page_alloc.c 254.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/mmu_notifier.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
69
#include <linux/lockdep.h>
70
#include <linux/nmi.h>
71
#include <linux/psi.h>
72
#include <linux/padata.h>
73
#include <linux/khugepaged.h>
74
#include <linux/buffer_head.h>
75
#include <asm/sections.h>
L
Linus Torvalds 已提交
76
#include <asm/tlbflush.h>
77
#include <asm/div64.h>
L
Linus Torvalds 已提交
78
#include "internal.h"
79
#include "shuffle.h"
A
Alexander Duyck 已提交
80
#include "page_reporting.h"
L
Linus Torvalds 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
typedef int __bitwise fpi_t;

/* No special request */
#define FPI_NONE		((__force fpi_t)0)

/*
 * Skip free page reporting notification for the (possibly merged) page.
 * This does not hinder free page reporting from grabbing the page,
 * reporting it and marking it "reported" -  it only skips notifying
 * the free page reporting infrastructure about a newly freed page. For
 * example, used when temporarily pulling a page from a freelist and
 * putting it back unmodified.
 */
#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))

98 99 100 101 102 103 104 105 106 107 108 109
/*
 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 * page shuffling (relevant code - e.g., memory onlining - is expected to
 * shuffle the whole zone).
 *
 * Note: No code should rely on this flag for correctness - it's purely
 *       to allow for optimizations when handing back either fresh pages
 *       (memory onlining) or untouched pages (page isolation, free page
 *       reporting).
 */
#define FPI_TO_TAIL		((__force fpi_t)BIT(1))

110 111 112 113 114 115 116 117 118 119 120
/*
 * Don't poison memory with KASAN (only for the tag-based modes).
 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 * Poisoning all that memory lengthens boot time, especially on systems with
 * large amount of RAM. This flag is used to skip that poisoning.
 * This is only done for the tag-based KASAN modes, as those are able to
 * detect memory corruptions with the memory tags assigned by default.
 * All memory allocated normally after boot gets poisoned as usual.
 */
#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))

121 122
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
123
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
124

125 126 127 128 129
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

130 131
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

132 133 134 135 136 137 138 139 140 141 142
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

143
/* work_structs for global per-cpu drains */
144 145 146 147
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
148 149
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150

151
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152
volatile unsigned long latent_entropy __latent_entropy;
153 154 155
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
156
/*
157
 * Array of node states.
L
Linus Torvalds 已提交
158
 */
159 160 161 162 163 164 165
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
166 167
#endif
	[N_MEMORY] = { { [0] = 1UL } },
168 169 170 171 172
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

173 174
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
175
unsigned long totalreserve_pages __read_mostly;
176
unsigned long totalcma_pages __read_mostly;
177

178
int percpu_pagelist_fraction;
179
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 182
EXPORT_SYMBOL(init_on_alloc);

183
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 185
EXPORT_SYMBOL(init_on_free);

186 187
static bool _init_on_alloc_enabled_early __read_mostly
				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 189 190
static int __init early_init_on_alloc(char *buf)
{

191
	return kstrtobool(buf, &_init_on_alloc_enabled_early);
192 193 194
}
early_param("init_on_alloc", early_init_on_alloc);

195 196
static bool _init_on_free_enabled_early __read_mostly
				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 198
static int __init early_init_on_free(char *buf)
{
199
	return kstrtobool(buf, &_init_on_free_enabled_early);
200 201
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

221 222 223 224 225
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
226 227 228 229
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
230
 */
231 232 233 234

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
235
{
236
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 238 239 240
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
241 242
}

243
void pm_restrict_gfp_mask(void)
244
{
245
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 247
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
248
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249
}
250 251 252

bool pm_suspended_storage(void)
{
253
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 255 256
		return false;
	return true;
}
257 258
#endif /* CONFIG_PM_SLEEP */

259
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260
unsigned int pageblock_order __read_mostly;
261 262
#endif

263 264
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags);
265

L
Linus Torvalds 已提交
266 267 268 269 270 271
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
272
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
273 274 275
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
276
 */
277
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278
#ifdef CONFIG_ZONE_DMA
279
	[ZONE_DMA] = 256,
280
#endif
281
#ifdef CONFIG_ZONE_DMA32
282
	[ZONE_DMA32] = 256,
283
#endif
284
	[ZONE_NORMAL] = 32,
285
#ifdef CONFIG_HIGHMEM
286
	[ZONE_HIGHMEM] = 0,
287
#endif
288
	[ZONE_MOVABLE] = 0,
289
};
L
Linus Torvalds 已提交
290

291
static char * const zone_names[MAX_NR_ZONES] = {
292
#ifdef CONFIG_ZONE_DMA
293
	 "DMA",
294
#endif
295
#ifdef CONFIG_ZONE_DMA32
296
	 "DMA32",
297
#endif
298
	 "Normal",
299
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
300
	 "HighMem",
301
#endif
M
Mel Gorman 已提交
302
	 "Movable",
303 304 305
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
306 307
};

308
const char * const migratetype_names[MIGRATE_TYPES] = {
309 310 311 312 313 314 315 316 317 318 319 320
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

321 322 323
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
	[NULL_COMPOUND_DTOR] = NULL,
	[COMPOUND_PAGE_DTOR] = free_compound_page,
324
#ifdef CONFIG_HUGETLB_PAGE
325
	[HUGETLB_PAGE_DTOR] = free_huge_page,
326
#endif
327
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
328
	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329
#endif
330 331
};

L
Linus Torvalds 已提交
332
int min_free_kbytes = 1024;
333
int user_min_free_kbytes = -1;
334 335 336 337 338 339 340 341 342 343 344 345
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
346
int watermark_boost_factor __read_mostly = 15000;
347
#endif
348
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
349

350 351 352
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
353

354 355
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356
static unsigned long required_kernelcore __initdata;
357
static unsigned long required_kernelcore_percent __initdata;
358
static unsigned long required_movablecore __initdata;
359
static unsigned long required_movablecore_percent __initdata;
360
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
362 363 364 365

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
366

M
Miklos Szeredi 已提交
367
#if MAX_NUMNODES > 1
368
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
370
EXPORT_SYMBOL(nr_node_ids);
371
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
372 373
#endif

374 375
int page_group_by_mobility_disabled __read_mostly;

376
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
397
static inline void kasan_free_nondeferred_pages(struct page *page, int order,
398
						bool init, fpi_t fpi_flags)
399
{
400 401 402 403 404
	if (static_branch_unlikely(&deferred_pages))
		return;
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
			(fpi_flags & FPI_SKIP_KASAN_POISON))
		return;
405
	kasan_free_pages(page, order, init);
406 407
}

408
/* Returns true if the struct page for the pfn is uninitialised */
409
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
410
{
411 412 413
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 415 416 417 418 419
		return true;

	return false;
}

/*
420
 * Returns true when the remaining initialisation should be deferred until
421 422
 * later in the boot cycle when it can be parallelised.
 */
423 424
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
425
{
426 427 428 429 430 431 432 433 434 435 436
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

437
	/* Always populate low zones for address-constrained allocations */
438
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
439
		return false;
440

441 442
	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
		return true;
443 444 445 446
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
447
	nr_initialised++;
448
	if ((nr_initialised > PAGES_PER_SECTION) &&
449 450 451
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
452
	}
453
	return false;
454 455
}
#else
456
static inline void kasan_free_nondeferred_pages(struct page *page, int order,
457
						bool init, fpi_t fpi_flags)
458 459 460 461
{
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
			(fpi_flags & FPI_SKIP_KASAN_POISON))
		return;
462
	kasan_free_pages(page, order, init);
463
}
464

465 466 467 468 469
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

470
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471
{
472
	return false;
473 474 475
}
#endif

476 477 478 479 480
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
481
	return section_to_usemap(__pfn_to_section(pfn));
482 483 484 485 486 487 488 489 490 491 492 493
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
494
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 496
}

497 498
static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page *page,
499 500 501 502 503 504 505 506 507 508 509 510 511
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
512
	return (word >> bitidx) & mask;
513 514
}

M
Mauro Carvalho Chehab 已提交
515 516 517 518 519 520 521 522
/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
523 524 525
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long mask)
{
526
	return __get_pfnblock_flags_mask(page, pfn, mask);
527 528 529 530
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
531
	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
550
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
551 552 553 554 555 556 557 558

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

559 560
	mask <<= bitidx;
	flags <<= bitidx;
561 562 563 564 565 566 567 568 569

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
570

571
void set_pageblock_migratetype(struct page *page, int migratetype)
572
{
573 574
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
575 576
		migratetype = MIGRATE_UNMOVABLE;

577
	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
578
				page_to_pfn(page), MIGRATETYPE_MASK);
579 580
}

N
Nick Piggin 已提交
581
#ifdef CONFIG_DEBUG_VM
582
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
583
{
584 585 586
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
587
	unsigned long sp, start_pfn;
588

589 590
	do {
		seq = zone_span_seqbegin(zone);
591 592
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
593
		if (!zone_spans_pfn(zone, pfn))
594 595 596
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

597
	if (ret)
598 599 600
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
601

602
	return ret;
603 604 605 606
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
607
	if (!pfn_valid_within(page_to_pfn(page)))
608
		return 0;
L
Linus Torvalds 已提交
609
	if (zone != page_zone(page))
610 611 612 613 614 615 616
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
617
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 619
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
620
		return 1;
621 622 623
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
624 625
	return 0;
}
N
Nick Piggin 已提交
626
#else
627
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
628 629 630 631 632
{
	return 0;
}
#endif

633
static void bad_page(struct page *page, const char *reason)
L
Linus Torvalds 已提交
634
{
635 636 637 638 639 640 641 642 643 644 645 646 647 648
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
649
			pr_alert(
650
			      "BUG: Bad page state: %lu messages suppressed\n",
651 652 653 654 655 656 657 658
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

659
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
660
		current->comm, page_to_pfn(page));
661
	__dump_page(page, reason);
662
	dump_page_owner(page);
663

664
	print_modules();
L
Linus Torvalds 已提交
665
	dump_stack();
666
out:
667
	/* Leave bad fields for debug, except PageBuddy could make trouble */
668
	page_mapcount_reset(page); /* remove PageBuddy */
669
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
670 671 672 673 674
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
675
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
676
 *
677 678
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
679
 *
680 681
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
682
 *
683
 * The first tail page's ->compound_order holds the order of allocation.
684
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
685
 */
686

687
void free_compound_page(struct page *page)
688
{
689
	mem_cgroup_uncharge(page);
690
	__free_pages_ok(page, compound_order(page), FPI_NONE);
691 692
}

693
void prep_compound_page(struct page *page, unsigned int order)
694 695 696 697 698 699 700
{
	int i;
	int nr_pages = 1 << order;

	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
701
		set_page_count(p, 0);
702
		p->mapping = TAIL_MAPPING;
703
		set_compound_head(p, page);
704
	}
705 706 707

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
708
	atomic_set(compound_mapcount_ptr(page), -1);
709 710
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
711 712
}

713 714
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
715

716 717 718
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
719
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
720
EXPORT_SYMBOL(_debug_pagealloc_enabled);
721 722

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
723

724 725
static int __init early_debug_pagealloc(char *buf)
{
726
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
727 728 729
}
early_param("debug_pagealloc", early_debug_pagealloc);

730 731 732 733 734
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
735
		pr_err("Bad debug_guardpage_minorder value\n");
736 737 738
		return 0;
	}
	_debug_guardpage_minorder = res;
739
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 741
	return 0;
}
742
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743

744
static inline bool set_page_guard(struct zone *zone, struct page *page,
745
				unsigned int order, int migratetype)
746
{
747
	if (!debug_guardpage_enabled())
748 749 750 751
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
752

753
	__SetPageGuard(page);
754 755 756 757
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
758 759

	return true;
760 761
}

762 763
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
764
{
765 766 767
	if (!debug_guardpage_enabled())
		return;

768
	__ClearPageGuard(page);
769

770 771 772
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
773 774
}
#else
775 776
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
777 778
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
779 780
#endif

781 782 783 784 785 786 787 788
/*
 * Enable static keys related to various memory debugging and hardening options.
 * Some override others, and depend on early params that are evaluated in the
 * order of appearance. So we need to first gather the full picture of what was
 * enabled, and then make decisions.
 */
void init_mem_debugging_and_hardening(void)
{
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	bool page_poisoning_requested = false;

#ifdef CONFIG_PAGE_POISONING
	/*
	 * Page poisoning is debug page alloc for some arches. If
	 * either of those options are enabled, enable poisoning.
	 */
	if (page_poisoning_enabled() ||
	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
	      debug_pagealloc_enabled())) {
		static_branch_enable(&_page_poisoning_enabled);
		page_poisoning_requested = true;
	}
#endif

804
	if (_init_on_alloc_enabled_early) {
805
		if (page_poisoning_requested)
806 807 808 809 810 811
			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
				"will take precedence over init_on_alloc\n");
		else
			static_branch_enable(&init_on_alloc);
	}
	if (_init_on_free_enabled_early) {
812
		if (page_poisoning_requested)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
				"will take precedence over init_on_free\n");
		else
			static_branch_enable(&init_on_free);
	}

#ifdef CONFIG_DEBUG_PAGEALLOC
	if (!debug_pagealloc_enabled())
		return;

	static_branch_enable(&_debug_pagealloc_enabled);

	if (!debug_guardpage_minorder())
		return;

	static_branch_enable(&_debug_guardpage_enabled);
#endif
}

832
static inline void set_buddy_order(struct page *page, unsigned int order)
833
{
H
Hugh Dickins 已提交
834
	set_page_private(page, order);
835
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
836 837 838 839
}

/*
 * This function checks whether a page is free && is the buddy
840
 * we can coalesce a page and its buddy if
841
 * (a) the buddy is not in a hole (check before calling!) &&
842
 * (b) the buddy is in the buddy system &&
843 844
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
845
 *
846 847
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
848
 *
849
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
850
 */
851
static inline bool page_is_buddy(struct page *page, struct page *buddy,
852
							unsigned int order)
L
Linus Torvalds 已提交
853
{
854 855
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
856

857
	if (buddy_order(buddy) != order)
858
		return false;
859

860 861 862 863 864 865
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
866

867
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
868

869
	return true;
L
Linus Torvalds 已提交
870 871
}

872 873 874 875 876
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

877
	return unlikely(capc) &&
878 879
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
880
		capc->cc->zone == zone ? capc : NULL;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
I
Ingo Molnar 已提交
896
	 * Do not let lower order allocations pollute a movable pageblock.
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

942 943 944 945 946
/*
 * Used for pages which are on another list. Move the pages to the tail
 * of the list - so the moved pages won't immediately be considered for
 * allocation again (e.g., optimization for memory onlining).
 */
947 948 949 950 951
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

952
	list_move_tail(&page->lru, &area->free_list[migratetype]);
953 954 955 956 957
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
958 959 960 961
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

962 963 964 965 966 967
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
1011 1012
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
1013
 * So when we are allocating or freeing one, we can derive the state of the
1014 1015
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
1016
 * If a block is freed, and its buddy is also free, then this
1017
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
1018
 *
1019
 * -- nyc
L
Linus Torvalds 已提交
1020 1021
 */

N
Nick Piggin 已提交
1022
static inline void __free_one_page(struct page *page,
1023
		unsigned long pfn,
1024
		struct zone *zone, unsigned int order,
1025
		int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1026
{
1027
	struct capture_control *capc = task_capc(zone);
1028
	unsigned long buddy_pfn;
1029
	unsigned long combined_pfn;
1030
	unsigned int max_order;
1031 1032
	struct page *buddy;
	bool to_tail;
1033

1034
	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
L
Linus Torvalds 已提交
1035

1036
	VM_BUG_ON(!zone_is_initialized(zone));
1037
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
1038

1039
	VM_BUG_ON(migratetype == -1);
1040
	if (likely(!is_migrate_isolate(migratetype)))
1041
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1042

1043
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1044
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
1045

1046
continue_merging:
1047
	while (order < max_order) {
1048 1049 1050 1051 1052
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
1053 1054
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
1055 1056 1057

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
1058
		if (!page_is_buddy(page, buddy, order))
1059
			goto done_merging;
1060 1061 1062 1063
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
1064
		if (page_is_guard(buddy))
1065
			clear_page_guard(zone, buddy, order, migratetype);
1066
		else
1067
			del_page_from_free_list(buddy, zone, order);
1068 1069 1070
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1071 1072
		order++;
	}
1073
	if (order < MAX_ORDER - 1) {
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1085 1086
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1087 1088 1089 1090 1091 1092 1093
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
1094
		max_order = order + 1;
1095 1096 1097 1098
		goto continue_merging;
	}

done_merging:
1099
	set_buddy_order(page, order);
1100

1101 1102 1103
	if (fpi_flags & FPI_TO_TAIL)
		to_tail = true;
	else if (is_shuffle_order(order))
1104
		to_tail = shuffle_pick_tail();
1105
	else
1106
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1107

1108
	if (to_tail)
1109
		add_to_free_list_tail(page, zone, order, migratetype);
1110
	else
1111
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1112 1113

	/* Notify page reporting subsystem of freed page */
1114
	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
A
Alexander Duyck 已提交
1115
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
1132
			page->memcg_data |
1133 1134 1135 1136 1137 1138 1139
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1140
static const char *page_bad_reason(struct page *page, unsigned long flags)
L
Linus Torvalds 已提交
1141
{
1142
	const char *bad_reason = NULL;
1143

1144
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1145 1146 1147
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1148
	if (unlikely(page_ref_count(page) != 0))
1149
		bad_reason = "nonzero _refcount";
1150 1151 1152 1153 1154
	if (unlikely(page->flags & flags)) {
		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
		else
			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1155
	}
1156
#ifdef CONFIG_MEMCG
1157
	if (unlikely(page->memcg_data))
1158 1159
		bad_reason = "page still charged to cgroup";
#endif
1160 1161 1162 1163 1164 1165 1166
	return bad_reason;
}

static void check_free_page_bad(struct page *page)
{
	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1167 1168
}

1169
static inline int check_free_page(struct page *page)
1170
{
1171
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1172 1173 1174
		return 0;

	/* Something has gone sideways, find it */
1175
	check_free_page_bad(page);
1176
	return 1;
L
Linus Torvalds 已提交
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1195
		/* the first tail page: ->mapping may be compound_mapcount() */
1196
		if (unlikely(compound_mapcount(page))) {
1197
			bad_page(page, "nonzero compound_mapcount");
1198 1199 1200 1201 1202 1203
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1204
		 * deferred_list.next -- ignore value.
1205 1206 1207 1208
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
1209
			bad_page(page, "corrupted mapping in tail page");
1210 1211 1212 1213 1214
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
1215
		bad_page(page, "PageTail not set");
1216 1217 1218
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
1219
		bad_page(page, "compound_head not consistent");
1220 1221 1222 1223 1224 1225 1226 1227 1228
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1229 1230 1231 1232
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

1233 1234
	/* s390's use of memset() could override KASAN redzones. */
	kasan_disable_current();
1235
	for (i = 0; i < numpages; i++) {
1236
		u8 tag = page_kasan_tag(page + i);
1237
		page_kasan_tag_reset(page + i);
1238
		clear_highpage(page + i);
1239
		page_kasan_tag_set(page + i, tag);
1240
	}
1241
	kasan_enable_current();
1242 1243
}

1244
static __always_inline bool free_pages_prepare(struct page *page,
1245
			unsigned int order, bool check_free, fpi_t fpi_flags)
1246
{
1247
	int bad = 0;
1248
	bool init;
1249 1250 1251

	VM_BUG_ON_PAGE(PageTail(page), page);

1252 1253
	trace_mm_page_free(page, order);

1254 1255 1256 1257 1258
	if (unlikely(PageHWPoison(page)) && !order) {
		/*
		 * Do not let hwpoison pages hit pcplists/buddy
		 * Untie memcg state and reset page's owner
		 */
1259
		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1260 1261 1262 1263 1264
			__memcg_kmem_uncharge_page(page, order);
		reset_page_owner(page, order);
		return false;
	}

1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274

1275 1276
		if (compound)
			ClearPageDoubleMap(page);
1277 1278 1279
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
1280
			if (unlikely(check_free_page(page + i))) {
1281 1282 1283 1284 1285 1286
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1287
	if (PageMappingFlags(page))
1288
		page->mapping = NULL;
1289
	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1290
		__memcg_kmem_uncharge_page(page, order);
1291
	if (check_free)
1292
		bad += check_free_page(page);
1293 1294
	if (bad)
		return false;
1295

1296 1297 1298
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1299 1300 1301

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1302
					   PAGE_SIZE << order);
1303
		debug_check_no_obj_freed(page_address(page),
1304
					   PAGE_SIZE << order);
1305
	}
1306

1307 1308
	kernel_poison_pages(page, 1 << order);

1309
	/*
1310 1311 1312 1313
	 * As memory initialization might be integrated into KASAN,
	 * kasan_free_pages and kernel_init_free_pages must be
	 * kept together to avoid discrepancies in behavior.
	 *
1314 1315 1316
	 * With hardware tag-based KASAN, memory tags must be set before the
	 * page becomes unavailable via debug_pagealloc or arch_free_page.
	 */
1317 1318 1319 1320
	init = want_init_on_free();
	if (init && !kasan_has_integrated_init())
		kernel_init_free_pages(page, 1 << order);
	kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1321

1322 1323 1324 1325 1326 1327 1328
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1329
	debug_pagealloc_unmap_pages(page, 1 << order);
1330

1331 1332 1333
	return true;
}

1334
#ifdef CONFIG_DEBUG_VM
1335 1336 1337 1338 1339 1340
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
static bool free_pcp_prepare(struct page *page)
1341
{
1342
	return free_pages_prepare(page, 0, true, FPI_NONE);
1343 1344
}

1345
static bool bulkfree_pcp_prepare(struct page *page)
1346
{
1347
	if (debug_pagealloc_enabled_static())
1348
		return check_free_page(page);
1349 1350
	else
		return false;
1351 1352
}
#else
1353 1354 1355 1356 1357 1358
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1359 1360
static bool free_pcp_prepare(struct page *page)
{
1361
	if (debug_pagealloc_enabled_static())
1362
		return free_pages_prepare(page, 0, true, FPI_NONE);
1363
	else
1364
		return free_pages_prepare(page, 0, false, FPI_NONE);
1365 1366
}

1367 1368
static bool bulkfree_pcp_prepare(struct page *page)
{
1369
	return check_free_page(page);
1370 1371 1372
}
#endif /* CONFIG_DEBUG_VM */

1373 1374 1375 1376 1377 1378 1379 1380 1381
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1382
/*
1383
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1384
 * Assumes all pages on list are in same zone, and of same order.
1385
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1386 1387 1388 1389 1390 1391 1392
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1393 1394
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1395
{
1396
	int migratetype = 0;
1397
	int batch_free = 0;
1398
	int prefetch_nr = READ_ONCE(pcp->batch);
1399
	bool isolated_pageblocks;
1400 1401
	struct page *page, *tmp;
	LIST_HEAD(head);
1402

1403 1404 1405 1406 1407
	/*
	 * Ensure proper count is passed which otherwise would stuck in the
	 * below while (list_empty(list)) loop.
	 */
	count = min(pcp->count, count);
1408
	while (count) {
1409 1410 1411
		struct list_head *list;

		/*
1412 1413 1414 1415 1416
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1417 1418
		 */
		do {
1419
			batch_free++;
1420 1421 1422 1423
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1424

1425 1426
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1427
			batch_free = count;
1428

1429
		do {
1430
			page = list_last_entry(list, struct page, lru);
1431
			/* must delete to avoid corrupting pcp list */
1432
			list_del(&page->lru);
1433
			pcp->count--;
1434

1435 1436 1437
			if (bulkfree_pcp_prepare(page))
				continue;

1438
			list_add_tail(&page->lru, &head);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
1449
			if (prefetch_nr) {
1450
				prefetch_buddy(page);
1451 1452
				prefetch_nr--;
			}
1453
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1454
	}
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

1471
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 1473
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1474
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1475 1476
}

1477 1478
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1479
				unsigned int order,
1480
				int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1481
{
1482
	spin_lock(&zone->lock);
1483 1484 1485 1486
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1487
	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1489 1490
}

1491
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492
				unsigned long zone, int nid)
1493
{
1494
	mm_zero_struct_page(page);
1495 1496 1497 1498
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1499
	page_kasan_tag_reset(page);
1500 1501 1502 1503 1504 1505 1506 1507 1508

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1509
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510
static void __meminit init_reserved_page(unsigned long pfn)
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1527
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528 1529 1530 1531 1532 1533 1534
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1535 1536 1537 1538 1539 1540
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1541
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542 1543 1544 1545
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1546 1547 1548 1549 1550
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1551 1552 1553 1554

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1555 1556 1557 1558 1559 1560
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1561 1562
		}
	}
1563 1564
}

1565 1566
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags)
1567
{
1568
	unsigned long flags;
M
Minchan Kim 已提交
1569
	int migratetype;
1570
	unsigned long pfn = page_to_pfn(page);
1571

1572
	if (!free_pages_prepare(page, order, true, fpi_flags))
1573 1574
		return;

1575
	migratetype = get_pfnblock_migratetype(page, pfn);
1576 1577
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1578 1579
	free_one_page(page_zone(page), page, pfn, order, migratetype,
		      fpi_flags);
1580
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1581 1582
}

1583
void __free_pages_core(struct page *page, unsigned int order)
1584
{
1585
	unsigned int nr_pages = 1 << order;
1586
	struct page *p = page;
1587
	unsigned int loop;
1588

1589 1590 1591 1592 1593
	/*
	 * When initializing the memmap, __init_single_page() sets the refcount
	 * of all pages to 1 ("allocated"/"not free"). We have to set the
	 * refcount of all involved pages to 0.
	 */
1594 1595 1596
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1597 1598
		__ClearPageReserved(p);
		set_page_count(p, 0);
1599
	}
1600 1601
	__ClearPageReserved(p);
	set_page_count(p, 0);
1602

1603
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604 1605 1606 1607 1608

	/*
	 * Bypass PCP and place fresh pages right to the tail, primarily
	 * relevant for memory onlining.
	 */
1609
	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610 1611
}

1612
#ifdef CONFIG_NEED_MULTIPLE_NODES
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/*
 * During memory init memblocks map pfns to nids. The search is expensive and
 * this caches recent lookups. The implementation of __early_pfn_to_nid
 * treats start/end as pfns.
 */
struct mminit_pfnnid_cache {
	unsigned long last_start;
	unsigned long last_end;
	int last_nid;
};
1624

1625
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626 1627 1628 1629

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
1630
static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631
					struct mminit_pfnnid_cache *state)
1632
{
1633
	unsigned long start_pfn, end_pfn;
1634 1635
	int nid;

1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}
1645 1646

	return nid;
1647 1648 1649 1650
}

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1651
	static DEFINE_SPINLOCK(early_pfn_lock);
1652 1653
	int nid;

1654
	spin_lock(&early_pfn_lock);
1655
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656
	if (nid < 0)
1657
		nid = first_online_node;
1658
	spin_unlock(&early_pfn_lock);
1659

1660
	return nid;
1661
}
1662
#endif /* CONFIG_NEED_MULTIPLE_NODES */
1663

1664
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 1666 1667 1668
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1669
	__free_pages_core(page, order);
1670 1671
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1701 1702 1703
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1732
		cond_resched();
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1744
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745 1746
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1747
{
1748 1749
	struct page *page;
	unsigned long i;
1750

1751
	if (!nr_pages)
1752 1753
		return;

1754 1755
	page = pfn_to_page(pfn);

1756
	/* Free a large naturally-aligned chunk if possible */
1757 1758
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1759
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760
		__free_pages_core(page, pageblock_order);
1761 1762 1763
		return;
	}

1764 1765 1766
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767
		__free_pages_core(page, 0);
1768
	}
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778 1779
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1780

1781
/*
1782 1783 1784 1785 1786 1787 1788 1789
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1790
 */
1791
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792
{
1793 1794 1795 1796 1797 1798
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1799

1800 1801 1802 1803
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1804
static void __init deferred_free_pages(unsigned long pfn,
1805 1806 1807 1808
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1809

1810
	for (; pfn < end_pfn; pfn++) {
1811
		if (!deferred_pfn_valid(pfn)) {
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1823 1824
}

1825 1826 1827 1828 1829
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1830
static unsigned long  __init deferred_init_pages(struct zone *zone,
1831 1832
						 unsigned long pfn,
						 unsigned long end_pfn)
1833 1834
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835
	int nid = zone_to_nid(zone);
1836
	unsigned long nr_pages = 0;
1837
	int zid = zone_idx(zone);
1838 1839
	struct page *page = NULL;

1840
	for (; pfn < end_pfn; pfn++) {
1841
		if (!deferred_pfn_valid(pfn)) {
1842
			page = NULL;
1843
			continue;
1844
		} else if (!page || !(pfn & nr_pgmask)) {
1845
			page = pfn_to_page(pfn);
1846 1847
		} else {
			page++;
1848
		}
1849
		__init_single_page(page, pfn, zid, nid);
1850
		nr_pages++;
1851
	}
1852
	return (nr_pages);
1853 1854
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
			   void *arg)
{
	unsigned long spfn, epfn;
	struct zone *zone = arg;
	u64 i;

	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);

	/*
	 * Initialize and free pages in MAX_ORDER sized increments so that we
	 * can avoid introducing any issues with the buddy allocator.
	 */
	while (spfn < end_pfn) {
		deferred_init_maxorder(&i, zone, &spfn, &epfn);
		cond_resched();
	}
}

1959 1960 1961 1962 1963 1964 1965
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
	return 1;
}

1966
/* Initialise remaining memory on a node */
1967
static int __init deferred_init_memmap(void *data)
1968
{
1969
	pg_data_t *pgdat = data;
1970
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971
	unsigned long spfn = 0, epfn = 0;
1972
	unsigned long first_init_pfn, flags;
1973 1974
	unsigned long start = jiffies;
	struct zone *zone;
1975
	int zid, max_threads;
1976
	u64 i;
1977

1978 1979 1980 1981 1982 1983
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1984
	if (first_init_pfn == ULONG_MAX) {
1985
		pgdat_resize_unlock(pgdat, &flags);
1986
		pgdat_init_report_one_done();
1987 1988 1989
		return 0;
	}

1990 1991 1992 1993 1994
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

1995 1996 1997 1998 1999 2000 2001
	/*
	 * Once we unlock here, the zone cannot be grown anymore, thus if an
	 * interrupt thread must allocate this early in boot, zone must be
	 * pre-grown prior to start of deferred page initialization.
	 */
	pgdat_resize_unlock(pgdat, &flags);

2002 2003 2004 2005 2006 2007
	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
2008 2009 2010 2011 2012

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
2013

2014
	max_threads = deferred_page_init_max_threads(cpumask);
2015

2016
	while (spfn < epfn) {
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
		struct padata_mt_job job = {
			.thread_fn   = deferred_init_memmap_chunk,
			.fn_arg      = zone,
			.start       = spfn,
			.size        = epfn_align - spfn,
			.align       = PAGES_PER_SECTION,
			.min_chunk   = PAGES_PER_SECTION,
			.max_threads = max_threads,
		};

		padata_do_multithreaded(&job);
		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						    epfn_align);
2031
	}
2032
zone_empty:
2033 2034 2035
	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

2036 2037
	pr_info("node %d deferred pages initialised in %ums\n",
		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038 2039

	pgdat_init_report_one_done();
2040 2041
	return 0;
}
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062
	pg_data_t *pgdat = zone->zone_pgdat;
2063
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 2065
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

2083 2084 2085 2086
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
2087
		pgdat_resize_unlock(pgdat, &flags);
2088 2089
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
2090 2091
	}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102
		touch_nmi_watchdog();
2103

2104 2105 2106
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
2107

2108
		/* If our quota has been met we can stop here */
2109 2110 2111 2112
		if (nr_pages >= nr_pages_needed)
			break;
	}

2113
	pgdat->first_deferred_pfn = spfn;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

2131
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132 2133 2134

void __init page_alloc_init_late(void)
{
2135
	struct zone *zone;
2136
	int nid;
2137 2138

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139

2140 2141
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 2143 2144 2145 2146
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
2147
	wait_for_completion(&pgdat_init_all_done_comp);
2148

2149 2150 2151 2152 2153 2154 2155 2156
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

2157 2158 2159 2160 2161 2162
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2163 2164
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2165
#endif
2166

2167 2168
	buffer_init();

P
Pavel Tatashin 已提交
2169 2170
	/* Discard memblock private memory */
	memblock_discard();
2171

2172 2173 2174
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2175 2176
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2177 2178
}

2179
#ifdef CONFIG_CMA
2180
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181 2182 2183 2184 2185 2186 2187 2188
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2189
	} while (++p, --i);
2190 2191

	set_pageblock_migratetype(page, MIGRATE_CMA);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2206
	adjust_managed_page_count(page, pageblock_nr_pages);
2207
	page_zone(page)->cma_pages += pageblock_nr_pages;
2208 2209
}
#endif
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2223
 * -- nyc
L
Linus Torvalds 已提交
2224
 */
N
Nick Piggin 已提交
2225
static inline void expand(struct zone *zone, struct page *page,
2226
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2233
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234

2235 2236 2237 2238 2239 2240 2241
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2242
			continue;
2243

2244
		add_to_free_list(&page[size], zone, high, migratetype);
2245
		set_buddy_order(&page[size], high);
L
Linus Torvalds 已提交
2246 2247 2248
	}
}

2249
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2250
{
2251
	if (unlikely(page->flags & __PG_HWPOISON)) {
2252 2253 2254
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2255
	}
2256 2257 2258

	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2272 2273
}

2274
#ifdef CONFIG_DEBUG_VM
2275 2276 2277 2278 2279 2280
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2281
{
2282
	if (debug_pagealloc_enabled_static())
2283 2284 2285
		return check_new_page(page);
	else
		return false;
2286 2287
}

2288
static inline bool check_new_pcp(struct page *page)
2289 2290 2291 2292
{
	return check_new_page(page);
}
#else
2293 2294 2295 2296 2297 2298
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2299 2300 2301
{
	return check_new_page(page);
}
2302
static inline bool check_new_pcp(struct page *page)
2303
{
2304
	if (debug_pagealloc_enabled_static())
2305 2306 2307
		return check_new_page(page);
	else
		return false;
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2324 2325 2326
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
2327 2328
	bool init;

2329 2330 2331 2332
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2333
	debug_pagealloc_map_pages(page, 1 << order);
2334 2335 2336 2337 2338 2339

	/*
	 * Page unpoisoning must happen before memory initialization.
	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
	 * allocations and the page unpoisoning code will complain.
	 */
2340
	kernel_unpoison_pages(page, 1 << order);
2341

2342 2343 2344 2345 2346 2347 2348 2349
	/*
	 * As memory initialization might be integrated into KASAN,
	 * kasan_alloc_pages and kernel_init_free_pages must be
	 * kept together to avoid discrepancies in behavior.
	 */
	init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
	kasan_alloc_pages(page, order, init);
	if (init && !kasan_has_integrated_init())
2350
		kernel_init_free_pages(page, 1 << order);
2351 2352

	set_page_owner(page, order, gfp_flags);
2353 2354
}

2355
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2356
							unsigned int alloc_flags)
2357
{
2358
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2359 2360 2361 2362

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2363
	/*
2364
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2365 2366 2367 2368
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2369 2370 2371 2372
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2373 2374
}

2375 2376 2377 2378
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2379
static __always_inline
2380
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2381 2382 2383
						int migratetype)
{
	unsigned int current_order;
2384
	struct free_area *area;
2385 2386 2387 2388 2389
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2390
		page = get_page_from_free_area(area, migratetype);
2391 2392
		if (!page)
			continue;
2393 2394
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2395
		set_pcppage_migratetype(page, migratetype);
2396 2397 2398 2399 2400 2401 2402
		return page;
	}

	return NULL;
}


2403 2404 2405 2406
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2407
static int fallbacks[MIGRATE_TYPES][3] = {
2408 2409
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2410
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2411
#ifdef CONFIG_CMA
2412
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2413
#endif
2414
#ifdef CONFIG_MEMORY_ISOLATION
2415
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2416
#endif
2417 2418
};

2419
#ifdef CONFIG_CMA
2420
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2421 2422 2423 2424 2425 2426 2427 2428 2429
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2430
/*
2431
 * Move the free pages in a range to the freelist tail of the requested type.
2432
 * Note that start_page and end_pages are not aligned on a pageblock
2433 2434
 * boundary. If alignment is required, use move_freepages_block()
 */
2435
static int move_freepages(struct zone *zone,
2436
			  unsigned long start_pfn, unsigned long end_pfn,
2437
			  int migratetype, int *num_movable)
2438 2439
{
	struct page *page;
2440
	unsigned long pfn;
2441
	unsigned int order;
2442
	int pages_moved = 0;
2443

2444 2445 2446
	for (pfn = start_pfn; pfn <= end_pfn;) {
		if (!pfn_valid_within(pfn)) {
			pfn++;
2447 2448 2449
			continue;
		}

2450
		page = pfn_to_page(pfn);
2451
		if (!PageBuddy(page)) {
2452 2453 2454 2455 2456 2457 2458 2459
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;
2460
			pfn++;
2461 2462 2463
			continue;
		}

2464 2465 2466 2467
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2468
		order = buddy_order(page);
2469
		move_to_free_list(page, zone, order, migratetype);
2470
		pfn += 1 << order;
2471
		pages_moved += 1 << order;
2472 2473
	}

2474
	return pages_moved;
2475 2476
}

2477
int move_freepages_block(struct zone *zone, struct page *page,
2478
				int migratetype, int *num_movable)
2479
{
2480
	unsigned long start_pfn, end_pfn, pfn;
2481

2482 2483 2484
	if (num_movable)
		*num_movable = 0;

2485 2486
	pfn = page_to_pfn(page);
	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2487
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2488 2489

	/* Do not cross zone boundaries */
2490
	if (!zone_spans_pfn(zone, start_pfn))
2491
		start_pfn = pfn;
2492
	if (!zone_spans_pfn(zone, end_pfn))
2493 2494
		return 0;

2495
	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2496
								num_movable);
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2510
/*
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2521
 */
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2543
static inline bool boost_watermark(struct zone *zone)
2544 2545 2546 2547
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
2548
		return false;
2549 2550 2551 2552 2553 2554 2555
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556
		return false;
2557 2558 2559

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
2570
		return false;
2571

2572 2573 2574 2575
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
2576 2577

	return true;
2578 2579
}

2580 2581 2582
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2583 2584 2585 2586
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2587 2588
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589
		unsigned int alloc_flags, int start_type, bool whole_block)
2590
{
2591
	unsigned int current_order = buddy_order(page);
2592 2593 2594 2595
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2596

2597 2598 2599 2600
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2601
	if (is_migrate_highatomic(old_block_type))
2602 2603
		goto single_page;

2604 2605 2606
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2607
		goto single_page;
2608 2609
	}

2610 2611 2612 2613 2614
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
2615
	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617

2618 2619 2620 2621
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2646
	/* moving whole block can fail due to zone boundary conditions */
2647
	if (!free_pages)
2648
		goto single_page;
2649

2650 2651 2652 2653 2654
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 2656
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2657 2658 2659 2660

	return;

single_page:
2661
	move_to_free_list(page, zone, current_order, start_type);
2662 2663
}

2664 2665 2666 2667 2668 2669 2670 2671
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2682
		if (fallback_mt == MIGRATE_TYPES)
2683 2684
			break;

2685
		if (free_area_empty(area, fallback_mt))
2686
			continue;
2687

2688 2689 2690
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2691 2692 2693 2694 2695
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2696
	}
2697 2698

	return -1;
2699 2700
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2715
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2727 2728
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2729 2730
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2743 2744 2745
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2746
 */
2747 2748
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2749 2750 2751 2752 2753 2754 2755
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2756
	bool ret;
2757

2758
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759
								ac->nodemask) {
2760 2761 2762 2763 2764 2765
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2766 2767 2768 2769 2770 2771
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2772
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773
			if (!page)
2774 2775 2776
				continue;

			/*
2777 2778
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
I
Ingo Molnar 已提交
2779
			 * in this loop although we changed the pageblock type
2780 2781
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2782
			 */
2783
			if (is_migrate_highatomic_page(page)) {
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2806 2807
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2808 2809 2810 2811
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2812 2813 2814
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2815 2816

	return false;
2817 2818
}

2819 2820 2821 2822 2823
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2824 2825 2826 2827
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2828
 */
2829
static __always_inline bool
2830 2831
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2832
{
2833
	struct free_area *area;
2834
	int current_order;
2835
	int min_order = order;
2836
	struct page *page;
2837 2838
	int fallback_mt;
	bool can_steal;
2839

2840 2841 2842 2843 2844 2845 2846 2847
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2848 2849 2850 2851 2852
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2853
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854
				--current_order) {
2855 2856
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2857
				start_migratetype, false, &can_steal);
2858 2859
		if (fallback_mt == -1)
			continue;
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2872

2873 2874
		goto do_steal;
	}
2875

2876
	return false;
2877

2878 2879 2880 2881 2882 2883 2884 2885
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2886 2887
	}

2888 2889 2890 2891 2892 2893 2894
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2895
	page = get_page_from_free_area(area, fallback_mt);
2896

2897 2898
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2899 2900 2901 2902 2903 2904

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2905 2906
}

2907
/*
L
Linus Torvalds 已提交
2908 2909 2910
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2911
static __always_inline struct page *
2912 2913
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2914 2915 2916
{
	struct page *page;

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	if (IS_ENABLED(CONFIG_CMA)) {
		/*
		 * Balance movable allocations between regular and CMA areas by
		 * allocating from CMA when over half of the zone's free memory
		 * is in the CMA area.
		 */
		if (alloc_flags & ALLOC_CMA &&
		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
			page = __rmqueue_cma_fallback(zone, order);
			if (page)
				goto out;
		}
2930
	}
2931
retry:
2932
	page = __rmqueue_smallest(zone, order, migratetype);
2933
	if (unlikely(!page)) {
2934
		if (alloc_flags & ALLOC_CMA)
2935 2936
			page = __rmqueue_cma_fallback(zone, order);

2937 2938
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2939
			goto retry;
2940
	}
2941 2942 2943
out:
	if (page)
		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944
	return page;
L
Linus Torvalds 已提交
2945 2946
}

2947
/*
L
Linus Torvalds 已提交
2948 2949 2950 2951
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2952
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953
			unsigned long count, struct list_head *list,
2954
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2955
{
2956
	int i, allocated = 0;
2957

2958
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2959
	for (i = 0; i < count; ++i) {
2960 2961
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2962
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2963
			break;
2964

2965 2966 2967
		if (unlikely(check_pcp_refill(page)))
			continue;

2968
		/*
2969 2970 2971 2972 2973 2974 2975 2976
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2977
		 */
2978
		list_add_tail(&page->lru, list);
2979
		allocated++;
2980
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 2982
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2983
	}
2984 2985 2986 2987

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988
	 * on i. Do not confuse with 'allocated' which is the number of
2989 2990
	 * pages added to the pcp list.
	 */
2991
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992
	spin_unlock(&zone->lock);
2993
	return allocated;
L
Linus Torvalds 已提交
2994 2995
}

2996
#ifdef CONFIG_NUMA
2997
/*
2998 2999 3000 3001
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
3002 3003
 * Note that this function must be called with the thread pinned to
 * a single processor.
3004
 */
3005
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006 3007
{
	unsigned long flags;
3008
	int to_drain, batch;
3009

3010
	local_irq_save(flags);
3011
	batch = READ_ONCE(pcp->batch);
3012
	to_drain = min(pcp->count, batch);
3013
	if (to_drain > 0)
3014
		free_pcppages_bulk(zone, to_drain, pcp);
3015
	local_irq_restore(flags);
3016 3017 3018
}
#endif

3019
/*
3020
 * Drain pcplists of the indicated processor and zone.
3021 3022 3023 3024 3025
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
3026
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
3027
{
N
Nick Piggin 已提交
3028
	unsigned long flags;
3029 3030
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
3031

3032 3033
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
3034

3035
	pcp = &pset->pcp;
3036
	if (pcp->count)
3037 3038 3039
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
3054 3055 3056
	}
}

3057 3058
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059 3060 3061
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
3062
 */
3063
void drain_local_pages(struct zone *zone)
3064
{
3065 3066 3067 3068 3069 3070
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
3071 3072
}

3073 3074
static void drain_local_pages_wq(struct work_struct *work)
{
3075 3076 3077 3078
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

3079 3080 3081 3082
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
I
Ingo Molnar 已提交
3083
	 * cpu which is alright but we also have to make sure to not move to
3084 3085 3086
	 * a different one.
	 */
	preempt_disable();
3087
	drain_local_pages(drain->zone);
3088
	preempt_enable();
3089 3090
}

3091
/*
3092 3093
 * The implementation of drain_all_pages(), exposing an extra parameter to
 * drain on all cpus.
3094
 *
3095 3096 3097 3098 3099
 * drain_all_pages() is optimized to only execute on cpus where pcplists are
 * not empty. The check for non-emptiness can however race with a free to
 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
 * that need the guarantee that every CPU has drained can disable the
 * optimizing racy check.
3100
 */
3101
static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102
{
3103 3104 3105 3106 3107 3108 3109 3110
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

3111 3112 3113 3114 3115 3116 3117
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
3128

3129 3130 3131 3132 3133 3134 3135
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
3136 3137
		struct per_cpu_pageset *pcp;
		struct zone *z;
3138
		bool has_pcps = false;
3139

3140 3141 3142 3143 3144 3145 3146
		if (force_all_cpus) {
			/*
			 * The pcp.count check is racy, some callers need a
			 * guarantee that no cpu is missed.
			 */
			has_pcps = true;
		} else if (zone) {
3147
			pcp = per_cpu_ptr(zone->pageset, cpu);
3148
			if (pcp->pcp.count)
3149
				has_pcps = true;
3150 3151 3152 3153 3154 3155 3156
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
3157 3158
			}
		}
3159

3160 3161 3162 3163 3164
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
3165

3166
	for_each_cpu(cpu, &cpus_with_pcps) {
3167 3168 3169 3170 3171
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172
	}
3173
	for_each_cpu(cpu, &cpus_with_pcps)
3174
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175 3176

	mutex_unlock(&pcpu_drain_mutex);
3177 3178
}

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/*
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
 * Note that this can be extremely slow as the draining happens in a workqueue.
 */
void drain_all_pages(struct zone *zone)
{
	__drain_all_pages(zone, false);
}

3191
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3192

3193 3194 3195 3196 3197
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3198 3199
void mark_free_pages(struct zone *zone)
{
3200
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201
	unsigned long flags;
3202
	unsigned int order, t;
3203
	struct page *page;
L
Linus Torvalds 已提交
3204

3205
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3206 3207 3208
		return;

	spin_lock_irqsave(&zone->lock, flags);
3209

3210
	max_zone_pfn = zone_end_pfn(zone);
3211 3212
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3213
			page = pfn_to_page(pfn);
3214

3215 3216 3217 3218 3219
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3220 3221 3222
			if (page_zone(page) != zone)
				continue;

3223 3224
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3225
		}
L
Linus Torvalds 已提交
3226

3227
	for_each_migratetype_order(order, t) {
3228 3229
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3230
			unsigned long i;
L
Linus Torvalds 已提交
3231

3232
			pfn = page_to_pfn(page);
3233 3234 3235 3236 3237
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3238
				swsusp_set_page_free(pfn_to_page(pfn + i));
3239
			}
3240
		}
3241
	}
L
Linus Torvalds 已提交
3242 3243
	spin_unlock_irqrestore(&zone->lock, flags);
}
3244
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3245

3246
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3247
{
3248
	int migratetype;
L
Linus Torvalds 已提交
3249

3250
	if (!free_pcp_prepare(page))
3251
		return false;
3252

3253
	migratetype = get_pfnblock_migratetype(page, pfn);
3254
	set_pcppage_migratetype(page, migratetype);
3255 3256 3257
	return true;
}

3258
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259 3260 3261 3262 3263 3264
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3265
	__count_vm_event(PGFREE);
3266

3267 3268 3269
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3270
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 3272 3273 3274
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3275
		if (unlikely(is_migrate_isolate(migratetype))) {
3276 3277
			free_one_page(zone, page, pfn, 0, migratetype,
				      FPI_NONE);
3278
			return;
3279 3280 3281 3282
		}
		migratetype = MIGRATE_MOVABLE;
	}

3283
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3285
	pcp->count++;
3286 3287
	if (pcp->count >= READ_ONCE(pcp->high))
		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288
}
3289

3290 3291 3292
/*
 * Free a 0-order page
 */
3293
void free_unref_page(struct page *page)
3294 3295 3296 3297
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3298
	if (!free_unref_page_prepare(page, pfn))
3299 3300 3301
		return;

	local_irq_save(flags);
3302
	free_unref_page_commit(page, pfn);
3303
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3304 3305
}

3306 3307 3308
/*
 * Free a list of 0-order pages
 */
3309
void free_unref_page_list(struct list_head *list)
3310 3311
{
	struct page *page, *next;
3312
	unsigned long flags, pfn;
3313
	int batch_count = 0;
3314 3315 3316 3317

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3318
		if (!free_unref_page_prepare(page, pfn))
3319 3320 3321
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3322

3323
	local_irq_save(flags);
3324
	list_for_each_entry_safe(page, next, list, lru) {
3325 3326 3327
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3328 3329
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3340
	}
3341
	local_irq_restore(flags);
3342 3343
}

N
Nick Piggin 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3356 3357
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3358

3359
	for (i = 1; i < (1 << order); i++)
3360
		set_page_refcounted(page + i);
3361
	split_page_owner(page, 1 << order);
3362
	split_page_memcg(page, 1 << order);
N
Nick Piggin 已提交
3363
}
K
K. Y. Srinivasan 已提交
3364
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3365

3366
int __isolate_free_page(struct page *page, unsigned int order)
3367 3368 3369
{
	unsigned long watermark;
	struct zone *zone;
3370
	int mt;
3371 3372 3373 3374

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3375
	mt = get_pageblock_migratetype(page);
3376

3377
	if (!is_migrate_isolate(mt)) {
3378 3379 3380 3381 3382 3383
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3384
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 3387
			return 0;

3388
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3389
	}
3390 3391

	/* Remove page from free list */
3392

3393
	del_page_from_free_list(page, zone, order);
3394

3395 3396 3397 3398
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3399 3400
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3401 3402
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3403
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404
			    && !is_migrate_highatomic(mt))
3405 3406 3407
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3408 3409
	}

3410

3411
	return 1UL << order;
3412 3413
}

3414 3415 3416 3417
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3418
 * @mt: The page's pageblock's migratetype
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
3431
	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3432
			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433 3434
}

3435 3436 3437 3438 3439
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3440
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441 3442
{
#ifdef CONFIG_NUMA
3443
	enum numa_stat_item local_stat = NUMA_LOCAL;
3444

3445 3446 3447 3448
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3449
	if (zone_to_nid(z) != numa_node_id())
3450 3451
		local_stat = NUMA_OTHER;

3452
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453
		__inc_numa_state(z, NUMA_HIT);
3454
	else {
3455 3456
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457
	}
3458
	__inc_numa_state(z, local_stat);
3459 3460 3461
#endif
}

3462
/* Remove page from the per-cpu list, caller must protect the list */
3463 3464
static inline
struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3465
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3466
			struct per_cpu_pages *pcp,
3467 3468 3469 3470 3471 3472 3473
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
3474
					READ_ONCE(pcp->batch), list,
3475
					migratetype, alloc_flags);
3476 3477 3478 3479
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3480
		page = list_first_entry(list, struct page, lru);
3481 3482 3483 3484 3485 3486 3487 3488 3489
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3490 3491
			struct zone *zone, gfp_t gfp_flags,
			int migratetype, unsigned int alloc_flags)
3492 3493 3494 3495
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3496
	unsigned long flags;
3497

3498
	local_irq_save(flags);
3499 3500
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3501
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3502
	if (page) {
3503
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3504 3505
		zone_statistics(preferred_zone, zone);
	}
3506
	local_irq_restore(flags);
3507 3508 3509
	return page;
}

L
Linus Torvalds 已提交
3510
/*
3511
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3512
 */
3513
static inline
3514
struct page *rmqueue(struct zone *preferred_zone,
3515
			struct zone *zone, unsigned int order,
3516 3517
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3518 3519
{
	unsigned long flags;
3520
	struct page *page;
L
Linus Torvalds 已提交
3521

3522
	if (likely(order == 0)) {
3523 3524 3525 3526 3527 3528 3529
		/*
		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
		 * we need to skip it when CMA area isn't allowed.
		 */
		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
				migratetype != MIGRATE_MOVABLE) {
			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3530
					migratetype, alloc_flags);
3531 3532
			goto out;
		}
3533
	}
3534

3535 3536 3537 3538 3539 3540
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3541

3542 3543
	do {
		page = NULL;
3544 3545 3546 3547 3548 3549 3550
		/*
		 * order-0 request can reach here when the pcplist is skipped
		 * due to non-CMA allocation context. HIGHATOMIC area is
		 * reserved for high-order atomic allocation, so order-0
		 * request should skip it.
		 */
		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3551 3552 3553 3554
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3555
		if (!page)
3556
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3557 3558 3559 3560 3561 3562
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3563

3564
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3565
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3566
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3567

3568
out:
3569 3570 3571 3572 3573 3574
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3575
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3576
	return page;
N
Nick Piggin 已提交
3577 3578 3579 3580

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3581 3582
}

3583 3584
#ifdef CONFIG_FAIL_PAGE_ALLOC

3585
static struct {
3586 3587
	struct fault_attr attr;

3588
	bool ignore_gfp_highmem;
3589
	bool ignore_gfp_reclaim;
3590
	u32 min_order;
3591 3592
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3593
	.ignore_gfp_reclaim = true,
3594
	.ignore_gfp_highmem = true,
3595
	.min_order = 1,
3596 3597 3598 3599 3600 3601 3602 3603
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3604
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605
{
3606
	if (order < fail_page_alloc.min_order)
3607
		return false;
3608
	if (gfp_mask & __GFP_NOFAIL)
3609
		return false;
3610
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3611
		return false;
3612 3613
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3614
		return false;
3615 3616 3617 3618 3619 3620 3621 3622

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3623
	umode_t mode = S_IFREG | 0600;
3624 3625
	struct dentry *dir;

3626 3627
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3628

3629 3630 3631 3632 3633
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3634

3635
	return 0;
3636 3637 3638 3639 3640 3641 3642 3643
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3644
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3645
{
3646
	return false;
3647 3648 3649 3650
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3651
noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3652 3653 3654 3655 3656
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
static inline long __zone_watermark_unusable_free(struct zone *z,
				unsigned int order, unsigned int alloc_flags)
{
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
	long unusable_free = (1 << order) - 1;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		unusable_free += z->nr_reserved_highatomic;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	return unusable_free;
}

L
Linus Torvalds 已提交
3680
/*
3681 3682 3683 3684
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3685
 */
3686
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3687
			 int highest_zoneidx, unsigned int alloc_flags,
3688
			 long free_pages)
L
Linus Torvalds 已提交
3689
{
3690
	long min = mark;
L
Linus Torvalds 已提交
3691
	int o;
3692
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3693

3694
	/* free_pages may go negative - that's OK */
3695
	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3696

R
Rohit Seth 已提交
3697
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3698
		min -= min / 2;
3699

3700
	if (unlikely(alloc_harder)) {
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3713 3714 3715 3716 3717
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
3718
	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3719
		return false;
L
Linus Torvalds 已提交
3720

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3734
			if (!free_area_empty(area, mt))
3735 3736 3737 3738
				return true;
		}

#ifdef CONFIG_CMA
3739
		if ((alloc_flags & ALLOC_CMA) &&
3740
		    !free_area_empty(area, MIGRATE_CMA)) {
3741
			return true;
3742
		}
3743
#endif
3744
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3745
			return true;
L
Linus Torvalds 已提交
3746
	}
3747
	return false;
3748 3749
}

3750
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3751
		      int highest_zoneidx, unsigned int alloc_flags)
3752
{
3753
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3754 3755 3756
					zone_page_state(z, NR_FREE_PAGES));
}

3757
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3758
				unsigned long mark, int highest_zoneidx,
3759
				unsigned int alloc_flags, gfp_t gfp_mask)
3760
{
3761
	long free_pages;
3762

3763
	free_pages = zone_page_state(z, NR_FREE_PAGES);
3764 3765 3766

	/*
	 * Fast check for order-0 only. If this fails then the reserves
3767
	 * need to be calculated.
3768
	 */
3769 3770 3771 3772 3773 3774 3775 3776
	if (!order) {
		long fast_free;

		fast_free = free_pages;
		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
			return true;
	}
3777

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
					free_pages))
		return true;
	/*
	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
	 * when checking the min watermark. The min watermark is the
	 * point where boosting is ignored so that kswapd is woken up
	 * when below the low watermark.
	 */
	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
		mark = z->_watermark[WMARK_MIN];
		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
					alloc_flags, free_pages);
	}

	return false;
3795 3796
}

3797
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3798
			unsigned long mark, int highest_zoneidx)
3799 3800 3801 3802 3803 3804
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3805
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3806
								free_pages);
L
Linus Torvalds 已提交
3807 3808
}

3809
#ifdef CONFIG_NUMA
3810 3811
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3812
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3813
				node_reclaim_distance;
3814
}
3815
#else	/* CONFIG_NUMA */
3816 3817 3818 3819
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3820 3821
#endif	/* CONFIG_NUMA */

3822 3823 3824 3825 3826 3827 3828 3829 3830
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3831
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3832
{
3833
	unsigned int alloc_flags;
3834

3835 3836 3837 3838 3839
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3840 3841

#ifdef CONFIG_ZONE_DMA32
3842 3843 3844
	if (!zone)
		return alloc_flags;

3845
	if (zone_idx(zone) != ZONE_NORMAL)
3846
		return alloc_flags;
3847 3848 3849 3850 3851 3852 3853 3854

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3855
		return alloc_flags;
3856

3857
	alloc_flags |= ALLOC_NOFRAGMENT;
3858 3859
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3860 3861
}

3862 3863 3864
/* Must be called after current_gfp_context() which can change gfp_mask */
static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
						  unsigned int alloc_flags)
3865 3866
{
#ifdef CONFIG_CMA
3867
	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3868 3869 3870 3871 3872
		alloc_flags |= ALLOC_CMA;
#endif
	return alloc_flags;
}

R
Rohit Seth 已提交
3873
/*
3874
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3875 3876 3877
 * a page.
 */
static struct page *
3878 3879
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3880
{
3881
	struct zoneref *z;
3882
	struct zone *zone;
3883
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3884
	bool no_fallback;
3885

3886
retry:
R
Rohit Seth 已提交
3887
	/*
3888
	 * Scan zonelist, looking for a zone with enough free.
3889
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3890
	 */
3891 3892
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3893 3894
	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
					ac->nodemask) {
3895
		struct page *page;
3896 3897
		unsigned long mark;

3898 3899
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3900
			!__cpuset_zone_allowed(zone, gfp_mask))
3901
				continue;
3902 3903
		/*
		 * When allocating a page cache page for writing, we
3904 3905
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3906
		 * proportional share of globally allowed dirty pages.
3907
		 * The dirty limits take into account the node's
3908 3909 3910 3911 3912
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3913
		 * exceed the per-node dirty limit in the slowpath
3914
		 * (spread_dirty_pages unset) before going into reclaim,
3915
		 * which is important when on a NUMA setup the allowed
3916
		 * nodes are together not big enough to reach the
3917
		 * global limit.  The proper fix for these situations
3918
		 * will require awareness of nodes in the
3919 3920
		 * dirty-throttling and the flusher threads.
		 */
3921 3922 3923 3924 3925 3926 3927 3928 3929
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3930

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3947
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3948
		if (!zone_watermark_fast(zone, order, mark,
3949 3950
				       ac->highest_zoneidx, alloc_flags,
				       gfp_mask)) {
3951 3952
			int ret;

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3963 3964 3965 3966 3967
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3968
			if (!node_reclaim_enabled() ||
3969
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3970 3971
				continue;

3972
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3973
			switch (ret) {
3974
			case NODE_RECLAIM_NOSCAN:
3975
				/* did not scan */
3976
				continue;
3977
			case NODE_RECLAIM_FULL:
3978
				/* scanned but unreclaimable */
3979
				continue;
3980 3981
			default:
				/* did we reclaim enough */
3982
				if (zone_watermark_ok(zone, order, mark,
3983
					ac->highest_zoneidx, alloc_flags))
3984 3985 3986
					goto try_this_zone;

				continue;
3987
			}
R
Rohit Seth 已提交
3988 3989
		}

3990
try_this_zone:
3991
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3992
				gfp_mask, alloc_flags, ac->migratetype);
3993
		if (page) {
3994
			prep_new_page(page, order, gfp_mask, alloc_flags);
3995 3996 3997 3998 3999 4000 4001 4002

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

4003
			return page;
4004 4005 4006 4007 4008 4009 4010 4011
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
4012
		}
4013
	}
4014

4015 4016 4017 4018 4019 4020 4021 4022 4023
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

4024
	return NULL;
M
Martin Hicks 已提交
4025 4026
}

4027
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4028 4029 4030 4031 4032 4033 4034 4035 4036
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
4037
		if (tsk_is_oom_victim(current) ||
4038 4039
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
4040
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4041 4042
		filter &= ~SHOW_MEM_FILTER_NODES;

4043
	show_mem(filter, nodemask);
4044 4045
}

4046
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4047 4048 4049
{
	struct va_format vaf;
	va_list args;
4050
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4051

4052
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4053 4054
		return;

4055 4056 4057
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
4058
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
4059 4060
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
4061
	va_end(args);
J
Joe Perches 已提交
4062

4063
	cpuset_print_current_mems_allowed();
4064
	pr_cont("\n");
4065
	dump_stack();
4066
	warn_alloc_show_mem(gfp_mask, nodemask);
4067 4068
}

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

4089 4090
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4091
	const struct alloc_context *ac, unsigned long *did_some_progress)
4092
{
4093 4094 4095
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
4096
		.memcg = NULL,
4097 4098 4099
		.gfp_mask = gfp_mask,
		.order = order,
	};
4100 4101
	struct page *page;

4102 4103 4104
	*did_some_progress = 0;

	/*
4105 4106
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
4107
	 */
4108
	if (!mutex_trylock(&oom_lock)) {
4109
		*did_some_progress = 1;
4110
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4111 4112
		return NULL;
	}
4113

4114 4115 4116
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
4117 4118 4119
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
4120
	 */
4121 4122 4123
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
4124
	if (page)
4125 4126
		goto out;

4127 4128 4129 4130 4131 4132
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
4133 4134 4135 4136 4137
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
4138 4139
	 *
	 * The OOM killer may not free memory on a specific node.
4140
	 */
4141
	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4142
		goto out;
4143
	/* The OOM killer does not needlessly kill tasks for lowmem */
4144
	if (ac->highest_zoneidx < ZONE_NORMAL)
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

4158
	/* Exhausted what can be done so it's blame time */
4159
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4160
		*did_some_progress = 1;
4161

4162 4163 4164 4165 4166 4167
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4168 4169
					ALLOC_NO_WATERMARKS, ac);
	}
4170
out:
4171
	mutex_unlock(&oom_lock);
4172 4173 4174
	return page;
}

4175
/*
L
Lu Jialin 已提交
4176
 * Maximum number of compaction retries with a progress before OOM
4177 4178 4179 4180
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

4181 4182 4183 4184
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4185
		unsigned int alloc_flags, const struct alloc_context *ac,
4186
		enum compact_priority prio, enum compact_result *compact_result)
4187
{
4188
	struct page *page = NULL;
4189
	unsigned long pflags;
4190
	unsigned int noreclaim_flag;
4191 4192

	if (!order)
4193 4194
		return NULL;

4195
	psi_memstall_enter(&pflags);
4196
	noreclaim_flag = memalloc_noreclaim_save();
4197

4198
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4199
								prio, &page);
4200

4201
	memalloc_noreclaim_restore(noreclaim_flag);
4202
	psi_memstall_leave(&pflags);
4203

4204 4205
	if (*compact_result == COMPACT_SKIPPED)
		return NULL;
4206 4207 4208 4209 4210
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
4211

4212 4213 4214 4215 4216 4217 4218
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4219

4220 4221
	if (page) {
		struct zone *zone = page_zone(page);
4222

4223 4224 4225 4226 4227
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
4228

4229 4230 4231 4232 4233
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4234

4235
	cond_resched();
4236 4237 4238

	return NULL;
}
4239

4240 4241 4242 4243
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4244
		     int *compaction_retries)
4245 4246
{
	int max_retries = MAX_COMPACT_RETRIES;
4247
	int min_priority;
4248 4249 4250
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4251 4252 4253 4254

	if (!order)
		return false;

4255 4256 4257
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4258 4259 4260 4261 4262
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4263 4264
	if (compaction_failed(compact_result))
		goto check_priority;
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4275 4276 4277
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4278 4279
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4280
	 */
4281
	if (compaction_withdrawn(compact_result)) {
4282
		goto check_priority;
4283
	}
4284 4285

	/*
4286
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4287 4288 4289 4290 4291 4292 4293 4294
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4295 4296 4297 4298
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4299

4300 4301 4302 4303 4304
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4305 4306
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4307

4308
	if (*compact_priority > min_priority) {
4309 4310
		(*compact_priority)--;
		*compaction_retries = 0;
4311
		ret = true;
4312
	}
4313 4314 4315
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4316
}
4317 4318 4319
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4320
		unsigned int alloc_flags, const struct alloc_context *ac,
4321
		enum compact_priority prio, enum compact_result *compact_result)
4322
{
4323
	*compact_result = COMPACT_SKIPPED;
4324 4325
	return NULL;
}
4326 4327

static inline bool
4328 4329
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4330
		     enum compact_priority *compact_priority,
4331
		     int *compaction_retries)
4332
{
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
4345 4346
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
4347
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4348
					ac->highest_zoneidx, alloc_flags))
4349 4350
			return true;
	}
4351 4352
	return false;
}
4353
#endif /* CONFIG_COMPACTION */
4354

4355
#ifdef CONFIG_LOCKDEP
4356
static struct lockdep_map __fs_reclaim_map =
4357 4358
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

4359
static bool __need_reclaim(gfp_t gfp_mask)
4360 4361 4362 4363 4364 4365
{
	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4366
	if (current->flags & PF_MEMALLOC)
4367 4368 4369 4370 4371 4372 4373 4374
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4385 4386
void fs_reclaim_acquire(gfp_t gfp_mask)
{
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	gfp_mask = current_gfp_context(gfp_mask);

	if (__need_reclaim(gfp_mask)) {
		if (gfp_mask & __GFP_FS)
			__fs_reclaim_acquire();

#ifdef CONFIG_MMU_NOTIFIER
		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
#endif

	}
4399 4400 4401 4402 4403
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
4404 4405 4406 4407 4408 4409
	gfp_mask = current_gfp_context(gfp_mask);

	if (__need_reclaim(gfp_mask)) {
		if (gfp_mask & __GFP_FS)
			__fs_reclaim_release();
	}
4410 4411 4412 4413
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4414
/* Perform direct synchronous page reclaim */
4415
static unsigned long
4416 4417
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4418
{
4419
	unsigned int noreclaim_flag;
4420
	unsigned long pflags, progress;
4421 4422 4423 4424 4425

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4426
	psi_memstall_enter(&pflags);
4427
	fs_reclaim_acquire(gfp_mask);
4428
	noreclaim_flag = memalloc_noreclaim_save();
4429

4430 4431
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4432

4433
	memalloc_noreclaim_restore(noreclaim_flag);
4434
	fs_reclaim_release(gfp_mask);
4435
	psi_memstall_leave(&pflags);
4436 4437 4438

	cond_resched();

4439 4440 4441 4442 4443 4444
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4445
		unsigned int alloc_flags, const struct alloc_context *ac,
4446
		unsigned long *did_some_progress)
4447 4448 4449 4450
{
	struct page *page = NULL;
	bool drained = false;

4451
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4452 4453
	if (unlikely(!(*did_some_progress)))
		return NULL;
4454

4455
retry:
4456
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4457 4458 4459

	/*
	 * If an allocation failed after direct reclaim, it could be because
4460
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4461
	 * Shrink them and try again
4462 4463
	 */
	if (!page && !drained) {
4464
		unreserve_highatomic_pageblock(ac, false);
4465
		drain_all_pages(NULL);
4466 4467 4468 4469
		drained = true;
		goto retry;
	}

4470 4471 4472
	return page;
}

4473 4474
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4475 4476 4477
{
	struct zoneref *z;
	struct zone *zone;
4478
	pg_data_t *last_pgdat = NULL;
4479
	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4480

4481
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4482
					ac->nodemask) {
4483
		if (last_pgdat != zone->zone_pgdat)
4484
			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4485 4486
		last_pgdat = zone->zone_pgdat;
	}
4487 4488
}

4489
static inline unsigned int
4490 4491
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4492
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4493

4494 4495 4496 4497 4498
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4499
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4500
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4501

4502 4503 4504 4505
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4506
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4507
	 */
4508 4509
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4510

4511
	if (gfp_mask & __GFP_ATOMIC) {
4512
		/*
4513 4514
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4515
		 */
4516
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4517
			alloc_flags |= ALLOC_HARDER;
4518
		/*
4519
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4520
		 * comment for __cpuset_node_allowed().
4521
		 */
4522
		alloc_flags &= ~ALLOC_CPUSET;
4523
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4524 4525
		alloc_flags |= ALLOC_HARDER;

4526
	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4527

4528 4529 4530
	return alloc_flags;
}

4531
static bool oom_reserves_allowed(struct task_struct *tsk)
4532
{
4533 4534 4535 4536 4537 4538 4539 4540
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4541 4542
		return false;

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4554
	if (gfp_mask & __GFP_MEMALLOC)
4555
		return ALLOC_NO_WATERMARKS;
4556
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4557 4558 4559 4560 4561 4562 4563
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4564

4565 4566 4567 4568 4569 4570
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4571 4572
}

M
Michal Hocko 已提交
4573 4574 4575
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4576 4577 4578 4579
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4580 4581 4582 4583 4584 4585
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4586
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4587 4588 4589
{
	struct zone *zone;
	struct zoneref *z;
4590
	bool ret = false;
M
Michal Hocko 已提交
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4602 4603 4604 4605
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4606 4607
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4608
		return unreserve_highatomic_pageblock(ac, true);
4609
	}
M
Michal Hocko 已提交
4610

4611 4612 4613 4614 4615
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4616
	 */
4617 4618
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
M
Michal Hocko 已提交
4619
		unsigned long available;
4620
		unsigned long reclaimable;
4621 4622
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4623

4624 4625
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4626 4627

		/*
4628 4629
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4630
		 */
4631
		wmark = __zone_watermark_ok(zone, order, min_wmark,
4632
				ac->highest_zoneidx, alloc_flags, available);
4633 4634 4635
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4636 4637 4638 4639 4640 4641 4642
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4643
				unsigned long write_pending;
4644

4645 4646
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4647

4648
				if (2 * write_pending > reclaimable) {
4649 4650 4651 4652
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4653

4654 4655
			ret = true;
			goto out;
M
Michal Hocko 已提交
4656 4657 4658
		}
	}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4672 4673
}

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4707 4708
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4709
						struct alloc_context *ac)
4710
{
4711
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4712
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4713
	struct page *page = NULL;
4714
	unsigned int alloc_flags;
4715
	unsigned long did_some_progress;
4716
	enum compact_priority compact_priority;
4717
	enum compact_result compact_result;
4718 4719 4720
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4721
	int reserve_flags;
L
Linus Torvalds 已提交
4722

4723 4724 4725 4726 4727 4728 4729 4730
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4731 4732 4733 4734 4735
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4736 4737 4738 4739 4740 4741 4742 4743

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4744 4745 4746 4747 4748 4749 4750
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4751
					ac->highest_zoneidx, ac->nodemask);
4752 4753 4754
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4755
	if (alloc_flags & ALLOC_KSWAPD)
4756
		wake_all_kswapds(order, gfp_mask, ac);
4757 4758 4759 4760 4761 4762 4763 4764 4765

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4766 4767
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4768 4769 4770 4771 4772 4773
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4774
	 */
4775 4776 4777 4778
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4779 4780
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4781
						INIT_COMPACT_PRIORITY,
4782 4783 4784 4785
						&compact_result);
		if (page)
			goto got_pg;

4786 4787 4788 4789 4790
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4791 4792 4793 4794
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4795 4796
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4811 4812

			/*
4813 4814
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4815
			 * using async compaction.
4816
			 */
4817
			compact_priority = INIT_COMPACT_PRIORITY;
4818 4819
		}
	}
4820

4821
retry:
4822
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4823
	if (alloc_flags & ALLOC_KSWAPD)
4824
		wake_all_kswapds(order, gfp_mask, ac);
4825

4826 4827
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
4828
		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4829

4830
	/*
4831 4832 4833
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4834
	 */
4835
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4836
		ac->nodemask = NULL;
4837
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838
					ac->highest_zoneidx, ac->nodemask);
4839 4840
	}

4841
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4842
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4843 4844
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4845

4846
	/* Caller is not willing to reclaim, we can't balance anything */
4847
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4848 4849
		goto nopage;

4850 4851
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4852 4853
		goto nopage;

4854 4855 4856 4857 4858 4859 4860
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4861
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4862
					compact_priority, &compact_result);
4863 4864
	if (page)
		goto got_pg;
4865

4866 4867
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4868
		goto nopage;
4869

M
Michal Hocko 已提交
4870 4871
	/*
	 * Do not retry costly high order allocations unless they are
4872
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4873
	 */
4874
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4875
		goto nopage;
M
Michal Hocko 已提交
4876 4877

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4878
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4879 4880
		goto retry;

4881 4882 4883 4884 4885 4886 4887
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4888
			should_compact_retry(ac, order, alloc_flags,
4889
				compact_result, &compact_priority,
4890
				&compaction_retries))
4891 4892
		goto retry;

4893 4894 4895

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4896 4897
		goto retry_cpuset;

4898 4899 4900 4901 4902
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4903
	/* Avoid allocations with no watermarks from looping endlessly */
4904
	if (tsk_is_oom_victim(current) &&
4905
	    (alloc_flags & ALLOC_OOM ||
4906
	     (gfp_mask & __GFP_NOMEMALLOC)))
4907 4908
		goto nopage;

4909
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4910 4911
	if (did_some_progress) {
		no_progress_loops = 0;
4912
		goto retry;
M
Michal Hocko 已提交
4913
	}
4914

L
Linus Torvalds 已提交
4915
nopage:
4916 4917
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4918 4919
		goto retry_cpuset;

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4957 4958 4959 4960
		cond_resched();
		goto retry;
	}
fail:
4961
	warn_alloc(gfp_mask, ac->nodemask,
4962
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4963
got_pg:
4964
	return page;
L
Linus Torvalds 已提交
4965
}
4966

4967
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4968
		int preferred_nid, nodemask_t *nodemask,
4969
		struct alloc_context *ac, gfp_t *alloc_gfp,
4970
		unsigned int *alloc_flags)
4971
{
4972
	ac->highest_zoneidx = gfp_zone(gfp_mask);
4973
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4974
	ac->nodemask = nodemask;
4975
	ac->migratetype = gfp_migratetype(gfp_mask);
4976

4977
	if (cpusets_enabled()) {
4978
		*alloc_gfp |= __GFP_HARDWALL;
4979 4980 4981 4982 4983
		/*
		 * When we are in the interrupt context, it is irrelevant
		 * to the current task context. It means that any node ok.
		 */
		if (!in_interrupt() && !ac->nodemask)
4984
			ac->nodemask = &cpuset_current_mems_allowed;
4985 4986
		else
			*alloc_flags |= ALLOC_CPUSET;
4987 4988
	}

4989 4990
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4991

4992
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4993 4994

	if (should_fail_alloc_page(gfp_mask, order))
4995
		return false;
4996

4997
	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4998

4999
	/* Dirty zone balancing only done in the fast path */
5000
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5001

5002 5003 5004 5005 5006
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
5007
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5008
					ac->highest_zoneidx, ac->nodemask);
5009 5010

	return true;
5011 5012
}

5013
/*
5014
 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5015 5016 5017
 * @gfp: GFP flags for the allocation
 * @preferred_nid: The preferred NUMA node ID to allocate from
 * @nodemask: Set of nodes to allocate from, may be NULL
5018 5019 5020
 * @nr_pages: The number of pages desired on the list or array
 * @page_list: Optional list to store the allocated pages
 * @page_array: Optional array to store the pages
5021 5022
 *
 * This is a batched version of the page allocator that attempts to
5023 5024
 * allocate nr_pages quickly. Pages are added to page_list if page_list
 * is not NULL, otherwise it is assumed that the page_array is valid.
5025
 *
5026 5027 5028 5029 5030 5031
 * For lists, nr_pages is the number of pages that should be allocated.
 *
 * For arrays, only NULL elements are populated with pages and nr_pages
 * is the maximum number of pages that will be stored in the array.
 *
 * Returns the number of pages on the list or array.
5032 5033 5034
 */
unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
			nodemask_t *nodemask, int nr_pages,
5035 5036
			struct list_head *page_list,
			struct page **page_array)
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
{
	struct page *page;
	unsigned long flags;
	struct zone *zone;
	struct zoneref *z;
	struct per_cpu_pages *pcp;
	struct list_head *pcp_list;
	struct alloc_context ac;
	gfp_t alloc_gfp;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5047
	int nr_populated = 0;
5048

5049
	if (unlikely(nr_pages <= 0))
5050 5051
		return 0;

5052 5053 5054 5055 5056 5057 5058
	/*
	 * Skip populated array elements to determine if any pages need
	 * to be allocated before disabling IRQs.
	 */
	while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
		nr_populated++;

5059
	/* Use the single page allocator for one page. */
5060
	if (nr_pages - nr_populated == 1)
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
		goto failed;

	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
	gfp &= gfp_allowed_mask;
	alloc_gfp = gfp;
	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
		return 0;
	gfp = alloc_gfp;

	/* Find an allowed local zone that meets the low watermark. */
	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
		unsigned long mark;

		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
		    !__cpuset_zone_allowed(zone, gfp)) {
			continue;
		}

		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
			goto failed;
		}

		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
		if (zone_watermark_fast(zone, 0,  mark,
				zonelist_zone_idx(ac.preferred_zoneref),
				alloc_flags, gfp)) {
			break;
		}
	}

	/*
	 * If there are no allowed local zones that meets the watermarks then
	 * try to allocate a single page and reclaim if necessary.
	 */
5096
	if (unlikely(!zone))
5097 5098 5099 5100 5101 5102 5103
		goto failed;

	/* Attempt the batch allocation */
	local_irq_save(flags);
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	pcp_list = &pcp->lists[ac.migratetype];

5104 5105 5106 5107 5108 5109 5110 5111
	while (nr_populated < nr_pages) {

		/* Skip existing pages */
		if (page_array && page_array[nr_populated]) {
			nr_populated++;
			continue;
		}

5112 5113
		page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
								pcp, pcp_list);
5114
		if (unlikely(!page)) {
5115
			/* Try and get at least one page */
5116
			if (!nr_populated)
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
				goto failed_irq;
			break;
		}

		/*
		 * Ideally this would be batched but the best way to do
		 * that cheaply is to first convert zone_statistics to
		 * be inaccurate per-cpu counter like vm_events to avoid
		 * a RMW cycle then do the accounting with IRQs enabled.
		 */
		__count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
		zone_statistics(ac.preferred_zoneref->zone, zone);

		prep_new_page(page, 0, gfp, 0);
5131 5132 5133 5134 5135
		if (page_list)
			list_add(&page->lru, page_list);
		else
			page_array[nr_populated] = page;
		nr_populated++;
5136 5137 5138 5139
	}

	local_irq_restore(flags);

5140
	return nr_populated;
5141 5142 5143 5144 5145 5146 5147

failed_irq:
	local_irq_restore(flags);

failed:
	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
	if (page) {
5148 5149 5150 5151 5152
		if (page_list)
			list_add(&page->lru, page_list);
		else
			page_array[nr_populated] = page;
		nr_populated++;
5153 5154
	}

5155
	return nr_populated;
5156 5157 5158
}
EXPORT_SYMBOL_GPL(__alloc_pages_bulk);

5159 5160 5161
/*
 * This is the 'heart' of the zoned buddy allocator.
 */
5162
struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5163
							nodemask_t *nodemask)
5164 5165 5166
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5167
	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5168 5169
	struct alloc_context ac = { };

5170 5171 5172 5173 5174
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
5175
		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5176 5177 5178
		return NULL;
	}

5179
	gfp &= gfp_allowed_mask;
5180 5181 5182 5183
	/*
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
5184 5185
	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
	 * movable zones are not used during allocation.
5186 5187
	 */
	gfp = current_gfp_context(gfp);
5188 5189
	alloc_gfp = gfp;
	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5190
			&alloc_gfp, &alloc_flags))
5191 5192
		return NULL;

5193 5194 5195 5196
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
5197
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5198

5199
	/* First allocation attempt */
5200
	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5201 5202
	if (likely(page))
		goto out;
5203

5204
	alloc_gfp = gfp;
5205
	ac.spread_dirty_pages = false;
5206

5207 5208 5209 5210
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
5211
	ac.nodemask = nodemask;
5212

5213
	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5214

5215
out:
5216 5217
	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5218 5219
		__free_pages(page, order);
		page = NULL;
5220 5221
	}

5222
	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5223

5224
	return page;
L
Linus Torvalds 已提交
5225
}
5226
EXPORT_SYMBOL(__alloc_pages);
L
Linus Torvalds 已提交
5227 5228

/*
5229 5230 5231
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
5232
 */
H
Harvey Harrison 已提交
5233
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
5234
{
5235 5236
	struct page *page;

5237
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
5244
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
5245
{
5246
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
5247 5248 5249
}
EXPORT_SYMBOL(get_zeroed_page);

5250
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
5251
{
5252 5253 5254
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
5255
		__free_pages_ok(page, order, FPI_NONE);
L
Linus Torvalds 已提交
5256 5257
}

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
/**
 * __free_pages - Free pages allocated with alloc_pages().
 * @page: The page pointer returned from alloc_pages().
 * @order: The order of the allocation.
 *
 * This function can free multi-page allocations that are not compound
 * pages.  It does not check that the @order passed in matches that of
 * the allocation, so it is easy to leak memory.  Freeing more memory
 * than was allocated will probably emit a warning.
 *
 * If the last reference to this page is speculative, it will be released
 * by put_page() which only frees the first page of a non-compound
 * allocation.  To prevent the remaining pages from being leaked, we free
 * the subsequent pages here.  If you want to use the page's reference
 * count to decide when to free the allocation, you should allocate a
 * compound page, and use put_page() instead of __free_pages().
 *
 * Context: May be called in interrupt context or while holding a normal
 * spinlock, but not in NMI context or while holding a raw spinlock.
 */
5278 5279 5280 5281
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
5282 5283 5284
	else if (!PageHead(page))
		while (order-- > 0)
			free_the_page(page + (1 << order), order);
5285
}
L
Linus Torvalds 已提交
5286 5287
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
5288
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
5289 5290
{
	if (addr != 0) {
N
Nick Piggin 已提交
5291
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
5309 5310
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

5330
void __page_frag_cache_drain(struct page *page, unsigned int count)
5331 5332 5333
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

5334 5335
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
5336
}
5337
EXPORT_SYMBOL(__page_frag_cache_drain);
5338

5339 5340 5341
void *page_frag_alloc_align(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask,
		      unsigned int align_mask)
5342 5343 5344 5345 5346 5347 5348
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
5349
		page = __page_frag_cache_refill(nc, gfp_mask);
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
5360
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5361 5362

		/* reset page count bias and offset to start of new frag */
5363
		nc->pfmemalloc = page_is_pfmemalloc(page);
5364
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5365 5366 5367 5368 5369 5370 5371
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

5372
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5373 5374
			goto refill;

5375 5376 5377 5378 5379
		if (unlikely(nc->pfmemalloc)) {
			free_the_page(page, compound_order(page));
			goto refill;
		}

5380 5381 5382 5383 5384
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
5385
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5386 5387

		/* reset page count bias and offset to start of new frag */
5388
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5389 5390 5391 5392
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
5393
	offset &= align_mask;
5394 5395 5396 5397
	nc->offset = offset;

	return nc->va + offset;
}
5398
EXPORT_SYMBOL(page_frag_alloc_align);
5399 5400 5401 5402

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
5403
void page_frag_free(void *addr)
5404 5405 5406
{
	struct page *page = virt_to_head_page(addr);

5407 5408
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
5409
}
5410
EXPORT_SYMBOL(page_frag_free);
5411

5412 5413
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5428 5429 5430
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5431
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5432 5433 5434 5435 5436 5437 5438 5439
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5440 5441
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5442 5443 5444 5445 5446 5447
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5448 5449 5450
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5451
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5452
	return make_alloc_exact(addr, order, size);
5453 5454 5455
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5456 5457 5458
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5459
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5460
 * @size: the number of bytes to allocate
5461
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5462 5463 5464
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5465 5466
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5467
 */
5468
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5469
{
5470
	unsigned int order = get_order(size);
5471 5472 5473 5474 5475 5476
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5477 5478 5479 5480 5481
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5501 5502 5503 5504
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5505
 * nr_free_zone_pages() counts the number of pages which are beyond the
5506 5507
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5508 5509
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5510 5511
 *
 * Return: number of pages beyond high watermark.
5512
 */
5513
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5514
{
5515
	struct zoneref *z;
5516 5517
	struct zone *zone;

5518
	/* Just pick one node, since fallback list is circular */
5519
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5520

5521
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5522

5523
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5524
		unsigned long size = zone_managed_pages(zone);
5525
		unsigned long high = high_wmark_pages(zone);
5526 5527
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5528 5529 5530 5531 5532
	}

	return sum;
}

5533 5534 5535 5536 5537
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5538 5539 5540
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5541
 */
5542
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5543
{
A
Al Viro 已提交
5544
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5545
}
5546
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5547

5548
static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5549
{
5550
	if (IS_ENABLED(CONFIG_NUMA))
5551
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5552 5553
}

5554 5555 5556 5557 5558 5559
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5560
	unsigned long reclaimable;
5561 5562 5563 5564
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5565
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5566 5567

	for_each_zone(zone)
5568
		wmark_low += low_wmark_pages(zone);
5569 5570 5571 5572 5573

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5574
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5586 5587 5588
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5589
	 */
5590 5591
	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5592
	available += reclaimable - min(reclaimable / 2, wmark_low);
5593

5594 5595 5596 5597 5598 5599
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5600 5601
void si_meminfo(struct sysinfo *val)
{
5602
	val->totalram = totalram_pages();
5603
	val->sharedram = global_node_page_state(NR_SHMEM);
5604
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5605
	val->bufferram = nr_blockdev_pages();
5606
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5616 5617
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5618 5619
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5620 5621
	pg_data_t *pgdat = NODE_DATA(nid);

5622
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5623
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5624
	val->totalram = managed_pages;
5625
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5626
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5627
#ifdef CONFIG_HIGHMEM
5628 5629 5630 5631
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5632
			managed_highpages += zone_managed_pages(zone);
5633 5634 5635 5636 5637
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5638
#else
5639 5640
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5641
#endif
L
Linus Torvalds 已提交
5642 5643 5644 5645
	val->mem_unit = PAGE_SIZE;
}
#endif

5646
/*
5647 5648
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5649
 */
5650
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5651 5652
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5653
		return false;
5654

5655 5656 5657 5658 5659 5660 5661 5662 5663
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5664 5665
}

L
Linus Torvalds 已提交
5666 5667
#define K(x) ((x) << (PAGE_SHIFT-10))

5668 5669 5670 5671 5672
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5673 5674
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5675 5676 5677
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5678
#ifdef CONFIG_MEMORY_ISOLATION
5679
		[MIGRATE_ISOLATE]	= 'I',
5680
#endif
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5692
	printk(KERN_CONT "(%s) ", tmp);
5693 5694
}

L
Linus Torvalds 已提交
5695 5696 5697 5698
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5699 5700 5701 5702
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5703
 */
5704
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5705
{
5706
	unsigned long free_pcp = 0;
5707
	int cpu;
L
Linus Torvalds 已提交
5708
	struct zone *zone;
M
Mel Gorman 已提交
5709
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5710

5711
	for_each_populated_zone(zone) {
5712
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5713
			continue;
5714

5715 5716
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5717 5718
	}

K
KOSAKI Motohiro 已提交
5719 5720
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5721
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5722
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5723
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5724
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5725 5726 5727 5728 5729 5730 5731
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5732 5733
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5734 5735
		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5736
		global_node_page_state(NR_FILE_MAPPED),
5737
		global_node_page_state(NR_SHMEM),
5738
		global_node_page_state(NR_PAGETABLE),
5739 5740
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5741
		free_pcp,
5742
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5743

M
Mel Gorman 已提交
5744
	for_each_online_pgdat(pgdat) {
5745
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5746 5747
			continue;

M
Mel Gorman 已提交
5748 5749 5750 5751 5752 5753 5754 5755
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5756
			" mapped:%lukB"
5757 5758 5759 5760 5761 5762 5763 5764 5765
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
5766 5767 5768 5769
			" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
5770
			" pagetables:%lukB"
M
Mel Gorman 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5781
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5782 5783
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5784
			K(node_page_state(pgdat, NR_SHMEM)),
5785
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5786
			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5787
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5788
			K(node_page_state(pgdat, NR_ANON_THPS)),
5789 5790
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5791 5792 5793 5794
			node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
			node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
5795
			K(node_page_state(pgdat, NR_PAGETABLE)),
5796 5797
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5798 5799
	}

5800
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5801 5802
		int i;

5803
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5804
			continue;
5805 5806 5807 5808 5809

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5810
		show_node(zone);
5811 5812
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5813 5814 5815 5816
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5817
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5818 5819 5820 5821 5822
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5823
			" writepending:%lukB"
L
Linus Torvalds 已提交
5824
			" present:%lukB"
5825
			" managed:%lukB"
5826 5827
			" mlocked:%lukB"
			" bounce:%lukB"
5828 5829
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5830
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5831 5832
			"\n",
			zone->name,
5833
			K(zone_page_state(zone, NR_FREE_PAGES)),
5834 5835 5836
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
5837
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
5838 5839 5840 5841 5842
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5843
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5844
			K(zone->present_pages),
5845
			K(zone_managed_pages(zone)),
5846 5847
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_BOUNCE)),
5848 5849
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5850
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5851 5852
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5853 5854
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5855 5856
	}

5857
	for_each_populated_zone(zone) {
5858 5859
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5860
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5861

5862
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5863
			continue;
L
Linus Torvalds 已提交
5864
		show_node(zone);
5865
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5866 5867 5868

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5869 5870 5871 5872
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5873
			total += nr[order] << order;
5874 5875 5876

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5877
				if (!free_area_empty(area, type))
5878 5879
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5880 5881
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5882
		for (order = 0; order < MAX_ORDER; order++) {
5883 5884
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5885 5886 5887
			if (nr[order])
				show_migration_types(types[order]);
		}
5888
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5889 5890
	}

5891 5892
	hugetlb_show_meminfo();

5893
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5894

L
Linus Torvalds 已提交
5895 5896 5897
	show_swap_cache_info();
}

5898 5899 5900 5901 5902 5903
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5904 5905
/*
 * Builds allocation fallback zone lists.
5906 5907
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5908
 */
5909
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5910
{
5911
	struct zone *zone;
5912
	enum zone_type zone_type = MAX_NR_ZONES;
5913
	int nr_zones = 0;
5914 5915

	do {
5916
		zone_type--;
5917
		zone = pgdat->node_zones + zone_type;
5918
		if (managed_zone(zone)) {
5919
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5920
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5921
		}
5922
	} while (zone_type);
5923

5924
	return nr_zones;
L
Linus Torvalds 已提交
5925 5926 5927
}

#ifdef CONFIG_NUMA
5928 5929 5930

static int __parse_numa_zonelist_order(char *s)
{
5931
	/*
I
Ingo Molnar 已提交
5932
	 * We used to support different zonelists modes but they turned
5933 5934 5935 5936 5937 5938
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5939 5940 5941 5942 5943
		return -EINVAL;
	}
	return 0;
}

5944 5945
char numa_zonelist_order[] = "Node";

5946 5947 5948
/*
 * sysctl handler for numa_zonelist_order
 */
5949
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5950
		void *buffer, size_t *length, loff_t *ppos)
5951
{
5952 5953 5954
	if (write)
		return __parse_numa_zonelist_order(buffer);
	return proc_dostring(table, write, buffer, length, ppos);
5955 5956 5957
}


5958
#define MAX_NODE_LOAD (nr_online_nodes)
5959 5960
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5961
/**
5962
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
5973 5974
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
5975
 */
5976
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5977
{
5978
	int n, val;
L
Linus Torvalds 已提交
5979
	int min_val = INT_MAX;
D
David Rientjes 已提交
5980
	int best_node = NUMA_NO_NODE;
L
Linus Torvalds 已提交
5981

5982 5983 5984 5985 5986
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5987

5988
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5989 5990 5991 5992 5993 5994 5995 5996

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5997 5998 5999
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
6000
		/* Give preference to headless and unused nodes */
6001
		if (!cpumask_empty(cpumask_of_node(n)))
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

6020 6021 6022 6023 6024 6025

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
6026 6027
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
6028
{
6029 6030 6031 6032 6033 6034 6035 6036 6037
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
6038

6039 6040 6041 6042 6043
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
6044 6045
}

6046 6047 6048 6049 6050
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
6051 6052
	struct zoneref *zonerefs;
	int nr_zones;
6053

6054 6055 6056 6057 6058
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
6059 6060
}

6061 6062 6063 6064 6065 6066 6067 6068 6069
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
6070 6071
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
6072
	nodemask_t used_mask = NODE_MASK_NONE;
6073
	int local_node, prev_node;
L
Linus Torvalds 已提交
6074 6075 6076

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
6077
	load = nr_online_nodes;
L
Linus Torvalds 已提交
6078
	prev_node = local_node;
6079 6080

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
6081 6082 6083 6084 6085 6086
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
6087 6088
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
6089 6090
			node_load[node] = load;

6091
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
6092 6093 6094
		prev_node = node;
		load--;
	}
6095

6096
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6097
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
6098 6099
}

6100 6101 6102 6103 6104 6105 6106 6107 6108
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
6109
	struct zoneref *z;
6110

6111
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6112
				   gfp_zone(GFP_KERNEL),
6113
				   NULL);
6114
	return zone_to_nid(z->zone);
6115 6116
}
#endif
6117

6118 6119
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
6120 6121
#else	/* CONFIG_NUMA */

6122
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
6123
{
6124
	int node, local_node;
6125 6126
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
6127 6128 6129

	local_node = pgdat->node_id;

6130 6131 6132
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
6133

6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
6145 6146
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
6147
	}
6148 6149 6150
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
6151 6152
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
6153 6154
	}

6155 6156
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
6157 6158 6159 6160
}

#endif	/* CONFIG_NUMA */

6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
6176
static void pageset_init(struct per_cpu_pageset *p);
6177 6178 6179
/* These effectively disable the pcplists in the boot pageset completely */
#define BOOT_PAGESET_HIGH	0
#define BOOT_PAGESET_BATCH	1
6180
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6181
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6182

6183
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
6184
{
6185
	int nid;
6186
	int __maybe_unused cpu;
6187
	pg_data_t *self = data;
6188 6189 6190
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
6191

6192 6193 6194
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
6195

6196 6197 6198 6199
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
6200 6201
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
6202 6203 6204
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
6205

6206 6207
			build_zonelists(pgdat);
		}
6208

6209 6210 6211 6212 6213 6214 6215 6216 6217
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
6218
		for_each_online_cpu(cpu)
6219
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6220
#endif
6221
	}
6222 6223

	spin_unlock(&lock);
6224 6225
}

6226 6227 6228
static noinline void __init
build_all_zonelists_init(void)
{
6229 6230
	int cpu;

6231
	__build_all_zonelists(NULL);
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
6247
		pageset_init(&per_cpu(boot_pageset, cpu));
6248

6249 6250 6251 6252
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

6253 6254
/*
 * unless system_state == SYSTEM_BOOTING.
6255
 *
6256
 * __ref due to call of __init annotated helper build_all_zonelists_init
6257
 * [protected by SYSTEM_BOOTING].
6258
 */
6259
void __ref build_all_zonelists(pg_data_t *pgdat)
6260
{
D
David Hildenbrand 已提交
6261 6262
	unsigned long vm_total_pages;

6263
	if (system_state == SYSTEM_BOOTING) {
6264
		build_all_zonelists_init();
6265
	} else {
6266
		__build_all_zonelists(pgdat);
6267 6268
		/* cpuset refresh routine should be here */
	}
6269 6270
	/* Get the number of free pages beyond high watermark in all zones. */
	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6271 6272 6273 6274 6275 6276 6277
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
6278
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6279 6280 6281 6282
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

6283
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
6284 6285 6286
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
6287
#ifdef CONFIG_NUMA
6288
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6289
#endif
L
Linus Torvalds 已提交
6290 6291
}

6292 6293 6294 6295 6296 6297 6298 6299
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6300
			for_each_mem_region(r) {
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
6314 6315
/*
 * Initially all pages are reserved - free ones are freed
6316
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
6317
 * done. Non-atomic initialization, single-pass.
6318 6319 6320 6321
 *
 * All aligned pageblocks are initialized to the specified migratetype
 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 * zone stats (e.g., nr_isolate_pageblock) are touched.
L
Linus Torvalds 已提交
6322
 */
6323
void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6324
		unsigned long start_pfn, unsigned long zone_end_pfn,
6325 6326
		enum meminit_context context,
		struct vmem_altmap *altmap, int migratetype)
L
Linus Torvalds 已提交
6327
{
6328
	unsigned long pfn, end_pfn = start_pfn + size;
6329
	struct page *page;
L
Linus Torvalds 已提交
6330

6331 6332 6333
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

6334
#ifdef CONFIG_ZONE_DEVICE
6335 6336
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
6337 6338 6339 6340
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
6341
	 */
6342 6343 6344 6345 6346 6347 6348 6349 6350
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
6351

6352
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
6353
		/*
6354 6355
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
6356
		 */
6357
		if (context == MEMINIT_EARLY) {
6358 6359
			if (overlap_memmap_init(zone, &pfn))
				continue;
6360
			if (defer_init(nid, pfn, zone_end_pfn))
6361
				break;
D
Dave Hansen 已提交
6362
		}
6363

6364 6365
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
6366
		if (context == MEMINIT_HOTPLUG)
6367
			__SetPageReserved(page);
6368

6369
		/*
6370 6371 6372
		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
		 * such that unmovable allocations won't be scattered all
		 * over the place during system boot.
6373
		 */
6374
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6375
			set_pageblock_migratetype(page, migratetype);
6376
			cond_resched();
6377
		}
6378
		pfn++;
L
Linus Torvalds 已提交
6379 6380 6381
	}
}

6382 6383 6384
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6385
				   unsigned long nr_pages,
6386 6387
				   struct dev_pagemap *pgmap)
{
6388
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6389
	struct pglist_data *pgdat = zone->zone_pgdat;
6390
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6391 6392 6393 6394
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6395
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6396 6397 6398 6399 6400 6401 6402
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6403
	if (altmap) {
6404
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6405
		nr_pages = end_pfn - start_pfn;
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6423 6424 6425
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6426 6427
		 */
		page->pgmap = pgmap;
6428
		page->zone_device_data = NULL;
6429 6430 6431 6432 6433 6434 6435 6436

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
6437
		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6438
		 * because this is done early in section_activate()
6439
		 */
6440
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6441 6442 6443 6444 6445
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6446
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6447
		nr_pages, jiffies_to_msecs(jiffies - start));
6448 6449 6450
}

#endif
6451
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6452
{
6453
	unsigned int order, t;
6454 6455
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6456 6457 6458 6459
		zone->free_area[order].nr_free = 0;
	}
}

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
/*
 * Only struct pages that correspond to ranges defined by memblock.memory
 * are zeroed and initialized by going through __init_single_page() during
 * memmap_init_zone().
 *
 * But, there could be struct pages that correspond to holes in
 * memblock.memory. This can happen because of the following reasons:
 * - physical memory bank size is not necessarily the exact multiple of the
 *   arbitrary section size
 * - early reserved memory may not be listed in memblock.memory
 * - memory layouts defined with memmap= kernel parameter may not align
 *   nicely with memmap sections
 *
 * Explicitly initialize those struct pages so that:
 * - PG_Reserved is set
 * - zone and node links point to zone and node that span the page if the
 *   hole is in the middle of a zone
 * - zone and node links point to adjacent zone/node if the hole falls on
 *   the zone boundary; the pages in such holes will be prepended to the
 *   zone/node above the hole except for the trailing pages in the last
 *   section that will be appended to the zone/node below.
 */
static u64 __meminit init_unavailable_range(unsigned long spfn,
					    unsigned long epfn,
					    int zone, int node)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
		__SetPageReserved(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}
#else
static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
					 int zone, int node)
{
	return 0;
}
#endif

6511
void __meminit __weak memmap_init_zone(struct zone *zone)
6512
{
6513 6514 6515
	unsigned long zone_start_pfn = zone->zone_start_pfn;
	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6516
	static unsigned long hole_pfn;
6517
	unsigned long start_pfn, end_pfn;
6518
	u64 pgcnt = 0;
6519 6520

	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6521 6522
		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
		end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6523

6524 6525 6526 6527
		if (end_pfn > start_pfn)
			memmap_init_range(end_pfn - start_pfn, nid,
					zone_id, start_pfn, zone_end_pfn,
					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6528 6529 6530 6531 6532

		if (hole_pfn < start_pfn)
			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
							zone_id, nid);
		hole_pfn = end_pfn;
6533
	}
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550

#ifdef CONFIG_SPARSEMEM
	/*
	 * Initialize the hole in the range [zone_end_pfn, section_end].
	 * If zone boundary falls in the middle of a section, this hole
	 * will be re-initialized during the call to this function for the
	 * higher zone.
	 */
	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
	if (hole_pfn < end_pfn)
		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
						zone_id, nid);
#endif

	if (pgcnt)
		pr_info("  %s zone: %llu pages in unavailable ranges\n",
			zone->name, pgcnt);
6551
}
L
Linus Torvalds 已提交
6552

6553
static int zone_batchsize(struct zone *zone)
6554
{
6555
#ifdef CONFIG_MMU
6556 6557 6558 6559
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
6560
	 * size of the zone.
6561
	 */
6562
	batch = zone_managed_pages(zone) / 1024;
6563 6564 6565
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
6566 6567 6568 6569 6570
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6571 6572 6573
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6574
	 *
6575 6576 6577 6578
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6579
	 */
6580
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6581

6582
	return batch;
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6600 6601
}

6602
/*
6603 6604 6605
 * pcp->high and pcp->batch values are related and generally batch is lower
 * than high. They are also related to pcp->count such that count is lower
 * than high, and as soon as it reaches high, the pcplist is flushed.
6606
 *
6607 6608 6609 6610 6611 6612
 * However, guaranteeing these relations at all times would require e.g. write
 * barriers here but also careful usage of read barriers at the read side, and
 * thus be prone to error and bad for performance. Thus the update only prevents
 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
 * can cope with those fields changing asynchronously, and fully trust only the
 * pcp->count field on the local CPU with interrupts disabled.
6613 6614 6615 6616 6617 6618 6619 6620
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
6621 6622
	WRITE_ONCE(pcp->batch, batch);
	WRITE_ONCE(pcp->high, high);
6623 6624
}

6625
static void pageset_init(struct per_cpu_pageset *p)
6626 6627
{
	struct per_cpu_pages *pcp;
6628
	int migratetype;
6629

6630 6631
	memset(p, 0, sizeof(*p));

6632
	pcp = &p->pcp;
6633 6634
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6635

6636 6637 6638 6639 6640 6641
	/*
	 * Set batch and high values safe for a boot pageset. A true percpu
	 * pageset's initialization will update them subsequently. Here we don't
	 * need to be as careful as pageset_update() as nobody can access the
	 * pageset yet.
	 */
6642 6643
	pcp->high = BOOT_PAGESET_HIGH;
	pcp->batch = BOOT_PAGESET_BATCH;
6644 6645
}

6646
static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
		unsigned long batch)
{
	struct per_cpu_pageset *p;
	int cpu;

	for_each_possible_cpu(cpu) {
		p = per_cpu_ptr(zone->pageset, cpu);
		pageset_update(&p->pcp, high, batch);
	}
}

6658
/*
6659
 * Calculate and set new high and batch values for all per-cpu pagesets of a
6660
 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6661
 */
6662
static void zone_set_pageset_high_and_batch(struct zone *zone)
6663
{
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
	unsigned long new_high, new_batch;

	if (percpu_pagelist_fraction) {
		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
		new_batch = max(1UL, new_high / 4);
		if ((new_high / 4) > (PAGE_SHIFT * 8))
			new_batch = PAGE_SHIFT * 8;
	} else {
		new_batch = zone_batchsize(zone);
		new_high = 6 * new_batch;
		new_batch = max(1UL, 1 * new_batch);
	}
6676

6677 6678 6679 6680 6681 6682 6683
	if (zone->pageset_high == new_high &&
	    zone->pageset_batch == new_batch)
		return;

	zone->pageset_high = new_high;
	zone->pageset_batch = new_batch;

6684
	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6685 6686
}

6687
void __meminit setup_zone_pageset(struct zone *zone)
6688
{
6689
	struct per_cpu_pageset *p;
6690
	int cpu;
6691

6692
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6693 6694 6695 6696 6697 6698
	for_each_possible_cpu(cpu) {
		p = per_cpu_ptr(zone->pageset, cpu);
		pageset_init(p);
	}

	zone_set_pageset_high_and_batch(zone);
6699 6700
}

6701
/*
6702 6703
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6704
 */
6705
void __init setup_per_cpu_pageset(void)
6706
{
6707
	struct pglist_data *pgdat;
6708
	struct zone *zone;
6709
	int __maybe_unused cpu;
6710

6711 6712
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6713

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
#ifdef CONFIG_NUMA
	/*
	 * Unpopulated zones continue using the boot pagesets.
	 * The numa stats for these pagesets need to be reset.
	 * Otherwise, they will end up skewing the stats of
	 * the nodes these zones are associated with.
	 */
	for_each_possible_cpu(cpu) {
		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
		memset(pcp->vm_numa_stat_diff, 0,
		       sizeof(pcp->vm_numa_stat_diff));
	}
#endif

6728 6729 6730
	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6731 6732
}

6733
static __meminit void zone_pcp_init(struct zone *zone)
6734
{
6735 6736 6737 6738 6739 6740
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6741 6742
	zone->pageset_high = BOOT_PAGESET_HIGH;
	zone->pageset_batch = BOOT_PAGESET_BATCH;
6743

6744
	if (populated_zone(zone))
6745 6746 6747
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6748 6749
}

6750
void __meminit init_currently_empty_zone(struct zone *zone,
6751
					unsigned long zone_start_pfn,
6752
					unsigned long size)
6753 6754
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6755
	int zone_idx = zone_idx(zone) + 1;
6756

6757 6758
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6759 6760 6761

	zone->zone_start_pfn = zone_start_pfn;

6762 6763 6764 6765 6766 6767
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6768
	zone_init_free_lists(zone);
6769
	zone->initialized = 1;
6770 6771
}

6772 6773
/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6774 6775 6776
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6777 6778
 *
 * It returns the start and end page frame of a node based on information
6779
 * provided by memblock_set_node(). If called for a node
6780
 * with no available memory, a warning is printed and the start and end
6781
 * PFNs will be 0.
6782
 */
6783
void __init get_pfn_range_for_nid(unsigned int nid,
6784 6785
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6786
	unsigned long this_start_pfn, this_end_pfn;
6787
	int i;
6788

6789 6790 6791
	*start_pfn = -1UL;
	*end_pfn = 0;

6792 6793 6794
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6795 6796
	}

6797
	if (*start_pfn == -1UL)
6798 6799 6800
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6801 6802 6803 6804 6805
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6806
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6824
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6825 6826 6827 6828 6829 6830 6831
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
6832
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6847 6848 6849 6850 6851 6852
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6853 6854 6855 6856 6857 6858
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6859 6860 6861 6862
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
6863
static unsigned long __init zone_spanned_pages_in_node(int nid,
6864
					unsigned long zone_type,
6865 6866
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6867
					unsigned long *zone_start_pfn,
6868
					unsigned long *zone_end_pfn)
6869
{
6870 6871
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6872
	/* When hotadd a new node from cpu_up(), the node should be empty */
6873 6874 6875
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6876
	/* Get the start and end of the zone */
6877 6878
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6879 6880
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6881
				zone_start_pfn, zone_end_pfn);
6882 6883

	/* Check that this node has pages within the zone's required range */
6884
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6885 6886 6887
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6888 6889
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6890 6891

	/* Return the spanned pages */
6892
	return *zone_end_pfn - *zone_start_pfn;
6893 6894 6895 6896
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6897
 * then all holes in the requested range will be accounted for.
6898
 */
6899
unsigned long __init __absent_pages_in_range(int nid,
6900 6901 6902
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6903 6904 6905
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6906

6907 6908 6909 6910
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6911
	}
6912
	return nr_absent;
6913 6914 6915 6916 6917 6918 6919
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6920
 * Return: the number of pages frames in memory holes within a range.
6921 6922 6923 6924 6925 6926 6927 6928
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
6929
static unsigned long __init zone_absent_pages_in_node(int nid,
6930
					unsigned long zone_type,
6931
					unsigned long node_start_pfn,
6932
					unsigned long node_end_pfn)
6933
{
6934 6935
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6936
	unsigned long zone_start_pfn, zone_end_pfn;
6937
	unsigned long nr_absent;
6938

6939
	/* When hotadd a new node from cpu_up(), the node should be empty */
6940 6941 6942
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6943 6944
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6945

M
Mel Gorman 已提交
6946 6947 6948
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6949 6950 6951 6952 6953 6954 6955
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6956 6957 6958 6959
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

6960
		for_each_mem_region(r) {
6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6973 6974 6975 6976
		}
	}

	return nr_absent;
6977
}
6978

6979
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6980
						unsigned long node_start_pfn,
6981
						unsigned long node_end_pfn)
6982
{
6983
	unsigned long realtotalpages = 0, totalpages = 0;
6984 6985
	enum zone_type i;

6986 6987
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6988
		unsigned long zone_start_pfn, zone_end_pfn;
6989
		unsigned long spanned, absent;
6990
		unsigned long size, real_size;
6991

6992 6993 6994 6995 6996 6997 6998 6999
		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						     node_start_pfn,
						     node_end_pfn,
						     &zone_start_pfn,
						     &zone_end_pfn);
		absent = zone_absent_pages_in_node(pgdat->node_id, i,
						   node_start_pfn,
						   node_end_pfn);
7000 7001 7002 7003

		size = spanned;
		real_size = size - absent;

7004 7005 7006 7007
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
7008 7009 7010 7011 7012 7013 7014 7015
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
7016 7017 7018 7019 7020
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

7021 7022 7023
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
7024 7025
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7026 7027 7028
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
7029
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7030 7031 7032
{
	unsigned long usemapsize;

7033
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7034 7035
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
7036 7037 7038 7039 7040 7041
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

7042
static void __ref setup_usemap(struct zone *zone)
7043
{
7044 7045
	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
					       zone->spanned_pages);
7046
	zone->pageblock_flags = NULL;
7047
	if (usemapsize) {
7048
		zone->pageblock_flags =
7049
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7050
					    zone_to_nid(zone));
7051 7052
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7053
			      usemapsize, zone->name, zone_to_nid(zone));
7054
	}
7055 7056
}
#else
7057
static inline void setup_usemap(struct zone *zone) {}
7058 7059
#endif /* CONFIG_SPARSEMEM */

7060
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7061

7062
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7063
void __init set_pageblock_order(void)
7064
{
7065 7066
	unsigned int order;

7067 7068 7069 7070
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

7071 7072 7073 7074 7075
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

7076 7077
	/*
	 * Assume the largest contiguous order of interest is a huge page.
7078 7079
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
7080 7081 7082 7083 7084
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

7085 7086
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7087 7088 7089
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
7090
 */
7091
void __init set_pageblock_order(void)
7092 7093
{
}
7094 7095 7096

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

7097
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
7098
						unsigned long present_pages)
7099 7100 7101 7102 7103 7104 7105 7106
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
7107
	 * populated regions may not be naturally aligned on page boundary.
7108 7109 7110 7111 7112 7113 7114 7115 7116
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

7117 7118 7119
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
7120 7121 7122 7123 7124
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

7139
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
7140
{
7141
	pgdat_resize_init(pgdat);
7142 7143 7144 7145

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
7146
	init_waitqueue_head(&pgdat->kswapd_wait);
7147
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7148

7149
	pgdat_page_ext_init(pgdat);
7150
	lruvec_init(&pgdat->__lruvec);
7151 7152 7153 7154 7155
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
7156
	atomic_long_set(&zone->managed_pages, remaining_pages);
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
7197

7198
	pgdat_init_internals(pgdat);
7199 7200
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
7201 7202
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
7203
		unsigned long size, freesize, memmap_pages;
L
Linus Torvalds 已提交
7204

7205
		size = zone->spanned_pages;
7206
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
7207

7208
		/*
7209
		 * Adjust freesize so that it accounts for how much memory
7210 7211 7212
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
7213
		memmap_pages = calc_memmap_size(size, freesize);
7214 7215 7216 7217 7218 7219 7220 7221
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
7222
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7223 7224
					zone_names[j], memmap_pages, freesize);
		}
7225

7226
		/* Account for reserved pages */
7227 7228
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
7229
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7230
					zone_names[0], dma_reserve);
7231 7232
		}

7233
		if (!is_highmem_idx(j))
7234
			nr_kernel_pages += freesize;
7235 7236 7237
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
7238
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
7239

7240 7241 7242 7243 7244
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
7245
		zone_init_internals(zone, j, nid, freesize);
7246

7247
		if (!size)
L
Linus Torvalds 已提交
7248 7249
			continue;

7250
		set_pageblock_order();
7251
		setup_usemap(zone);
7252
		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7253
		memmap_init_zone(zone);
L
Linus Torvalds 已提交
7254 7255 7256
	}
}

7257
#ifdef CONFIG_FLAT_NODE_MEM_MAP
7258
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
7259
{
7260
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
7261 7262
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
7263 7264 7265 7266
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

7267 7268
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
7269 7270
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
7271
		unsigned long size, end;
A
Andy Whitcroft 已提交
7272 7273
		struct page *map;

7274 7275 7276 7277 7278
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
7279
		end = pgdat_end_pfn(pgdat);
7280 7281
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
7282 7283
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
7284 7285 7286
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
7287
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
7288
	}
7289 7290 7291
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
7292
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
7293 7294 7295
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
7296
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
7297
		mem_map = NODE_DATA(0)->node_mem_map;
7298
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
7299
			mem_map -= offset;
7300
	}
L
Linus Torvalds 已提交
7301 7302
#endif
}
7303 7304 7305
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
7306

7307 7308 7309 7310 7311 7312 7313 7314 7315
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

7316
static void __init free_area_init_node(int nid)
L
Linus Torvalds 已提交
7317
{
7318
	pg_data_t *pgdat = NODE_DATA(nid);
7319 7320
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
7321

7322
	/* pg_data_t should be reset to zero when it's allocated */
7323
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7324

7325
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7326

L
Linus Torvalds 已提交
7327
	pgdat->node_id = nid;
7328
	pgdat->node_start_pfn = start_pfn;
7329
	pgdat->per_cpu_nodestats = NULL;
7330

7331
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7332 7333
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7334
	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
L
Linus Torvalds 已提交
7335 7336

	alloc_node_mem_map(pgdat);
7337
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
7338

7339
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
7340 7341
}

7342
void __init free_area_init_memoryless_node(int nid)
7343
{
7344
	free_area_init_node(nid);
7345 7346
}

M
Miklos Szeredi 已提交
7347 7348 7349 7350
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7351
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7352
{
7353
	unsigned int highest;
M
Miklos Szeredi 已提交
7354

7355
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7356 7357 7358 7359
	nr_node_ids = highest + 1;
}
#endif

7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7376
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7377 7378 7379 7380 7381
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7382
	unsigned long start, end, mask;
7383
	int last_nid = NUMA_NO_NODE;
7384
	int i, nid;
7385

7386
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7410 7411 7412
/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7413
 * Return: the minimum PFN based on information provided via
7414
 * memblock_set_node().
7415 7416 7417
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
7418
	return PHYS_PFN(memblock_start_of_DRAM());
7419 7420
}

7421 7422 7423
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7424
 * Populate N_MEMORY for calculating usable_nodes.
7425
 */
A
Adrian Bunk 已提交
7426
static unsigned long __init early_calculate_totalpages(void)
7427 7428
{
	unsigned long totalpages = 0;
7429 7430 7431 7432 7433
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7434

7435 7436
		totalpages += pages;
		if (pages)
7437
			node_set_state(nid, N_MEMORY);
7438
	}
7439
	return totalpages;
7440 7441
}

M
Mel Gorman 已提交
7442 7443 7444 7445 7446 7447
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7448
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7449 7450 7451 7452
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7453
	/* save the state before borrow the nodemask */
7454
	nodemask_t saved_node_state = node_states[N_MEMORY];
7455
	unsigned long totalpages = early_calculate_totalpages();
7456
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7457
	struct memblock_region *r;
7458 7459 7460 7461 7462 7463 7464 7465 7466

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
7467
		for_each_mem_region(r) {
E
Emil Medve 已提交
7468
			if (!memblock_is_hotpluggable(r))
7469 7470
				continue;

7471
			nid = memblock_get_region_node(r);
7472

E
Emil Medve 已提交
7473
			usable_startpfn = PFN_DOWN(r->base);
7474 7475 7476 7477 7478 7479 7480
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7481

7482 7483 7484 7485 7486 7487
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

7488
		for_each_mem_region(r) {
7489 7490 7491
			if (memblock_is_mirror(r))
				continue;

7492
			nid = memblock_get_region_node(r);
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
C
Chen Tao 已提交
7507
			pr_warn("This configuration results in unmirrored kernel memory.\n");
7508 7509 7510 7511

		goto out2;
	}

7512
	/*
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7540
		required_movablecore = min(totalpages, required_movablecore);
7541 7542 7543 7544 7545
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7546 7547 7548 7549 7550
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7551
		goto out;
M
Mel Gorman 已提交
7552 7553 7554 7555 7556 7557 7558

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7559
	for_each_node_state(nid, N_MEMORY) {
7560 7561
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7578
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7579 7580
			unsigned long size_pages;

7581
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7624
			 * satisfied
M
Mel Gorman 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7638
	 * satisfied
M
Mel Gorman 已提交
7639 7640 7641 7642 7643
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7644
out2:
M
Mel Gorman 已提交
7645 7646 7647 7648
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7649

7650
out:
7651
	/* restore the node_state */
7652
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7653 7654
}

7655 7656
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7657 7658 7659
{
	enum zone_type zone_type;

7660
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7661
		struct zone *zone = &pgdat->node_zones[zone_type];
7662
		if (populated_zone(zone)) {
7663 7664 7665
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7666
				node_set_state(nid, N_NORMAL_MEMORY);
7667 7668
			break;
		}
7669 7670 7671
	}
}

7672
/*
I
Ingo Molnar 已提交
7673
 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7674 7675 7676 7677 7678 7679 7680
 * such cases we allow max_zone_pfn sorted in the descending order
 */
bool __weak arch_has_descending_max_zone_pfns(void)
{
	return false;
}

7681
/**
7682
 * free_area_init - Initialise all pg_data_t and zone data
7683
 * @max_zone_pfn: an array of max PFNs for each zone
7684 7685
 *
 * This will call free_area_init_node() for each active node in the system.
7686
 * Using the page ranges provided by memblock_set_node(), the size of each
7687 7688 7689 7690 7691 7692 7693
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7694
void __init free_area_init(unsigned long *max_zone_pfn)
7695
{
7696
	unsigned long start_pfn, end_pfn;
7697 7698
	int i, nid, zone;
	bool descending;
7699

7700 7701 7702 7703 7704
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7705 7706

	start_pfn = find_min_pfn_with_active_regions();
7707
	descending = arch_has_descending_max_zone_pfns();
7708 7709

	for (i = 0; i < MAX_NR_ZONES; i++) {
7710 7711 7712 7713 7714 7715
		if (descending)
			zone = MAX_NR_ZONES - i - 1;
		else
			zone = i;

		if (zone == ZONE_MOVABLE)
M
Mel Gorman 已提交
7716
			continue;
7717

7718 7719 7720
		end_pfn = max(max_zone_pfn[zone], start_pfn);
		arch_zone_lowest_possible_pfn[zone] = start_pfn;
		arch_zone_highest_possible_pfn[zone] = end_pfn;
7721 7722

		start_pfn = end_pfn;
7723
	}
M
Mel Gorman 已提交
7724 7725 7726

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7727
	find_zone_movable_pfns_for_nodes();
7728 7729

	/* Print out the zone ranges */
7730
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7731 7732 7733
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7734
		pr_info("  %-8s ", zone_names[i]);
7735 7736
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7737
			pr_cont("empty\n");
7738
		else
7739 7740 7741 7742
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7743
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7744 7745 7746
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7747
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7748 7749
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7750 7751
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7752
	}
7753

7754 7755 7756 7757 7758
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7759
	pr_info("Early memory node ranges\n");
7760
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7761 7762 7763
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7764 7765
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7766 7767

	/* Initialise every node */
7768
	mminit_verify_pageflags_layout();
7769
	setup_nr_node_ids();
7770 7771
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7772
		free_area_init_node(nid);
7773 7774 7775

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7776 7777
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7778 7779
	}
}
M
Mel Gorman 已提交
7780

7781 7782
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7783 7784
{
	unsigned long long coremem;
7785 7786
	char *endptr;

M
Mel Gorman 已提交
7787 7788 7789
	if (!p)
		return -EINVAL;

7790 7791 7792 7793 7794
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7795

7796 7797 7798 7799 7800
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7801

7802 7803 7804
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7805 7806
	return 0;
}
M
Mel Gorman 已提交
7807

7808 7809 7810 7811 7812 7813
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7814 7815 7816 7817 7818 7819
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7820 7821
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7822 7823 7824 7825 7826 7827 7828 7829
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7830 7831
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7832 7833
}

M
Mel Gorman 已提交
7834
early_param("kernelcore", cmdline_parse_kernelcore);
7835
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7836

7837 7838
void adjust_managed_page_count(struct page *page, long count)
{
7839
	atomic_long_add(count, &page_zone(page)->managed_pages);
7840
	totalram_pages_add(count);
7841 7842
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
7843
		totalhigh_pages_add(count);
7844
#endif
7845
}
7846
EXPORT_SYMBOL(adjust_managed_page_count);
7847

7848
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7849
{
7850 7851
	void *pos;
	unsigned long pages = 0;
7852

7853 7854 7855
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7867 7868 7869 7870 7871
		/*
		 * Perform a kasan-unchecked memset() since this memory
		 * has not been initialized.
		 */
		direct_map_addr = kasan_reset_tag(direct_map_addr);
7872
		if ((unsigned int)poison <= 0xFF)
7873 7874 7875
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7876 7877 7878
	}

	if (pages && s)
7879 7880
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7881 7882 7883 7884

	return pages;
}

7885
void __init mem_init_print_info(void)
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7906 7907 7908 7909
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7920
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7921
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7922
		", %luK highmem"
7923
#endif
7924
		")\n",
J
Joe Perches 已提交
7925 7926 7927 7928
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7929
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7930
		totalcma_pages << (PAGE_SHIFT - 10)
7931
#ifdef	CONFIG_HIGHMEM
7932
		, totalhigh_pages() << (PAGE_SHIFT - 10)
7933
#endif
7934
		);
7935 7936
}

7937
/**
7938 7939
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7940
 *
7941
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7942 7943
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7944 7945 7946
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7947 7948 7949 7950 7951 7952
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

7953
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7954 7955
{

7956 7957
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7958

7959 7960 7961 7962 7963 7964 7965
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7966

7967 7968 7969 7970 7971 7972 7973 7974 7975
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7976 7977
}

7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
7991 7992
void __init page_alloc_init(void)
{
7993 7994
	int ret;

7995 7996 7997 7998 7999
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

8000 8001 8002 8003
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
8004 8005
}

8006
/*
8007
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8008 8009 8010 8011 8012 8013
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
8014
	enum zone_type i, j;
8015 8016

	for_each_online_pgdat(pgdat) {
8017 8018 8019

		pgdat->totalreserve_pages = 0;

8020 8021
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
8022
			long max = 0;
8023
			unsigned long managed_pages = zone_managed_pages(zone);
8024 8025 8026 8027 8028 8029 8030

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

8031 8032
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
8033

8034 8035
			if (max > managed_pages)
				max = managed_pages;
8036

8037
			pgdat->totalreserve_pages += max;
8038

8039 8040 8041 8042 8043 8044
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
8045 8046
/*
 * setup_per_zone_lowmem_reserve - called whenever
8047
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
8048 8049 8050 8051 8052 8053
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
8054
	enum zone_type i, j;
L
Linus Torvalds 已提交
8055

8056
	for_each_online_pgdat(pgdat) {
8057 8058 8059 8060 8061 8062 8063 8064 8065
		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
			struct zone *zone = &pgdat->node_zones[i];
			int ratio = sysctl_lowmem_reserve_ratio[i];
			bool clear = !ratio || !zone_managed_pages(zone);
			unsigned long managed_pages = 0;

			for (j = i + 1; j < MAX_NR_ZONES; j++) {
				if (clear) {
					zone->lowmem_reserve[j] = 0;
8066
				} else {
8067 8068 8069 8070
					struct zone *upper_zone = &pgdat->node_zones[j];

					managed_pages += zone_managed_pages(upper_zone);
					zone->lowmem_reserve[j] = managed_pages / ratio;
8071
				}
L
Linus Torvalds 已提交
8072 8073 8074
			}
		}
	}
8075 8076 8077

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
8078 8079
}

8080
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
8090
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
8091 8092 8093
	}

	for_each_zone(zone) {
8094 8095
		u64 tmp;

8096
		spin_lock_irqsave(&zone->lock, flags);
8097
		tmp = (u64)pages_min * zone_managed_pages(zone);
8098
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
8099 8100
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
8101 8102 8103 8104
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
8105
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
8106
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
8107
			 * not be capped for highmem.
L
Linus Torvalds 已提交
8108
			 */
8109
			unsigned long min_pages;
L
Linus Torvalds 已提交
8110

8111
			min_pages = zone_managed_pages(zone) / 1024;
8112
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8113
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
8114
		} else {
N
Nick Piggin 已提交
8115 8116
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
8117 8118
			 * proportionate to the zone's size.
			 */
8119
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
8120 8121
		}

8122 8123 8124 8125 8126 8127
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
8128
			    mult_frac(zone_managed_pages(zone),
8129 8130
				      watermark_scale_factor, 10000));

8131
		zone->watermark_boost = 0;
8132 8133
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8134

8135
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
8136
	}
8137 8138 8139

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
8140 8141
}

8142 8143 8144 8145 8146 8147 8148 8149 8150
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
8151 8152 8153
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
8154
	__setup_per_zone_wmarks();
8155
	spin_unlock(&lock);
8156 8157
}

L
Linus Torvalds 已提交
8158 8159 8160 8161
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
8162
 * we want it large (256MB max).  But it is not linear, because network
L
Linus Torvalds 已提交
8163 8164
 * bandwidth does not increase linearly with machine size.  We use
 *
8165
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
8182
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
8183 8184
{
	unsigned long lowmem_kbytes;
8185
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
8186 8187

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8188 8189 8190 8191 8192 8193
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
8194 8195
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
8196 8197 8198 8199
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
8200
	setup_per_zone_wmarks();
8201
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
8202
	setup_per_zone_lowmem_reserve();
8203 8204 8205 8206 8207 8208

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

8209 8210
	khugepaged_min_free_kbytes_update();

L
Linus Torvalds 已提交
8211 8212
	return 0;
}
8213
postcore_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
8214 8215

/*
8216
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
8217 8218 8219
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
8220
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8221
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8222
{
8223 8224 8225 8226 8227 8228
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

8229 8230
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
8231
		setup_per_zone_wmarks();
8232
	}
L
Linus Torvalds 已提交
8233 8234 8235
	return 0;
}

8236
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8237
		void *buffer, size_t *length, loff_t *ppos)
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

8251
#ifdef CONFIG_NUMA
8252
static void setup_min_unmapped_ratio(void)
8253
{
8254
	pg_data_t *pgdat;
8255 8256
	struct zone *zone;

8257
	for_each_online_pgdat(pgdat)
8258
		pgdat->min_unmapped_pages = 0;
8259

8260
	for_each_zone(zone)
8261 8262
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
8263
}
8264

8265 8266

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8267
		void *buffer, size_t *length, loff_t *ppos)
8268 8269 8270
{
	int rc;

8271
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8272 8273 8274
	if (rc)
		return rc;

8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

8285 8286 8287
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

8288
	for_each_zone(zone)
8289 8290
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
8291 8292 8293
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8294
		void *buffer, size_t *length, loff_t *ppos)
8295 8296 8297 8298 8299 8300 8301 8302 8303
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

8304 8305
	return 0;
}
8306 8307
#endif

L
Linus Torvalds 已提交
8308 8309 8310 8311 8312 8313
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8314
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8315 8316
 * if in function of the boot time zone sizes.
 */
8317
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8318
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8319
{
8320 8321
	int i;

8322
	proc_dointvec_minmax(table, write, buffer, length, ppos);
8323 8324 8325 8326 8327 8328

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (sysctl_lowmem_reserve_ratio[i] < 1)
			sysctl_lowmem_reserve_ratio[i] = 0;
	}

L
Linus Torvalds 已提交
8329 8330 8331 8332
	setup_per_zone_lowmem_reserve();
	return 0;
}

8333 8334
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8335 8336
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
8337
 */
8338
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8339
		void *buffer, size_t *length, loff_t *ppos)
8340 8341
{
	struct zone *zone;
8342
	int old_percpu_pagelist_fraction;
8343 8344
	int ret;

8345 8346 8347
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

8348
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
8363

8364
	for_each_populated_zone(zone)
8365
		zone_set_pageset_high_and_batch(zone);
8366
out:
8367
	mutex_unlock(&pcp_batch_high_lock);
8368
	return ret;
8369 8370
}

8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8410 8411
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8412
{
8413
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8414 8415
	unsigned long log2qty, size;
	void *table = NULL;
8416
	gfp_t gfp_flags;
8417
	bool virt;
8418
	bool huge;
L
Linus Torvalds 已提交
8419 8420 8421 8422

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8423
		numentries = nr_kernel_pages;
8424
		numentries -= arch_reserved_kernel_pages();
8425 8426 8427 8428

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8429

P
Pavel Tatashin 已提交
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8440 8441 8442 8443 8444
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8445 8446

		/* Make sure we've got at least a 0-order allocation.. */
8447 8448 8449 8450 8451 8452 8453 8454
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8455
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8456
	}
8457
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8458 8459 8460 8461 8462 8463

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8464
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8465

8466 8467
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8468 8469 8470
	if (numentries > max)
		numentries = max;

8471
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8472

8473
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8474
	do {
8475
		virt = false;
L
Linus Torvalds 已提交
8476
		size = bucketsize << log2qty;
8477 8478
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8479
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8480
			else
8481 8482
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8483
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8484
			table = __vmalloc(size, gfp_flags);
8485
			virt = true;
8486
			huge = is_vm_area_hugepages(table);
8487
		} else {
8488 8489
			/*
			 * If bucketsize is not a power-of-two, we may free
8490 8491
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8492
			 */
8493 8494
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8495 8496 8497 8498 8499 8500
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8501 8502
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8503
		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
L
Linus Torvalds 已提交
8504 8505 8506 8507 8508 8509 8510 8511

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8512

K
KAMEZAWA Hiroyuki 已提交
8513
/*
8514 8515
 * This function checks whether pageblock includes unmovable pages or not.
 *
8516
 * PageLRU check without isolation or lru_lock could race so that
8517 8518 8519
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8520 8521
 *
 * Returns a page without holding a reference. If the caller wants to
8522
 * dereference that page (e.g., dumping), it has to make sure that it
8523 8524
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8525
 */
8526 8527
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8528
{
8529 8530
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8531
	unsigned long offset = pfn % pageblock_nr_pages;
8532

8533 8534 8535 8536 8537 8538 8539
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8540
			return NULL;
8541

8542
		return page;
8543
	}
8544

8545
	for (; iter < pageblock_nr_pages - offset; iter++) {
8546
		if (!pfn_valid_within(pfn + iter))
8547
			continue;
8548

8549
		page = pfn_to_page(pfn + iter);
8550

8551 8552 8553 8554 8555 8556
		/*
		 * Both, bootmem allocations and memory holes are marked
		 * PG_reserved and are unmovable. We can even have unmovable
		 * allocations inside ZONE_MOVABLE, for example when
		 * specifying "movablecore".
		 */
8557
		if (PageReserved(page))
8558
			return page;
8559

8560 8561 8562 8563 8564 8565 8566 8567
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8568 8569
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8570
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8571
		 * We need not scan over tail pages because we don't
8572 8573
		 * handle each tail page individually in migration.
		 */
8574
		if (PageHuge(page) || PageTransCompound(page)) {
8575 8576
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8577

8578 8579 8580 8581
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8582
				return page;
8583
			}
8584

8585
			skip_pages = compound_nr(head) - (page - head);
8586
			iter += skip_pages - 1;
8587 8588 8589
			continue;
		}

8590 8591 8592 8593
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8594
		 * because their page->_refcount is zero at all time.
8595
		 */
8596
		if (!page_ref_count(page)) {
8597
			if (PageBuddy(page))
8598
				iter += (1 << buddy_order(page)) - 1;
8599 8600
			continue;
		}
8601

8602 8603 8604 8605
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8606
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8607 8608
			continue;

8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
		/*
		 * We treat all PageOffline() pages as movable when offlining
		 * to give drivers a chance to decrement their reference count
		 * in MEM_GOING_OFFLINE in order to indicate that these pages
		 * can be offlined as there are no direct references anymore.
		 * For actually unmovable PageOffline() where the driver does
		 * not support this, we will fail later when trying to actually
		 * move these pages that still have a reference count > 0.
		 * (false negatives in this function only)
		 */
		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
			continue;

8622
		if (__PageMovable(page) || PageLRU(page))
8623 8624
			continue;

8625
		/*
8626 8627 8628
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8629
		 */
8630
		return page;
8631
	}
8632
	return NULL;
8633 8634
}

8635
#ifdef CONFIG_CONTIG_ALLOC
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
#if defined(CONFIG_DYNAMIC_DEBUG) || \
	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
/* Usage: See admin-guide/dynamic-debug-howto.rst */
static void alloc_contig_dump_pages(struct list_head *page_list)
{
	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");

	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
		struct page *page;

		dump_stack();
		list_for_each_entry(page, page_list, lru)
			dump_page(page, "migration failure");
	}
}
#else
static inline void alloc_contig_dump_pages(struct list_head *page_list)
{
}
#endif

8669
/* [start, end) must belong to a single zone. */
8670 8671
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8672 8673
{
	/* This function is based on compact_zone() from compaction.c. */
8674
	unsigned int nr_reclaimed;
8675 8676 8677
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;
8678 8679 8680 8681
	struct migration_target_control mtc = {
		.nid = zone_to_nid(cc->zone),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
8682

8683
	lru_cache_disable();
8684

8685
	while (pfn < end || !list_empty(&cc->migratepages)) {
8686 8687 8688 8689 8690
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8691 8692
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8693 8694
			ret = isolate_migratepages_range(cc, pfn, end);
			if (ret && ret != -EAGAIN)
8695
				break;
8696
			pfn = cc->migrate_pfn;
8697 8698
			tries = 0;
		} else if (++tries == 5) {
8699
			ret = -EBUSY;
8700 8701 8702
			break;
		}

8703 8704 8705
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8706

8707 8708
		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8709 8710 8711 8712 8713 8714 8715

		/*
		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
		 * to retry again over this error, so do the same here.
		 */
		if (ret == -ENOMEM)
			break;
8716
	}
8717

8718
	lru_cache_enable();
8719
	if (ret < 0) {
8720
		alloc_contig_dump_pages(&cc->migratepages);
8721 8722 8723 8724
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8725 8726 8727 8728 8729 8730
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
I
Ingo Molnar 已提交
8731
 * @migratetype:	migratetype of the underlying pageblocks (either
8732 8733 8734
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8735
 * @gfp_mask:	GFP mask to use during compaction
8736 8737
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8738
 * aligned.  The PFN range must belong to a single zone.
8739
 *
8740 8741 8742
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8743
 *
8744
 * Return: zero on success or negative error code.  On success all
8745 8746 8747
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8748
int alloc_contig_range(unsigned long start, unsigned long end,
8749
		       unsigned migratetype, gfp_t gfp_mask)
8750 8751
{
	unsigned long outer_start, outer_end;
8752 8753
	unsigned int order;
	int ret = 0;
8754

8755 8756 8757 8758
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8759
		.mode = MIGRATE_SYNC,
8760
		.ignore_skip_hint = true,
8761
		.no_set_skip_hint = true,
8762
		.gfp_mask = current_gfp_context(gfp_mask),
8763
		.alloc_contig = true,
8764 8765 8766
	};
	INIT_LIST_HEAD(&cc.migratepages);

8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8792
				       pfn_max_align_up(end), migratetype, 0);
8793
	if (ret)
8794
		return ret;
8795

8796 8797
	drain_all_pages(cc.zone);

8798 8799
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8800 8801 8802 8803 8804 8805 8806
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8807
	 */
8808
	ret = __alloc_contig_migrate_range(&cc, start, end);
8809
	if (ret && ret != -EBUSY)
8810
		goto done;
8811
	ret = 0;
8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8834 8835
			outer_start = start;
			break;
8836 8837 8838 8839
		}
		outer_start &= ~0UL << order;
	}

8840
	if (outer_start != start) {
8841
		order = buddy_order(pfn_to_page(outer_start));
8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8853
	/* Make sure the range is really isolated. */
8854
	if (test_pages_isolated(outer_start, end, 0)) {
8855 8856 8857 8858
		ret = -EBUSY;
		goto done;
	}

8859
	/* Grab isolated pages from freelists. */
8860
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8874
				pfn_max_align_up(end), migratetype);
8875 8876
	return ret;
}
8877
EXPORT_SYMBOL(alloc_contig_range);
8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
8973
#endif /* CONFIG_CONTIG_ALLOC */
8974

8975
void free_contig_range(unsigned long pfn, unsigned long nr_pages)
8976
{
8977
	unsigned long count = 0;
8978 8979 8980 8981 8982 8983 8984

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
8985
	WARN(count != 0, "%lu pages are still in use!\n", count);
8986
}
8987
EXPORT_SYMBOL(free_contig_range);
8988

8989 8990
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
I
Ingo Molnar 已提交
8991
 * page high values need to be recalculated.
8992
 */
8993 8994
void __meminit zone_pcp_update(struct zone *zone)
{
8995
	mutex_lock(&pcp_batch_high_lock);
8996
	zone_set_pageset_high_and_batch(zone);
8997
	mutex_unlock(&pcp_batch_high_lock);
8998 8999
}

9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020
/*
 * Effectively disable pcplists for the zone by setting the high limit to 0
 * and draining all cpus. A concurrent page freeing on another CPU that's about
 * to put the page on pcplist will either finish before the drain and the page
 * will be drained, or observe the new high limit and skip the pcplist.
 *
 * Must be paired with a call to zone_pcp_enable().
 */
void zone_pcp_disable(struct zone *zone)
{
	mutex_lock(&pcp_batch_high_lock);
	__zone_set_pageset_high_and_batch(zone, 0, 1);
	__drain_all_pages(zone, true);
}

void zone_pcp_enable(struct zone *zone)
{
	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
	mutex_unlock(&pcp_batch_high_lock);
}

9021 9022
void zone_pcp_reset(struct zone *zone)
{
9023 9024
	int cpu;
	struct per_cpu_pageset *pset;
9025 9026

	if (zone->pageset != &boot_pageset) {
9027 9028 9029 9030
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
9031 9032 9033 9034 9035
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
}

9036
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
9037
/*
9038 9039
 * All pages in the range must be in a single zone, must not contain holes,
 * must span full sections, and must be isolated before calling this function.
K
KAMEZAWA Hiroyuki 已提交
9040
 */
9041
void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
K
KAMEZAWA Hiroyuki 已提交
9042
{
9043
	unsigned long pfn = start_pfn;
K
KAMEZAWA Hiroyuki 已提交
9044 9045
	struct page *page;
	struct zone *zone;
9046
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
9047
	unsigned long flags;
9048

9049
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
9050 9051 9052 9053
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	while (pfn < end_pfn) {
		page = pfn_to_page(pfn);
9054 9055 9056 9057 9058 9059 9060 9061
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			continue;
		}
9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
		/*
		 * At this point all remaining PageOffline() pages have a
		 * reference count of 0 and can simply be skipped.
		 */
		if (PageOffline(page)) {
			BUG_ON(page_count(page));
			BUG_ON(PageBuddy(page));
			pfn++;
			continue;
		}
9072

K
KAMEZAWA Hiroyuki 已提交
9073 9074
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
9075
		order = buddy_order(page);
9076
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
9077 9078 9079 9080 9081
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
9082 9083 9084 9085 9086 9087

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
9088
	unsigned int order;
9089 9090 9091 9092 9093

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

9094
		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9095 9096 9097 9098 9099 9100
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
9101 9102 9103

#ifdef CONFIG_MEMORY_FAILURE
/*
9104 9105
 * Break down a higher-order page in sub-pages, and keep our target out of
 * buddy allocator.
9106
 */
9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
static void break_down_buddy_pages(struct zone *zone, struct page *page,
				   struct page *target, int low, int high,
				   int migratetype)
{
	unsigned long size = 1 << high;
	struct page *current_buddy, *next_page;

	while (high > low) {
		high--;
		size >>= 1;

		if (target >= &page[size]) {
			next_page = page + size;
			current_buddy = page;
		} else {
			next_page = page;
			current_buddy = page + size;
		}

		if (set_page_guard(zone, current_buddy, high, migratetype))
			continue;

		if (current_buddy != target) {
			add_to_free_list(current_buddy, zone, high, migratetype);
9131
			set_buddy_order(current_buddy, high);
9132 9133 9134 9135 9136 9137 9138 9139 9140
			page = next_page;
		}
	}
}

/*
 * Take a page that will be marked as poisoned off the buddy allocator.
 */
bool take_page_off_buddy(struct page *page)
9141 9142 9143 9144 9145
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
9146
	bool ret = false;
9147 9148 9149 9150

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));
9151
		int page_order = buddy_order(page_head);
9152

9153
		if (PageBuddy(page_head) && page_order >= order) {
9154 9155 9156 9157
			unsigned long pfn_head = page_to_pfn(page_head);
			int migratetype = get_pfnblock_migratetype(page_head,
								   pfn_head);

9158
			del_page_from_free_list(page_head, zone, page_order);
9159
			break_down_buddy_pages(zone, page_head, page, 0,
9160
						page_order, migratetype);
9161
			ret = true;
9162 9163
			break;
		}
9164 9165
		if (page_count(page_head) > 0)
			break;
9166 9167
	}
	spin_unlock_irqrestore(&zone->lock, flags);
9168
	return ret;
9169 9170
}
#endif