page_alloc.c 224.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
158 159 160 161
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
162
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167
{
168
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176
{
177
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209
#ifdef CONFIG_ZONE_DMA
210
	[ZONE_DMA] = 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	[ZONE_DMA32] = 256,
214
#endif
215
	[ZONE_NORMAL] = 32,
216
#ifdef CONFIG_HIGHMEM
217
	[ZONE_HIGHMEM] = 0,
218
#endif
219
	[ZONE_MOVABLE] = 0,
220
};
L
Linus Torvalds 已提交
221 222 223

EXPORT_SYMBOL(totalram_pages);

224
static char * const zone_names[MAX_NR_ZONES] = {
225
#ifdef CONFIG_ZONE_DMA
226
	 "DMA",
227
#endif
228
#ifdef CONFIG_ZONE_DMA32
229
	 "DMA32",
230
#endif
231
	 "Normal",
232
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
233
	 "HighMem",
234
#endif
M
Mel Gorman 已提交
235
	 "Movable",
236 237 238
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
239 240
};

241 242 243 244 245 246 247 248 249 250 251 252 253
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

254 255 256 257 258 259
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
260 261 262
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
263 264
};

L
Linus Torvalds 已提交
265
int min_free_kbytes = 1024;
266
int user_min_free_kbytes = -1;
267
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
268

269 270 271
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
272

T
Tejun Heo 已提交
273
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 275 276
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
277
static unsigned long required_kernelcore_percent __initdata;
278
static unsigned long required_movablecore __initdata;
279
static unsigned long required_movablecore_percent __initdata;
280 281
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
282 283 284 285 286

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287

M
Miklos Szeredi 已提交
288 289
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
290
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
291
EXPORT_SYMBOL(nr_node_ids);
292
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
293 294
#endif

295 296
int page_group_by_mobility_disabled __read_mostly;

297 298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
299
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300
{
301 302 303
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 305 306 307 308 309 310 311 312 313 314 315 316
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
317
	/* Always populate low zones for address-constrained allocations */
318 319 320
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
321
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
443

444
void set_pageblock_migratetype(struct page *page, int migratetype)
445
{
446 447
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
448 449
		migratetype = MIGRATE_UNMOVABLE;

450 451 452 453
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
454
#ifdef CONFIG_DEBUG_VM
455
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
456
{
457 458 459
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
460
	unsigned long sp, start_pfn;
461

462 463
	do {
		seq = zone_span_seqbegin(zone);
464 465
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
466
		if (!zone_spans_pfn(zone, pfn))
467 468 469
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

470
	if (ret)
471 472 473
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
474

475
	return ret;
476 477 478 479
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
480
	if (!pfn_valid_within(page_to_pfn(page)))
481
		return 0;
L
Linus Torvalds 已提交
482
	if (zone != page_zone(page))
483 484 485 486 487 488 489
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
490
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
491 492
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
493
		return 1;
494 495 496
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
497 498
	return 0;
}
N
Nick Piggin 已提交
499
#else
500
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
501 502 503 504 505
{
	return 0;
}
#endif

506 507
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
508
{
509 510 511 512 513 514 515 516 517 518 519 520 521 522
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
523
			pr_alert(
524
			      "BUG: Bad page state: %lu messages suppressed\n",
525 526 527 528 529 530 531 532
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

533
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
534
		current->comm, page_to_pfn(page));
535 536 537 538 539
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
540
	dump_page_owner(page);
541

542
	print_modules();
L
Linus Torvalds 已提交
543
	dump_stack();
544
out:
545
	/* Leave bad fields for debug, except PageBuddy could make trouble */
546
	page_mapcount_reset(page); /* remove PageBuddy */
547
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
548 549 550 551 552
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
553
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
554
 *
555 556
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
557
 *
558 559
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
560
 *
561
 * The first tail page's ->compound_order holds the order of allocation.
562
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
563
 */
564

565
void free_compound_page(struct page *page)
566
{
567
	__free_pages_ok(page, compound_order(page));
568 569
}

570
void prep_compound_page(struct page *page, unsigned int order)
571 572 573 574
{
	int i;
	int nr_pages = 1 << order;

575
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
576 577 578 579
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
580
		set_page_count(p, 0);
581
		p->mapping = TAIL_MAPPING;
582
		set_compound_head(p, page);
583
	}
584
	atomic_set(compound_mapcount_ptr(page), -1);
585 586
}

587 588
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
589 590
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
591
EXPORT_SYMBOL(_debug_pagealloc_enabled);
592 593
bool _debug_guardpage_enabled __read_mostly;

594 595 596 597
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
598
	return kstrtobool(buf, &_debug_pagealloc_enabled);
599 600 601
}
early_param("debug_pagealloc", early_debug_pagealloc);

602 603
static bool need_debug_guardpage(void)
{
604 605 606 607
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

608 609 610
	if (!debug_guardpage_minorder())
		return false;

611 612 613 614 615
	return true;
}

static void init_debug_guardpage(void)
{
616 617 618
	if (!debug_pagealloc_enabled())
		return;

619 620 621
	if (!debug_guardpage_minorder())
		return;

622 623 624 625 626 627 628
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
629 630 631 632 633 634

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
635
		pr_err("Bad debug_guardpage_minorder value\n");
636 637 638
		return 0;
	}
	_debug_guardpage_minorder = res;
639
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
640 641
	return 0;
}
642
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
643

644
static inline bool set_page_guard(struct zone *zone, struct page *page,
645
				unsigned int order, int migratetype)
646
{
647 648 649
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
650 651 652 653
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
654 655

	page_ext = lookup_page_ext(page);
656
	if (unlikely(!page_ext))
657
		return false;
658

659 660
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

661 662 663 664
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
665 666

	return true;
667 668
}

669 670
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
671
{
672 673 674 675 676 677
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
678 679 680
	if (unlikely(!page_ext))
		return;

681 682
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

683 684 685
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
686 687
}
#else
688
struct page_ext_operations debug_guardpage_ops;
689 690
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
691 692
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
693 694
#endif

695
static inline void set_page_order(struct page *page, unsigned int order)
696
{
H
Hugh Dickins 已提交
697
	set_page_private(page, order);
698
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
699 700 701 702
}

static inline void rmv_page_order(struct page *page)
{
703
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
704
	set_page_private(page, 0);
L
Linus Torvalds 已提交
705 706 707 708
}

/*
 * This function checks whether a page is free && is the buddy
709
 * we can coalesce a page and its buddy if
710
 * (a) the buddy is not in a hole (check before calling!) &&
711
 * (b) the buddy is in the buddy system &&
712 713
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
714
 *
715 716
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
717
 *
718
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
719
 */
720
static inline int page_is_buddy(struct page *page, struct page *buddy,
721
							unsigned int order)
L
Linus Torvalds 已提交
722
{
723
	if (page_is_guard(buddy) && page_order(buddy) == order) {
724 725 726
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

727 728
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

729 730 731
		return 1;
	}

732
	if (PageBuddy(buddy) && page_order(buddy) == order) {
733 734 735 736 737 738 739 740
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

741 742
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

743
		return 1;
744
	}
745
	return 0;
L
Linus Torvalds 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
761 762
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
763
 * So when we are allocating or freeing one, we can derive the state of the
764 765
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
766
 * If a block is freed, and its buddy is also free, then this
767
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
768
 *
769
 * -- nyc
L
Linus Torvalds 已提交
770 771
 */

N
Nick Piggin 已提交
772
static inline void __free_one_page(struct page *page,
773
		unsigned long pfn,
774 775
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
776
{
777 778
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
779
	struct page *buddy;
780 781 782
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
783

784
	VM_BUG_ON(!zone_is_initialized(zone));
785
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
786

787
	VM_BUG_ON(migratetype == -1);
788
	if (likely(!is_migrate_isolate(migratetype)))
789
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
790

791
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
792
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
793

794
continue_merging:
795
	while (order < max_order - 1) {
796 797
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
798 799 800

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
801
		if (!page_is_buddy(page, buddy, order))
802
			goto done_merging;
803 804 805 806 807
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
808
			clear_page_guard(zone, buddy, order, migratetype);
809 810 811 812 813
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
814 815 816
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
817 818
		order++;
	}
819 820 821 822 823 824 825 826 827 828 829 830
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

831 832
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
833 834 835 836 837 838 839 840 841 842 843 844
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
845
	set_page_order(page, order);
846 847 848 849 850 851 852 853 854

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
855
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
856
		struct page *higher_page, *higher_buddy;
857 858 859 860
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
861 862
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
863 864 865 866 867 868 869 870
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
871 872 873
	zone->free_area[order].nr_free++;
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

896
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
897
{
898 899 900 901 902
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
903

904
	if (unlikely(atomic_read(&page->_mapcount) != -1))
905 906 907
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
908
	if (unlikely(page_ref_count(page) != 0))
909
		bad_reason = "nonzero _refcount";
910 911 912 913
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
914 915 916 917
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
918
	bad_page(page, bad_reason, bad_flags);
919 920 921 922
}

static inline int free_pages_check(struct page *page)
{
923
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
924 925 926 927
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
928
	return 1;
L
Linus Torvalds 已提交
929 930
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
947
		/* the first tail page: ->mapping may be compound_mapcount() */
948 949 950 951 952 953 954 955
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
956
		 * deferred_list.next -- ignore value.
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

981 982
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
983
{
984
	int bad = 0;
985 986 987

	VM_BUG_ON_PAGE(PageTail(page), page);

988 989 990 991 992 993 994 995 996 997 998
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
999

1000 1001
		if (compound)
			ClearPageDoubleMap(page);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1012
	if (PageMappingFlags(page))
1013
		page->mapping = NULL;
1014
	if (memcg_kmem_enabled() && PageKmemcg(page))
1015
		memcg_kmem_uncharge(page, order);
1016 1017 1018 1019
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1020

1021 1022 1023
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1024 1025 1026

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1027
					   PAGE_SIZE << order);
1028
		debug_check_no_obj_freed(page_address(page),
1029
					   PAGE_SIZE << order);
1030
	}
1031 1032 1033
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1034
	kasan_free_pages(page, order);
1035 1036 1037 1038

	return true;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1055 1056 1057 1058 1059 1060
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1061 1062 1063 1064 1065 1066 1067 1068 1069
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1070
/*
1071
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1072
 * Assumes all pages on list are in same zone, and of same order.
1073
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1074 1075 1076 1077 1078 1079 1080
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1081 1082
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1083
{
1084
	int migratetype = 0;
1085
	int batch_free = 0;
1086
	int prefetch_nr = 0;
1087
	bool isolated_pageblocks;
1088 1089
	struct page *page, *tmp;
	LIST_HEAD(head);
1090

1091
	while (count) {
1092 1093 1094
		struct list_head *list;

		/*
1095 1096 1097 1098 1099
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1100 1101
		 */
		do {
1102
			batch_free++;
1103 1104 1105 1106
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1107

1108 1109
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1110
			batch_free = count;
1111

1112
		do {
1113
			page = list_last_entry(list, struct page, lru);
1114
			/* must delete to avoid corrupting pcp list */
1115
			list_del(&page->lru);
1116
			pcp->count--;
1117

1118 1119 1120
			if (bulkfree_pcp_prepare(page))
				continue;

1121
			list_add_tail(&page->lru, &head);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1134
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1135
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1155
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1156 1157
}

1158 1159
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1160
				unsigned int order,
1161
				int migratetype)
L
Linus Torvalds 已提交
1162
{
1163
	spin_lock(&zone->lock);
1164 1165 1166 1167
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1168
	__free_one_page(page, pfn, zone, order, migratetype);
1169
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1170 1171
}

1172
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1173
				unsigned long zone, int nid)
1174
{
1175
	mm_zero_struct_page(page);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1189
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190
static void __meminit init_reserved_page(unsigned long pfn)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1207
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1208 1209 1210 1211 1212 1213 1214
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1215 1216 1217 1218 1219 1220
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1221
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 1223 1224 1225
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1226 1227 1228 1229 1230
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1231 1232 1233 1234

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1235 1236 1237 1238 1239 1240
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1241 1242
		}
	}
1243 1244
}

1245 1246
static void __free_pages_ok(struct page *page, unsigned int order)
{
1247
	unsigned long flags;
M
Minchan Kim 已提交
1248
	int migratetype;
1249
	unsigned long pfn = page_to_pfn(page);
1250

1251
	if (!free_pages_prepare(page, order, true))
1252 1253
		return;

1254
	migratetype = get_pfnblock_migratetype(page, pfn);
1255 1256
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1257
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1258
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1259 1260
}

1261
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1262
{
1263
	unsigned int nr_pages = 1 << order;
1264
	struct page *p = page;
1265
	unsigned int loop;
1266

1267 1268 1269
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1270 1271
		__ClearPageReserved(p);
		set_page_count(p, 0);
1272
	}
1273 1274
	__ClearPageReserved(p);
	set_page_count(p, 0);
1275

1276
	page_zone(page)->managed_pages += nr_pages;
1277 1278
	set_page_refcounted(page);
	__free_pages(page, order);
1279 1280
}

1281 1282
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1283

1284 1285 1286 1287
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1288
	static DEFINE_SPINLOCK(early_pfn_lock);
1289 1290
	int nid;

1291
	spin_lock(&early_pfn_lock);
1292
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1293
	if (nid < 0)
1294
		nid = first_online_node;
1295 1296 1297
	spin_unlock(&early_pfn_lock);

	return nid;
1298 1299 1300 1301
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1302 1303 1304
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1326 1327 1328
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1329 1330 1331 1332 1333 1334
{
	return true;
}
#endif


1335
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1336 1337 1338 1339
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1340
	return __free_pages_boot_core(page, order);
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1372 1373 1374
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1414
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1415 1416
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1417
{
1418 1419
	struct page *page;
	unsigned long i;
1420

1421
	if (!nr_pages)
1422 1423
		return;

1424 1425
	page = pfn_to_page(pfn);

1426
	/* Free a large naturally-aligned chunk if possible */
1427 1428
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1429
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430
		__free_pages_boot_core(page, pageblock_order);
1431 1432 1433
		return;
	}

1434 1435 1436
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437
		__free_pages_boot_core(page, 0);
1438
	}
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1450

1451
/*
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1464
 */
1465 1466 1467
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1468
{
1469 1470 1471 1472 1473 1474 1475 1476
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1488

1489 1490 1491 1492 1493 1494 1495
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1496
			touch_nmi_watchdog();
1497 1498 1499 1500 1501 1502
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1503 1504
}

1505 1506 1507 1508 1509 1510 1511 1512
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1513 1514 1515 1516 1517 1518
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1519 1520 1521
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1522
			continue;
1523
		} else if (!page || !(pfn & nr_pgmask)) {
1524
			page = pfn_to_page(pfn);
1525
			touch_nmi_watchdog();
1526 1527
		} else {
			page++;
1528
		}
1529
		__init_single_page(page, pfn, zid, nid);
1530
		nr_pages++;
1531
	}
1532
	return (nr_pages);
1533 1534
}

1535
/* Initialise remaining memory on a node */
1536
static int __init deferred_init_memmap(void *data)
1537
{
1538 1539
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1540 1541
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1542
	unsigned long spfn, epfn, first_init_pfn, flags;
1543 1544
	phys_addr_t spa, epa;
	int zid;
1545
	struct zone *zone;
1546
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1547
	u64 i;
1548

1549 1550 1551 1552 1553 1554
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1555
	if (first_init_pfn == ULONG_MAX) {
1556
		pgdat_resize_unlock(pgdat, &flags);
1557
		pgdat_init_report_one_done();
1558 1559 1560
		return 0;
	}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1572
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1585 1586 1587
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588
		deferred_free_pages(nid, zid, spfn, epfn);
1589
	}
1590
	pgdat_resize_unlock(pgdat, &flags);
1591 1592 1593 1594

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1595
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1596
					jiffies_to_msecs(jiffies - start));
1597 1598

	pgdat_init_report_one_done();
1599 1600
	return 0;
}
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1712
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1713 1714 1715

void __init page_alloc_init_late(void)
{
1716 1717 1718
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1719 1720
	int nid;

1721 1722
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1723 1724 1725 1726 1727
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1728
	wait_for_completion(&pgdat_init_all_done_comp);
1729

1730 1731 1732 1733 1734 1735
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1736 1737
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1738
#endif
P
Pavel Tatashin 已提交
1739 1740 1741 1742
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1743 1744 1745

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1746 1747
}

1748
#ifdef CONFIG_CMA
1749
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1750 1751 1752 1753 1754 1755 1756 1757
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1758
	} while (++p, --i);
1759 1760

	set_pageblock_migratetype(page, MIGRATE_CMA);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1775
	adjust_managed_page_count(page, pageblock_nr_pages);
1776 1777
}
#endif
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1791
 * -- nyc
L
Linus Torvalds 已提交
1792
 */
N
Nick Piggin 已提交
1793
static inline void expand(struct zone *zone, struct page *page,
1794 1795
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800 1801 1802
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1803
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1804

1805 1806 1807 1808 1809 1810 1811
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1812
			continue;
1813

1814
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1820
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1821
{
1822 1823
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1824

1825
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1826 1827 1828
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1829
	if (unlikely(page_ref_count(page) != 0))
1830
		bad_reason = "nonzero _count";
1831 1832 1833
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1834 1835 1836
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1837
	}
1838 1839 1840 1841
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1842 1843 1844 1845
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1860 1861
}

1862
static inline bool free_pages_prezeroed(void)
1863 1864
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1865
		page_poisoning_enabled();
1866 1867
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1915
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1916
							unsigned int alloc_flags)
1917 1918
{
	int i;
1919

1920
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1921

1922
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1923 1924
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1925 1926 1927 1928

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1929
	/*
1930
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1931 1932 1933 1934
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1935 1936 1937 1938
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1939 1940
}

1941 1942 1943 1944
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1945
static __always_inline
1946
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1947 1948 1949
						int migratetype)
{
	unsigned int current_order;
1950
	struct free_area *area;
1951 1952 1953 1954 1955
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1956
		page = list_first_entry_or_null(&area->free_list[migratetype],
1957
							struct page, lru);
1958 1959
		if (!page)
			continue;
1960 1961 1962 1963
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1964
		set_pcppage_migratetype(page, migratetype);
1965 1966 1967 1968 1969 1970 1971
		return page;
	}

	return NULL;
}


1972 1973 1974 1975
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1976
static int fallbacks[MIGRATE_TYPES][4] = {
1977 1978 1979
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1980
#ifdef CONFIG_CMA
1981
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1982
#endif
1983
#ifdef CONFIG_MEMORY_ISOLATION
1984
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1985
#endif
1986 1987
};

1988
#ifdef CONFIG_CMA
1989
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 1991 1992 1993 1994 1995 1996 1997 1998
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1999 2000
/*
 * Move the free pages in a range to the free lists of the requested type.
2001
 * Note that start_page and end_pages are not aligned on a pageblock
2002 2003
 * boundary. If alignment is required, use move_freepages_block()
 */
2004
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2005
			  struct page *start_page, struct page *end_page,
2006
			  int migratetype, int *num_movable)
2007 2008
{
	struct page *page;
2009
	unsigned int order;
2010
	int pages_moved = 0;
2011 2012 2013 2014 2015 2016 2017

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2018
	 * grouping pages by mobility
2019
	 */
2020 2021 2022
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2023 2024 2025 2026 2027 2028 2029
#endif
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2030 2031 2032
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2033
		if (!PageBuddy(page)) {
2034 2035 2036 2037 2038 2039 2040 2041 2042
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2043 2044 2045 2046 2047
			page++;
			continue;
		}

		order = page_order(page);
2048 2049
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2050
		page += 1 << order;
2051
		pages_moved += 1 << order;
2052 2053
	}

2054
	return pages_moved;
2055 2056
}

2057
int move_freepages_block(struct zone *zone, struct page *page,
2058
				int migratetype, int *num_movable)
2059 2060 2061 2062
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

2063 2064 2065
	if (num_movable)
		*num_movable = 0;

2066
	start_pfn = page_to_pfn(page);
2067
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2068
	start_page = pfn_to_page(start_pfn);
2069 2070
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2071 2072

	/* Do not cross zone boundaries */
2073
	if (!zone_spans_pfn(zone, start_pfn))
2074
		start_page = page;
2075
	if (!zone_spans_pfn(zone, end_pfn))
2076 2077
		return 0;

2078 2079
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2093
/*
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2104
 */
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2129 2130 2131 2132
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2133 2134
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2135
					int start_type, bool whole_block)
2136
{
2137
	unsigned int current_order = page_order(page);
2138
	struct free_area *area;
2139 2140 2141 2142
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2143

2144 2145 2146 2147
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2148
	if (is_migrate_highatomic(old_block_type))
2149 2150
		goto single_page;

2151 2152 2153
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2154
		goto single_page;
2155 2156
	}

2157 2158 2159 2160
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2185
	/* moving whole block can fail due to zone boundary conditions */
2186
	if (!free_pages)
2187
		goto single_page;
2188

2189 2190 2191 2192 2193
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2194 2195
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2196 2197 2198 2199 2200 2201

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2222
		if (fallback_mt == MIGRATE_TYPES)
2223 2224 2225 2226
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2227

2228 2229 2230
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2231 2232 2233 2234 2235
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2236
	}
2237 2238

	return -1;
2239 2240
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2267 2268
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2269 2270
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2271
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2283 2284 2285
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2286
 */
2287 2288
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2289 2290 2291 2292 2293 2294 2295
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2296
	bool ret;
2297 2298 2299

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2300 2301 2302 2303 2304 2305
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2306 2307 2308 2309 2310 2311
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2312 2313 2314 2315
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2316 2317 2318
				continue;

			/*
2319 2320 2321 2322 2323
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2324
			 */
2325
			if (is_migrate_highatomic_page(page)) {
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2348 2349
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2350 2351 2352 2353
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2354 2355 2356
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2357 2358

	return false;
2359 2360
}

2361 2362 2363 2364 2365
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2366 2367 2368 2369
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2370
 */
2371
static __always_inline bool
2372
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2373
{
2374
	struct free_area *area;
2375
	int current_order;
2376
	struct page *page;
2377 2378
	int fallback_mt;
	bool can_steal;
2379

2380 2381 2382 2383 2384
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2385
	for (current_order = MAX_ORDER - 1; current_order >= order;
2386
				--current_order) {
2387 2388
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2389
				start_migratetype, false, &can_steal);
2390 2391
		if (fallback_mt == -1)
			continue;
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2404

2405 2406
		goto do_steal;
	}
2407

2408
	return false;
2409

2410 2411 2412 2413 2414 2415 2416 2417
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2418 2419
	}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2437 2438
}

2439
/*
L
Linus Torvalds 已提交
2440 2441 2442
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2443 2444
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2445 2446 2447
{
	struct page *page;

2448
retry:
2449
	page = __rmqueue_smallest(zone, order, migratetype);
2450
	if (unlikely(!page)) {
2451 2452 2453
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2454 2455
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2456 2457
	}

2458
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2459
	return page;
L
Linus Torvalds 已提交
2460 2461
}

2462
/*
L
Linus Torvalds 已提交
2463 2464 2465 2466
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2467
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2468
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2469
			int migratetype)
L
Linus Torvalds 已提交
2470
{
2471
	int i, alloced = 0;
2472

2473
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2474
	for (i = 0; i < count; ++i) {
2475
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2476
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2477
			break;
2478

2479 2480 2481
		if (unlikely(check_pcp_refill(page)))
			continue;

2482
		/*
2483 2484 2485 2486 2487 2488 2489 2490
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2491
		 */
2492
		list_add_tail(&page->lru, list);
2493
		alloced++;
2494
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2495 2496
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2497
	}
2498 2499 2500 2501 2502 2503 2504

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2505
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2506
	spin_unlock(&zone->lock);
2507
	return alloced;
L
Linus Torvalds 已提交
2508 2509
}

2510
#ifdef CONFIG_NUMA
2511
/*
2512 2513 2514 2515
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2516 2517
 * Note that this function must be called with the thread pinned to
 * a single processor.
2518
 */
2519
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2520 2521
{
	unsigned long flags;
2522
	int to_drain, batch;
2523

2524
	local_irq_save(flags);
2525
	batch = READ_ONCE(pcp->batch);
2526
	to_drain = min(pcp->count, batch);
2527
	if (to_drain > 0)
2528
		free_pcppages_bulk(zone, to_drain, pcp);
2529
	local_irq_restore(flags);
2530 2531 2532
}
#endif

2533
/*
2534
 * Drain pcplists of the indicated processor and zone.
2535 2536 2537 2538 2539
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2540
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2541
{
N
Nick Piggin 已提交
2542
	unsigned long flags;
2543 2544
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2545

2546 2547
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2548

2549
	pcp = &pset->pcp;
2550
	if (pcp->count)
2551 2552 2553
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2568 2569 2570
	}
}

2571 2572
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2573 2574 2575
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2576
 */
2577
void drain_local_pages(struct zone *zone)
2578
{
2579 2580 2581 2582 2583 2584
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2585 2586
}

2587 2588
static void drain_local_pages_wq(struct work_struct *work)
{
2589 2590 2591 2592 2593 2594 2595 2596
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2597
	drain_local_pages(NULL);
2598
	preempt_enable();
2599 2600
}

2601
/*
2602 2603
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2604 2605
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2606
 * Note that this can be extremely slow as the draining happens in a workqueue.
2607
 */
2608
void drain_all_pages(struct zone *zone)
2609
{
2610 2611 2612 2613 2614 2615 2616 2617
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2618 2619 2620 2621 2622 2623 2624
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2635

2636 2637 2638 2639 2640 2641 2642
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2643 2644
		struct per_cpu_pageset *pcp;
		struct zone *z;
2645
		bool has_pcps = false;
2646 2647

		if (zone) {
2648
			pcp = per_cpu_ptr(zone->pageset, cpu);
2649
			if (pcp->pcp.count)
2650
				has_pcps = true;
2651 2652 2653 2654 2655 2656 2657
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2658 2659
			}
		}
2660

2661 2662 2663 2664 2665
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2666

2667 2668 2669
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2670
		queue_work_on(cpu, mm_percpu_wq, work);
2671
	}
2672 2673 2674 2675
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2676 2677
}

2678
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2679

2680 2681 2682 2683 2684
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2685 2686
void mark_free_pages(struct zone *zone)
{
2687
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2688
	unsigned long flags;
2689
	unsigned int order, t;
2690
	struct page *page;
L
Linus Torvalds 已提交
2691

2692
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2693 2694 2695
		return;

	spin_lock_irqsave(&zone->lock, flags);
2696

2697
	max_zone_pfn = zone_end_pfn(zone);
2698 2699
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2700
			page = pfn_to_page(pfn);
2701

2702 2703 2704 2705 2706
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2707 2708 2709
			if (page_zone(page) != zone)
				continue;

2710 2711
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2712
		}
L
Linus Torvalds 已提交
2713

2714
	for_each_migratetype_order(order, t) {
2715 2716
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2717
			unsigned long i;
L
Linus Torvalds 已提交
2718

2719
			pfn = page_to_pfn(page);
2720 2721 2722 2723 2724
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2725
				swsusp_set_page_free(pfn_to_page(pfn + i));
2726
			}
2727
		}
2728
	}
L
Linus Torvalds 已提交
2729 2730
	spin_unlock_irqrestore(&zone->lock, flags);
}
2731
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2732

2733
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2734
{
2735
	int migratetype;
L
Linus Torvalds 已提交
2736

2737
	if (!free_pcp_prepare(page))
2738
		return false;
2739

2740
	migratetype = get_pfnblock_migratetype(page, pfn);
2741
	set_pcppage_migratetype(page, migratetype);
2742 2743 2744
	return true;
}

2745
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2746 2747 2748 2749 2750 2751
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2752
	__count_vm_event(PGFREE);
2753

2754 2755 2756
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2757
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2758 2759 2760 2761
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2762
		if (unlikely(is_migrate_isolate(migratetype))) {
2763
			free_one_page(zone, page, pfn, 0, migratetype);
2764
			return;
2765 2766 2767 2768
		}
		migratetype = MIGRATE_MOVABLE;
	}

2769
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2770
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2771
	pcp->count++;
N
Nick Piggin 已提交
2772
	if (pcp->count >= pcp->high) {
2773
		unsigned long batch = READ_ONCE(pcp->batch);
2774
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2775
	}
2776
}
2777

2778 2779 2780
/*
 * Free a 0-order page
 */
2781
void free_unref_page(struct page *page)
2782 2783 2784 2785
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2786
	if (!free_unref_page_prepare(page, pfn))
2787 2788 2789
		return;

	local_irq_save(flags);
2790
	free_unref_page_commit(page, pfn);
2791
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2792 2793
}

2794 2795 2796
/*
 * Free a list of 0-order pages
 */
2797
void free_unref_page_list(struct list_head *list)
2798 2799
{
	struct page *page, *next;
2800
	unsigned long flags, pfn;
2801
	int batch_count = 0;
2802 2803 2804 2805

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2806
		if (!free_unref_page_prepare(page, pfn))
2807 2808 2809
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2810

2811
	local_irq_save(flags);
2812
	list_for_each_entry_safe(page, next, list, lru) {
2813 2814 2815
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2816 2817
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2828
	}
2829
	local_irq_restore(flags);
2830 2831
}

N
Nick Piggin 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2844 2845
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2846

2847
	for (i = 1; i < (1 << order); i++)
2848
		set_page_refcounted(page + i);
2849
	split_page_owner(page, order);
N
Nick Piggin 已提交
2850
}
K
K. Y. Srinivasan 已提交
2851
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2852

2853
int __isolate_free_page(struct page *page, unsigned int order)
2854 2855 2856
{
	unsigned long watermark;
	struct zone *zone;
2857
	int mt;
2858 2859 2860 2861

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2862
	mt = get_pageblock_migratetype(page);
2863

2864
	if (!is_migrate_isolate(mt)) {
2865 2866 2867 2868 2869 2870 2871
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2872
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2873 2874
			return 0;

2875
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2876
	}
2877 2878 2879 2880 2881

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2882

2883 2884 2885 2886
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2887 2888
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2889 2890
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2891
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2892
			    && !is_migrate_highatomic(mt))
2893 2894 2895
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2896 2897
	}

2898

2899
	return 1UL << order;
2900 2901
}

2902 2903 2904 2905 2906
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2907
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2908 2909
{
#ifdef CONFIG_NUMA
2910
	enum numa_stat_item local_stat = NUMA_LOCAL;
2911

2912 2913 2914 2915
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2916
	if (zone_to_nid(z) != numa_node_id())
2917 2918
		local_stat = NUMA_OTHER;

2919
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2920
		__inc_numa_state(z, NUMA_HIT);
2921
	else {
2922 2923
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2924
	}
2925
	__inc_numa_state(z, local_stat);
2926 2927 2928
#endif
}

2929 2930
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2931
			struct per_cpu_pages *pcp,
2932 2933 2934 2935 2936 2937 2938 2939
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2940
					migratetype);
2941 2942 2943 2944
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2945
		page = list_first_entry(list, struct page, lru);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2961
	unsigned long flags;
2962

2963
	local_irq_save(flags);
2964 2965
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2966
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2967 2968 2969 2970
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2971
	local_irq_restore(flags);
2972 2973 2974
	return page;
}

L
Linus Torvalds 已提交
2975
/*
2976
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2977
 */
2978
static inline
2979
struct page *rmqueue(struct zone *preferred_zone,
2980
			struct zone *zone, unsigned int order,
2981 2982
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2983 2984
{
	unsigned long flags;
2985
	struct page *page;
L
Linus Torvalds 已提交
2986

2987
	if (likely(order == 0)) {
2988 2989 2990 2991
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2992

2993 2994 2995 2996 2997 2998
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2999

3000 3001 3002 3003 3004 3005 3006
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3007
		if (!page)
3008 3009 3010 3011 3012 3013 3014
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3015

3016
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3017
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3018
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3019

3020 3021
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3022
	return page;
N
Nick Piggin 已提交
3023 3024 3025 3026

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3027 3028
}

3029 3030
#ifdef CONFIG_FAIL_PAGE_ALLOC

3031
static struct {
3032 3033
	struct fault_attr attr;

3034
	bool ignore_gfp_highmem;
3035
	bool ignore_gfp_reclaim;
3036
	u32 min_order;
3037 3038
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3039
	.ignore_gfp_reclaim = true,
3040
	.ignore_gfp_highmem = true,
3041
	.min_order = 1,
3042 3043 3044 3045 3046 3047 3048 3049
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3050
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3051
{
3052
	if (order < fail_page_alloc.min_order)
3053
		return false;
3054
	if (gfp_mask & __GFP_NOFAIL)
3055
		return false;
3056
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3057
		return false;
3058 3059
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3060
		return false;
3061 3062 3063 3064 3065 3066 3067 3068

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3069
	umode_t mode = S_IFREG | 0600;
3070 3071
	struct dentry *dir;

3072 3073 3074 3075
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3076

3077
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3078
				&fail_page_alloc.ignore_gfp_reclaim))
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3089
	debugfs_remove_recursive(dir);
3090

3091
	return -ENOMEM;
3092 3093 3094 3095 3096 3097 3098 3099
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3100
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3101
{
3102
	return false;
3103 3104 3105 3106
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3107
/*
3108 3109 3110 3111
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3112
 */
3113 3114 3115
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3116
{
3117
	long min = mark;
L
Linus Torvalds 已提交
3118
	int o;
3119
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3120

3121
	/* free_pages may go negative - that's OK */
3122
	free_pages -= (1 << order) - 1;
3123

R
Rohit Seth 已提交
3124
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3125
		min -= min / 2;
3126 3127 3128 3129 3130 3131

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3132
	if (likely(!alloc_harder)) {
3133
		free_pages -= z->nr_reserved_highatomic;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3147

3148 3149 3150 3151 3152 3153
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3154 3155 3156 3157 3158 3159
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3160
		return false;
L
Linus Torvalds 已提交
3161

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3180 3181
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3182
			return true;
3183
		}
3184
#endif
3185 3186 3187
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3188
	}
3189
	return false;
3190 3191
}

3192
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3193
		      int classzone_idx, unsigned int alloc_flags)
3194 3195 3196 3197 3198
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3199 3200 3201 3202
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3203 3204 3205 3206 3207 3208 3209
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3210 3211 3212 3213 3214 3215 3216 3217

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3218
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3219 3220 3221 3222 3223 3224
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3225
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3226
			unsigned long mark, int classzone_idx)
3227 3228 3229 3230 3231 3232
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3233
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3234
								free_pages);
L
Linus Torvalds 已提交
3235 3236
}

3237
#ifdef CONFIG_NUMA
3238 3239
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3240
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3241
				RECLAIM_DISTANCE;
3242
}
3243
#else	/* CONFIG_NUMA */
3244 3245 3246 3247
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3248 3249
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3250
/*
3251
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3252 3253 3254
 * a page.
 */
static struct page *
3255 3256
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3257
{
3258
	struct zoneref *z = ac->preferred_zoneref;
3259
	struct zone *zone;
3260 3261
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3262
	/*
3263
	 * Scan zonelist, looking for a zone with enough free.
3264
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3265
	 */
3266
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3267
								ac->nodemask) {
3268
		struct page *page;
3269 3270
		unsigned long mark;

3271 3272
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3273
			!__cpuset_zone_allowed(zone, gfp_mask))
3274
				continue;
3275 3276
		/*
		 * When allocating a page cache page for writing, we
3277 3278
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3279
		 * proportional share of globally allowed dirty pages.
3280
		 * The dirty limits take into account the node's
3281 3282 3283 3284 3285
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3286
		 * exceed the per-node dirty limit in the slowpath
3287
		 * (spread_dirty_pages unset) before going into reclaim,
3288
		 * which is important when on a NUMA setup the allowed
3289
		 * nodes are together not big enough to reach the
3290
		 * global limit.  The proper fix for these situations
3291
		 * will require awareness of nodes in the
3292 3293
		 * dirty-throttling and the flusher threads.
		 */
3294 3295 3296 3297 3298 3299 3300 3301 3302
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3303

3304
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3305
		if (!zone_watermark_fast(zone, order, mark,
3306
				       ac_classzone_idx(ac), alloc_flags)) {
3307 3308
			int ret;

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3319 3320 3321 3322 3323
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3324
			if (node_reclaim_mode == 0 ||
3325
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3326 3327
				continue;

3328
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3329
			switch (ret) {
3330
			case NODE_RECLAIM_NOSCAN:
3331
				/* did not scan */
3332
				continue;
3333
			case NODE_RECLAIM_FULL:
3334
				/* scanned but unreclaimable */
3335
				continue;
3336 3337
			default:
				/* did we reclaim enough */
3338
				if (zone_watermark_ok(zone, order, mark,
3339
						ac_classzone_idx(ac), alloc_flags))
3340 3341 3342
					goto try_this_zone;

				continue;
3343
			}
R
Rohit Seth 已提交
3344 3345
		}

3346
try_this_zone:
3347
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3348
				gfp_mask, alloc_flags, ac->migratetype);
3349
		if (page) {
3350
			prep_new_page(page, order, gfp_mask, alloc_flags);
3351 3352 3353 3354 3355 3356 3357 3358

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3359
			return page;
3360 3361 3362 3363 3364 3365 3366 3367
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3368
		}
3369
	}
3370

3371
	return NULL;
M
Martin Hicks 已提交
3372 3373
}

3374
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3375 3376
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3377
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3378

3379
	if (!__ratelimit(&show_mem_rs))
3380 3381 3382 3383 3384 3385 3386 3387
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3388
		if (tsk_is_oom_victim(current) ||
3389 3390
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3391
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3392 3393
		filter &= ~SHOW_MEM_FILTER_NODES;

3394
	show_mem(filter, nodemask);
3395 3396
}

3397
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3398 3399 3400 3401 3402 3403
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3404
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3405 3406
		return;

3407 3408 3409
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3410 3411 3412
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3413
	va_end(args);
J
Joe Perches 已提交
3414

3415
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3416

3417
	dump_stack();
3418
	warn_alloc_show_mem(gfp_mask, nodemask);
3419 3420
}

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3441 3442
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3443
	const struct alloc_context *ac, unsigned long *did_some_progress)
3444
{
3445 3446 3447
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3448
		.memcg = NULL,
3449 3450 3451
		.gfp_mask = gfp_mask,
		.order = order,
	};
3452 3453
	struct page *page;

3454 3455 3456
	*did_some_progress = 0;

	/*
3457 3458
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3459
	 */
3460
	if (!mutex_trylock(&oom_lock)) {
3461
		*did_some_progress = 1;
3462
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3463 3464
		return NULL;
	}
3465

3466 3467 3468
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3469 3470 3471
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3472
	 */
3473 3474 3475
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3476
	if (page)
3477 3478
		goto out;

3479 3480 3481 3482 3483 3484
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3485 3486 3487 3488 3489 3490 3491 3492
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3511

3512
	/* Exhausted what can be done so it's blame time */
3513
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3514
		*did_some_progress = 1;
3515

3516 3517 3518 3519 3520 3521
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3522 3523
					ALLOC_NO_WATERMARKS, ac);
	}
3524
out:
3525
	mutex_unlock(&oom_lock);
3526 3527 3528
	return page;
}

3529 3530 3531 3532 3533 3534
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3535 3536 3537 3538
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3539
		unsigned int alloc_flags, const struct alloc_context *ac,
3540
		enum compact_priority prio, enum compact_result *compact_result)
3541
{
3542
	struct page *page;
3543
	unsigned long pflags;
3544
	unsigned int noreclaim_flag;
3545 3546

	if (!order)
3547 3548
		return NULL;

3549
	psi_memstall_enter(&pflags);
3550
	noreclaim_flag = memalloc_noreclaim_save();
3551

3552
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3553
									prio);
3554

3555
	memalloc_noreclaim_restore(noreclaim_flag);
3556
	psi_memstall_leave(&pflags);
3557

3558
	if (*compact_result <= COMPACT_INACTIVE)
3559
		return NULL;
3560

3561 3562 3563 3564 3565
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3566

3567
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3568

3569 3570
	if (page) {
		struct zone *zone = page_zone(page);
3571

3572 3573 3574 3575 3576
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3577

3578 3579 3580 3581 3582
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3583

3584
	cond_resched();
3585 3586 3587

	return NULL;
}
3588

3589 3590 3591 3592
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3593
		     int *compaction_retries)
3594 3595
{
	int max_retries = MAX_COMPACT_RETRIES;
3596
	int min_priority;
3597 3598 3599
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3600 3601 3602 3603

	if (!order)
		return false;

3604 3605 3606
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3607 3608 3609 3610 3611
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3612 3613
	if (compaction_failed(compact_result))
		goto check_priority;
3614 3615 3616 3617 3618 3619 3620

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3621 3622 3623 3624
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3625 3626

	/*
3627
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3628 3629 3630 3631 3632 3633 3634 3635
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3636 3637 3638 3639
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3640

3641 3642 3643 3644 3645
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3646 3647
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3648

3649
	if (*compact_priority > min_priority) {
3650 3651
		(*compact_priority)--;
		*compaction_retries = 0;
3652
		ret = true;
3653
	}
3654 3655 3656
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3657
}
3658 3659 3660
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3661
		unsigned int alloc_flags, const struct alloc_context *ac,
3662
		enum compact_priority prio, enum compact_result *compact_result)
3663
{
3664
	*compact_result = COMPACT_SKIPPED;
3665 3666
	return NULL;
}
3667 3668

static inline bool
3669 3670
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3671
		     enum compact_priority *compact_priority,
3672
		     int *compaction_retries)
3673
{
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3692 3693
	return false;
}
3694
#endif /* CONFIG_COMPACTION */
3695

3696
#ifdef CONFIG_LOCKDEP
3697
static struct lockdep_map __fs_reclaim_map =
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3709
	if (current->flags & PF_MEMALLOC)
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3732 3733 3734
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3735
		__fs_reclaim_acquire();
3736 3737 3738 3739 3740 3741
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3742
		__fs_reclaim_release();
3743 3744 3745 3746
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3747 3748
/* Perform direct synchronous page reclaim */
static int
3749 3750
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3751 3752
{
	struct reclaim_state reclaim_state;
3753
	int progress;
3754
	unsigned int noreclaim_flag;
3755
	unsigned long pflags;
3756 3757 3758 3759 3760

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3761
	psi_memstall_enter(&pflags);
3762
	fs_reclaim_acquire(gfp_mask);
3763
	noreclaim_flag = memalloc_noreclaim_save();
3764
	reclaim_state.reclaimed_slab = 0;
3765
	current->reclaim_state = &reclaim_state;
3766

3767 3768
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3769

3770
	current->reclaim_state = NULL;
3771
	memalloc_noreclaim_restore(noreclaim_flag);
3772
	fs_reclaim_release(gfp_mask);
3773
	psi_memstall_leave(&pflags);
3774 3775 3776

	cond_resched();

3777 3778 3779 3780 3781 3782
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3783
		unsigned int alloc_flags, const struct alloc_context *ac,
3784
		unsigned long *did_some_progress)
3785 3786 3787 3788
{
	struct page *page = NULL;
	bool drained = false;

3789
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3790 3791
	if (unlikely(!(*did_some_progress)))
		return NULL;
3792

3793
retry:
3794
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3795 3796 3797

	/*
	 * If an allocation failed after direct reclaim, it could be because
3798 3799
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3800 3801
	 */
	if (!page && !drained) {
3802
		unreserve_highatomic_pageblock(ac, false);
3803
		drain_all_pages(NULL);
3804 3805 3806 3807
		drained = true;
		goto retry;
	}

3808 3809 3810
	return page;
}

3811 3812
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3813 3814 3815
{
	struct zoneref *z;
	struct zone *zone;
3816
	pg_data_t *last_pgdat = NULL;
3817
	enum zone_type high_zoneidx = ac->high_zoneidx;
3818

3819 3820
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3821
		if (last_pgdat != zone->zone_pgdat)
3822
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3823 3824
		last_pgdat = zone->zone_pgdat;
	}
3825 3826
}

3827
static inline unsigned int
3828 3829
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3830
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3831

3832
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3833
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3834

3835 3836 3837 3838
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3839
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3840
	 */
3841
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3842

3843
	if (gfp_mask & __GFP_ATOMIC) {
3844
		/*
3845 3846
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3847
		 */
3848
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3849
			alloc_flags |= ALLOC_HARDER;
3850
		/*
3851
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3852
		 * comment for __cpuset_node_allowed().
3853
		 */
3854
		alloc_flags &= ~ALLOC_CPUSET;
3855
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3856 3857
		alloc_flags |= ALLOC_HARDER;

3858 3859 3860 3861
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3862 3863 3864
	return alloc_flags;
}

3865
static bool oom_reserves_allowed(struct task_struct *tsk)
3866
{
3867 3868 3869 3870 3871 3872 3873 3874
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3875 3876
		return false;

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3888
	if (gfp_mask & __GFP_MEMALLOC)
3889
		return ALLOC_NO_WATERMARKS;
3890
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3891 3892 3893 3894 3895 3896 3897
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3898

3899 3900 3901 3902 3903 3904
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3905 3906
}

M
Michal Hocko 已提交
3907 3908 3909
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3910 3911 3912 3913
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3914 3915 3916 3917 3918 3919
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3920
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3921 3922 3923
{
	struct zone *zone;
	struct zoneref *z;
3924
	bool ret = false;
M
Michal Hocko 已提交
3925

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3936 3937 3938 3939
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3940 3941
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3942
		return unreserve_highatomic_pageblock(ac, true);
3943
	}
M
Michal Hocko 已提交
3944

3945 3946 3947 3948 3949
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3950 3951 3952 3953
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3954
		unsigned long reclaimable;
3955 3956
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3957

3958 3959
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3960 3961

		/*
3962 3963
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3964
		 */
3965 3966 3967 3968 3969
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3970 3971 3972 3973 3974 3975 3976
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3977
				unsigned long write_pending;
3978

3979 3980
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3981

3982
				if (2 * write_pending > reclaimable) {
3983 3984 3985 3986
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3987

3988 3989
			ret = true;
			goto out;
M
Michal Hocko 已提交
3990 3991 3992
		}
	}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4006 4007
}

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4041 4042
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4043
						struct alloc_context *ac)
4044
{
4045
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4046
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4047
	struct page *page = NULL;
4048
	unsigned int alloc_flags;
4049
	unsigned long did_some_progress;
4050
	enum compact_priority compact_priority;
4051
	enum compact_result compact_result;
4052 4053 4054
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4055
	int reserve_flags;
L
Linus Torvalds 已提交
4056

4057 4058 4059 4060 4061 4062
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4063 4064
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4065
		return NULL;
4066
	}
L
Linus Torvalds 已提交
4067

4068 4069 4070 4071 4072 4073 4074 4075
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4076 4077 4078 4079 4080
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4081 4082 4083 4084 4085 4086 4087 4088

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4100
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4101
		wake_all_kswapds(order, gfp_mask, ac);
4102 4103 4104 4105 4106 4107 4108 4109 4110

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4111 4112
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4113 4114 4115 4116 4117 4118
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4119
	 */
4120 4121 4122 4123
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4124 4125
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4126
						INIT_COMPACT_PRIORITY,
4127 4128 4129 4130
						&compact_result);
		if (page)
			goto got_pg;

4131 4132 4133 4134
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4135
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4148 4149
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4150
			 * using async compaction.
4151
			 */
4152
			compact_priority = INIT_COMPACT_PRIORITY;
4153 4154
		}
	}
4155

4156
retry:
4157
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4158
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4159
		wake_all_kswapds(order, gfp_mask, ac);
4160

4161 4162 4163
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4164

4165
	/*
4166 4167 4168
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4169
	 */
4170
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4171
		ac->nodemask = NULL;
4172 4173 4174 4175
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4176
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4177
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4178 4179
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4180

4181
	/* Caller is not willing to reclaim, we can't balance anything */
4182
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4183 4184
		goto nopage;

4185 4186
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4187 4188
		goto nopage;

4189 4190 4191 4192 4193 4194 4195
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4196
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4197
					compact_priority, &compact_result);
4198 4199
	if (page)
		goto got_pg;
4200

4201 4202
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4203
		goto nopage;
4204

M
Michal Hocko 已提交
4205 4206
	/*
	 * Do not retry costly high order allocations unless they are
4207
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4208
	 */
4209
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4210
		goto nopage;
M
Michal Hocko 已提交
4211 4212

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4213
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4214 4215
		goto retry;

4216 4217 4218 4219 4220 4221 4222
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4223
			should_compact_retry(ac, order, alloc_flags,
4224
				compact_result, &compact_priority,
4225
				&compaction_retries))
4226 4227
		goto retry;

4228 4229 4230

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4231 4232
		goto retry_cpuset;

4233 4234 4235 4236 4237
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4238
	/* Avoid allocations with no watermarks from looping endlessly */
4239 4240
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4241
	     (gfp_mask & __GFP_NOMEMALLOC)))
4242 4243
		goto nopage;

4244
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4245 4246
	if (did_some_progress) {
		no_progress_loops = 0;
4247
		goto retry;
M
Michal Hocko 已提交
4248
	}
4249

L
Linus Torvalds 已提交
4250
nopage:
4251 4252
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4253 4254
		goto retry_cpuset;

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4292 4293 4294 4295
		cond_resched();
		goto retry;
	}
fail:
4296
	warn_alloc(gfp_mask, ac->nodemask,
4297
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4298
got_pg:
4299
	return page;
L
Linus Torvalds 已提交
4300
}
4301

4302
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4303
		int preferred_nid, nodemask_t *nodemask,
4304 4305
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4306
{
4307
	ac->high_zoneidx = gfp_zone(gfp_mask);
4308
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4309 4310
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4311

4312
	if (cpusets_enabled()) {
4313 4314 4315
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4316 4317
		else
			*alloc_flags |= ALLOC_CPUSET;
4318 4319
	}

4320 4321
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4322

4323
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4324 4325

	if (should_fail_alloc_page(gfp_mask, order))
4326
		return false;
4327

4328 4329 4330
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4331 4332
	return true;
}
4333

4334
/* Determine whether to spread dirty pages and what the first usable zone */
4335
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4336
{
4337
	/* Dirty zone balancing only done in the fast path */
4338
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4339

4340 4341 4342 4343 4344
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4345 4346 4347 4348 4349 4350 4351 4352
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4353 4354
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4355 4356 4357
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4358
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4359 4360 4361
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4362
	alloc_mask = gfp_mask;
4363
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4364 4365
		return NULL;

4366
	finalise_ac(gfp_mask, &ac);
4367

4368
	/* First allocation attempt */
4369
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4370 4371
	if (likely(page))
		goto out;
4372

4373
	/*
4374 4375 4376 4377
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4378
	 */
4379
	alloc_mask = current_gfp_context(gfp_mask);
4380
	ac.spread_dirty_pages = false;
4381

4382 4383 4384 4385
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4386
	if (unlikely(ac.nodemask != nodemask))
4387
		ac.nodemask = nodemask;
4388

4389
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4390

4391
out:
4392 4393 4394 4395
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4396 4397
	}

4398 4399
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4400
	return page;
L
Linus Torvalds 已提交
4401
}
4402
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4403 4404

/*
4405 4406 4407
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4408
 */
H
Harvey Harrison 已提交
4409
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4410
{
4411 4412
	struct page *page;

4413
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418 4419
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4420
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4421
{
4422
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4423 4424 4425
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4426
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4427
{
N
Nick Piggin 已提交
4428
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4429
		if (order == 0)
4430
			free_unref_page(page);
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4438
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4439 4440
{
	if (addr != 0) {
N
Nick Piggin 已提交
4441
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4459 4460
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4480
void __page_frag_cache_drain(struct page *page, unsigned int count)
4481 4482 4483 4484
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4485 4486
		unsigned int order = compound_order(page);

4487
		if (order == 0)
4488
			free_unref_page(page);
4489 4490 4491 4492
		else
			__free_pages_ok(page, order);
	}
}
4493
EXPORT_SYMBOL(__page_frag_cache_drain);
4494

4495 4496
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4497 4498 4499 4500 4501 4502 4503
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4504
		page = __page_frag_cache_refill(nc, gfp_mask);
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4515
		page_ref_add(page, size - 1);
4516 4517

		/* reset page count bias and offset to start of new frag */
4518
		nc->pfmemalloc = page_is_pfmemalloc(page);
4519 4520 4521 4522 4523 4524 4525 4526
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4527
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4528 4529 4530 4531 4532 4533 4534
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4535
		set_page_count(page, size);
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4547
EXPORT_SYMBOL(page_frag_alloc);
4548 4549 4550 4551

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4552
void page_frag_free(void *addr)
4553 4554 4555 4556 4557 4558
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4559
EXPORT_SYMBOL(page_frag_free);
4560

4561 4562
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4596
	return make_alloc_exact(addr, order, size);
4597 4598 4599
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4600 4601 4602
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4603
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4604 4605 4606 4607 4608 4609
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4610
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4611
{
4612
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4613 4614 4615 4616 4617 4618
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4638 4639 4640 4641 4642 4643 4644
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4645 4646
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4647
 */
4648
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4649
{
4650
	struct zoneref *z;
4651 4652
	struct zone *zone;

4653
	/* Just pick one node, since fallback list is circular */
4654
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4655

4656
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4657

4658
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4659
		unsigned long size = zone->managed_pages;
4660
		unsigned long high = high_wmark_pages(zone);
4661 4662
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4663 4664 4665 4666 4667
	}

	return sum;
}

4668 4669 4670 4671 4672
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4673
 */
4674
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4675
{
A
Al Viro 已提交
4676
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4677
}
4678
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4679

4680 4681 4682 4683 4684
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4685
 */
4686
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4687
{
M
Mel Gorman 已提交
4688
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4689
}
4690 4691

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4692
{
4693
	if (IS_ENABLED(CONFIG_NUMA))
4694
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4695 4696
}

4697 4698 4699 4700 4701 4702
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
4703
	unsigned long reclaimable;
4704 4705 4706 4707
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4708
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4709 4710 4711 4712 4713 4714 4715 4716

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4717
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
4729 4730 4731
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
4732
	 */
4733 4734 4735
	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
	available += reclaimable - min(reclaimable / 2, wmark_low);
4736

4737 4738 4739 4740 4741 4742
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4743 4744 4745
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4746
	val->sharedram = global_node_page_state(NR_SHMEM);
4747
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4759 4760
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4761 4762
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4763 4764
	pg_data_t *pgdat = NODE_DATA(nid);

4765 4766 4767
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4768
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4769
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4770
#ifdef CONFIG_HIGHMEM
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4781
#else
4782 4783
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4784
#endif
L
Linus Torvalds 已提交
4785 4786 4787 4788
	val->mem_unit = PAGE_SIZE;
}
#endif

4789
/*
4790 4791
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4792
 */
4793
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4794 4795
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4796
		return false;
4797

4798 4799 4800 4801 4802 4803 4804 4805 4806
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4807 4808
}

L
Linus Torvalds 已提交
4809 4810
#define K(x) ((x) << (PAGE_SHIFT-10))

4811 4812 4813 4814 4815
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4816 4817
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4818 4819 4820
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4821
#ifdef CONFIG_MEMORY_ISOLATION
4822
		[MIGRATE_ISOLATE]	= 'I',
4823
#endif
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4835
	printk(KERN_CONT "(%s) ", tmp);
4836 4837
}

L
Linus Torvalds 已提交
4838 4839 4840 4841
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4842 4843 4844 4845
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4846
 */
4847
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4848
{
4849
	unsigned long free_pcp = 0;
4850
	int cpu;
L
Linus Torvalds 已提交
4851
	struct zone *zone;
M
Mel Gorman 已提交
4852
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4853

4854
	for_each_populated_zone(zone) {
4855
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4856
			continue;
4857

4858 4859
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4860 4861
	}

K
KOSAKI Motohiro 已提交
4862 4863
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4864 4865
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4866
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4867
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4868 4869 4870 4871 4872 4873 4874
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4875 4876 4877
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4878 4879
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4880
		global_node_page_state(NR_FILE_MAPPED),
4881
		global_node_page_state(NR_SHMEM),
4882 4883 4884
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4885
		free_pcp,
4886
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4887

M
Mel Gorman 已提交
4888
	for_each_online_pgdat(pgdat) {
4889
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4890 4891
			continue;

M
Mel Gorman 已提交
4892 4893 4894 4895 4896 4897 4898 4899
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4900
			" mapped:%lukB"
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4921
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4922 4923
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4924
			K(node_page_state(pgdat, NR_SHMEM)),
4925 4926 4927 4928 4929 4930 4931 4932
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4933 4934
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4935 4936
	}

4937
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4938 4939
		int i;

4940
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4941
			continue;
4942 4943 4944 4945 4946

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4947
		show_node(zone);
4948 4949
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4950 4951 4952 4953
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4954 4955 4956 4957 4958
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4959
			" writepending:%lukB"
L
Linus Torvalds 已提交
4960
			" present:%lukB"
4961
			" managed:%lukB"
4962
			" mlocked:%lukB"
4963
			" kernel_stack:%lukB"
4964 4965
			" pagetables:%lukB"
			" bounce:%lukB"
4966 4967
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4968
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4969 4970
			"\n",
			zone->name,
4971
			K(zone_page_state(zone, NR_FREE_PAGES)),
4972 4973 4974
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4975 4976 4977 4978 4979
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4980
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4981
			K(zone->present_pages),
4982
			K(zone->managed_pages),
4983
			K(zone_page_state(zone, NR_MLOCK)),
4984
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4985 4986
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4987 4988
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4989
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4990 4991
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4992 4993
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4994 4995
	}

4996
	for_each_populated_zone(zone) {
4997 4998
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4999
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5000

5001
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5002
			continue;
L
Linus Torvalds 已提交
5003
		show_node(zone);
5004
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5005 5006 5007

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5008 5009 5010 5011
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5012
			total += nr[order] << order;
5013 5014 5015 5016 5017 5018

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5019 5020
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5021
		for (order = 0; order < MAX_ORDER; order++) {
5022 5023
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5024 5025 5026
			if (nr[order])
				show_migration_types(types[order]);
		}
5027
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5028 5029
	}

5030 5031
	hugetlb_show_meminfo();

5032
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5033

L
Linus Torvalds 已提交
5034 5035 5036
	show_swap_cache_info();
}

5037 5038 5039 5040 5041 5042
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5043 5044
/*
 * Builds allocation fallback zone lists.
5045 5046
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5047
 */
5048
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5049
{
5050
	struct zone *zone;
5051
	enum zone_type zone_type = MAX_NR_ZONES;
5052
	int nr_zones = 0;
5053 5054

	do {
5055
		zone_type--;
5056
		zone = pgdat->node_zones + zone_type;
5057
		if (managed_zone(zone)) {
5058
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5059
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5060
		}
5061
	} while (zone_type);
5062

5063
	return nr_zones;
L
Linus Torvalds 已提交
5064 5065 5066
}

#ifdef CONFIG_NUMA
5067 5068 5069

static int __parse_numa_zonelist_order(char *s)
{
5070 5071 5072 5073 5074 5075 5076 5077
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5078 5079 5080 5081 5082 5083 5084
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5085 5086 5087
	if (!s)
		return 0;

5088
	return __parse_numa_zonelist_order(s);
5089 5090 5091
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5092 5093
char numa_zonelist_order[] = "Node";

5094 5095 5096
/*
 * sysctl handler for numa_zonelist_order
 */
5097
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5098
		void __user *buffer, size_t *length,
5099 5100
		loff_t *ppos)
{
5101
	char *str;
5102 5103
	int ret;

5104 5105 5106 5107 5108
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5109

5110 5111
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5112
	return ret;
5113 5114 5115
}


5116
#define MAX_NODE_LOAD (nr_online_nodes)
5117 5118
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5119
/**
5120
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5133
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5134
{
5135
	int n, val;
L
Linus Torvalds 已提交
5136
	int min_val = INT_MAX;
D
David Rientjes 已提交
5137
	int best_node = NUMA_NO_NODE;
5138
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5139

5140 5141 5142 5143 5144
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5145

5146
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153 5154

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5155 5156 5157
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5158
		/* Give preference to headless and unused nodes */
5159 5160
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5179 5180 5181 5182 5183 5184

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5185 5186
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5187
{
5188 5189 5190 5191 5192 5193 5194 5195 5196
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5197

5198 5199 5200 5201 5202
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5203 5204
}

5205 5206 5207 5208 5209
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5210 5211
	struct zoneref *zonerefs;
	int nr_zones;
5212

5213 5214 5215 5216 5217
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5218 5219
}

5220 5221 5222 5223 5224 5225 5226 5227 5228
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5229 5230
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5231
	nodemask_t used_mask;
5232
	int local_node, prev_node;
L
Linus Torvalds 已提交
5233 5234 5235

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5236
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5237 5238
	prev_node = local_node;
	nodes_clear(used_mask);
5239 5240

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5247 5248
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5249 5250
			node_load[node] = load;

5251
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5252 5253 5254
		prev_node = node;
		load--;
	}
5255

5256
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5257
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5258 5259
}

5260 5261 5262 5263 5264 5265 5266 5267 5268
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5269
	struct zoneref *z;
5270

5271
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5272
				   gfp_zone(GFP_KERNEL),
5273
				   NULL);
5274
	return zone_to_nid(z->zone);
5275 5276
}
#endif
5277

5278 5279
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5280 5281
#else	/* CONFIG_NUMA */

5282
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5283
{
5284
	int node, local_node;
5285 5286
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5287 5288 5289

	local_node = pgdat->node_id;

5290 5291 5292
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5293

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5305 5306
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5307
	}
5308 5309 5310
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5311 5312
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5313 5314
	}

5315 5316
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5317 5318 5319 5320
}

#endif	/* CONFIG_NUMA */

5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5338
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5339

5340
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5341
{
5342
	int nid;
5343
	int __maybe_unused cpu;
5344
	pg_data_t *self = data;
5345 5346 5347
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5348

5349 5350 5351
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5352

5353 5354 5355 5356
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5357 5358
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5359 5360 5361
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5362

5363 5364
			build_zonelists(pgdat);
		}
5365

5366 5367 5368 5369 5370 5371 5372 5373 5374
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5375
		for_each_online_cpu(cpu)
5376
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5377
#endif
5378
	}
5379 5380

	spin_unlock(&lock);
5381 5382
}

5383 5384 5385
static noinline void __init
build_all_zonelists_init(void)
{
5386 5387
	int cpu;

5388
	__build_all_zonelists(NULL);
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5406 5407 5408 5409
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5410 5411
/*
 * unless system_state == SYSTEM_BOOTING.
5412
 *
5413
 * __ref due to call of __init annotated helper build_all_zonelists_init
5414
 * [protected by SYSTEM_BOOTING].
5415
 */
5416
void __ref build_all_zonelists(pg_data_t *pgdat)
5417 5418
{
	if (system_state == SYSTEM_BOOTING) {
5419
		build_all_zonelists_init();
5420
	} else {
5421
		__build_all_zonelists(pgdat);
5422 5423
		/* cpuset refresh routine should be here */
	}
5424
	vm_total_pages = nr_free_pagecache_pages();
5425 5426 5427 5428 5429 5430 5431
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5432
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5433 5434 5435 5436
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5437
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5438 5439 5440
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5441
#ifdef CONFIG_NUMA
5442
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5443
#endif
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448 5449 5450
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5451
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5452 5453
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5454
{
A
Andy Whitcroft 已提交
5455
	unsigned long end_pfn = start_pfn + size;
5456
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5457
	unsigned long pfn;
5458
	unsigned long nr_initialised = 0;
5459
	struct page *page;
5460 5461 5462
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5463

5464 5465 5466
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5467
#ifdef CONFIG_ZONE_DEVICE
5468 5469
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
5470 5471 5472 5473
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
5474
	 */
5475 5476 5477 5478 5479 5480 5481 5482 5483
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
5484

5485
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5486
		/*
5487 5488
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5489
		 */
5490 5491 5492
		if (context != MEMMAP_EARLY)
			goto not_early;

5493
		if (!early_pfn_valid(pfn))
5494 5495 5496 5497 5498
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5499 5500

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5518
			}
D
Dave Hansen 已提交
5519
		}
5520
#endif
5521

5522
not_early:
5523 5524 5525
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
5526
			__SetPageReserved(page);
5527

5528 5529 5530 5531 5532
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5533
		 * kernel allocations are made.
5534 5535 5536 5537 5538
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5539 5540 5541
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5542 5543 5544
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5545
			cond_resched();
5546
		}
L
Linus Torvalds 已提交
5547 5548 5549
	}
}

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
				   unsigned long size,
				   struct dev_pagemap *pgmap)
{
	unsigned long pfn, end_pfn = start_pfn + size;
	struct pglist_data *pgdat = zone->zone_pgdat;
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
		return;

	/*
	 * The call to memmap_init_zone should have already taken care
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
	if (pgmap->altmap_valid) {
		struct vmem_altmap *altmap = &pgmap->altmap;

		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
		size = end_pfn - start_pfn;
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
		 * page is ever freed or placed on a driver-private list.
		 */
		page->pgmap = pgmap;
		page->hmm_data = 0;

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
		size, jiffies_to_msecs(jiffies - start));
}

#endif
5625
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5626
{
5627
	unsigned int order, t;
5628 5629
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5630 5631 5632 5633
		zone->free_area[order].nr_free = 0;
	}
}

5634 5635 5636 5637 5638
void __meminit __weak memmap_init(unsigned long size, int nid,
				  unsigned long zone, unsigned long start_pfn)
{
	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
}
L
Linus Torvalds 已提交
5639

5640
static int zone_batchsize(struct zone *zone)
5641
{
5642
#ifdef CONFIG_MMU
5643 5644 5645 5646
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5647
	 * size of the zone.
5648
	 */
5649
	batch = zone->managed_pages / 1024;
5650 5651 5652
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5653 5654 5655 5656 5657
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5658 5659 5660
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5661
	 *
5662 5663 5664 5665
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5666
	 */
5667
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5668

5669
	return batch;
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5687 5688
}

5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5716
/* a companion to pageset_set_high() */
5717 5718
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5719
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5720 5721
}

5722
static void pageset_init(struct per_cpu_pageset *p)
5723 5724
{
	struct per_cpu_pages *pcp;
5725
	int migratetype;
5726

5727 5728
	memset(p, 0, sizeof(*p));

5729
	pcp = &p->pcp;
5730
	pcp->count = 0;
5731 5732
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5733 5734
}

5735 5736 5737 5738 5739 5740
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5741
/*
5742
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5743 5744
 * to the value high for the pageset p.
 */
5745
static void pageset_set_high(struct per_cpu_pageset *p,
5746 5747
				unsigned long high)
{
5748 5749 5750
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5751

5752
	pageset_update(&p->pcp, high, batch);
5753 5754
}

5755 5756
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5757 5758
{
	if (percpu_pagelist_fraction)
5759
		pageset_set_high(pcp,
5760 5761 5762 5763 5764 5765
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5766 5767 5768 5769 5770 5771 5772 5773
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5774
void __meminit setup_zone_pageset(struct zone *zone)
5775 5776 5777
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5778 5779
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5780 5781
}

5782
/*
5783 5784
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5785
 */
5786
void __init setup_per_cpu_pageset(void)
5787
{
5788
	struct pglist_data *pgdat;
5789
	struct zone *zone;
5790

5791 5792
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5793 5794 5795 5796

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5797 5798
}

5799
static __meminit void zone_pcp_init(struct zone *zone)
5800
{
5801 5802 5803 5804 5805 5806
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5807

5808
	if (populated_zone(zone))
5809 5810 5811
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5812 5813
}

5814
void __meminit init_currently_empty_zone(struct zone *zone,
5815
					unsigned long zone_start_pfn,
5816
					unsigned long size)
5817 5818
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5819

5820 5821 5822 5823
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5824 5825 5826 5827 5828 5829
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5830
	zone_init_free_lists(zone);
5831
	zone->initialized = 1;
5832 5833
}

T
Tejun Heo 已提交
5834
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5835
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5836

5837 5838 5839
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5840 5841
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5842
{
5843
	unsigned long start_pfn, end_pfn;
5844
	int nid;
5845

5846 5847
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5848

5849 5850
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5851 5852 5853
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5854 5855 5856
	}

	return nid;
5857 5858 5859 5860
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5861
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5862
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5863
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5864
 *
5865 5866 5867
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5868
 */
5869
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5870
{
5871 5872
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5873

5874 5875 5876
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5877

5878
		if (start_pfn < end_pfn)
5879 5880 5881
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5882 5883 5884
	}
}

5885 5886
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5887
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5888
 *
5889 5890
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5891 5892 5893
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5894 5895
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5896

5897 5898
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5899 5900 5901 5902
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5903 5904 5905
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5906 5907
 *
 * It returns the start and end page frame of a node based on information
5908
 * provided by memblock_set_node(). If called for a node
5909
 * with no available memory, a warning is printed and the start and end
5910
 * PFNs will be 0.
5911
 */
5912
void __meminit get_pfn_range_for_nid(unsigned int nid,
5913 5914
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5915
	unsigned long this_start_pfn, this_end_pfn;
5916
	int i;
5917

5918 5919 5920
	*start_pfn = -1UL;
	*end_pfn = 0;

5921 5922 5923
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5924 5925
	}

5926
	if (*start_pfn == -1UL)
5927 5928 5929
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5930 5931 5932 5933 5934
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5935
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5953
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5954 5955 5956 5957 5958 5959 5960
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5961
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5976 5977 5978 5979 5980 5981
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5982 5983 5984 5985 5986 5987
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5988 5989 5990 5991
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5992
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5993
					unsigned long zone_type,
5994 5995
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5996 5997
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5998 5999
					unsigned long *ignored)
{
6000
	/* When hotadd a new node from cpu_up(), the node should be empty */
6001 6002 6003
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6004
	/* Get the start and end of the zone */
6005 6006
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
6007 6008
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6009
				zone_start_pfn, zone_end_pfn);
6010 6011

	/* Check that this node has pages within the zone's required range */
6012
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6013 6014 6015
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6016 6017
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6018 6019

	/* Return the spanned pages */
6020
	return *zone_end_pfn - *zone_start_pfn;
6021 6022 6023 6024
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6025
 * then all holes in the requested range will be accounted for.
6026
 */
6027
unsigned long __meminit __absent_pages_in_range(int nid,
6028 6029 6030
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6031 6032 6033
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6034

6035 6036 6037 6038
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6039
	}
6040
	return nr_absent;
6041 6042 6043 6044 6045 6046 6047
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6048
 * It returns the number of pages frames in memory holes within a range.
6049 6050 6051 6052 6053 6054 6055 6056
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6057
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6058
					unsigned long zone_type,
6059 6060
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6061 6062
					unsigned long *ignored)
{
6063 6064
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6065
	unsigned long zone_start_pfn, zone_end_pfn;
6066
	unsigned long nr_absent;
6067

6068
	/* When hotadd a new node from cpu_up(), the node should be empty */
6069 6070 6071
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6072 6073
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6074

M
Mel Gorman 已提交
6075 6076 6077
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6078 6079 6080 6081 6082 6083 6084
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6102 6103 6104 6105
		}
	}

	return nr_absent;
6106
}
6107

T
Tejun Heo 已提交
6108
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6109
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6110
					unsigned long zone_type,
6111 6112
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6113 6114
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6115 6116
					unsigned long *zones_size)
{
6117 6118 6119 6120 6121 6122 6123 6124
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6125 6126 6127
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6128
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6129
						unsigned long zone_type,
6130 6131
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6132 6133 6134 6135 6136 6137 6138
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6139

T
Tejun Heo 已提交
6140
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6141

6142
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6143 6144 6145 6146
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6147
{
6148
	unsigned long realtotalpages = 0, totalpages = 0;
6149 6150
	enum zone_type i;

6151 6152
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6153
		unsigned long zone_start_pfn, zone_end_pfn;
6154
		unsigned long size, real_size;
6155

6156 6157 6158
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6159 6160
						  &zone_start_pfn,
						  &zone_end_pfn,
6161 6162
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6163 6164
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6165 6166 6167 6168
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6169 6170 6171 6172 6173 6174 6175 6176
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6177 6178 6179 6180 6181
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6182 6183 6184
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6185 6186
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6187 6188 6189
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6190
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6191 6192 6193
{
	unsigned long usemapsize;

6194
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6195 6196
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6197 6198 6199 6200 6201 6202
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6203
static void __ref setup_usemap(struct pglist_data *pgdat,
6204 6205 6206
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6207
{
6208
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6209
	zone->pageblock_flags = NULL;
6210
	if (usemapsize)
6211 6212 6213
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6214 6215
}
#else
6216 6217
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6218 6219
#endif /* CONFIG_SPARSEMEM */

6220
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6221

6222
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6223
void __init set_pageblock_order(void)
6224
{
6225 6226
	unsigned int order;

6227 6228 6229 6230
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6231 6232 6233 6234 6235
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6236 6237
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6238 6239
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6240 6241 6242 6243 6244
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6245 6246
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6247 6248 6249
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6250
 */
6251
void __init set_pageblock_order(void)
6252 6253
{
}
6254 6255 6256

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6257
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6258
						unsigned long present_pages)
6259 6260 6261 6262 6263 6264 6265 6266
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6267
	 * populated regions may not be naturally aligned on page boundary.
6268 6269 6270 6271 6272 6273 6274 6275 6276
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6297
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6298
{
6299
	pgdat_resize_init(pgdat);
6300 6301 6302 6303

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6304
	init_waitqueue_head(&pgdat->kswapd_wait);
6305
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6306

6307
	pgdat_page_ext_init(pgdat);
6308
	spin_lock_init(&pgdat->lru_lock);
6309
	lruvec_init(node_lruvec(pgdat));
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6356

6357
	pgdat_init_internals(pgdat);
6358 6359
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6360 6361
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6362
		unsigned long size, freesize, memmap_pages;
6363
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6364

6365
		size = zone->spanned_pages;
6366
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6367

6368
		/*
6369
		 * Adjust freesize so that it accounts for how much memory
6370 6371 6372
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6373
		memmap_pages = calc_memmap_size(size, freesize);
6374 6375 6376 6377 6378 6379 6380 6381
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6382
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6383 6384
					zone_names[j], memmap_pages, freesize);
		}
6385

6386
		/* Account for reserved pages */
6387 6388
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6389
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6390
					zone_names[0], dma_reserve);
6391 6392
		}

6393
		if (!is_highmem_idx(j))
6394
			nr_kernel_pages += freesize;
6395 6396 6397
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6398
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6399

6400 6401 6402 6403 6404
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6405
		zone_init_internals(zone, j, nid, freesize);
6406

6407
		if (!size)
L
Linus Torvalds 已提交
6408 6409
			continue;

6410
		set_pageblock_order();
6411 6412
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6413
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6414 6415 6416
	}
}

6417
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6418
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6419
{
6420
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6421 6422
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6423 6424 6425 6426
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6427 6428
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6429 6430
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6431
		unsigned long size, end;
A
Andy Whitcroft 已提交
6432 6433
		struct page *map;

6434 6435 6436 6437 6438
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6439
		end = pgdat_end_pfn(pgdat);
6440 6441
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6442
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6443
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6444
	}
6445 6446 6447
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6448
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6449 6450 6451
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6452
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6453
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6454
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6455
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6456
			mem_map -= offset;
T
Tejun Heo 已提交
6457
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6458
	}
L
Linus Torvalds 已提交
6459 6460
#endif
}
6461 6462 6463
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6464

6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6480
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6481 6482
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6483
{
6484
	pg_data_t *pgdat = NODE_DATA(nid);
6485 6486
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6487

6488
	/* pg_data_t should be reset to zero when it's allocated */
6489
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6490

L
Linus Torvalds 已提交
6491 6492
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6493
	pgdat->per_cpu_nodestats = NULL;
6494 6495
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6496
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6497 6498
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6499 6500
#else
	start_pfn = node_start_pfn;
6501 6502 6503
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6504 6505

	alloc_node_mem_map(pgdat);
6506
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6507

6508
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6509 6510
}

6511
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6512 6513 6514 6515 6516 6517 6518
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
6519
void __init zero_resv_unavail(void)
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6532 6533 6534
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
				pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
					+ pageblock_nr_pages - 1;
6535
				continue;
6536
			}
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
6552
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6553

T
Tejun Heo 已提交
6554
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6555 6556 6557 6558 6559

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6560
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6561
{
6562
	unsigned int highest;
M
Miklos Szeredi 已提交
6563

6564
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6565 6566 6567 6568
	nr_node_ids = highest + 1;
}
#endif

6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6591
	unsigned long start, end, mask;
6592
	int last_nid = -1;
6593
	int i, nid;
6594

6595
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6619
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6620
static unsigned long __init find_min_pfn_for_node(int nid)
6621
{
6622
	unsigned long min_pfn = ULONG_MAX;
6623 6624
	unsigned long start_pfn;
	int i;
6625

6626 6627
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6628

6629
	if (min_pfn == ULONG_MAX) {
6630
		pr_warn("Could not find start_pfn for node %d\n", nid);
6631 6632 6633 6634
		return 0;
	}

	return min_pfn;
6635 6636 6637 6638 6639 6640
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6641
 * memblock_set_node().
6642 6643 6644 6645 6646 6647
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6648 6649 6650
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6651
 * Populate N_MEMORY for calculating usable_nodes.
6652
 */
A
Adrian Bunk 已提交
6653
static unsigned long __init early_calculate_totalpages(void)
6654 6655
{
	unsigned long totalpages = 0;
6656 6657 6658 6659 6660
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6661

6662 6663
		totalpages += pages;
		if (pages)
6664
			node_set_state(nid, N_MEMORY);
6665
	}
6666
	return totalpages;
6667 6668
}

M
Mel Gorman 已提交
6669 6670 6671 6672 6673 6674
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6675
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6676 6677 6678 6679
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6680
	/* save the state before borrow the nodemask */
6681
	nodemask_t saved_node_state = node_states[N_MEMORY];
6682
	unsigned long totalpages = early_calculate_totalpages();
6683
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6684
	struct memblock_region *r;
6685 6686 6687 6688 6689 6690 6691 6692 6693

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6694 6695
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6696 6697
				continue;

E
Emil Medve 已提交
6698
			nid = r->nid;
6699

E
Emil Medve 已提交
6700
			usable_startpfn = PFN_DOWN(r->base);
6701 6702 6703 6704 6705 6706 6707
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6708

6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6739
	/*
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6767
		required_movablecore = min(totalpages, required_movablecore);
6768 6769 6770 6771 6772
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6773 6774 6775 6776 6777
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6778
		goto out;
M
Mel Gorman 已提交
6779 6780 6781 6782 6783 6784 6785

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6786
	for_each_node_state(nid, N_MEMORY) {
6787 6788
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6805
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6806 6807
			unsigned long size_pages;

6808
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6851
			 * satisfied
M
Mel Gorman 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6865
	 * satisfied
M
Mel Gorman 已提交
6866 6867 6868 6869 6870
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6871
out2:
M
Mel Gorman 已提交
6872 6873 6874 6875
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6876

6877
out:
6878
	/* restore the node_state */
6879
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6880 6881
}

6882 6883
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6884 6885 6886
{
	enum zone_type zone_type;

6887
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6888
		struct zone *zone = &pgdat->node_zones[zone_type];
6889
		if (populated_zone(zone)) {
6890 6891 6892
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
6893
				node_set_state(nid, N_NORMAL_MEMORY);
6894 6895
			break;
		}
6896 6897 6898
	}
}

6899 6900
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6901
 * @max_zone_pfn: an array of max PFNs for each zone
6902 6903
 *
 * This will call free_area_init_node() for each active node in the system.
6904
 * Using the page ranges provided by memblock_set_node(), the size of each
6905 6906 6907 6908 6909 6910 6911 6912 6913
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6914 6915
	unsigned long start_pfn, end_pfn;
	int i, nid;
6916

6917 6918 6919 6920 6921
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6922 6923 6924 6925

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6926 6927
		if (i == ZONE_MOVABLE)
			continue;
6928 6929 6930 6931 6932 6933

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6934
	}
M
Mel Gorman 已提交
6935 6936 6937

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6938
	find_zone_movable_pfns_for_nodes();
6939 6940

	/* Print out the zone ranges */
6941
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6942 6943 6944
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6945
		pr_info("  %-8s ", zone_names[i]);
6946 6947
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6948
			pr_cont("empty\n");
6949
		else
6950 6951 6952 6953
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6954
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6955 6956 6957
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6958
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6959 6960
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6961 6962
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6963
	}
6964

6965
	/* Print out the early node map */
6966
	pr_info("Early memory node ranges\n");
6967
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6968 6969 6970
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6971 6972

	/* Initialise every node */
6973
	mminit_verify_pageflags_layout();
6974
	setup_nr_node_ids();
6975
	zero_resv_unavail();
6976 6977
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6978
		free_area_init_node(nid, NULL,
6979
				find_min_pfn_for_node(nid), NULL);
6980 6981 6982

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6983 6984
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6985 6986
	}
}
M
Mel Gorman 已提交
6987

6988 6989
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
6990 6991
{
	unsigned long long coremem;
6992 6993
	char *endptr;

M
Mel Gorman 已提交
6994 6995 6996
	if (!p)
		return -EINVAL;

6997 6998 6999 7000 7001
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7002

7003 7004 7005 7006 7007
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7008

7009 7010 7011
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7012 7013
	return 0;
}
M
Mel Gorman 已提交
7014

7015 7016 7017 7018 7019 7020
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7021 7022 7023 7024 7025 7026
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7027 7028
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7029 7030 7031 7032 7033 7034 7035 7036
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7037 7038
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7039 7040
}

M
Mel Gorman 已提交
7041
early_param("kernelcore", cmdline_parse_kernelcore);
7042
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7043

T
Tejun Heo 已提交
7044
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7045

7046 7047 7048 7049 7050
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7051 7052 7053 7054
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7055 7056
	spin_unlock(&managed_page_count_lock);
}
7057
EXPORT_SYMBOL(adjust_managed_page_count);
7058

7059
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7060
{
7061 7062
	void *pos;
	unsigned long pages = 0;
7063

7064 7065 7066
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7078
		if ((unsigned int)poison <= 0xFF)
7079 7080 7081
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7082 7083 7084
	}

	if (pages && s)
7085 7086
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7087 7088 7089

	return pages;
}
7090
EXPORT_SYMBOL(free_reserved_area);
7091

7092 7093 7094 7095 7096
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7097
	page_zone(page)->managed_pages++;
7098 7099 7100 7101
	totalhigh_pages++;
}
#endif

7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7124 7125 7126 7127
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7138
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7139
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7140
		", %luK highmem"
7141
#endif
J
Joe Perches 已提交
7142 7143 7144 7145 7146 7147 7148
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7149
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7150
		totalhigh_pages << (PAGE_SHIFT - 10),
7151
#endif
J
Joe Perches 已提交
7152
		str ? ", " : "", str ? str : "");
7153 7154
}

7155
/**
7156 7157
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7158
 *
7159
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7160 7161
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7162 7163 7164
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7165 7166 7167 7168 7169 7170
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7171 7172
void __init free_area_init(unsigned long *zones_size)
{
7173
	zero_resv_unavail();
7174
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7175 7176 7177
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7178
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7179 7180
{

7181 7182
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7183

7184 7185 7186 7187 7188 7189 7190
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7191

7192 7193 7194 7195 7196 7197 7198 7199 7200
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7201 7202 7203 7204
}

void __init page_alloc_init(void)
{
7205 7206 7207 7208 7209 7210
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7211 7212
}

7213
/*
7214
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7215 7216 7217 7218 7219 7220
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7221
	enum zone_type i, j;
7222 7223

	for_each_online_pgdat(pgdat) {
7224 7225 7226

		pgdat->totalreserve_pages = 0;

7227 7228
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7229
			long max = 0;
7230 7231 7232 7233 7234 7235 7236

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7237 7238
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7239

7240 7241
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7242

7243
			pgdat->totalreserve_pages += max;
7244

7245 7246 7247 7248 7249 7250
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7251 7252
/*
 * setup_per_zone_lowmem_reserve - called whenever
7253
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7254 7255 7256 7257 7258 7259
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7260
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7261

7262
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7263 7264
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7265
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7266 7267 7268

			zone->lowmem_reserve[j] = 0;

7269 7270
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7271 7272
				struct zone *lower_zone;

7273
				idx--;
L
Linus Torvalds 已提交
7274
				lower_zone = pgdat->node_zones + idx;
7275 7276 7277 7278 7279 7280 7281 7282

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7283
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7284 7285 7286
			}
		}
	}
7287 7288 7289

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7290 7291
}

7292
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7293 7294 7295 7296 7297 7298 7299 7300 7301
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7302
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7303 7304 7305
	}

	for_each_zone(zone) {
7306 7307
		u64 tmp;

7308
		spin_lock_irqsave(&zone->lock, flags);
7309
		tmp = (u64)pages_min * zone->managed_pages;
7310
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7311 7312
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7313 7314 7315 7316
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7317
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7318
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7319
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7320
			 */
7321
			unsigned long min_pages;
L
Linus Torvalds 已提交
7322

7323
			min_pages = zone->managed_pages / 1024;
7324
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7325
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7326
		} else {
N
Nick Piggin 已提交
7327 7328
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7329 7330
			 * proportionate to the zone's size.
			 */
7331
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7332 7333
		}

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7345

7346
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7347
	}
7348 7349 7350

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7351 7352
}

7353 7354 7355 7356 7357 7358 7359 7360 7361
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7362 7363 7364
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7365
	__setup_per_zone_wmarks();
7366
	spin_unlock(&lock);
7367 7368
}

L
Linus Torvalds 已提交
7369 7370 7371 7372 7373 7374 7375
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7376
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7393
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7394 7395
{
	unsigned long lowmem_kbytes;
7396
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7397 7398

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7411
	setup_per_zone_wmarks();
7412
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7413
	setup_per_zone_lowmem_reserve();
7414 7415 7416 7417 7418 7419

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7420 7421
	return 0;
}
7422
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7423 7424

/*
7425
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7426 7427 7428
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7429
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7430
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7431
{
7432 7433 7434 7435 7436 7437
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7438 7439
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7440
		setup_per_zone_wmarks();
7441
	}
L
Linus Torvalds 已提交
7442 7443 7444
	return 0;
}

7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7460
#ifdef CONFIG_NUMA
7461
static void setup_min_unmapped_ratio(void)
7462
{
7463
	pg_data_t *pgdat;
7464 7465
	struct zone *zone;

7466
	for_each_online_pgdat(pgdat)
7467
		pgdat->min_unmapped_pages = 0;
7468

7469
	for_each_zone(zone)
7470
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7471 7472
				sysctl_min_unmapped_ratio) / 100;
}
7473

7474 7475

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7476
	void __user *buffer, size_t *length, loff_t *ppos)
7477 7478 7479
{
	int rc;

7480
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7481 7482 7483
	if (rc)
		return rc;

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7494 7495 7496
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7497
	for_each_zone(zone)
7498
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7499
				sysctl_min_slab_ratio) / 100;
7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7513 7514
	return 0;
}
7515 7516
#endif

L
Linus Torvalds 已提交
7517 7518 7519 7520 7521 7522
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7523
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7524 7525
 * if in function of the boot time zone sizes.
 */
7526
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7527
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7528
{
7529
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7530 7531 7532 7533
	setup_per_zone_lowmem_reserve();
	return 0;
}

7534 7535
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7536 7537
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7538
 */
7539
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7540
	void __user *buffer, size_t *length, loff_t *ppos)
7541 7542
{
	struct zone *zone;
7543
	int old_percpu_pagelist_fraction;
7544 7545
	int ret;

7546 7547 7548
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7549
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7564

7565
	for_each_populated_zone(zone) {
7566 7567
		unsigned int cpu;

7568
		for_each_possible_cpu(cpu)
7569 7570
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7571
	}
7572
out:
7573
	mutex_unlock(&pcp_batch_high_lock);
7574
	return ret;
7575 7576
}

7577
#ifdef CONFIG_NUMA
7578
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7629 7630
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7631
{
7632
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7633 7634
	unsigned long log2qty, size;
	void *table = NULL;
7635
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7636 7637 7638 7639

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7640
		numentries = nr_kernel_pages;
7641
		numentries -= arch_reserved_kernel_pages();
7642 7643 7644 7645

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7646

P
Pavel Tatashin 已提交
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7657 7658 7659 7660 7661
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7662 7663

		/* Make sure we've got at least a 0-order allocation.. */
7664 7665 7666 7667 7668 7669 7670 7671
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7672
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7673
	}
7674
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7675 7676 7677 7678 7679 7680

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7681
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7682

7683 7684
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7685 7686 7687
	if (numentries > max)
		numentries = max;

7688
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7689

7690
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7691 7692
	do {
		size = bucketsize << log2qty;
7693 7694 7695 7696 7697 7698
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7699
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7700
		} else {
7701 7702
			/*
			 * If bucketsize is not a power-of-two, we may free
7703 7704
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7705
			 */
7706
			if (get_order(size) < MAX_ORDER) {
7707 7708
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7709
			}
L
Linus Torvalds 已提交
7710 7711 7712 7713 7714 7715
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7716 7717
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7718 7719 7720 7721 7722 7723 7724 7725

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7726

K
KAMEZAWA Hiroyuki 已提交
7727
/*
7728 7729 7730
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7731
 * PageLRU check without isolation or lru_lock could race so that
7732 7733 7734
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7735
 */
7736
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7737
			 int migratetype,
7738
			 bool skip_hwpoisoned_pages)
7739 7740
{
	unsigned long pfn, iter, found;
7741

7742
	/*
7743 7744 7745 7746 7747
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7748 7749
	 */

7750 7751 7752 7753 7754 7755 7756 7757 7758
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7759 7760 7761 7762
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7763
		if (!pfn_valid_within(check))
7764
			continue;
7765

7766
		page = pfn_to_page(check);
7767

7768
		if (PageReserved(page))
7769
			goto unmovable;
7770

7771 7772 7773 7774 7775 7776
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7777 7778 7779 7780

			if (!hugepage_migration_supported(page_hstate(page)))
				goto unmovable;

7781 7782 7783 7784
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7785 7786 7787 7788
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7789
		 * because their page->_refcount is zero at all time.
7790
		 */
7791
		if (!page_ref_count(page)) {
7792 7793 7794 7795
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7796

7797 7798 7799 7800 7801 7802 7803
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7804 7805 7806
		if (__PageMovable(page))
			continue;

7807 7808 7809
		if (!PageLRU(page))
			found++;
		/*
7810 7811 7812
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7823
			goto unmovable;
7824
	}
7825
	return false;
7826 7827 7828
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
7829 7830
}

7831
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7846 7847
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7848 7849
{
	/* This function is based on compact_zone() from compaction.c. */
7850
	unsigned long nr_reclaimed;
7851 7852 7853 7854
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7855
	migrate_prep();
7856

7857
	while (pfn < end || !list_empty(&cc->migratepages)) {
7858 7859 7860 7861 7862
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7863 7864
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7865
			pfn = isolate_migratepages_range(cc, pfn, end);
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7876 7877 7878
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7879

7880
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7881
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7882
	}
7883 7884 7885 7886 7887
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7888 7889 7890 7891 7892 7893
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7894 7895 7896 7897
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7898
 * @gfp_mask:	GFP mask to use during compaction
7899 7900
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7901
 * aligned.  The PFN range must belong to a single zone.
7902
 *
7903 7904 7905
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7906 7907 7908 7909 7910
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7911
int alloc_contig_range(unsigned long start, unsigned long end,
7912
		       unsigned migratetype, gfp_t gfp_mask)
7913 7914
{
	unsigned long outer_start, outer_end;
7915 7916
	unsigned int order;
	int ret = 0;
7917

7918 7919 7920 7921
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7922
		.mode = MIGRATE_SYNC,
7923
		.ignore_skip_hint = true,
7924
		.no_set_skip_hint = true,
7925
		.gfp_mask = current_gfp_context(gfp_mask),
7926 7927 7928
	};
	INIT_LIST_HEAD(&cc.migratepages);

7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7954 7955
				       pfn_max_align_up(end), migratetype,
				       false);
7956
	if (ret)
7957
		return ret;
7958

7959 7960
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7961 7962 7963 7964 7965 7966 7967
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7968
	 */
7969
	ret = __alloc_contig_migrate_range(&cc, start, end);
7970
	if (ret && ret != -EBUSY)
7971
		goto done;
7972
	ret =0;
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7992
	drain_all_pages(cc.zone);
7993 7994 7995 7996 7997

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7998 7999
			outer_start = start;
			break;
8000 8001 8002 8003
		}
		outer_start &= ~0UL << order;
	}

8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8017
	/* Make sure the range is really isolated. */
8018
	if (test_pages_isolated(outer_start, end, false)) {
8019
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8020
			__func__, outer_start, end);
8021 8022 8023 8024
		ret = -EBUSY;
		goto done;
	}

8025
	/* Grab isolated pages from freelists. */
8026
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8040
				pfn_max_align_up(end), migratetype);
8041 8042 8043 8044 8045
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8046 8047 8048 8049 8050 8051 8052 8053 8054
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8055 8056 8057
}
#endif

8058
#ifdef CONFIG_MEMORY_HOTPLUG
8059 8060 8061 8062
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8063 8064
void __meminit zone_pcp_update(struct zone *zone)
{
8065
	unsigned cpu;
8066
	mutex_lock(&pcp_batch_high_lock);
8067
	for_each_possible_cpu(cpu)
8068 8069
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8070
	mutex_unlock(&pcp_batch_high_lock);
8071 8072 8073
}
#endif

8074 8075 8076
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8077 8078
	int cpu;
	struct per_cpu_pageset *pset;
8079 8080 8081 8082

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8083 8084 8085 8086
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8087 8088 8089 8090 8091 8092
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8093
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8094
/*
8095 8096
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8097 8098 8099 8100 8101 8102
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8103
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8104 8105 8106 8107 8108 8109 8110 8111
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8112
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8113 8114 8115 8116 8117 8118 8119 8120 8121
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8132 8133 8134 8135
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8136 8137
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8149 8150 8151 8152 8153 8154

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8155
	unsigned int order;
8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif