long bytes = nr_pages * PAGE_SIZE;

2487
		res_counter_uncharge(&memcg->res, bytes);
2488
		if (do_swap_account)
2489
			res_counter_uncharge(&memcg->memsw, bytes);
2490
	}
2491 2492
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2527
	return mem_cgroup_from_css(css);
2528 2529
}

2530
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2531
{
2532
	struct mem_cgroup *memcg = NULL;
2533
	struct page_cgroup *pc;
2534
	unsigned short id;
2535 2536
	swp_entry_t ent;

2537 2538 2539
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2540
	lock_page_cgroup(pc);
2541
	if (PageCgroupUsed(pc)) {
2542 2543 2544
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2545
	} else if (PageSwapCache(page)) {
2546
		ent.val = page_private(page);
2547
		id = lookup_swap_cgroup_id(ent);
2548
		rcu_read_lock();
2549 2550 2551
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2552
		rcu_read_unlock();
2553
	}
2554
	unlock_page_cgroup(pc);
2555
	return memcg;
2556 2557
}

2558
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2559
				       struct page *page,
2560
				       unsigned int nr_pages,
2561 2562
				       enum charge_type ctype,
				       bool lrucare)
2563
{
2564
	struct page_cgroup *pc = lookup_page_cgroup(page);
2565
	struct zone *uninitialized_var(zone);
2566
	struct lruvec *lruvec;
2567
	bool was_on_lru = false;
2568
	bool anon;
2569

2570
	lock_page_cgroup(pc);
2571
	VM_BUG_ON(PageCgroupUsed(pc));
2572 2573 2574 2575
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2576 2577 2578 2579 2580 2581 2582 2583 2584

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2585
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2586
			ClearPageLRU(page);
2587
			del_page_from_lru_list(page, lruvec, page_lru(page));
2588 2589 2590 2591
			was_on_lru = true;
		}
	}

2592
	pc->mem_cgroup = memcg;
2593 2594 2595 2596 2597 2598 2599
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2600
	smp_wmb();
2601
	SetPageCgroupUsed(pc);
2602

2603 2604
	if (lrucare) {
		if (was_on_lru) {
2605
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2606 2607
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2608
			add_page_to_lru_list(page, lruvec, page_lru(page));
2609 2610 2611 2612
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2613
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2614 2615 2616 2617 2618
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2619
	unlock_page_cgroup(pc);
2620

2621 2622 2623 2624 2625
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2626
	memcg_check_events(memcg, page);
2627
}
2628

2629 2630
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2631
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2632 2633
/*
 * Because tail pages are not marked as "used", set it. We're under
2634 2635 2636
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2637
 */
2638
void mem_cgroup_split_huge_fixup(struct page *head)
2639 2640
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2641 2642
	struct page_cgroup *pc;
	int i;
2643

2644 2645
	if (mem_cgroup_disabled())
		return;
2646 2647 2648 2649 2650 2651
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2652
}
2653
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2654

2655
/**
2656
 * mem_cgroup_move_account - move account of the page
2657
 * @page: the page
2658
 * @nr_pages: number of regular pages (>1 for huge pages)
2659 2660 2661 2662 2663
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2664
 * - page is not on LRU (isolate_page() is useful.)
2665
 * - compound_lock is held when nr_pages > 1
2666
 *
2667 2668
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2669
 */
2670 2671 2672 2673
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2674
				   struct mem_cgroup *to)
2675
{
2676 2677
	unsigned long flags;
	int ret;
2678
	bool anon = PageAnon(page);
2679

2680
	VM_BUG_ON(from == to);
2681
	VM_BUG_ON(PageLRU(page));
2682 2683 2684 2685 2686 2687 2688
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2689
	if (nr_pages > 1 && !PageTransHuge(page))
2690 2691 2692 2693 2694 2695 2696 2697
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2698
	move_lock_mem_cgroup(from, &flags);
2699

2700
	if (!anon && page_mapped(page)) {
2701 2702 2703 2704 2705
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2706
	}
2707
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2708

2709
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2710
	pc->mem_cgroup = to;
2711
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2712 2713 2714
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2715
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2716
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2717
	 * status here.
2718
	 */
2719
	move_unlock_mem_cgroup(from, &flags);
2720 2721
	ret = 0;
unlock:
2722
	unlock_page_cgroup(pc);
2723 2724 2725
	/*
	 * check events
	 */
2726 2727
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2728
out:
2729 2730 2731 2732 2733 2734 2735
	return ret;
}

/*
 * move charges to its parent.
 */

2736 2737
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2738
				  struct mem_cgroup *child)
2739 2740
{
	struct mem_cgroup *parent;
2741
	unsigned int nr_pages;
2742
	unsigned long uninitialized_var(flags);
2743 2744 2745
	int ret;

	/* Is ROOT ? */
2746
	if (mem_cgroup_is_root(child))
2747 2748
		return -EINVAL;

2749 2750 2751 2752 2753
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2754

2755
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2756

2757 2758 2759 2760 2761 2762
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2763

2764
	if (nr_pages > 1)
2765 2766
		flags = compound_lock_irqsave(page);

2767
	ret = mem_cgroup_move_account(page, nr_pages,
2768
				pc, child, parent);
2769 2770
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2771

2772
	if (nr_pages > 1)
2773
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2774
	putback_lru_page(page);
2775
put:
2776
	put_page(page);
2777
out:
2778 2779 2780
	return ret;
}

2781 2782 2783 2784 2785 2786 2787
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2788
				gfp_t gfp_mask, enum charge_type ctype)
2789
{
2790
	struct mem_cgroup *memcg = NULL;
2791
	unsigned int nr_pages = 1;
2792
	bool oom = true;
2793
	int ret;
A
Andrea Arcangeli 已提交
2794

A
Andrea Arcangeli 已提交
2795
	if (PageTransHuge(page)) {
2796
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2797
		VM_BUG_ON(!PageTransHuge(page));
2798 2799 2800 2801 2802
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2803
	}
2804

2805
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2806
	if (ret == -ENOMEM)
2807
		return ret;
2808
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2809 2810 2811
	return 0;
}

2812 2813
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2814
{
2815
	if (mem_cgroup_disabled())
2816
		return 0;
2817 2818 2819
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2820
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2821
					MEM_CGROUP_CHARGE_TYPE_ANON);
2822 2823
}

2824 2825 2826
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2827
 * struct page_cgroup is acquired. This refcnt will be consumed by
2828 2829
 * "commit()" or removed by "cancel()"
 */
2830 2831 2832 2833
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2834
{
2835
	struct mem_cgroup *memcg;
2836
	struct page_cgroup *pc;
2837
	int ret;
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2849 2850
	if (!do_swap_account)
		goto charge_cur_mm;
2851 2852
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2853
		goto charge_cur_mm;
2854 2855
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2856
	css_put(&memcg->css);
2857 2858
	if (ret == -EINTR)
		ret = 0;
2859
	return ret;
2860
charge_cur_mm:
2861 2862 2863 2864
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2865 2866
}

2867 2868 2869 2870 2871 2872
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2887 2888 2889
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2890 2891 2892 2893 2894 2895 2896 2897 2898
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2899
static void
2900
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2901
					enum charge_type ctype)
2902
{
2903
	if (mem_cgroup_disabled())
2904
		return;
2905
	if (!memcg)
2906
		return;
2907
	cgroup_exclude_rmdir(&memcg->css);
2908

2909
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2910 2911 2912
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2913 2914 2915
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2916
	 */
2917
	if (do_swap_account && PageSwapCache(page)) {
2918
		swp_entry_t ent = {.val = page_private(page)};
2919
		mem_cgroup_uncharge_swap(ent);
2920
	}
2921 2922 2923 2924 2925
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2926
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2927 2928
}

2929 2930
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2931
{
2932
	__mem_cgroup_commit_charge_swapin(page, memcg,
2933
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2934 2935
}

2936 2937
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2938
{
2939 2940 2941 2942
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2943
	if (mem_cgroup_disabled())
2944 2945 2946 2947 2948 2949 2950
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2951 2952
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2953 2954 2955 2956
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2957 2958
}

2959
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2960 2961
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2962 2963 2964
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2977
		batch->memcg = memcg;
2978 2979
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2980
	 * In those cases, all pages freed continuously can be expected to be in
2981 2982 2983 2984 2985 2986 2987 2988
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2989
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2990 2991
		goto direct_uncharge;

2992 2993 2994 2995 2996
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2997
	if (batch->memcg != memcg)
2998 2999
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3000
	batch->nr_pages++;
3001
	if (uncharge_memsw)
3002
		batch->memsw_nr_pages++;
3003 3004
	return;
direct_uncharge:
3005
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3006
	if (uncharge_memsw)
3007 3008 3009
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3010
}
3011

3012
/*
3013
 * uncharge if !page_mapped(page)
3014
 */
3015
static struct mem_cgroup *
3016 3017
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3018
{
3019
	struct mem_cgroup *memcg = NULL;
3020 3021
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3022
	bool anon;
3023

3024
	if (mem_cgroup_disabled())
3025
		return NULL;
3026

3027
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3028

A
Andrea Arcangeli 已提交
3029
	if (PageTransHuge(page)) {
3030
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3031 3032
		VM_BUG_ON(!PageTransHuge(page));
	}
3033
	/*
3034
	 * Check if our page_cgroup is valid
3035
	 */
3036
	pc = lookup_page_cgroup(page);
3037
	if (unlikely(!PageCgroupUsed(pc)))
3038
		return NULL;
3039

3040
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3041

3042
	memcg = pc->mem_cgroup;
3043

K
KAMEZAWA Hiroyuki 已提交
3044 3045 3046
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3047 3048
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3049
	switch (ctype) {
3050
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3051 3052 3053 3054 3055
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3056 3057
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3058
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3059
		/* See mem_cgroup_prepare_migration() */
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3081
	}
K
KAMEZAWA Hiroyuki 已提交
3082

3083
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3084

3085
	ClearPageCgroupUsed(pc);
3086 3087 3088 3089 3090 3091
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3092

3093
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3094
	/*
3095
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3096 3097
	 * will never be freed.
	 */
3098
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3099
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3100 3101
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3102
	}
3103 3104 3105 3106 3107 3108
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3109
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3110

3111
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3112 3113 3114

unlock_out:
	unlock_page_cgroup(pc);
3115
	return NULL;
3116 3117
}

3118 3119
void mem_cgroup_uncharge_page(struct page *page)
{
3120 3121 3122
	/* early check. */
	if (page_mapped(page))
		return;
3123
	VM_BUG_ON(page->mapping && !PageAnon(page));
3124 3125
	if (PageSwapCache(page))
		return;
3126
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3127 3128 3129 3130 3131
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3132
	VM_BUG_ON(page->mapping);
3133
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3134 3135
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3150 3151
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3172 3173 3174 3175 3176 3177
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3178
	memcg_oom_recover(batch->memcg);
3179 3180 3181 3182
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3183
#ifdef CONFIG_SWAP
3184
/*
3185
 * called after __delete_from_swap_cache() and drop "page" account.
3186 3187
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3188 3189
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3190 3191
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3192 3193 3194 3195 3196
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3197
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3198

K
KAMEZAWA Hiroyuki 已提交
3199 3200 3201 3202 3203
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3204
		swap_cgroup_record(ent, css_id(&memcg->css));
3205
}
3206
#endif
3207

A
Andrew Morton 已提交
3208
#ifdef CONFIG_MEMCG_SWAP
3209 3210 3211 3212 3213
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3214
{
3215
	struct mem_cgroup *memcg;
3216
	unsigned short id;
3217 3218 3219 3220

	if (!do_swap_account)
		return;

3221 3222 3223
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3224
	if (memcg) {
3225 3226 3227 3228
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3229
		if (!mem_cgroup_is_root(memcg))
3230
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3231
		mem_cgroup_swap_statistics(memcg, false);
3232 3233
		mem_cgroup_put(memcg);
	}
3234
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3235
}
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3252
				struct mem_cgroup *from, struct mem_cgroup *to)
3253 3254 3255 3256 3257 3258 3259 3260
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3261
		mem_cgroup_swap_statistics(to, true);
3262
		/*
3263 3264 3265 3266 3267 3268
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3269 3270 3271 3272 3273 3274 3275 3276
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3277
				struct mem_cgroup *from, struct mem_cgroup *to)
3278 3279 3280
{
	return -EINVAL;
}
3281
#endif
K
KAMEZAWA Hiroyuki 已提交
3282

3283
/*
3284 3285
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3286
 */
3287 3288
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3289
{
3290
	struct mem_cgroup *memcg = NULL;
3291
	struct page_cgroup *pc;
3292
	enum charge_type ctype;
3293

3294
	*memcgp = NULL;
3295

A
Andrea Arcangeli 已提交
3296
	VM_BUG_ON(PageTransHuge(page));
3297
	if (mem_cgroup_disabled())
3298
		return;
3299

3300 3301 3302
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3303 3304
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3336
	}
3337
	unlock_page_cgroup(pc);
3338 3339 3340 3341
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3342
	if (!memcg)
3343
		return;
3344

3345
	*memcgp = memcg;
3346 3347 3348 3349 3350 3351 3352
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3353
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3354
	else
3355
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3356 3357 3358 3359 3360
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3361
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3362
}
3363

3364
/* remove redundant charge if migration failed*/
3365
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3366
	struct page *oldpage, struct page *newpage, bool migration_ok)
3367
{
3368
	struct page *used, *unused;
3369
	struct page_cgroup *pc;
3370
	bool anon;
3371

3372
	if (!memcg)
3373
		return;
3374
	/* blocks rmdir() */
3375
	cgroup_exclude_rmdir(&memcg->css);
3376
	if (!migration_ok) {
3377 3378
		used = oldpage;
		unused = newpage;
3379
	} else {
3380
		used = newpage;
3381 3382
		unused = oldpage;
	}
3383
	anon = PageAnon(used);
3384 3385 3386 3387
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3388
	css_put(&memcg->css);
3389
	/*
3390 3391 3392
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3393
	 */
3394 3395 3396 3397 3398
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3399
	/*
3400 3401 3402 3403 3404 3405
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3406
	 */
3407
	if (anon)
3408
		mem_cgroup_uncharge_page(used);
3409
	/*
3410 3411
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3412 3413 3414
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3415
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3416
}
3417

3418 3419 3420 3421 3422 3423 3424 3425
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3426
	struct mem_cgroup *memcg = NULL;
3427 3428 3429 3430 3431 3432 3433 3434 3435
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3436 3437 3438 3439 3440
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3441 3442
	unlock_page_cgroup(pc);

3443 3444 3445 3446 3447 3448
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3449 3450 3451 3452 3453
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3454
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3455 3456
}

3457 3458 3459 3460 3461 3462
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3463 3464 3465 3466 3467
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3487
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3488 3489 3490 3491 3492
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3493 3494
static DEFINE_MUTEX(set_limit_mutex);

3495
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3496
				unsigned long long val)
3497
{
3498
	int retry_count;
3499
	u64 memswlimit, memlimit;
3500
	int ret = 0;
3501 3502
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3503
	int enlarge;
3504 3505 3506 3507 3508 3509 3510 3511 3512

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3513

3514
	enlarge = 0;
3515
	while (retry_count) {
3516 3517 3518 3519
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3520 3521 3522
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3523
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3524 3525 3526 3527 3528 3529
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3530 3531
			break;
		}
3532 3533 3534 3535 3536

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3537
		ret = res_counter_set_limit(&memcg->res, val);
3538 3539 3540 3541 3542 3543
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3544 3545 3546 3547 3548
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3549 3550
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3551 3552 3553 3554 3555 3556
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3557
	}
3558 3559
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3560

3561 3562 3563
	return ret;
}

L
Li Zefan 已提交
3564 3565
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3566
{
3567
	int retry_count;
3568
	u64 memlimit, memswlimit, oldusage, curusage;
3569 3570
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3571
	int enlarge = 0;
3572

3573 3574 3575
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3576 3577 3578 3579 3580 3581 3582 3583
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3584
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3585 3586 3587 3588 3589 3590 3591 3592
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3593 3594 3595
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3596
		ret = res_counter_set_limit(&memcg->memsw, val);
3597 3598 3599 3600 3601 3602
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3603 3604 3605 3606 3607
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3608 3609 3610
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3611
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3612
		/* Usage is reduced ? */
3613
		if (curusage >= oldusage)
3614
			retry_count--;
3615 3616
		else
			oldusage = curusage;
3617
	}
3618 3619
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3620 3621 3622
	return ret;
}

3623
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3624 3625
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3626 3627 3628 3629 3630 3631
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3632
	unsigned long long excess;
3633
	unsigned long nr_scanned;
3634 3635 3636 3637

	if (order > 0)
		return 0;

3638
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3652
		nr_scanned = 0;
3653
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3654
						    gfp_mask, &nr_scanned);
3655
		nr_reclaimed += reclaimed;
3656
		*total_scanned += nr_scanned;
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3679
				if (next_mz == mz)
3680
					css_put(&next_mz->memcg->css);
3681
				else /* next_mz == NULL or other memcg */
3682 3683 3684
					break;
			} while (1);
		}
3685 3686
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3687 3688 3689 3690 3691 3692 3693 3694
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3695
		/* If excess == 0, no tree ops */
3696
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3697
		spin_unlock(&mctz->lock);
3698
		css_put(&mz->memcg->css);
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3711
		css_put(&next_mz->memcg->css);
3712 3713 3714
	return nr_reclaimed;
}

3715
/*
3716 3717 3718 3719
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3720
 */
3721
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3722
				int node, int zid, enum lru_list lru)
3723
{
3724
	struct lruvec *lruvec;
K
KAMEZAWA Hiroyuki 已提交
3725
	unsigned long flags, loop;
3726
	struct list_head *list;
3727 3728
	struct page *busy;
	struct zone *zone;
3729

K
KAMEZAWA Hiroyuki 已提交
3730
	zone = &NODE_DATA(node)->node_zones[zid];
3731 3732
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3733

3734
	loop = mem_cgroup_get_lru_size(lruvec, lru);
3735 3736 3737 3738
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3739
		struct page_cgroup *pc;
3740 3741
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3742
		spin_lock_irqsave(&zone->lru_lock, flags);
3743
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3744
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3745
			break;
3746
		}
3747 3748 3749
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3750
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3751
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3752 3753
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3754
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3755

3756
		pc = lookup_page_cgroup(page);
3757

3758
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3759
			/* found lock contention or "pc" is obsolete. */
3760
			busy = page;
3761 3762 3763
			cond_resched();
		} else
			busy = NULL;
3764
	}
3765
	return !list_empty(list);
3766 3767 3768 3769 3770 3771
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3772
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3773
{
3774 3775 3776
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3777
	struct cgroup *cgrp = memcg->css.cgroup;
3778

3779
	css_get(&memcg->css);
3780 3781

	shrink = 0;
3782 3783 3784
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3785
move_account:
3786
	do {
3787
		ret = -EBUSY;
3788 3789
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3790 3791
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3792
		drain_all_stock_sync(memcg);
3793
		ret = 0;
3794
		mem_cgroup_start_move(memcg);
3795
		for_each_node_state(node, N_HIGH_MEMORY) {
3796
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3797 3798
				enum lru_list lru;
				for_each_lru(lru) {
3799
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3800
							node, zid, lru);
3801 3802 3803
					if (ret)
						break;
				}
3804
			}
3805 3806 3807
			if (ret)
				break;
		}
3808 3809
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3810
		cond_resched();
3811
	/* "ret" should also be checked to ensure all lists are empty. */
3812
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3813
out:
3814
	css_put(&memcg->css);
3815
	return ret;
3816 3817

try_to_free:
3818 3819
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3820 3821 3822
		ret = -EBUSY;
		goto out;
	}
3823 3824
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3825 3826
	/* try to free all pages in this cgroup */
	shrink = 1;
3827
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3828
		int progress;
3829 3830 3831 3832 3833

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3834
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3835
						false);
3836
		if (!progress) {
3837
			nr_retries--;
3838
			/* maybe some writeback is necessary */
3839
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3840
		}
3841 3842

	}
K
KAMEZAWA Hiroyuki 已提交
3843
	lru_add_drain();
3844
	/* try move_account...there may be some *locked* pages. */
3845
	goto move_account;
3846 3847
}

3848
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3849 3850 3851 3852 3853
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3854 3855 3856 3857 3858 3859 3860 3861 3862
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3863
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3864
	struct cgroup *parent = cont->parent;
3865
	struct mem_cgroup *parent_memcg = NULL;
3866 3867

	if (parent)
3868
		parent_memcg = mem_cgroup_from_cont(parent);
3869 3870

	cgroup_lock();
3871 3872 3873 3874

	if (memcg->use_hierarchy == val)
		goto out;

3875
	/*
3876
	 * If parent's use_hierarchy is set, we can't make any modifications
3877 3878 3879 3880 3881 3882
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3883
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3884 3885
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3886
			memcg->use_hierarchy = val;
3887 3888 3889 3890
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3891 3892

out:
3893 3894 3895 3896 3897
	cgroup_unlock();

	return retval;
}

3898

3899
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3900
					       enum mem_cgroup_stat_index idx)
3901
{
K
KAMEZAWA Hiroyuki 已提交
3902
	struct mem_cgroup *iter;
3903
	long val = 0;
3904

3905
	/* Per-cpu values can be negative, use a signed accumulator */
3906
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3907 3908 3909 3910 3911
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3912 3913
}

3914
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3915
{
K
KAMEZAWA Hiroyuki 已提交
3916
	u64 val;
3917

3918
	if (!mem_cgroup_is_root(memcg)) {
3919
		if (!swap)
3920
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3921
		else
3922
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3923 3924
	}

3925 3926
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3927

K
KAMEZAWA Hiroyuki 已提交
3928
	if (swap)
3929
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3930 3931 3932 3933

	return val << PAGE_SHIFT;
}

3934 3935 3936
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3937
{
3938
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3939
	char str[64];
3940
	u64 val;
3941
	int type, name, len;
3942 3943 3944

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3945 3946 3947 3948

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3949 3950
	switch (type) {
	case _MEM:
3951
		if (name == RES_USAGE)
3952
			val = mem_cgroup_usage(memcg, false);
3953
		else
3954
			val = res_counter_read_u64(&memcg->res, name);
3955 3956
		break;
	case _MEMSWAP:
3957
		if (name == RES_USAGE)
3958
			val = mem_cgroup_usage(memcg, true);
3959
		else
3960
			val = res_counter_read_u64(&memcg->memsw, name);
3961 3962 3963 3964
		break;
	default:
		BUG();
	}
3965 3966 3967

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3968
}
3969 3970 3971 3972
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3973 3974
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3975
{
3976
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3977
	int type, name;
3978 3979 3980
	unsigned long long val;
	int ret;

3981 3982
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3983 3984 3985 3986

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3987
	switch (name) {
3988
	case RES_LIMIT:
3989 3990 3991 3992
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3993 3994
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3995 3996 3997
		if (ret)
			break;
		if (type == _MEM)
3998
			ret = mem_cgroup_resize_limit(memcg, val);
3999 4000
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4001
		break;
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4016 4017 4018 4019 4020
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4021 4022
}

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4050
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4051
{
4052
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4053
	int type, name;
4054

4055 4056
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4057 4058 4059 4060

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4061
	switch (name) {
4062
	case RES_MAX_USAGE:
4063
		if (type == _MEM)
4064
			res_counter_reset_max(&memcg->res);
4065
		else
4066
			res_counter_reset_max(&memcg->memsw);
4067 4068
		break;
	case RES_FAILCNT:
4069
		if (type == _MEM)
4070
			res_counter_reset_failcnt(&memcg->res);
4071
		else
4072
			res_counter_reset_failcnt(&memcg->memsw);
4073 4074
		break;
	}
4075

4076
	return 0;
4077 4078
}

4079 4080 4081 4082 4083 4084
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4085
#ifdef CONFIG_MMU
4086 4087 4088
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4089
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4090 4091 4092 4093 4094 4095 4096 4097 4098

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4099
	memcg->move_charge_at_immigrate = val;
4100 4101 4102 4103
	cgroup_unlock();

	return 0;
}
4104 4105 4106 4107 4108 4109 4110
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4111

4112
#ifdef CONFIG_NUMA
4113
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4114
				      struct seq_file *m)
4115 4116 4117 4118
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4119
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4120

4121
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4122 4123
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4124
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4125 4126 4127 4128
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4129
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4130 4131
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4132
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4133
				LRU_ALL_FILE);
4134 4135 4136 4137
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4138
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4139 4140
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4141
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4142
				LRU_ALL_ANON);
4143 4144 4145 4146
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4147
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4148 4149
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4150
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4151
				BIT(LRU_UNEVICTABLE));
4152 4153 4154 4155 4156 4157 4158
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4172
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4173
				 struct seq_file *m)
4174
{
4175
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4176 4177
	struct mem_cgroup *mi;
	unsigned int i;
4178

4179
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4180
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4181
			continue;
4182 4183
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4184
	}
L
Lee Schermerhorn 已提交
4185

4186 4187 4188 4189 4190 4191 4192 4193
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4194
	/* Hierarchical information */
4195 4196
	{
		unsigned long long limit, memsw_limit;
4197
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4198
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4199
		if (do_swap_account)
4200 4201
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4202
	}
K
KOSAKI Motohiro 已提交
4203

4204 4205 4206
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4207
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4208
			continue;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4229
	}
K
KAMEZAWA Hiroyuki 已提交
4230

K
KOSAKI Motohiro 已提交
4231 4232 4233 4234
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4235
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4236 4237 4238 4239 4240
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4242
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4243

4244 4245 4246 4247
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4248
			}
4249 4250 4251 4252
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4253 4254 4255
	}
#endif

4256 4257 4258
	return 0;
}

K
KOSAKI Motohiro 已提交
4259 4260 4261 4262
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4263
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4264 4265 4266 4267 4268 4269 4270
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4271

K
KOSAKI Motohiro 已提交
4272 4273 4274 4275 4276 4277 4278
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4279 4280 4281

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4282 4283
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4284 4285
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4286
		return -EINVAL;
4287
	}
K
KOSAKI Motohiro 已提交
4288 4289 4290

	memcg->swappiness = val;

4291 4292
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4293 4294 4295
	return 0;
}

4296 4297 4298 4299 4300 4301 4302 4303
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4304
		t = rcu_dereference(memcg->thresholds.primary);
4305
	else
4306
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4307 4308 4309 4310 4311 4312 4313

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4314
	 * current_threshold points to threshold just below or equal to usage.
4315 4316 4317
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4318
	i = t->current_threshold;
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4342
	t->current_threshold = i - 1;
4343 4344 4345 4346 4347 4348
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4349 4350 4351 4352 4353 4354 4355
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4366
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4367 4368 4369
{
	struct mem_cgroup_eventfd_list *ev;

4370
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4371 4372 4373 4374
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4375
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4376
{
K
KAMEZAWA Hiroyuki 已提交
4377 4378
	struct mem_cgroup *iter;

4379
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4380
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4381 4382 4383 4384
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4385 4386
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4387 4388
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4389 4390
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4391
	int i, size, ret;
4392 4393 4394 4395 4396 4397

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4398

4399
	if (type == _MEM)
4400
		thresholds = &memcg->thresholds;
4401
	else if (type == _MEMSWAP)
4402
		thresholds = &memcg->memsw_thresholds;
4403 4404 4405 4406 4407 4408
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4409
	if (thresholds->primary)
4410 4411
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4412
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4413 4414

	/* Allocate memory for new array of thresholds */
4415
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4416
			GFP_KERNEL);
4417
	if (!new) {
4418 4419 4420
		ret = -ENOMEM;
		goto unlock;
	}
4421
	new->size = size;
4422 4423

	/* Copy thresholds (if any) to new array */
4424 4425
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4426
				sizeof(struct mem_cgroup_threshold));
4427 4428
	}

4429
	/* Add new threshold */
4430 4431
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4432 4433

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4434
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4435 4436 4437
			compare_thresholds, NULL);

	/* Find current threshold */
4438
	new->current_threshold = -1;
4439
	for (i = 0; i < size; i++) {
4440
		if (new->entries[i].threshold <= usage) {
4441
			/*
4442 4443
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4444 4445
			 * it here.
			 */
4446
			++new->current_threshold;
4447 4448
		} else
			break;
4449 4450
	}

4451 4452 4453 4454 4455
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4456

4457
	/* To be sure that nobody uses thresholds */
4458 4459 4460 4461 4462 4463 4464 4465
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4466
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4467
	struct cftype *cft, struct eventfd_ctx *eventfd)
4468 4469
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4470 4471
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4472 4473
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4474
	int i, j, size;
4475 4476 4477

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4478
		thresholds = &memcg->thresholds;
4479
	else if (type == _MEMSWAP)
4480
		thresholds = &memcg->memsw_thresholds;
4481 4482 4483
	else
		BUG();

4484 4485 4486
	if (!thresholds->primary)
		goto unlock;

4487 4488 4489 4490 4491 4492
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4493 4494 4495
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4496 4497 4498
			size++;
	}

4499
	new = thresholds->spare;
4500

4501 4502
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4503 4504
		kfree(new);
		new = NULL;
4505
		goto swap_buffers;
4506 4507
	}

4508
	new->size = size;
4509 4510

	/* Copy thresholds and find current threshold */
4511 4512 4513
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4514 4515
			continue;

4516
		new->entries[j] = thresholds->primary->entries[i];
4517
		if (new->entries[j].threshold <= usage) {
4518
			/*
4519
			 * new->current_threshold will not be used
4520 4521 4522
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4523
			++new->current_threshold;
4524 4525 4526 4527
		}
		j++;
	}

4528
swap_buffers:
4529 4530
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4531 4532 4533 4534 4535 4536
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4537
	rcu_assign_pointer(thresholds->primary, new);
4538

4539
	/* To be sure that nobody uses thresholds */
4540
	synchronize_rcu();
4541
unlock:
4542 4543
	mutex_unlock(&memcg->thresholds_lock);
}
4544

K
KAMEZAWA Hiroyuki 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4557
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4558 4559 4560 4561 4562

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4563
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4564
		eventfd_signal(eventfd, 1);
4565
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4566 4567 4568 4569

	return 0;
}

4570
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4571 4572
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4573
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4574 4575 4576 4577 4578
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4579
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4580

4581
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4582 4583 4584 4585 4586 4587
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4588
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4589 4590
}

4591 4592 4593
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4594
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4595

4596
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4597

4598
	if (atomic_read(&memcg->under_oom))
4599 4600 4601 4602 4603 4604 4605 4606 4607
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4608
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4620
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4621 4622 4623
		cgroup_unlock();
		return -EINVAL;
	}
4624
	memcg->oom_kill_disable = val;
4625
	if (!val)
4626
		memcg_oom_recover(memcg);
4627 4628 4629 4630
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4631
#ifdef CONFIG_MEMCG_KMEM
4632
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4633
{
4634
	return mem_cgroup_sockets_init(memcg, ss);
4635 4636
};

4637
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4638
{
4639
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4640
}
4641
#else
4642
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4643 4644 4645
{
	return 0;
}
G
Glauber Costa 已提交
4646

4647
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4648 4649
{
}
4650 4651
#endif

B
Balbir Singh 已提交
4652 4653
static struct cftype mem_cgroup_files[] = {
	{
4654
		.name = "usage_in_bytes",
4655
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4656
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4657 4658
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4659
	},
4660 4661
	{
		.name = "max_usage_in_bytes",
4662
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4663
		.trigger = mem_cgroup_reset,
4664
		.read = mem_cgroup_read,
4665
	},
B
Balbir Singh 已提交
4666
	{
4667
		.name = "limit_in_bytes",
4668
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4669
		.write_string = mem_cgroup_write,
4670
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4671
	},
4672 4673 4674 4675
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4676
		.read = mem_cgroup_read,
4677
	},
B
Balbir Singh 已提交
4678 4679
	{
		.name = "failcnt",
4680
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4681
		.trigger = mem_cgroup_reset,
4682
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4683
	},
4684 4685
	{
		.name = "stat",
4686
		.read_seq_string = memcg_stat_show,
4687
	},
4688 4689 4690 4691
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4692 4693 4694 4695 4696
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4697 4698 4699 4700 4701
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4702 4703 4704 4705 4706
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4707 4708
	{
		.name = "oom_control",
4709 4710
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4711 4712 4713 4714
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4715 4716 4717
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4718
		.read_seq_string = memcg_numa_stat_show,
4719 4720
	},
#endif
A
Andrew Morton 已提交
4721
#ifdef CONFIG_MEMCG_SWAP
4722 4723 4724
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4725
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4726 4727
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4728 4729 4730 4731 4732
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4733
		.read = mem_cgroup_read,
4734 4735 4736 4737 4738
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4739
		.read = mem_cgroup_read,
4740 4741 4742 4743 4744
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4745
		.read = mem_cgroup_read,
4746 4747
	},
#endif
4748
	{ },	/* terminate */
4749
};
4750

4751
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4752 4753
{
	struct mem_cgroup_per_node *pn;
4754
	struct mem_cgroup_per_zone *mz;
4755
	int zone, tmp = node;
4756 4757 4758 4759 4760 4761 4762 4763
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4764 4765
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4766
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4767 4768
	if (!pn)
		return 1;
4769 4770 4771

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4772
		lruvec_init(&mz->lruvec);
4773
		mz->usage_in_excess = 0;
4774
		mz->on_tree = false;
4775
		mz->memcg = memcg;
4776
	}
4777
	memcg->info.nodeinfo[node] = pn;
4778 4779 4780
	return 0;
}

4781
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4782
{
4783
	kfree(memcg->info.nodeinfo[node]);
4784 4785
}

4786 4787
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4788
	struct mem_cgroup *memcg;
4789
	int size = sizeof(struct mem_cgroup);
4790

4791
	/* Can be very big if MAX_NUMNODES is very big */
4792
	if (size < PAGE_SIZE)
4793
		memcg = kzalloc(size, GFP_KERNEL);
4794
	else
4795
		memcg = vzalloc(size);
4796

4797
	if (!memcg)
4798 4799
		return NULL;

4800 4801
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4802
		goto out_free;
4803 4804
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4805 4806 4807

out_free:
	if (size < PAGE_SIZE)
4808
		kfree(memcg);
4809
	else
4810
		vfree(memcg);
4811
	return NULL;
4812 4813
}

4814
/*
4815
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4816 4817 4818
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4819
static void free_work(struct work_struct *work)
4820 4821
{
	struct mem_cgroup *memcg;
4822
	int size = sizeof(struct mem_cgroup);
4823 4824

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4837 4838 4839 4840
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4841
}
4842 4843

static void free_rcu(struct rcu_head *rcu_head)
4844 4845 4846 4847
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4848
	INIT_WORK(&memcg->work_freeing, free_work);
4849 4850 4851
	schedule_work(&memcg->work_freeing);
}

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4863
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4864
{
K
KAMEZAWA Hiroyuki 已提交
4865 4866
	int node;

4867 4868
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4869

B
Bob Liu 已提交
4870
	for_each_node(node)
4871
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4872

4873
	free_percpu(memcg->stat);
4874
	call_rcu(&memcg->rcu_freeing, free_rcu);
4875 4876
}

4877
static void mem_cgroup_get(struct mem_cgroup *memcg)
4878
{
4879
	atomic_inc(&memcg->refcnt);
4880 4881
}

4882
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4883
{
4884 4885 4886
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4887 4888 4889
		if (parent)
			mem_cgroup_put(parent);
	}
4890 4891
}

4892
static void mem_cgroup_put(struct mem_cgroup *memcg)
4893
{
4894
	__mem_cgroup_put(memcg, 1);
4895 4896
}

4897 4898 4899
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4900
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4901
{
4902
	if (!memcg->res.parent)
4903
		return NULL;
4904
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4905
}
G
Glauber Costa 已提交
4906
EXPORT_SYMBOL(parent_mem_cgroup);
4907

A
Andrew Morton 已提交
4908
#ifdef CONFIG_MEMCG_SWAP
4909 4910
static void __init enable_swap_cgroup(void)
{
4911
	if (!mem_cgroup_disabled() && really_do_swap_account)
4912 4913 4914 4915 4916 4917 4918 4919
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4920 4921 4922 4923 4924 4925
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4926
	for_each_node(node) {
4927 4928 4929 4930 4931
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4932
			goto err_cleanup;
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4943 4944

err_cleanup:
B
Bob Liu 已提交
4945
	for_each_node(node) {
4946 4947 4948 4949 4950 4951 4952
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4953 4954
}

L
Li Zefan 已提交
4955
static struct cgroup_subsys_state * __ref
4956
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4957
{
4958
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4959
	long error = -ENOMEM;
4960
	int node;
B
Balbir Singh 已提交
4961

4962 4963
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4964
		return ERR_PTR(error);
4965

B
Bob Liu 已提交
4966
	for_each_node(node)
4967
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4968
			goto free_out;
4969

4970
	/* root ? */
4971
	if (cont->parent == NULL) {
4972
		int cpu;
4973
		enable_swap_cgroup();
4974
		parent = NULL;
4975 4976
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4977
		root_mem_cgroup = memcg;
4978 4979 4980 4981 4982
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4983
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4984
	} else {
4985
		parent = mem_cgroup_from_cont(cont->parent);
4986 4987
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4988
	}
4989

4990
	if (parent && parent->use_hierarchy) {
4991 4992
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4993 4994 4995 4996 4997 4998 4999
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5000
	} else {
5001 5002
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5003 5004 5005 5006 5007 5008 5009
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5010
	}
5011 5012
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5013

K
KOSAKI Motohiro 已提交
5014
	if (parent)
5015 5016 5017 5018
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5019
	spin_lock_init(&memcg->move_lock);
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5031
	return &memcg->css;
5032
free_out:
5033
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5034
	return ERR_PTR(error);
B
Balbir Singh 已提交
5035 5036
}

5037
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5038
{
5039
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5040

5041
	return mem_cgroup_force_empty(memcg, false);
5042 5043
}

5044
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5045
{
5046
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047

5048
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5049

5050
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5051 5052
}

5053
#ifdef CONFIG_MMU
5054
/* Handlers for move charge at task migration. */
5055 5056
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5057
{
5058 5059
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5060
	struct mem_cgroup *memcg = mc.to;
5061

5062
	if (mem_cgroup_is_root(memcg)) {
5063 5064 5065 5066 5067 5068 5069 5070
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5071
		 * "memcg" cannot be under rmdir() because we've already checked
5072 5073 5074 5075
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5076
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5077
			goto one_by_one;
5078
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5079
						PAGE_SIZE * count, &dummy)) {
5080
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5097 5098
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5099
		if (ret)
5100
			/* mem_cgroup_clear_mc() will do uncharge later */
5101
			return ret;
5102 5103
		mc.precharge++;
	}
5104 5105 5106 5107
	return ret;
}

/**
5108
 * get_mctgt_type - get target type of moving charge
5109 5110 5111
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5112
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5113 5114 5115 5116 5117 5118
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5119 5120 5121
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5122 5123 5124 5125 5126
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5127
	swp_entry_t	ent;
5128 5129 5130
};

enum mc_target_type {
5131
	MC_TARGET_NONE = 0,
5132
	MC_TARGET_PAGE,
5133
	MC_TARGET_SWAP,
5134 5135
};

D
Daisuke Nishimura 已提交
5136 5137
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5138
{
D
Daisuke Nishimura 已提交
5139
	struct page *page = vm_normal_page(vma, addr, ptent);
5140

D
Daisuke Nishimura 已提交
5141 5142 5143 5144
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5145
		if (!move_anon())
D
Daisuke Nishimura 已提交
5146
			return NULL;
5147 5148
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5149 5150 5151 5152 5153 5154 5155
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5156
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5157 5158 5159 5160 5161 5162 5163 5164
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5165 5166 5167 5168 5169
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5170 5171 5172 5173 5174
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5175 5176 5177 5178 5179 5180 5181
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5182

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5202 5203 5204 5205 5206 5207
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5208
		if (do_swap_account)
5209 5210
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5211
	}
5212
#endif
5213 5214 5215
	return page;
}

5216
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5217 5218 5219 5220
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5221
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5222 5223 5224 5225 5226 5227
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5228 5229
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5230 5231

	if (!page && !ent.val)
5232
		return ret;
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5248 5249
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5250
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5251 5252 5253
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5254 5255 5256 5257
	}
	return ret;
}

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5293 5294 5295 5296 5297 5298 5299 5300
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5301 5302 5303 5304
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5305
		return 0;
5306
	}
5307

5308 5309
	if (pmd_trans_unstable(pmd))
		return 0;
5310 5311
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5312
		if (get_mctgt_type(vma, addr, *pte, NULL))
5313 5314 5315 5316
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5317 5318 5319
	return 0;
}

5320 5321 5322 5323 5324
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5325
	down_read(&mm->mmap_sem);
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5337
	up_read(&mm->mmap_sem);
5338 5339 5340 5341 5342 5343 5344 5345 5346

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5347 5348 5349 5350 5351
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5352 5353
}

5354 5355
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5356
{
5357 5358 5359
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5360
	/* we must uncharge all the leftover precharges from mc.to */
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5372
	}
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5407
	spin_lock(&mc.lock);
5408 5409
	mc.from = NULL;
	mc.to = NULL;
5410
	spin_unlock(&mc.lock);
5411
	mem_cgroup_end_move(from);
5412 5413
}

5414 5415
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5416
{
5417
	struct task_struct *p = cgroup_taskset_first(tset);
5418
	int ret = 0;
5419
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5420

5421
	if (memcg->move_charge_at_immigrate) {
5422 5423 5424
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5425
		VM_BUG_ON(from == memcg);
5426 5427 5428 5429 5430

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5431 5432 5433 5434
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5435
			VM_BUG_ON(mc.moved_charge);
5436
			VM_BUG_ON(mc.moved_swap);
5437
			mem_cgroup_start_move(from);
5438
			spin_lock(&mc.lock);
5439
			mc.from = from;
5440
			mc.to = memcg;
5441
			spin_unlock(&mc.lock);
5442
			/* We set mc.moving_task later */
5443 5444 5445 5446

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5447 5448
		}
		mmput(mm);
5449 5450 5451 5452
	}
	return ret;
}

5453 5454
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5455
{
5456
	mem_cgroup_clear_mc();
5457 5458
}

5459 5460 5461
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5462
{
5463 5464 5465 5466
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5467 5468 5469 5470
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5483
		if (mc.precharge < HPAGE_PMD_NR) {
5484 5485 5486 5487 5488 5489 5490 5491 5492
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5493
							pc, mc.from, mc.to)) {
5494 5495 5496 5497 5498 5499 5500 5501
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5502
		return 0;
5503 5504
	}

5505 5506
	if (pmd_trans_unstable(pmd))
		return 0;
5507 5508 5509 5510
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5511
		swp_entry_t ent;
5512 5513 5514 5515

		if (!mc.precharge)
			break;

5516
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5517 5518 5519 5520 5521
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5522
			if (!mem_cgroup_move_account(page, 1, pc,
5523
						     mc.from, mc.to)) {
5524
				mc.precharge--;
5525 5526
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5527 5528
			}
			putback_lru_page(page);
5529
put:			/* get_mctgt_type() gets the page */
5530 5531
			put_page(page);
			break;
5532 5533
		case MC_TARGET_SWAP:
			ent = target.ent;
5534
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5535
				mc.precharge--;
5536 5537 5538
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5539
			break;
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5554
		ret = mem_cgroup_do_precharge(1);
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5598
	up_read(&mm->mmap_sem);
5599 5600
}

5601 5602
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5603
{
5604
	struct task_struct *p = cgroup_taskset_first(tset);
5605
	struct mm_struct *mm = get_task_mm(p);
5606 5607

	if (mm) {
5608 5609
		if (mc.to)
			mem_cgroup_move_charge(mm);
5610 5611
		mmput(mm);
	}
5612 5613
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5614
}
5615
#else	/* !CONFIG_MMU */
5616 5617
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5618 5619 5620
{
	return 0;
}
5621 5622
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5623 5624
{
}
5625 5626
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5627 5628 5629
{
}
#endif
B
Balbir Singh 已提交
5630

B
Balbir Singh 已提交
5631 5632 5633 5634
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5635
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5636
	.destroy = mem_cgroup_destroy,
5637 5638
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5639
	.attach = mem_cgroup_move_task,
5640
	.base_cftypes = mem_cgroup_files,
5641
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5642
	.use_id = 1,
5643
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5644
};
5645

A
Andrew Morton 已提交
5646
#ifdef CONFIG_MEMCG_SWAP
5647 5648 5649
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5650
	if (!strcmp(s, "1"))
5651
		really_do_swap_account = 1;
5652
	else if (!strcmp(s, "0"))
5653 5654 5655
		really_do_swap_account = 0;
	return 1;
}
5656
__setup("swapaccount=", enable_swap_account);
5657 5658

#endif